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Abstract

Estimation of finite population totals in the presence of auxiliary information is con-

sidered. A class of estimators based on penalized spline regression is proposed. These

estimators are weighted linear combinations of sample observations, with weights cali-

brated to known control totals. Further, they allow straightforward extensions to mul-

tiple auxiliary variables and to complex designs. Under standard design conditions, the

estimators are design consistent and asymptotically normal, and they admit consistent

variance estimation using familiar design-based methods. Data-driven penalty selection
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is considered in the context of unequal probability sampling designs. Simulation experi-

ments show that the estimators are more efficient than parametric regression estimators

when the parametric model is incorrectly specified, while being approximately as efficient

when the parametric specification is correct. An example using Forest Health Monitoring

survey data from the U.S. Forest Service demonstrates the applicability of the methodol-

ogy in the context of a two-phase survey with multiple auxiliary variables.

Key Words: calibration, generalized regression estimation, nonparametric regression,

restricted maximum likelihood.

1 Introduction

Large-scale surveys are routinely conducted by both governmental and private organiza-

tions. We consider estimation for lichen data collected in the Forest Health Monitoring

(FHM) survey conducted in Utah by the U.S. Forest Service (Rogers et al. 2001). In

addition to the FHM variables, large amounts of auxiliary information are available for

the region of interest. Improving the efficiency of survey estimators in situations like the

FHM can be achieved by taking advantage of this auxiliary information.

An important area of methodological research is to improve the precision of estimators,

while continuing to rely on the sampling design as the primary probability generating

mechanism. We propose a new estimator that follows this “design-based” paradigm, but

uses a class of modelling techniques that is more flexible than those currently in use.

More formally, we consider the classical finite population estimation problem, in which

a population U of size N is surveyed according to sampling design p(·). Let yi represent

a generic characteristic for the ith element of the population. We focus on the estimation

of ty =
∑

U yi, the total of the yi for the population, based on observing the yi for a
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sample of population elements s ⊂ U , selected with probability p(s). Let πi = Pr(i ∈

s) =
∑

s:i∈s p(s) denote the inclusion probability for element i under the design p(·). If

no information other than the inclusion probabilities is used to estimate ty, the Horvitz-

Thompson estimator

t̂y,HT =
∑

s

yi

πi
(1)

(Horvitz and Thompson, 1952) is frequently used. The closely related Hájek estimator

(Hájek, 1971), is a common alternative in unequal probability sampling situations.

Let xi represent a characteristic for the ith element that is known for all i ∈ U (for

now, we assume that x is a univariate and continuous variable and that we have a single

phase of sampling, but we will relax those restrictions in later sections). If the xi and

yi are related to each other, an estimator that takes advantage of that fact is likely to

be more efficient than (1). A double goal of high efficiency and design consistency is

the motivation for estimators such as the classical ratio and regression estimators (e.g.

Cochran, 1977), as well as for the generalized regression estimator (GREG) described

in Cassel et al. (1977) or the calibration estimator (Deville and Särndal, 1992), among

others. Särndal et al. (1992) provide a comprehensive description of the model-assisted

framework for constructing survey estimators.

In Breidt and Opsomer (2000), a nonparametric model-assisted regression estimator

was proposed, which allows the relationship between the variables to be any smooth

function, not just one that belongs to a pre-specified parametric family. Breidt and

Opsomer (2000) used kernel-based local polynomial regression (see Wand and Jones, 1995),

and showed that the nonparametric estimator shares the asymptotic design properties

of the parametric model-assisted estimators. Nonparametric regression can significantly

improve the efficiency of the estimators when parametric models are misspecified. Breidt

and Opsomer (2003) extend this approach from the single-covariate model to the case of
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the semiparametric additive model.

In the current paper, we investigate the properties of nonparametric model-assisted

estimators when penalized regression splines are used. Eilers and Marx (1996) introduced

penalized spline smoothers (often called P-splines), and further developments and results

on these low-rank smoothers have been obtained by Ruppert and Carroll (2000) and

Wand (2003). For the current state of the art on this estimation method, we refer to

Ruppert et al. (2003). Recently, Zheng and Little (2003) have proposed a model-based

survey estimator that uses penalized splines to account for the effect of non-ignorable

design weights, and have extended it to the case of two-stage sampling in Zheng and

Little (2004).

P-splines offer a number of advantages over kernel-based methods that make them

an attractive smoothing method in the model-assisted context. Incorporating multiple

covariates as well as combinations of categorical variables, parametric and non-parametric

terms, is straightforward, as shown in Aerts et al. (2002). Another important advantage is

the relative ease with which P-spline estimators can be computed, even for large datasets

or datasets with regions of sparse data. Finally, an important practical consideration is

that, since they are more closely related to parametric models, estimators based on spline

models are easier to implement in existing survey estimation procedures. This will be

further discussed in later sections.

