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Abstract

This article proposes a small area estimation approach that combines small
area random effects with a smooth, nonparametrically specified trend. By us-
ing penalized splines as the representation for the nonparametric trend, it
is possible to express the nonparametric small area estimation problem as
a mixed effect model regression. The resulting model is readily fitted us-
ing existing model fitting approaches such as restricted maximum likelihood.
We present theoretical results on the prediction mean squared error of the
proposed estimator and on likelihood ratio tests for random effects, and we
propose a simple nonparametric bootstrap approach for model inference and
estimation of the small area prediction mean squared error. The applicability
of the method is demonstrated on a survey of lakes in the Northeastern US.
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1 Introduction

In many surveys, it is of interest to provide estimates for small domains within the

overall population of interest. Depending on the overall survey sample size, design-

based inference methods might not be appropriate for all or some of these small

domains, so that survey practitioners have often resorted to model-based estimators

in this case. The term “small area estimation” is often used to denote this kind of

estimation setting. Ghosh and Rao (1994) review the most commonly used types of

estimators used by survey statisticians, including synthetic and composite estima-

tors, mixed model prediction, and empirical and hierarchical Bayesian approaches.

The “canonical” small area estimation model is a linear mean model for the data

and a random effect for the small areas, with both masked by an additional amount

of noise due to not having sampled the complete small area. Both the random

effect and the noise are assumed to be independent realizations from underlying

distributions. The response variable can either be observed at the small area level,

or at a smaller unit or respondent level. Fay and Herriot (1979) studied the area-

level model and proposed an empirical Bayes estimator for that case. Battese et al.

(1988) considered the unit-level model and constructed an empirical best linear

unbiased predictor (EBLUP) for the small area means. Numerous extensions to this

setup have been considered in the literature, including for data that follow various

generalized linear models and have more complicated random effects structures. Rao

(2003) provides a good overview of the available estimation methods, and Jiang

and Lahiri (2006) review the theoretical development of mixed model estimation

in the small area context. The extension we are considering here is to incorporate

nonparametric regression models in small area estimation, which we will do for the

unit-level case.

In principle, a nonparametric model might have significant advantages compared

to parametric approaches when the functional form of the relationship between the

variable of interest and the covariates cannot be specified a priori, since erroneous

specification of the model can result in biased estimators. Even when a specific func-

tional form appears reasonable, the nonparametric model provides a more robust

model alternative that can be useful in the process of model checking and valida-

tion. Despite these possible advantages, nonparametric approaches have not made

inroads in small area estimation, due in large part to the methodological difficulties

of incorporating existing smoothing techniques into the estimation tools used by

survey statisticians.

2



Penalized spline regression, often referred to as P-splines, is a nonparametric method

recently popularized by Eilers and Marx (1996). P-splines are an attractive smooth-

ing method, because of their flexibility and the ability to incorporate them into a

large range of modelling contexts. We refer to Ruppert et al. (2003) for an overview

of applications of P-splines to different settings. As will be made more specific below,

the two concepts underlying P-splines are the replacement of the fully nonparametric

mean trend by a highly parametrized function form, and the imposition of penalty

to ensure that the parameter estimators achieve good statistical properties. Hence,

even though penalized spline regression is most often referred to as a nonparametric

method, it really represents a flexible class of parametric methods based on linear

models. In the current article, we exploit the close connection between P-splines and

linear mixed models (see Wand, 2003) to show how to incorporate a nonparametric

mean function specification into existing small area estimation approaches.

The ability to combine nonparametric regression and mixed model regression with

P-splines has been used in other contexts. Parise et al. (2001), Coull et al. (2001)

and Coull et al. (2001a) all provide examples of using penalized splines in the

construction of mixed effect regression models for the analysis of data containing

random effects. In the survey context, Zheng and Little (2004) propose a model-

based estimator for cluster sampling, in which the regression model combines a spline

model with a random effect for the clusters.

Our proposed method is also related to linear mixed model approaches in which

complex data structures are captured through more sophisticated random effects

structures. Related approaches include, for instance, Clayton and Kaldor (1987),

who proposed a model in which the small area random effects are correlated, and

Ghosh et al. (1998), who used a prior distribution for the small area effect that in-

cludes spatial correlation between small areas. Further related models are described

in Rao (2003, Ch. 8). In these models, a simple mean model is supplemented by a

random effect specification that makes it possible to capture relationships between

neighboring small areas. While the P-spline model can also be used to incorporate

spatial proximity effects (as will be done in the application considered later in this

article), the method can be applied more generally to modeling situations in which

the relationship between dependent and independent variables cannot be properly

captured by a simple parametric structure.

The goal of the article is to demonstrate how nonparametric regression and related

inference methods can be incorporated into the various components of small area

estimation and inference, using as a case study a survey of lake water quality vari-
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ables. In Section 2, we briefly review penalized spline regression and show how to

incorporate it in small area estimation. Section 3 presents theoretical properties

of the proposed method, including the prediction mean squared error of the small

area estimates and an estimator for that quantity. We also discuss likelihood ratio

testing for the significance of the spline term and the small area random effect, and

we propose a simple bootstrap method that is easy to implement and is applicable

to both mean squared error estimation and testing. Throughout this section, our

main emphasis is on extending and/or applying existing approaches, rather than

developing new theoretical results.

Section 4 contains the case study, based on data from a survey of lakes in the North-

eastern states of the U.S. In that survey, 334 lakes were sampled from a population

of 21,026 lakes. We use small area estimation to produce estimates of mean acid

neutralizing capacity (ANC) for each of 113 8-digit Hydrologic Unit Codes (HUC) in

the region, and use the bootstrap approach to do model inference. We also conduct

a limited simulation study to evaluate the validity of the bootstrap approach in this

context.