2 Penalized spline model-assisted estimator

2.1 Definition of the estimator
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To introduce the estimator, consider the superpopulation regression model

yi = m(xi) + εi, (2)

where the εi are independent random variables with mean zero and variance v(xi). In

order to develop the model-assisted estimator, we treat {(xi, yi) : i ∈ U} as a realization

from this superpopulation model. If this entire realization were observed, we could define

a P-spline estimator for the function m(·) as follows. Let

m(x;β) = β0 + β1x + · · ·+ βqx
q +

K∑
k=1

βq+k(x− κk)
q
+, (3)

where (t)q
+ = tq if t > 0 and 0 otherwise, q is the degree of the spline, and the κk are

called the knots. Typically, q is kept fixed and low, e.g. q ≤ 3; q = 3 corresponds to cubic

splines, a popular choice in practice. Flexibility of the model is obtained by means of the

truncated qth degree polynomials, denoted by the last sum in (3). The locations of the

terms in that sum are determined by the choice of the fixed knots κ1 < · · · < κK . Both

the number K and the location of the knots are typically assumed fixed in the P-spline

regression literature, and we will do the same. The knots κk (k = 1, . . . ,K) can, for

example, be uniformly spread sample quantiles of the unique xi values. That is, κk equals

the k/(K + 1)th sample quantile. This default choice seems to perform well in practice.

The vector β = (β0, . . . , βq+K)T is the coefficient vector. If the number of knots K is

sufficiently large, the class of functions m(x;β) is very large and can approximate most

smooth functions with a high degree of accuracy. Note also that, in the model-assisted

approach to survey inference, the superpopulation model does not have to fit the data

exactly for it to be a useful way to construct a survey estimator.

For ease of exposition we wrote (3) using a truncated polynomial basis, as is also done

in Ruppert et al. (2003). For any given degree q, the resulting spline fit can equivalently

be represented by using other basis functions such as a q-degree B-spline basis (Eilers
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and Marx, 1996) or the Demmler-Reinsch basis (Nychka and Cummins, 1996), which are

more efficient from a computational standpoint. The truncated polynomial basis makes

it easier to interpret the results, so we will focus on that basis.

Too many knots results in an unstable and highly variable fit, while too few knots

can lead to bias. While knot selection methods exist, P-spline regression relies instead

on a different approach to ensure a reasonable fit: the number of knots K is chosen to

be large, but the influence of the knots is limited by putting a constraint on the size

of the spline coefficients. A typical constraint in the truncated polynomial case is to

bound
∑K

k=1 β2
q+k by some constant, while leaving the polynomial coefficients β0, . . . , βq

unconstrained. When this constraint is incorporated into the least squares criterion via a

Lagrange multiplier, the population estimator for β is defined as the minimizer of

∑
i∈U

(yi −m(xi;β))2 + α
K∑

k=1

β2
q+k (4)

for some fixed constant α ≥ 0. The smoothness of the resulting fit depends on the value

chosen for α, with larger values corresponding to smoother fits. Choice of α will be further

discussed below.

Let X represent the matrix with rows XT
i = {1, xi, . . . , x

q
i , (xi−κ1)

q
+, . . . , (xi−κK)q

+}

for i ∈ U , and let Y denote the column vector of response values yi for i ∈ U . Define the

diagonal matrix Aα = diag{0, . . . , 0, α, . . . , α}, with q + 1 zeros on the diagonal followed

by K penalty constants α, corresponding to the K truncated polynomial terms in (3). If

the population U is fully observed, the penalized least squares estimator for the coefficient

vector of (3) has the ridge-regression representation:

BU = (XT X + Aα)−1XT Y. (5)

Other penalty structures besides the one in (4) are possible, and in those cases, Aα might

no longer be diagonal. For instance when B-splines are used instead of polynomial splines,
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the columns of X contain the B-spline basis functions only (i.e. there is no unconstrained

polynomial part as in (3)), and Aα is typically a banded matrix. However, expression

(5) will continue to hold for any penalized spline formulation. Let mi = m(xi;BU ) ≡

XT
i BU , i ∈ U denote the P-spline fit obtained from this hypothetical population fit at xi.

If these fitted values are known, they can be incorporated into the survey estimation by

constructing the difference estimator

t̂y,diff =
∑
U

mi +
∑

s

yi −mi

πi
(6)

(Särndal et al. 1992, p.221). Other approaches are also possible. For example, the design

properties of a prediction-based P-spline estimator as in Zheng and Little (2003) will be

evaluated via simulation in §3.1.

The difference estimator is design unbiased and its design variance is

Varp(t̂y,diff) =
∑
U

∑
U

(πij − πiπj)
yi −mi

πi

yj −mj

πj
(7)

where πij = Pr(i ∈ s, j ∈ s), the joint inclusion probability for elements i, j ∈ U . As is

clear from expression (7), the efficiency of t̂y,diff depends on how well the model function

m(xi;β) (or, more accurately, its population fit mi) approximates the variable yi. If the

assumed superpopulation model is an appropriate representation for the population, then

t̂y,diff will be more efficient than t̂y,HT.

The estimator (6) is infeasible, since the mi cannot be calculated. However, given

a sample s, the mi in (6) can be replaced by sample-based estimators, denoted by m̂i

and constructed as follows. Define the diagonal matrix of inverse inclusion probabilities

W = diagj∈U{1/πj} and its sample submatrix Ws = diagj∈s{1/πj}. Similarly, let Xs

be the submatrix of X consisting of those rows for which j ∈ s. For fixed α and under

suitable regularity conditions, the π-weighted estimator

β̂ = (XT
s WsXs + Aα)−1XT

s WsYs = GαYs (8)
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is a design-consistent estimator of BU in (5). Notice that the penalty matrix is identical

to the one in the population fit (5), and that an unweighted version can be obtained by

setting W equal to the identity matrix I.

Define m̂i = m(xi, β̂) ≡ XT
i β̂. The model-assisted P-spline estimator is then defined

as

t̂y,spl =
∑
U

m̂i +
∑

s

yi − m̂i

πi
. (9)

The design properties of t̂y,spl are explored in the next section.

2.2 Properties of the estimator

The close relationship between penalized spline regression and linear least squares regres-

sion has a number of important practical implications. Introducing the indicator function

Ii = 1 if i ∈ s and Ii = 0 otherwise, and the indicator vector ei which is a zero vector

except for an entry of one at position i, we can rewrite (9) as

t̂y,spl =
∑
i∈s

π−1
i +

∑
j∈U

(1− Ij/πj)XT
j Gαei

 yi ≡
∑

s

wi(s)yi (10)

which shows that t̂y,spl is a linear estimator, making it useful in a survey estimation

context because survey weights wi(s) are obtained. Chambers (1996) proposed a regression

estimator of a form similar to (9) for the case of linear regression on multiple auxiliary

variables, with a ridge matrix diag(α1, . . . , αp), where αi = 0 for those covariates (e.g., the

intercept) corresponding to calibration constraints that must be met. This formulation

avoids negative regression weights. In the P-spline regression case, the penalty α could

also be adjusted if negative weights occur, but our main purpose for using a “ridged”

parameter estimator as in (8) is to control the smoothness of the spline fit.

The P-spline estimator shares many of the good practical properties of generalized

regression (GREG) estimators in common use in large-scale survey estimation. It is
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readily checked that, as long as an intercept is included in the model, the estimator (9)

shares the properties of location and scale invariance of the GREG, in the sense that∑
s wi(s)(ayi + b) = a t̂y,spl + Nb for any fixed a, b. Like the ridge regression estimator

in equation (10) of Chambers (1996), the P-spline estimator (9) is calibrated for the

parametric portion of the model; that is,
∑

s wi(s)x
d
i =

∑
U xd

i for 0 ≤ d ≤ q. This

calibration can also be made to hold for any of the truncated polynomial terms in (3),

as long as these terms are left unpenalized. These invariance and calibration properties

were also shared by the model-assisted local polynomial estimator of Breidt and Opsomer

(2000).

There are a number of additional properties shared by the P-spline and GREG esti-

mators, which do not hold for the local polynomial estimator. Let tX =
∑

U Xi and let

t̂X,HT =
∑

s Xiπ
−1
i denote its Horvitz-Thompson estimator. Then, t̂y,spl = t̂y,HT + (tX −

t̂X,HT )T β̂, the same form as the GREG estimator. Further, with e1 = (1, 0, . . . , 0)T , we

have eT
1 Xi = 1, eT

1 Aα = (0, 0, . . . , 0), and

t̂
T
X,HT β̂ =

(∑
i∈s

eT
1 XiX

T
i

πi
+ eT

1 Aα

)∑
j∈s

XjX
T
j

πj
+ Aα

−1∑
j∈s

Xjyj

πj
= t̂y,HT

so the P-spline estimator can be written in the simple form t̂y,spl = tTX β̂ =
∑

U m̂i,

a property it shares with both ratio and linear regression estimators (see Särndal et al.

1992, p. 231). Note from this representation that t̂y,spl can be computed using only sample

xi’s along with population counts and totals in strata defined by the knots,
∑

i∈U I{xi>κk}

and
∑

i∈U xiI{xi>κk}. By contrast, classical ratio or regression needs only sample xi’s and

population size and x-total, while the local polynomial estimator in Breidt and Opsomer

(2000) needs all population xi’s. Finally, though both P-spline and kernel-based model-

assisted survey regression estimators have GREG representations, P-splines make it much

easier to incorporate nonparametric regression into survey estimation procedures. In

9



particular, they readily allow for parametric covariates, including categorical terms, and

for additional nonparametric covariates.

For the remaining design properties, we will use the traditional finite population

asymptotic framework, in which both the population U and the sampling design p(·)

are embedded into a sequence of such populations and designs indexed by N , {UN , pN(·)},

with N → ∞. The op(·) and Op(·) notation below is with respect to this sequence of

designs. See Isaki and Fuller (1982) for an early version of this asymptotic framework.

For simplicity, we will restrict our attention to the case in which the sample size, denoted

by nN , is fixed for each N , and we also assume that nN → ∞. As above, q, K and the

{κk} are fixed. In order to prove our results, we make the following technical assumptions.

A1. B = limN→∞BU exists, and β̂ −BU = op(1).

A2. The limiting design covariance matrix of the normalized Horvitz-Thompson estima-

tors,

Σ =

 Σyy Σyx

ΣT
yx Σxx

 = lim
N→∞

nN


∑∑

U
πij−πiπj

N2

yiyj

πiπj

∑∑
U

πij−πiπj

N2

yiX
T
j

πiπj∑∑
U

πij−πiπj

N2

Xiyj

πiπj

∑∑
U

πij−πiπj

N2

XiX
T
j

πiπj

 ,

is positive definite.

A3. The normalized Horvitz-Thompson estimators satisfy a central limit theorem:

√
nN

N


∑

U yi

(
Ii
πi
− 1
)

∑
U XT

i

(
Ii
πi
− 1
)
 L→ N (0,Σ).