2 Description of Methodology

We begin by describing the spline-based nonparametric regression model and esti-

mator outside of the small area context. We closely follow the description in Ruppert

et al. (2003). Consider first the simple model

yi = mo(xi) + εi,

where the εi are independent random variables with mean zero and variance σ2
ε . The

function mo(·) is unknown, but if this function is to be estimated using P-splines,

we assume that it can be approximated sufficiently well by

m(x;β,γ) = β0 + β1x+ . . .+ βpx
p +

K∑
k=1

γk(x− κk)p+. (1)

Here p is the degree of the spline, (x)p+ denotes the function xpI{x>0}, κ1 < . . . < κK

is a set of fixed knots and β = (β0, . . . , βp)
′,γ = (γ1, . . . , γK)′ are the coefficient

vectors for the “parametric” and the “spline” portions of the model, respectively.

Provided the knot locations are sufficiently spread out over the range of x and K

is sufficiently large (guidelines are given below), the class of functions m(x;β,γ)
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is very large and can approximate most smooth functions mo(·) with a high de-

gree of accuracy, even for p small (say, between 1 and 3). As is commonly done

in the P-spline context, we assume that the lack-of-fit error mo(·) − m(·;β,γ) is

negligible relative to the estimation error m(·;β,γ) − m(·; β̂, γ̂). Ruppert (2002)

provides simulation-based evidence that this lack-of-fit error is indeed negligible in

the univariate nonparametric regression case.

The spline function (1) uses the truncated polynomial spline basis {1, x, . . . , xp, (x−
κ1)

p
+, . . . , (x−κK)p+} to approximate the function m0. Other bases are also possible

and, especially when x is multivariate, might be preferable to the truncated poly-

nomials. Regardless of the choice of basis, the spline function can be expressed as

a linear combination of basis functions. In Section 4, we introduce the radial basis

functions for use in the spatial context.

Following the recommendations in Ruppert (2002), the knots are often at equally

spaced quantiles of the distribution of the covariate and K is taken to be large

relative to the size of the dataset. A typical knot choice for univariate x would be 1

knot every 4 or 5 observations, with a maximum number of 35-50. For multivariate

regression problems, other approaches are recommended to “spread out” the knots

over the covariate space, and we will return to this in Section 4. In both situations,

the model (1) is potentially over-parameterized and difficult to fit. This issue is

avoided by putting a penalty on the magnitude of the spline parameters γ. For

a given dataset {(xi, yi) : i = 1, . . . , n}, this is done by defining the regression

estimators as the minimizers over β and γ of

n∑
i=1

(yi −m(xi;β,γ))2 + λγγ
′γ,

where λγ is a fixed penalty parameter. However, different values of λγ result in

different estimators of β and γ, so that it is of interest to treat λγ as an unknown

parameter as well. As discussed in Ruppert et al. (2003), this can be conveniently

done by treating the γ as a random effect vector in a linear mixed model speci-

fication, which will allow joint estimation of λγ, β and γ by maximum likelihood

methods.

In small area estimation, a commonly used approach is to express the relationship

between the variable of interest and any auxiliary variables as a linear model sup-

plemented by a random effect for the small areas (e.g. the nested error regression

model of Battese et al. 1988). Since both the P-spline and the small area estimation

models can be viewed as random effects models, it is natural to try to combine both
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into a nonparametric small area estimation framework based on linear mixed model

regression.

Specifically, suppose there are T small areas for which estimates are to be con-

structed. Define dit as the indicator taking value of 1 if observation i is in small area

t and 0 otherwise, and let di = (di1, . . . , diT )′. We also define Y = (y1, . . . , yn)′,

X =

 1 x1 · · · xp1
...

...

1 xn · · · xpn

 , Z =

 (x1 − κ1)
p
+ · · · (x1 − κK)p+

...
...

(xn − κ1)
p
+ · · · (xn − κK)p+


and D = (d1, . . . ,dn)′. If other variables are available that need to be included in

the model as parametric terms, they can be added into the X fixed effect matrix.

We assume that the data follow the model

Y = Xβ +Zγ +Du+ ε (2)

where

γ ∼ (0,Σγ) with Σγ ≡ σ2
γ IK

u ∼ (0,Σu) with Σu ≡ σ2
u IT (3)

ε ∼ (0,Σε) with Σε ≡ σ2
ε In

and each of the random components is assumed independent of the others. The

model (2) includes the spline function, which can be thought of as a nonparametric

mean function specification, and the small area random effects Du. For the purpose

of fitting this model and using the appropriate amount of smoothing for the spline,

it is convenient to continue to treat Zγ as a random effect term, so that Var(Y ) ≡
V = ZΣγZ

′ +DΣuD
′ + Σε.

If the variances of the random components are known, standard results from BLUP

theory (e.g. McCulloch and Searle, 2001, Chapter 9) guarantee that, given the model

specifications (2) and (3), the GLS estimator

β̂ = (X ′V −1X)−1X ′V −1Y (4)

and the predictors

γ̂ = ΣγZ
′V −1(Y −Xβ̂)

û = ΣuD
′V −1(Y −Xβ̂) (5)

are optimal among all linear estimators/predictors.
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For a given small area t, we are interested in predicting

ȳt = x̄tβ + z̄tγ + ut, (6)

where x̄t, z̄t are the true means of the powers of xi (up to p) and of the spline basis

functions over the small area, and ut is the small area effect, which incorporates

area-level unmodeled random variation. Both x̄t and z̄t are assumed known. Note

that ȳt is not generally equal to the true mean of the yi in the small area, because it

ignores the mean of the errors εt. The difference between both quantities is usually

ignored in practice, and we will do the same here.