A4. The estimated covariance matrix for the Horvitz-Thompson estimators is design con-

sistent in the following sense:

nN


∑∑

s
πij−πiπj

N2πij

yiyj

πiπj

∑∑
s

πij−πiπj

N2πij

yiX
T
j

πiπj∑∑
s

πij−πiπj

N2πij

Xiyj

πiπj

∑∑
s

πij−πiπj

N2πij

XiX
T
j

πiπj

− Σ = op(1)
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as N →∞.

Remark 1. Assumption A1 ensures that the sample fit β̂ and finite population fit BU

share a common limit. A1 is weaker than assuming model (2) with (3) as its true mean

function. The assumption depends on the distribution of the xi, as well as on the knots

and the penalty constant α. In Breidt and Opsomer (2000), existence of the population

nonparametric fit was achieved by a combination of assumptions on the density of the xi

and the bandwidth hN . Similarly, sufficient conditions for A1 could be constructed by

further specifying the distribution of the xi, the placement of the knots and the size of

the penalty α. This will not be further pursued here.

Remark 2. Assumptions A2 and A3 are satisfied for commonly used fixed sample size

designs in reasonably behaved finite populations. They will also hold for sampling designs

with random sample size, but in that case nN is replaced by Ep(nN) in the normalization.

Assumption A4 is satisfied by many but not all common designs. For example, A4 would

not hold for systematic sampling or one-per-stratum designs.

The following results establish design consistency and asymptotic normality of t̂y,spl,

along with a consistent variance estimator. Proofs are immediate from the given assump-

tions and are omitted.

Theorem 2.1. Under assumptions A1–A3, the penalized spline estimator t̂y,spl is de-

sign
√

nN-consistent for ty, in the sense that N−1
(
t̂y,spl − ty

)
= Op

(
n
−1/2
N

)
. Further,(

Varp(t̂y,diff)
)−1/2 (

t̂y,spl − ty
) L→ N (0, 1) with Varp(t̂y,diff) given in (7).

Theorem 2.2. Under assumptions A1, A2 and A4,

V̂ (t̂y,spl) =
∑

s

∑
s

πij − πiπj

πij

yi − m̂i

πi

yj − m̂j

πj
= Varp(t̂y,diff) + op

(
N2

nN

)
.
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Corollary 2.1. Under assumptions A1–A4, the penalized spline estimator t̂y,spl satisfies(
V̂ (t̂y,spl)

)−1/2 (
t̂y,spl − ty

) L→ N (0, 1).

These theoretical results show that it is possible to use a flexible model specification as

in (3) for the superpopulation model, while maintaining the same basic design properties

as have been obtained for much more restrictive model specifications in the ratio or linear

regression estimators. Unlike the theory for the kernel-based estimators in Breidt and

Opsomer (2000), the theory derived above for the P-spline estimator closely follows that

used for traditional survey (linear) regression estimation.

2.3 Spline regression with data-driven penalty

The previous results all assume that the various spline settings, including the number

and placement of the knots, the type and degree of the spline basis functions and the

penalty constant α, are all determined and fixed before the model is fitted. Naturally,

the efficiency in the estimation of a given population quantity is directly affected by

these factors. Ruppert et al. (2003, chapter 5) observe that for standard nonparametric

regression, it is sufficient to focus on the choice of α, since (within reasonable bounds) the

choice of the remaining settings has limited effect on the resulting fits once α is allowed

to vary; our experience in the finite population setting is consistent with this observation.

It should be noted, however, that in the survey context, trying to estimate the “op-

timal” penalty is not as practically relevant as in the model-based regression context,

because an estimator is typically not constructed for a single variable, but rather for a

(sometimes very large) set of variables collected during a survey. This is the reason why

survey estimators are expressed as a weighted sum, so that the same weights can be ap-

plied to all the variables. A set of weights that are optimized for a single variable in that
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survey might not work as well for other variables. Instead, a “compromise” choice for

the penalty that works reasonably well for many variables in a survey would be a better

choice in practice.

Nevertheless, data-driven selection of α could still be of some use when the survey has

a small number of key variables, or more generally in the exploratory stages of weight con-

struction for a survey, where different spline formulations can be tested on some variables.

We therefore briefly describe how to adapt to the survey context an existing method for

selecting α. This method is popular in the spline regression literature.

For data-driven selection of the value of α in the regression context, Ruppert et al.

(2003) recommend treating the estimator (5) as resulting from a linear mixed model spec-

ification, and using Restricted Maximum Likelihood (REML) (Patterson and Thompson,

1971; Searle et al. 1992) to estimate an appropriate value for α. To do this, the estimator

(5) is viewed as the population-level REML estimator for the model

yi = fT
i βf + rT

i u + εi (11)

where fT
i = (1, xi, . . . , x

q
i ) and βf represent the (fixed) terms in (3) and their correspond-

ing parameters, and rT
i = ((xi−κ1)

q
+, . . . , (xi−κK)q

+) contains the truncated polynomial

terms. The random vector u has zero mean and covariance matrix σ2
uIK , and is indepen-

dent of {εi}, which are independent random variables with mean zero and variance σ2
ε .

Let F and R represent the matrices with rows equal to fT
i and rT

i , respectively, so that

X = [F R ]. The population REML estimator for (11) is given by

BU,reml = (XT X + Abα)−1XT Y, (12)

identical to the estimator in (5) but with Abα = diag{0, . . . , 0, α̂, . . . , α̂}, α̂ = σ̂2
ε/σ̂2

u, and
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σ̂2
ε , σ̂

2
u solving the REML estimating equations

Y T A(AT V A)−1AT RRT A(AT V A)−1AT Y = tr((AT V A)−1AT RRT A)

Y T A(AT V A)−1AT A(AT V A)−1AT Y = tr((AT V A)−1AT A) (13)

where V = Var(Y ) = σ2
εIN + σ2

uRT R and A is a matrix such that AT F = 0 and

rank(A)=N−(p+1). These estimators can be calculated using existing software routines,

including proc mixed in SAS or lme() in S-Plus.

Assuming that the estimator α̂ is well-defined for the population (e.g. Jiang, 1996),

we can define a design-based
√

n-consistent estimator for that quantity. We do this

by constructing design-consistent estimators for all the terms in (13). Letting Π2s =

[1/πkl]k,l∈s, the sample-weighted estimating equations are given by

Y T
s

{
Π2s ∗As(AT V A)−1AT RRT A(AT V A)−1AT

s

}
Ys = tr((AT V A)−1AT RRT A)

Y T
s

{
Π2s ∗As(AT V A)−1AT A(AT V )A)−1AT

s

}
Ys = tr((AT V A)−1AT A) (14)

where As denotes the submatrix of A containing the nN columns corresponding to the

sampled elements of the population and {· ∗ ·} denotes an element-wise product.

Under suitable regularity conditions which we do not further explore here, the solutions

σ̂2
ε,s, σ̂

2
u,s to these equations should be

√
n-consistent for σ̂2

ε , σ̂
2
u, the solutions to (13), using

an approach similar to that in Wu (1999). It would then follow that α̂s = σ̂2
ε,s/σ̂2

u,s is

√
n-consistent for α̂. Hence, the spline regression estimator that uses the mixed model

formulation to determine the value for the penalty α instead of treating it as fixed will

follow the properties described in Theorems 2.1–2.2 and Corollary 2.1.

2.4 Extensions

We consider the semiparametric additive model as a first extension. This is defined as

yi =
∑D

d=1 md(xdi)+zT
i γ+εi, where the xd are covariates that are modelled using smooth
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univariate functions, and zT = (z1, . . . , zq) is a vector of covariates that is incorporated

into the model through parametric terms. The latter terms would include all categorical

variables as well as those for which element-level information outside the sample is not

available, but for which population totals are known from some source outside the survey.

We define the population estimators for the βd and γ as the minimizers of

∑
i∈U

(
yi −

∑
d=1

md(xdi;βd)− zT
i γ

)2

+
D∑

d=1

αd

Kd∑
k=1

β2
d,p+k

for some fixed constants αd, d = 1, . . . , D. With little modification, the theory from §2.2

continues to hold. We refer to Ruppert et al. (2003) for an overview of additional exten-

sions such as multivariate spline models, locally varying penalties and robust regression.

Second, we briefly describe the extension to two-phase sampling here, since it will be

used in §3.2 below. In the notation of Särndal et al. (1992, ch.9), let sa denote the first

phase sample with inclusion probabilities πai = Pr(i ∈ sa), and s ⊆ sa the phase two

sample, with conditional inclusion probabilities πi|sa
= Pr(i ∈ s|i ∈ sa). Suppose that we

have the vector of auxiliary variables X1i available for all i ∈ U , and XT
i = (XT

1i, X
T
2i) for

all i ∈ sa. Let ĝi, i ∈ sa denote the predicted values for the model relating the yi to the

Xi, and let ĝ1i, i ∈ U denote the predicted values for the model relating the yi to the X1i.

The model-assisted estimator is defined as

t̂y,spl =
∑
U

ĝ1i +
∑
sa

ĝi − ĝ1i

πai
+
∑

s

yi − ĝi

πai πi|sa

. (15)

The properties of this estimator can be derived using the approach of Särndal et al. (1992)

and the results of §2.2.

3 Empirical Results

3.1 Simulation study
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In this section, we follow Breidt and Opsomer (2000) in the design of a simulation study

comparing the performance of several parametric and nonparametric estimators:

REG parametric regression Särndal et al. (1992, ch. 6)

PS poststratification Cochran (1977, p. 134)

LLR local linear model-assisted Breidt and Opsomer (2000)

MB penalized spline model-based Dorfman (1992), Zheng and Little (2003)

MA penalized spline model-assisted equation (9)

The first two estimators are parametric estimators (corresponding to polynomial and

piecewise constant mean functions) and the last three are nonparametric. The LLR esti-

mator is constructed in the same manner as the spline model-assisted estimator in (9), but

with m̂i obtained by π-weighted local linear regression. The MB estimator is constructed

by first computing an unweighted spline regression fit for the sample (say, m̂i,unw), and

then using this fitted model to predict the unobserved elements in the population:

t̂y,MB =
∑

s

yi +
∑
U\s

m̂i,unw.