Clearly, ut = d̄tu = etu, where et is a vector with 1 in the tth position and 0s

everywhere else. As a predictor of ȳt, we therefore use

ŷt = x̄tβ̂ + z̄tγ̂ + etû, (7)

which is a linear combination of the GLS estimator (4) and the BLUPs in (5), so

that ŷt is itself the BLUP for ȳt.

If the variances are unknown, a commonly used approach in mixed model regression

is to use so-called EBLUP versions of (4), (5) and (7), which are constructed by

replacing σ2
γ, σ

2
u, σ

2
ε by estimators. Estimated parameters (4) and predictions (5)

can be obtained by Restricted Maximum Likelihood (REML) minimization or related

methods (Patterson and Thompson, 1971), which are implemented in PROC MIXED in

SAS, lme() in S-Plus and R, or by using programs specifically written for penalized

spline regression such as the SemiPar package in R.

3 Theoretical Properties

3.1 Prediction Mean Squared Error

We consider the prediction error ŷt − ȳt first in the case of known variance compo-

nents. To simplify the expressions, we let W = [Z,D], ω = (γ ′,u′)′, w̄t = (z̄t, et)

and

Σw =

[
Σγ 0

0 Σu

]
.

Then,

ŷt − ȳt = ct

(
β̂ − β

)
+ w̄t

(
ΣwW

′V −1(Y −Xβ)− ω
)

(8)

with ct = x̄t−w̄tΣwW
′V −1X. This expression can be used to derive the properties

of the small area predictors under different frameworks.
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If both the spline coefficients and the small areas are treated as true random effects in

the underlying model (2), the mean prediction error is 0 and the covariance between

the two terms in (8) is also 0, so that mean squared error (MSE) of the prediction

errors is readily calculated to be

E(ŷt − ȳt)2 = ct(X
′V −1X)−1c′t + w̄tΣw

(
I −W ′V −1WΣw

)
w̄′t. (9)

This expression corresponds to equation (3.6) in Battese et al. (1988).

If the variances of the random effects are estimated from the data, the resulting

EBLUP version of (8) is

ỹt − ȳt = ĉt

(
β̂ − β

)
+ w̄t

(
Σ̂wW

′V̂
−1

(Y −Xβ)− ω
)

(10)

with ĉt = x̄t − w̄tΣ̂wW
′V̂
−1
X, using REML estimators for the unknown variance

components in V and Σw. Expression (9) is no longer equal to the MSE of the

prediction errors for the EBLUP, and a substantial literature exists on approxima-

tions and estimators for the MSE of small area estimators for both area-level and

unit-level models. In the case of small area estimation with a linear mean model and

independent variance components, Prasad and Rao (1990) extended the results of

Kackar and Harville (1984) to derive a second-order approximation for the predic-

tion MSE (PMSE) as well as an estimator for the PMSE that is correct up to second

order. Datta and Lahiri (2000) later extended their results for the case of REML

estimation of the variance components, and Das et al. (2004) further expanded it

to encompass more general linear mixed models. Two important characteristics of

these methods are (i) that the approximations to the PMSE include the effect of

the estimation of the random effect parameters, and (ii) that the PMSE estimators

need to include a bias correction term in order to be consistent for the PMSE.

For the case with a spline-based random component, we have the result as formulated

in the following theorem, which states a second order approximation to the PMSE of

the EBLUP, together with its estimator, also correct to the second order. Hence, the

spline-based small area estimation approach achieves the same two characteristics

as the above methods. This result and the method of proof are extensions of Das

et al. (2004) to the case of a spline-based random effect. However, it should be

noted that because of the structure of the variance-covariance matrix induced by

the spline random component, the results of Das et al. (2004) do not apply directly.

First we make the following definitions. Let σ2 = (σ2
γ, σ

2
u, σ

2
ε). Let S be a matrix

with rows Sj = w̄t

(
∂Σw

∂(σσσ2)j
W ′V −1 + ΣwW

′ ∂V −1

∂(σσσ2)j

)
, j=1,2,3, where ∂Σw

∂(σσσ2)1
≡ ∂Σw

∂σ2
γ

=
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diag(IK , 0T ), ∂Σw

∂(σσσ2)2
≡ ∂Σw

∂σ2
u

= diag(0K , IT ), ∂Σw

∂(σσσ2)3
≡ ∂Σw

∂σ2
ε

= 0K+T and ∂V −1

∂(σσσ2)j
=

−V −1BjV
−1 with B1 = ZZ ′, B2 = DD′ and B3 = In. Further, the 3×3

matrix I, the Fisher information matrix with respect to σ2, contains elements Iij =
1
2
tr(PBiPBj), where P = V −1 − V −1X(X ′V −1X)−1X ′V −1.

Theorem 3.1 Assume that there exists a value δ > 1 such that E(|yi|2δ) is bounded,

that the true variance components σ2 = (σ2
γ, σ

2
u, σ

2
ε) are positive, that the largest

eigenvalue of V is O(Ln), where Ln = o(
√
n), and that the number of small areas

T = O(n) and the number of knots K is fixed. Then, the prediction mean squared

error of the EBLUP predictor in (10) is given by

PMSE(ỹt) ≡ E(ỹt − ȳt)2 = E(ŷt − ȳt)2 + tr(SV S ′I−1) + o(L2
n/n). (11)

If we assume that Ln = O{(log
√
n)a} for any positive a, then the estimator of the

quantity in (11),

̂PMSE(ŷt) = ĉt(X
′V̂
−1
X)−1ĉ′t + w̄tΣ̂w

(
I −W ′V̂

−1
W Σ̂w

)
w̄′t

+2(Y −Xβ̂)′Ŝ ′Î−1Ŝ(Y −Xβ̂),

inserting REML estimators for unknown variance components in S and I, is second

order correct. That is, E( ̂PMSE) = PMSE + o(L2
n/n).