All these estimators are chosen so that they have approximately the same degrees

of freedom (df): the REG estimator is based on a polynomial of degree df−1; the PS

estimator is based on a division of the x-range into df equally-sized strata; smoothing

constants are chosen so that the traces of the population-level smoothing matrices for

LLR and MA are equal to df (see Hastie and Tibshirani, 1990, p.52); and the roughness

penalty is chosen so that the trace of an unweighted sample-level smoothing matrix for MB

is df. Degrees of freedom for the weighted sample smoothing matrices in LLR, MA, and

MB will vary from sample to sample, but are approximately equal to df. Two levels of df

are considered: 4 and 7. In the simulation experiments discussed below, we have excluded

the classical Horvitz-Thompson and linear regression estimators, as they are based on

fewer df and hence not directly comparable. In results not reported here, both estimators

16



perform poorly relative to the more flexible estimators considered above for most response

variables. Of the three nonparametric procedures, two are model-assisted (LLR and MA)

and one is model-based (MB). In LLR, we use the Epanechnikov kernel, 0.75(1−t2)I{|t|≤1}.

For both spline methods, we use K = min{n/4, 35} = 25 knots following equation (5.9)

of Ruppert et al. (2003). We consider eight mean functions:

linear: m1(x) = 1 + 2(x− 0.5),

quadratic: m2(x) = 1 + 2(x− 0.5)2,

bump: m3(x) = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2),

jump: m4(x) = {1 + 2(x− 0.5)I{x≤0.65}}+ 0.65I{x>0.65},

cdf: m5(x) = Φ
(

1.5−2x
σ

)
, where Φ is the standard normal cdf,

exponential: m6(x) = exp(−8x),

cycle1: m7(x) = 2 + sin(2πx),

cycle4: m8(x) = 2 + sin(8πx),

with x ∈ [0, 1]. These represent a range of correct and incorrect model specifications

for the various estimators considered. For m1 and m2, the models are polynomial; the

remaining mean functions represent various departures from the polynomial model. The

function m3 is linear over most of its range, except for a “bump” present for a small portion

of the range of xk. The mean function m4 is not smooth. The sigmoidal function m5 is the

mean of a binary random variable described below, and m6 is an exponential curve. The

function m7 is a sinusoid completing one full cycle on [0, 1], while m8 completes four full

cycles. The population xk are generated as independent and identically distributed (iid)

uniform(0,1) random variables. The population values yik (i = 1, . . . , 8) are generated

from the mean functions by adding iid N(0,σ2) errors in all cases except cdf. The cdf

response variable consists of binary measurements generated from the linear population

via y5k = I{y1k≤1.5}, so that the finite population mean of y5 is N−1
∑

k∈U I{y1k≤1.5}, the
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finite population cdf of y1 at the point t = 1.5. We use two possible values for the model

standard deviation of the errors: σ = 0.1 and 0.4. The population is of size N = 1000.

Samples are generated from one of two designs of size n = 50: simple random sampling

without replacement (SI), or stratified simple random sampling without replacement (ST).

ST uses seven strata with boundaries given by equally-spaced quantiles of x and with

stratum sample sizes (13, 6, 3, 3, 4, 7, 14). Hence, samples drawn via ST are sparse near

0.5 and dense near 0 and 1.

For each combination of mean function, standard deviation, degrees of freedom, and

design, 1000 replicate samples are selected and the estimators are calculated. For each

sample, a single set of weights corresponding to each estimator (e.g., using (10) for MA

weights) is computed and applied to all eight study variables, as would be common practice

in applications. As the population is kept fixed during these 1000 replicates, we are able

to evaluate the design-averaged performance of the estimators, including the design bias,

design variance and design mean squared error. For nearly all cases in this simulation, the

relative design biases (Ept̂y − ty)/ty were less than one percent for all estimators, and are

not tabled. Table 1 shows the ratios of MSE’s for the various estimators to the MSE for

the penalized spline model-assisted estimator (MA). The performance of all estimators is

increasingly similar as the model variance increases.

[Table 1 about here.]

In most cases, MA is competitive or better than the parametric estimators (MSE ratios

≥ 0.95), though REG with 4 df is better for exponential and much better for cycle1; a

one-cycle sinusoid is fitted extremely well with a cubic polynomial. In each of these cases,

however, the penalized spline estimator with more df is at least as good as REG. PS is not

bad for cdf; the data are mostly one before 0.7 and mostly zero thereafter, so a piecewise
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constant fits well. Generally, PS is considerably worse than the other estimators.

The two nonparametric model-assisted estimators MA and LLR are nearly identical,

with the exceptions arising in the bump and cycle variables. In particular, the localized

fitting of the kernel-based LLR is better at tracking the multiple curves of the cycle4

response variable. Under ST, on the other hand, MA dominates LLR for bump, since the

design in this case generates gaps in the middle of the covariate space, and hence favors

the spline methods. Finally, MA and MB are nearly identical under SI, but the model-

assisted estimator estimator is sometimes much better, and never much worse, than the

model-based estimator under ST sampling.

One common concern when using nonparametric regression techniques is how sensitive

the results are to the choice of the smoothing parameter. Clearly, the df (and hence the

penalty constant α) has an effect on the MSE of MA, but Table 1 suggests that gains

in efficiency over other estimators can be obtained for a variety of choices of df, even

when df is chosen by default (without any input from the user or the data). That is, for

many reasonable choices of df, the MA estimator is expected to have performance as good

or better than the estimators considered here, for a broad range of response variables

and study designs. MA can therefore be particularly useful in the context of large-scale

survey sampling, in which the same set of regression weights (with a single choice for the

smoothing parameter) is often used for a large number of different variables, as was done

in the simulation experiment described above.