The proof is given in the Appendix.

3.2 Testing for small area effects and non-linearities

In the model, there are two main sources of variability in addition to the pure

error term: (i) the small area effects, and (ii) the deviation from the parametric

pth degree polynomial model, as accounted for by the spline terms. Since both of

these features are modeled via random effects in a mixed linear model, the absence

of one of the effects is characterized by the zero-ness of the corresponding variance

component. We therefore propose a likelihood ratio test (or restricted likelihood

ratio test) for testing the presence of small area effects. To test the hypothesis

H0,u : σ2
u = 0 versus the one-sided alternative Ha,u : σ2

u > 0, we fit the model

twice, once without the small area random effects, resulting in the log likelihood (or

restricted likelihood) value L0, and once with these random effects included, giving

L1. The test statistic equals Lu = 2{L1 − L0}. Similarly, a (restricted) likelihood

ratio statistic to test for the presence of any structure more complicated than a pth
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degree polynomial, H0,γ : σ2
γ = 0 versus Ha,γ : σ2

γ > 0 is denoted by Lγ. It is also

possible to test for both effects simultaneously, more precisely, H0 : σ2
u = 0, σ2

γ = 0

versus Ha : σ2
u > 0 or σ2

γ > 0. The corresponding (restricted) log likelihood value is

denoted Lγ,u.
One-sided testing has a long history, going back to Chernoff (1954). An impor-

tant reference for an asymptotic study of likelihood ratio tests under boundary

constraints is Self and Liang (1987), applicable to independent and identically dis-

tributed data. Stram and Lee (1994) consider tests on variance components in a

longitudinal mixed linear model, and Vu and Zhou (1997) provide general theoretical

results. The overview paper by Sen and Silvapulle (2002) contains more information

on the particular type of asymptotic distribution obtained in such testing problems,

as well as results for the related Wald and score tests. Because of the special charac-

teristics of the spline random effect, the results of these authors do not apply directly

to the estimator we are considering here. Instead, we will extend existing results

for testing spline random effects to the case where there is an additional small area

effect.

Depending on the assumptions one is willing to make, it is possible to theoretically

derive either an asymptotic distribution or an exact one for the above likelihood

ratio statistics. If we assume that both T and K tend to infinity such that T = o(n)

and K = o(n), together with some regularity conditions on the design matrices and

the moments of the random variables, and we define λ = (λγ, λu) = (σ2
γ/σ

2
ε , σ

2
u/σ

2
ε ),

with λ0 its value under the null hypothesis for any of the three hypotheses, we then

have the following result: with λ0 = (λγ,0, 0) to test H0,u (resp. λ0 = (0, λu,0) to

test H0,γ), the (restricted) likelihood ratio statistic Lu (resp. Lγ) has an asymptotic

distribution which is an equal mixture of a point mass at zero and a chi-squared

with one degree of freedom, denoted 1
2
χ2

0 + 1
2
χ2

1, which would correspond to the

result one would expect under the theory developed for the independent case by Self

and Liang (1987). The proof of this result follows the same line of arguments as

that of Theorem 2 of Claeskens (2004), with the difference that only one variance

component is set to zero. A similar result is obtained for the joint testing problem,

with the asymptotic distribution a mixture of χ2
0, χ

2
1 and χ2

2.

These asymptotic approximations are very easy to compute, but as discussed in

Crainiceanu and Ruppert (2004) in the context of testing for the presence of the

spline components, they do not perform satisfactorily in practice. Moreover, we

prefer not to make the assumption on the number of spline components K growing

to infinity, since this would be in conflict with the assumptions of Theorem 3.1.
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An alternative to using the asymptotic distribution is to proceed along the same

lines as in Crainiceanu et al. (2005) for testing polynomial regression models under

the assumption of Gaussian random variables, and to obtain an exact restricted

likelihood ratio test via spectral decompositions. Our situation differs from the

setting considered in that article because of the presence of the small area effect.

The algorithm to simulate the finite sample distribution is a generalization of that

given for the case of a single variance component in Crainiceanu and Ruppert (2004).

While the principle is similar, the case with two variance components poses addi-

tional challenges. The most important one is that the required eigenvalues for this

algorithm do not have an explicit form in terms of (λγ, λu). Therefore, for each

evaluation of the likelihood at given values of (λγ, λu), one would need to recompute

these eigenvalues. This difficulty, combined with the fact that the grid search is in

more than one dimension, make this procedure cumbersome to use in practice. In

the next section, we will discuss a more practical bootstrap-based method that is

applicable for both estimation of the prediction mean squared error and testing for

the random components.

3.3 Bootstrapping small area and local effects

Bootstrap replicate observations are generated as

Y ∗ = Xβ̂ +Zγ∗ +Du∗ + ε∗, (12)

where γ∗, u∗ and ε∗ are bootstrap replicates of the random components in the

model. In principle there are various possibilities to draw such replicates. A nat-

ural way to do this is to make use of the stochastic model given in (3) with fitted

variance parameters. This requires that specific parametric distributions for the

random components be chosen, and in practice, normal distributions would often

be used for this purpose. Butar and Lahiri (2003) consider parametric bootstrap

estimation of the prediction mean squared error assuming Gaussian distributions.

Lahiri (2003) reviews other proposals for prediction mean squared error estimation

using parametric bootstrap. Recent work on parametric bootstrap methods includes

Hall and Maiti (2006), who propose a double bootstrap procedure to construct a

second order correct estimator of the PMSE.

One drawback of the parametric bootstrap approach is that it could lead to biased

inference if these distributions are misspecified. Pfeffermann and Glickman (2004)

propose a nonparametric bootstrap for the Fay-Herriot model, which starts from
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an asymptotic approximation to the small area prediction mean squared error as in

(11) and uses standardized resampled residuals to estimate individual terms of that

approximation. The approach we propose here also uses resampling, but there are

two main differences between our approach and that of Pfeffermann and Glickman

(2004). First, we do not target the asymptotic approximation of the PMSE and

second, instead of using the residuals themselves, we split them into components

corresponding to the random effects and model errors. An advantage of our approach

is that it makes it possible not only to estimate the PMSE, but also to obtain

bootstrap distributions for the likelihood ratio test statistics, as will be described

below.

Assuming that the variances σ2 are known, we start from the BLUP predictors γ̂

and û obtained in (5), and denote H = I − V P . In this case, the variance of γ̂ is

Var(γ̂) = σ4
γZ
′V −1(I −H)Z

so that we need to correct γ̂ before being able to draw bootstrap replicates γ∗ with

the proper second moment. We therefore replace the γ̂ by

γ̃ = (Z ′V −1(I −H)Z)−1/2γ̂/σγ (13)

before resampling. The same reasoning leads to

ũ = (D′V −1(I −H)D)−1/2û/σu. (14)

Finally, to generate estimated errors, we start from

ε̂ = Y −Xβ̂ −Zγ̂ −Dû = ΣεV
−1(I −H)Y ,

so that Var(ε̂) = σ4
εV
−1(I −H) and hence,

ε̃ = (V −1(I −H))−1/2ε̂/σε. (15)

Bootstrap resampling is done with replacement from γ̃, ũ and ε̃ after centering to

obtain zero-mean random components. The resulting bootstrap distributions of

γ∗,u∗ and ε∗ will therefore have variances Σ∗γ = γ̃ ′γ̃/K IK , Σ∗u = ũ′ũ/T IT and

Σ∗ε = ε̃′ε̃/n In, respectively. In the case of known variance components considered

so far, these bootstrap variances can be expected to converge to Σγ,Σu and Σε

under mild conditions, but we will not investigate this further here.

In practice, the variance components are unknown and are estimated from the data.

This above procedure is therefore “naive” in the sense that it does not account for
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the estimation of the variance parameters, and hence should be viewed as a BLUP

bootstrap which will generally not be second order correct for the estimation of

the PMSE. As will be further illustrated in Section 4, the error of the parameter

estimation of σ2 is often very small relative to the prediction error, especially in

applications with unit-level (as opposed to small-area-level) models, so that a boot-

strap approach that ignores estimation uncertainty is likely to perform almost as

well in many cases as a more complicated procedure that attempts to incorporate

that portion of the error. Therefore, in the bootstrap procedure we implemented, we

used the expressions (13), (14) and (15) after replacing the variance components σ2

by their REML estimators σ̂2. Similarly, we also found that the matrix H , which

accounts for the estimation of β, had virtually no effect on the adjustments.

In Section 4, we discuss a limited simulation study that assesses the appropriateness

of the nonparametric bootstrap in the context of the application. Research in a full

EBLUP version of this simple bootstrap would certainly be warranted. In principle,

it would be possible to improve the second moment corrections in (13)–(15) by

extending the results of Theorem 3.1, since each of the elements of γ̂ and û is of

the same form as ỹt (for different w̄t). Alternatively, a “plug-in” nonparametric

bootstrap like that of Pfeffermann and Glickman (2004) could be derived. We do

not pursue this further here.

Once the bootstrap random components and errors are generated, bootstrap obser-

vations Y ∗ are constructed using (12). Drawing B bootstrap samples obtained in

this manner, the PMSE for the small areas are estimated by

1

B

B∑
b=1

(ỹ∗bt − ȳ∗bt )2,

where superscript b indexes the bootstrap samples. The above bootstrap approach

can also be applied in the testing context. We illustrate the use of the bootstrap

procedure in approximating the distribution of the likelihood ratio statistic for the

case H0,u : σ2
u = 0. First, we fit the model with H0,u : σ2

u = 0 and the alternative

model H1,u : σ2
u ≥ 0 to the data and obtain the likelihood (or restricted likelihood)

statistic Lu = 2{L1 − L0}. To assess the significance of Lu, the distribution of Lu
under H0,u is approximated by generating bootstrap replicates as

Y ∗ = Xβ̂ +Zγ∗ + ε∗,

where γ∗ and ε∗ are generated as discussed above. For each bootstrap replicate

sample b = 1, . . . , B, we fit the restricted and the full model and obtain L∗bu . The

significance of Lu is then evaluated against the empirical distribution of L∗bu .

13



Figure 1: Locations of sampled lakes in Northeastern U.S.

4 Application

Between 1991 and 1996, the Environmental Monitoring and Assessment Program

(EMAP) of the U.S. Environmental Protection Agency conducted a survey of lakes

in the Northeastern states of the U.S. The survey is based on a population of 21,026

lakes from which 334 lakes were surveyed, some of which were visited several times

during the study period. The total number of measurements is 551. Figure 1 shows

the region of interest and the locations of the sampled lakes. We refer to Messer

et al. (1991) and Larsen et al. (2001) for a description of the EMAP program and

the Northeastern Lakes survey.