In any survey application using regression weights, negative weights are clearly un-

desirable. In the simulation above, there are (2 designs)×(2 df)×(1000 replications)×

(50 weights)= 200, 000 weights generated for each estimator. Among these, there were

902 negative REG weights, 145 negative LLR weights, and 2 negative MA weights. In

practice, negative survey weights are often a result of inappropriate model selection. As
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nonparametric models are less likely to result in a severely misspecified population model,

they tend to result in less frequent occurrences of negative weights. The superior perfor-

mance of the MA over the LLR in this respect can be explained by the fact that in regions

with very low sampling density, LLR suffers from highly variable fits, which can also oc-

casionally lead to unstable regression weights. As MA is a global regression method, it is

less sensitive to the presence of such regions in the data.

A problem shared by all the estimators considered here is the negative finite-sample

bias of the design variance estimator defined in Theorem 2.2. This bias is reduced, but

not eliminated, for all estimators by the use of the weighted residual variance estimator

suggested by Särndal (1982). We found that the coverage of nominal 95% confidence

intervals using the weighted residual technique averages about 92% across the various

estimators for the sample size of 50. We do not report the details here. Though negative

bias of the variance estimator and associated undercoverage are not unique to MA, this

problem certainly warrants further investigation.

3.2 Application

In many natural resource surveys, information collected in the field can be supplemented

with spatially-referenced data maintained in a geographic information system (GIS).

These GIS data are often available at little or no extra cost, especially compared to

the cost of collecting the field survey data. To illustrate the applicability of the penalized

splines model-assisted approach, we will consider the estimation for a multi-phase natural

resource survey: the Forest Health Monitoring (FHM) survey in a Central Utah ecoregion.

The purpose of the FHM is to collect information on the ecological and environmental

status of public and private forestlands. It is designed as a subsample of the much larger

Forest Inventory and Analysis (FIA), a field survey conducted by the U.S. Forest Service
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(Gillespie, 1999). The FIA is a stratified systematic sample of forest tracts for which a

large number of forest and tree characteristics are measured. The FHM data elements are

collected at 71 of the 3,107 FIA locations in the region of interest. With such a limited

sample size, FHM survey estimates will not be very reliable (this problem would become

even more severe if estimates are desired for specific domains within the ecoregion, but we

will not further explore domain estimation here). Auxiliary information that can be used

in the creation of more efficient FHM estimators is available at two levels: through the

FIA, and through a GIS. We will use a grid of 67,216 GIS points covering the ecoregion of

interest, and each of the FIA (and FHM) sample locations is matched to its closest GIS

point. We will treat the set of 67,216 GIS points as if they were the universe of locations,

with FIA locations as a first phase of sampling, and FHM locations as a second phase.

Table 2 defines the relevant variables for the GIS universe and the two levels of sam-

pling. We will only consider estimation of the FHM variable LICHEN here, but it should

be noted that in practice, the estimation approach would be used for a large range of

other ecological variables collected as part of the FHM survey. The GIS and FIA vari-

ables in Table 2 are a small subset of those available at each level, and had been previously

identified by Forest Service staff as appropriate predictors of forest health variables.

[Table 2 about here.]

The following two models were fitted using penalized splines regression:

EGIS(LICHEN) = m1(HILLSHD) + zT
NLCDγ1

EFIA(LICHEN) = m2(CRCOV) + m3(AGEMAX) + m4(BAMAX) + zT
NLCDγ2

where m1–m4 were represented by splines and γ1, γ2 are parameters for the NLCD cat-

egories in both models. These models were fitted in S-Plus using gam() and the ps()
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penalized spline smoother, which is based on the procedures described in Eilers and Marx

(1996). This is equivalent to the semiparametric additive model estimator described in

§2.4, except that ps() uses B-splines instead of polynomial splines to improve the numer-

ical properties of the algorithm, and gam() centers each additive term around its sample

mean. For this illustration, the degree of the splines was set to 2, with 15 equally spaced

knots and the penalty constant set at α = 1 for each smooth function. No attempt was

made to “optimize” these values for the individual functions to be fitted. Figures 1 and

2 display the fits obtained for both models.

[Figure 1 about here.]

[Figure 2 about here.]

The fitted values from both models were used in equation (15) to compute the estimate

for the average number of lichen species for the region. For comparison, we computed the

Horvitz-Thompson estimator (1), and a parametric version of model-assisted estimator

(15) which treats each of m1–m4 as a linear function in the corresponding variable. We also

estimated the standard deviation of the estimators by extending Theorem 2.2, treating

both phases of sampling as simple random samples with replacement. This is clearly a

simplification, but since the sampling was performed using systematic sampling at both

phases, no design-unbiased estimator of the variance is available. Table 3 shows the

results. Based on estimated standard errors, the precision of estimates of average number

of lichen species present is greatly improved through the use of the auxiliary information.

Linear model-assisted estimation decreases the estimated standard error by over 30%,

while the semiparametric approach decreases that by an additional 25%.

[Table 3 about here.]
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4 Conclusion

Penalized splines are a promising new class of nonparametric regression estimators, and

in this paper, we explored their applicability to the model-assisted survey context. As a

result of the close connections between penalized splines and linear regression, the survey

estimator shares many of the desirable properties of well-known survey estimators such as

the GREG, while providing a more flexible model. Because of the latter aspect, penalized

splines can improve the efficiency of estimators in situations where linear models are not

appropriate.