In this article, we consider the estimation of the mean acid neutralizing capacity

(ANC) for each of 113 small areas defined by 8-digit Hydrologic Unit Codes (HUC)

within the region of interest. HUCs represent a nested subdivision of all U.S. land

based on hydrological features, and are frequently used in delineating areas of anal-

ysis in surveys of natural resources. ANC, also called acid binding capacity or total

alkalinity, measures the buffering capacity of water against negative changes in pH

(Wetzel, 1975, p. 172), and is often used as an indicator of the acidification risk of

water bodies in water resource surveys.

The goal of the analysis is to identify HUCs of concern within the region, based

14



0 - 300.0

300.1 - 600.0

600.1 - 900.0

900.1 - 1200.0

1200.1 - 3174.3

No Data

Figure 2: Hydrologic Unit Code (HUC) small areas within Northeastern U.S. region,

with average ANC computed in all small areas containing sample observations.

on the results from the survey. HUCs are a meaningful subdivision of the region,

because HUC boundaries typically follow watershed drainage areas, and lakes in a

HUC are expected to be influenced by the same hydrological and associated features.

Hence, lakes in close geographical proximity but located in different HUCs are ex-

pected to be less similar than two lakes in the same HUC. At the same time, factors

affecting ANC such as acid deposition and soil characteristics cut across HUCs, so

that overall spatial trends are also likely to be useful in predicting ANC. Therefore,

a HUC prediction model that captures spatial trends and allows for HUC-specific

effects has the potential to capture most of the interesting patterns in the data, and

will be explored in this section.

Figure 2 displays a map of the HUCs in the region of interest, with the average ANC

computed for all HUCs in which sample observations were located. The map also

shows the locations of the 27 HUCs in which no sample observations are available.

The variables that can be used in the construction of a small area estimation model

in this application are the geographical coordinates of the centroid of each lake (in

the UTM coordinate system) and its elevation. After trying different combinations of

parametric and nonparametric specifications for these variables, it was determined

15



utmx

ut
m

y

20 40 60 80 100

44
0

46
0

48
0

50
0

52
0

Figure 3: Lake locations (open circles) and knot locations of the bivariate radial

spline function on the UTM coordinates(solid circles).

that a bivariate spline on the UTM coordinates and a linear term for elevation

provided the best model fit. We therefore describe the construction of the small

area estimator for this combination of terms.

In principle, the spline function (1) could be extended to the bivariate case by taking

tensor products of basis functions in the North/South and East/West directions.

However, this leads to very large numbers of basis functions and numerical instability

in the fitting algorithm. Instead, we follow Ruppert et al. (2003, p.253) in using a

transformed radial basis, defined as

Z = [C(xi − κk)] 1≤i≤n
1≤k≤K

[C(κk − κk′)]−1/2
1≤k,k′≤K , (16)

where C(r) = ||r||2 log ||r||, xi = (x1i, x2i) denotes the geographical coordinates

for observation i and κk, k = 1, . . . , K are spline knots. The second matrix on the

right-hand side of (16) applies a linear transformation to the radial basis functions

in the first matrix, and is recommended by Ruppert et al. (2003) as a way to make

the radial spline behave approximately like a thin-plate spline.

Knot selection for spatial applications is discussed in Ruppert et al. (2003, p.255).

Since it is no longer possible to place knots at the quantiles of the covariate as in the

univariate case described in Section 2, the use of space filling designs is recommended

to ensure coverage of the covariate space as well as parsimony in the number of knots.

We used the space-filling algorithm implemented in the cover.design() function
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Fixed effects

Parameter β̂ P-value

Intercept 228.6 0.87

Elevation -0.814 < .001

Random effects

Parameter σ̂ P-value

Spline 71.2 < .001

HUC 365.7 < .001

Errors 179.5 < .001

Table 1: Parameter estimates for penalized spline small area estimation model for

Northeastern Lakes data.

in the FUNFITS package for S-plus (Nychka et al. 1998) for this purpose. Figure 3

shows the locations of the K = 80 knots selected by this method.

The ANC small area model can now be written as in (2) with variance components

(3). That model includes Y for the ANC observations, X for the matrix containing

an intercept and the linear elevation term, Z as in (16) for the spatial locations,

and D for the matrix of indicators for the HUCs. This model is fitted using REML

as implemented in lme() in S-plus, and calculations take approximately 6.6s for

a single fit on a Pentium 1.6GHz Intel laptop. The parameter estimates and cor-

responding P-values are shown in Table 1. The P-values are computed using the

bootstrap procedure described in Section 3.3 and a bootstrap sample size B = 5000.

Since the P-values are all far from the customary cut-off value of 0.05, we felt this

was a sufficiently large number of bootstrap replicates to be able to determine the

significance (or lack thereof) of the parameter estimates.

The left plot in Figure 4 shows a map with the small area predictions ŷt for all HUCs.

Compared to the map in Figure 2, the small area estimation map is smoother and

also contains values in all HUCs, offsetting some of the limitations of the original

data. One noticeable difference between the HUC mean map and the EBLUP map is

that the smallest value in the latter is negative. ANC values can be negative, and the

dataset contains 39 negative observations (out of 551), with a smallest observation

of -72.2. Hence, while the small area predicted value of -37.6 indeed falls outside of

the range of the HUC means, it is well within the range of the observed data. This

map is a combination of a linear elevation effect, a smooth spatial trend captured

by the spline random effect, and a HUC-specific random deviation. The right plot
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Figure 4: Left: map of predicted mean ANC for all HUCs. Right: spline component

predictions.

in Figure 4 displays the prediction of the spatial spline surface averaged for each

HUC. A smoothly varying spatial trend is clearly visible, with high values in the

West and low values in both the South and the East.

Other mean model specifications were also evaluated, including the addition of linear

terms for the North/South and East/West spatial coordinates and a quadratic term

for elevation. None of those terms were found to be statistically significant. The

coefficient for the intercept in Table 1 is also not statistically significant, but it was

not removed from the model as it was significant in some of the fits with different

random effects specifications (see below). We also investigated the effect of the

number of knots, and repeated the analysis with K varying from 40 to 100. We

applied AIC to provide guidance on the knot selection, and found that the AIC

decreases over that range, with the rate of decrease steeper between 40 and 80 and

much less so between 80 and 100. While the parameter estimates varied somewhat

over that range of values, the overall fits remained similar and in particular the

significance of the parameters did not change. Hence, we are comfortable with

K = 80 as a suitable compromise between model parsimony and goodness of fit.

In order to estimate the uncertainty associated with the predictions in Figure 4, we

computed estimated PMSE for the small areas using both the asymptotic approx-

imation from Theorem 3.1 and the nonparametric bootstrap. As noted in Section

3.3, the bootstrap method ignores the uncertainty associated with parameter es-
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timation. To assess the appropriateness of omitting this source of variability, we

first computed the estimated PMSE according to Theorem 3.1 for each of the HUCs

and compared the relative size of the three PMSE components. Averaged over the

HUCs, the prediction component represents 96.9% of the estimated PMSE, the es-

timation of the mean model parameters 1.1% and the estimation of the variance

parameters 2.0%. Hence, a method that ignores the parameter estimation should

not have a big effect on mean squared error estimation for this application. When

we computed the PMSE using the asymptotic approximation and the bootstrap, we

found that the estimates tracked each other closely for all HUCs, but the bootstrap

estimates tended to be larger. Averaging the square root of the PMSE estimates

over the HUCs, the difference between the bootstrap and the asymptotic estimates

was approximately 8.5%. Hence, using the bootstrap method leads to potentially

slightly conservative but (in our opinion) practically acceptable inference for this

model.

In order to evaluate the appropriateness of the nonparametric bootstrap inference

approach for this dataset more fully and compare it with alternative approaches,

we performed a limited simulation study. Data were generated by taking the same

covariates and spline basis functions as in this dataset, with parameter values set

at those shown in Table 1 and with random components following known distribu-

tions. Two such distributions were investigated: (1) all random components were

taken to be independent homoskedastic Gaussian random variables, and (2) they

were generated as centered (zero-mean) and rescaled independent χ2
1 random vari-

ables. For both cases, the true values of the PMSE of the nonparametric small area

predictors were approximated by averaging the squared deviations between the true

and predicted values for the small area means over 1000 realizations of the model.

We considered four inference methods: the PMSE estimator from Theorem 3.1, a

parametric bootstrap which uses normal distributions with REML-estimated vari-

ance parameters to generate the bootstrap random components, and two versions of

the nonparametric bootstrap from Section 3.3, where we implemented the method

both with and without setting H = 0. All these inference methods were applied to

a single realization of the model, with 1000 replicates for the bootstrap methods.

For both the normally distributed and the χ2
1 case, all methods produced estimated

PMSE values that closely track the true values. In plots of estimated vs. true PMSE

values across the HUCs (not shown here for brevity), all four methods displayed pat-

terns that were very close to 45-degree lines. In addition to this visual assessment,

we computed the squared deviations between the true root PMSE and each of the
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estimators averaged those over the HUCs, and took the square root again. Finally,

we divided these by the mean of the true root PMSEs to obtain relative measures

of precision. In the normal case, these relative root deviations were 3.7% for the

asymptotic method, 3.4% for the parametric bootstrap and 4.9% and 5.1% for the

nonparametric bootstrap with and without inclusion of H , respectively. For the

situation with χ2
1 distributions, the equivalent results are 5.7% for the asymptotic

method, 6.0% for the parametric bootstrap, and 5.8% and 5.7% for the two non-

parametric bootstraps methods. It therefore appears that the parametric bootstrap

and the asymptotic method are more precise when the true distributions are normal,

but all methods behave similarly when the distributions are non-Gaussian, with the

parametric bootstrap performing slightly worse in that case. However, all these

relative root deviations are small, so we conclude that, at least for the two setups

considered here, all these methods are able to produce reliable PMSE estimators.

We also considered the distribution of likelihood ratio statistics, and compared the

distribution over 1000 realizations of the simulation model with those obtained from

the parametric and nonparametric bootstrap (withoutH) for one model realization,

and to a χ2 mixture as discussed in Section 3.2. Figure 5 displays P-P plots for

testing the significance of the spline and HUC effects using the different distribution

estimators, for the situation where the random effects and errors follow centered and

scaled χ2
1 distributions. We only display the lower 20% of the values, since these

are the ones relevant for hypothesis testing. For testing the spline effect, we see

that the asymptotic approximation is severely biased, leading to a test that would

reject the null hypothesis too often. The parametric and nonparametric bootstrap

distributions perform better, with the former slightly more conservative. For the

HUC effect, all three estimated distributions appear to be reasonable approximations

of the true distribution, with the parametric bootstrap deviating the most from the

true distribution. The results for the normally distributed random components (not

shown) are similar, with the asymptotic distribution again clearly inappropriate for

the spline effect test, but the other estimated distributions all close to the true

distribution.