One of the key strengths of penalized splines is how easy it is to incorporate them into

more complicated regression models such as the semiparametric additive models discussed

in this paper. This aspect, combined with the flexibility of the model-assisted framework,

make this a powerful new tool with which to take advantage of the increasing availability

of auxiliary data in surveys.
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Figure 1: Estimated mean functions and 95% pointwise confidence bands for GIS-level model
for variable LICHEN. Left plot is for the estimated function m̂1, right plot shows the estimated
parameter values γ̂1.
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Figure 2: Estimated mean functions and 95% pointwise confidence bands for FIA-level model
for variable LICHEN. Three line plots are for the estimated functions m̂2, m̂3 and m̂4, last plot
shows the estimated parameter values γ̂2.
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REG PS LLR MB
Response σ df SI ST SI ST SI ST SI ST

0.1 4 1.02 0.99 2.78 2.48 1.00 0.99 1.00 0.91
line 0.1 7 1.12 1.00 1.74 1.55 1.06 1.01 1.00 0.96

0.4 4 1.02 0.99 2.03 1.85 1.00 0.99 1.00 0.91
0.4 7 1.12 1.00 1.46 1.31 1.06 1.01 1.00 0.96
0.1 4 0.99 1.00 1.56 1.29 1.01 1.00 0.99 1.08

quadratic 0.1 7 1.12 1.00 1.22 1.08 1.05 1.02 1.00 0.96
0.4 4 1.01 1.00 1.33 1.19 1.01 1.00 0.99 1.02
0.4 7 1.12 1.00 1.14 1.03 1.05 1.02 1.00 0.96
0.1 4 1.35 1.14 1.77 2.33 1.06 1.07 0.99 1.41

bump 0.1 7 3.00 1.23 1.03 1.66 0.95 1.13 0.99 0.98
0.4 4 1.30 1.09 1.67 1.94 1.05 1.05 0.99 1.23
0.4 7 2.59 1.16 1.05 1.44 0.97 1.10 0.99 0.97
0.1 4 1.30 1.09 1.46 1.50 1.07 1.03 0.99 1.24

jump 0.1 7 1.68 1.11 1.50 1.43 1.04 1.00 0.99 0.96
0.4 4 1.22 1.07 1.35 1.37 1.05 1.03 0.99 1.13
0.4 7 1.53 1.09 1.38 1.30 1.05 1.00 0.99 0.96
0.1 4 1.20 1.03 1.04 1.29 0.97 0.98 0.99 1.65

cdf 0.1 7 1.66 1.04 1.15 1.11 0.97 0.97 0.99 1.05
0.4 4 1.21 1.03 1.05 1.31 0.97 0.99 0.99 1.63
0.4 7 1.70 1.05 1.16 1.12 0.97 0.97 0.99 1.04
0.1 4 0.86 0.95 1.96 1.43 0.93 0.98 0.99 0.90

exponential 0.1 7 1.07 0.99 1.60 1.23 1.03 1.02 0.99 0.95
0.4 4 0.91 0.97 1.64 1.28 0.95 0.99 0.99 0.90
0.4 7 1.09 1.00 1.37 1.12 1.04 1.02 1.00 0.95
0.1 4 0.31 0.84 2.09 5.31 0.94 0.97 0.95 1.23

cycle1 0.1 7 1.02 1.00 3.76 3.76 1.25 1.09 0.99 0.95
0.4 4 0.41 0.90 1.97 3.95 0.96 0.99 0.96 1.10
0.4 7 1.06 1.00 2.71 2.62 1.18 1.06 0.99 0.95
0.1 4 1.00 1.02 1.10 1.06 1.03 1.04 0.99 0.89

cycle4 0.1 7 2.30 1.38 1.32 1.18 0.86 0.76 0.99 1.06
0.4 4 1.00 1.01 1.10 1.06 1.03 1.04 0.99 0.89
0.4 7 2.28 1.37 1.32 1.18 0.86 0.77 0.99 1.05

Table 1: Mean square error ratios greater than one favor the penalized spline model-assisted
estimator (MA). Based on 1000 replicate samples (SI=simple random sampling without re-
placement, ST= stratified simple random sampling with seven strata) of size n = 50 from a
fixed population of size N = 1000. All five estimators use the same degrees of freedom (df)
for fitting. Penalized spline estimators use 25 knots and truncated linear basis. Local linear
regression estimators are computed with an Epanechnikov kernel and bandwidth h = 0.2943
when df= 4 and h = 0.135 when df= 7.
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Phase Variable Description

GIS HILLSHD hillshade (index of solar radiation)
NLCD vegetation cover type (6 categories)

FIA CRCOV tree crown cover (%)
AGEMAX max tree age (years)
BAMAX max tree basal area (sq. in.)

FHM LICHEN lichen species present (count)

Table 2: Variables used in the construction of the Forest Health Monitoring estimator.

30



Horvitz-Thompson Linear MA Semiparametric MA

Estimate 3.62 2.92 2.67
Standard Error 0.36 0.25 0.16

(69%) (44%)

Table 3: Estimates of region average for variable LICHEN, using three estimation methods,
with corresponding estimated standard deviations. Numbers in parentheses are the ratio of the
estimated standard deviations relative to that of the Horvitz-Thompson estimator.
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