Both the spline and the HUC random effects are highly statistically significant as

measured by the bootstrap-based likelihood ratio test, and the simulation results

appear to indicate that the testing procedure is appropriate in this case. However, it

is still of interest to further investigate what the practical impact is of including both

random effects relative to simpler models that only include one of them, especially

since both capture spatial relationships between the observations. Table 2 shows
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Figure 5: Partial P-P plots comparing the nonparametric bootstrap (left), para-

metric bootstrap (middle) and asymptotic χ2 mixture (right) distribution of the

likelihood ratio statistic with its simulated true distribution. Top row is for testing

the spline effect, bottom row for the HUC effect.

HUC

yes no

Spline
yes 7755 / 0.98 7894 / 0.88

no 7968 / 0.99 8497 / 0.02

Table 2: Comparison of AIC values and correlations between HUC model predictions

and averages of the sample observations in the HUCs, for inclusion and exclusion

of random effect terms in model; left number in each cell is AIC, right number is

correlation.
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Figure 6: Comparison of HUC predictions for model with both random effects and

models with single random effect (solid line is 45-degree line). Left plot: HUC only

model; right plot: spline only model.

the correlations between the EBLUP ŷt and averages of the sample observations in

the HUCs for four cases, depending on whether each of the two random effects is

included in the model or not, as well as the corresponding AIC values. The highest

correlation is achieved by the model with a HUC random effect with or without

the addition of the spline random effect, while the smallest AIC is attained by the

model with both random effects. The model with a spline random effect but no

HUC random effect achieves an AIC that is lower than that of the model with both

random effects reversed. All three models with at least one random effect widely

outperform the model with only fixed effects. Judging by these criteria, the models

with either the HUC or the spline random effect, but not both, achieve small area

predictions that are roughly as good as the model with both random effects. Such

model fitting criteria provide an incomplete view of the usefulness of the model,

however. In Figure 6, we plot the HUC predictions obtained by the full model

against those for the models with single random effects for a further comparison.

The plot on the left of Figure 6 shows that the HUC-only model and the model with

both random effects result in similar predictions for HUCs containing sample obser-

vations, but dramatically different predictions for the HUCs without observations.

Relative to the HUC-only model, the addition of the spatial spline term appears

to improve model predictions for these “empty” HUCs, by borrowing strength from

neighboring observations located in different HUCs. In contrast, a HUC-only model

predicts a HUC effect of 0 in empty HUCs, so that only the fixed linear part of the
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model is used in prediction. This likely improvement in model fit is not captured

by either AIC or correlation, so that it is not reflected in summary statistics such

as those in Table 2.

In the plot on the right of Figure 6, differences between the spline-only model and

that with both random effects are not as obvious, but some large deviations from

the 45-degree line are still present. Differences between both fits can be explained by

the fact that both models attempt to fit different “targets”: whereas the spline-only

model predicts a smooth spatial trend for the region of interest, the model with

both effects predicts HUC means of the form (6), which include both a smooth and

a HUC-specific effect. Since the goal of small area estimation is to capture features

that might be unique to lakes in particular HUCs, a small area estimation model

that makes it possible to do so when sufficient HUC-specific data are available is

clearly preferred. In the plot, this is illustrated by the fact that the predictions for

“empty” HUCs tend to be closer to the 45-degree line than the predictions for the

remaining HUCs.
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Appendix A

Proof of Theorem 3.1.

This proof builds on the work of Das et al. (2004). First we compute the orders of

magnitude of the quantities dj = {tr(PBjPBj)}1/2 (j = 1, 2, 3), which are, respec-

tively, O(
√
n/Ln), O(n/Ln) and O(T/Ln). The assumptions on Ln and T yield that

the slowest rate is obtained by d1 = O(
√
n/Ln). Let the matrix ∆ =diag(d1, d2, d3).

Hence, the matrix elements of −∆−1I∆−1 are all negative and bounded away from
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infinity. Writing the variance matrix V in the form AΛA′, where Λ is the diagonal

matrix containing the eigenvalues and the matrix A is orthogonal, with the entries

of Λ of order O(Ln), it follows that, for δ as in the assumption of the theorem,

E

(
sup
‖σσσ‖≤Ln

|ŷt|2δ
)

= O(L−2δ
n ) +O{(T/n)2δ}.

Let g be any number strictly larger than 8, then the above order is O{(
√
n/Ln)δ0),

with 0 < δ0 < ((g − 8)δ − g)/4. Next we compute the first and second partial

derivatives of ŷt, with respect to σ2. Explicit expressions are easily obtained using

the matrix formula as in (8). The vectors ct, β̂ and the matrices V , Σw all depend

on σ2. Straightforward computations yield that

E

(
|∂ŷt
∂σσσ2
|2g/(g−2)

)
= O(L−2g/(g−2)

n ).

Take δ1 = bg/(g − 2) with 0 < b < 1/2, then E(| ∂byt
∂σσσ2 |2g/(g−2)) = O{(

√
n/Ln)δ1}.

Similarly, we find that

E

(
sup
‖σσσ‖≤Ln

‖ ∂
2ŷt

∂(σσσ2)2
‖2
)

= O(L−2
n ) = O{(

√
n/Ln)δ2},

with 0 < δ2 < 1/2. Taken all this together is sufficient to obtain that

E{(ỹt − ŷt)2} = E

{
(
∂ŷt
∂σσσ2

′
I−1 ∂`

∂σσσ2
)2

}
+ o(L2

n/n) = tr(S ′V SI−1) + o(L2
n/n).

where ` denotes the REML log likelihood function, and the derivatives are all evalu-

ated at the true parameter values (see Theorem 3.1 of Das et al. 2004). This proves

the first part of the theorem. The second part of the theorem follows similarly as in

Section 4 of Das et al. (2004).
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