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Abstract

For lifelong health insurance covers, medical inflation not sufficiently incorpo-
rated in the level premiums determined at policy issue requires an appropriate
increase of these premiums and/or of the corresponding reserves during the term
of the contract. This premium and/or reserve update is necessary to maintain the
actuarial equivalence between future health benefits and withdrawal payments on
the one hand, and available reserves and future premiums on the other hand. In
Vercruysse et al. (2013), premium and reserve indexing mechanisms were proposed
in a discrete-time framework where medical inflation is only taken into account ex-
post as it emerges over time and where the reserves are not transferable in case of
policy cancellation. In this paper, we extend this work by investigating the more
general situation where a surrender value is paid out in case of policy cancellation.
Reserve-based as well as premium-based surrender values are considered.

Key Words: medical expense insurance, lifelong contract, medical inflation index,
withdrawal, surrender value.
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1 Introduction

In this paper, we investigate private health insurance contracts covering medical expenses
with lifelong cover and periodic premiums. At contract inception, the level premium is
calculated so that the contract is actuarially fair, i.e. the actuarial value (or expected
present value) of premiums over the contract duration is equal to the actuarial value
of the health benefits and of the eventual withdrawal value paid out to the insured.
As medical expenses typically rise over the lifetime, a level premium contract generates
premium surpluses in the early years which lead to asset accumulation in a reserve, while
the shortfall of premiums in the later years is covered by these assets. As a result, the
well known hump-shape of the reserves becomes apparent.

The health benefits that will be paid over the years for a lifelong health insurance
policy will be impacted by unpredictable changes in prices for medical goods and services.
Given the long-term nature of health insurance contracts and the impossibility to predict
or hedge against medical inflation, insurers are not able to appropriately account for this
medical inflation in the calculation of the yearly premium level at policy issue. Therefore,
these lifelong contracts are usually designed in such a way that the insurer is allowed
to adapt the premium amounts at regular times (e.g. yearly) to account for medical
inflation not taken into account at policy issue, based on some predefined medical inflation
index. This practice is used in several EU member countries (for instance in Belgium and
Germany, see Haberman and Pitacco (1998) and Milbrodt (2005)).

Vercruysse et al. (2013) considers the problem of premium indexing for lifelong health
insurance contracts with non-transferable reserves. Non-transferability of the reserves
means that the reserve is not paid out (neither fully nor partially) to the insured when he
lapses the contract. Non-transferability of the reserves has a premium-reducing effect in
case the insurer accounts for lapses in his premium calculations. Notice however that lapse-
supported business, which means that the introduction of lapse rates in the calculations
reduces the premiums, is often considered as a controversial technique because lapse rates
may depend on economic factors and may give rise to systematic risk. We refer the
reader to Section 8.8 in Dickson et al. (2013) for a discussion. A drawback of the non-
transferability is that it binds the insured to his insurer, especially at times when the
reserve is relatively high. Hofmann and Browne (2013) provide empirical evidence of the
lock-in consumers face when premiums are front-loaded.

Although non-transferability of reserves is actuarially fair (if it is appropriately taken
into account in the premium calculation), consumers may feel this lack of liquidity of
their contract as a serious drawback. Baumann et al. (2008) explore which part of the
reserve can be transferred in case of surrender without imposing premium changes on the
policyholders staying in the contract. These authors do not consider medical inflation in
their study.

This paper tries to solve the problem of medical inflation in a context of private health
insurance contracts with fully or partially transferable reserves by generalizing the results
of Vercruysse et al. (2013). In this setting, several ways exist to restore the actuarial
equivalence. The insurer can either increase premiums, or increase the reserve, or a
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combination of both. In the first case it is the insured who carries the burden of increased
costs due to medical inflation, in the second case it is the insurer and in the third case
they share the burden. This general approach is demonstrated in numerical examples,
based on Belgian data.

Modeling and chosing appropriate lapse rates is a delicate issue. Kuo et al. (2003)
explore the impact of unemployment and interest rate on lapse rates. Hofmann and
Browne (2013) show that policyholders generally lapse less in case of higher premium
front-loading and Christiansen et al. (2015) find that premium development, premium
adjustment frequency and the sales channel impact lapse rates. In the present work, we
investigate the influence of the choice of the lapse rate on the numerical results by means
of a sensitivity analysis.

The remainder of this paper is organized as follows. In Section 2, we describe the
lifelong health insurance contract under study. In Section 3, we extend the framework of
Vercruysse et al. (2013) to take into account (partially) transferable reserves. We describe
how contracts may be adapted over time to take into account unanticipated medical
inflation. In Sections 4 and 5, we consider the special cases of reserve- and premium-
dependent withdrawal payments, respectively. Section 6 discusses detailed numerical
examples. Section 7 concludes the paper.

2 The lifelong health insurance contract

2.1 Health benefits and withdrawal payments

The origin of time is chosen at policy issue. Time t stands for the seniority of the policy
(i.e. the time elapsed since policy issue). The policyholder’s (integer) age at policy issue
is denoted by x, so that upon survival at time k, he or she has reached age x + k. We
denote the ultimate integer age by ω, assumed to be finite. This means that survival
until integer age ω has a positive probability, whereas survival until integer age ω+ 1 has
probability zero.

The superscript “(0)” will be used to denote quantities estimated or known at policy
issue (time 0). The average health-related benefit to be paid out in the year (k, k + 1),

k ∈ {0, 1, . . . , ω − x}, is denoted by b
(0)
x+k. We assume that health-related benefits are paid

at the beginning of the year, which is a convenient and conservative assumption in our
context. Furthermore, in case the policyholder cancels the contract in year (k, k + 1), the

amount w
(0)
x+k+1 is paid out at the end of the year. We set w

(0)
ω+1 = 0, which means that

the surrender value in the last possible year of survival is equal to zero. In Sections 4 and
5, we consider two particular types of surrender values. The first expresses withdrawal
payments in terms of a linear function of the available reserve of the contract at the
moment of withdrawal, whereas the second defines the surrender value as a fraction of
the accumulated value of the premiums paid so far.

The health benefits that will be paid over the years are subject to medical inflation.
Given our adjusted definition, medical inflation is assumed to account for the full increase
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of medical costs, not only the increase of these medical costs above the inflation taken
into account by the usual consumer price index. We assume that medical inflation is un-
predictable and hence, at policy issue, an assumption has to be made about this inflation.
Here, we assume that the actuary includes a future medical inflation of f per year in
premium calculation. This means that

b
(0)
x+k = b

(0)

x+k × (1 + f)k ,

where b
(0)

x+k is the average health benefit to be paid out to a policyholder aged x + k

in year (0, 1). We assume that appropriate estimates for the values b
(0)

x+k are available

at time 0. Furthermore, w
(0)
x+k+1 is the payment in case of withdrawal at time k + 1,

under the assumption of a future medical inflation of f per year. The level premium π(0)

determined at policy issue is thus based on a medical inflation of f per year. It is worth
to mention that all the results can easily be adapted to the case of a deterministic but
varying assumed future medical inflation path, i.e. replacing the constant f with a given
sequence of yearly medical inflation rates f1, f2, . . .

Obviously, observed medical inflation may depart from the assumed f . Therefore,
the premium and the available reserve should be rebalanced every year according to the
observed medical inflation, in order to restore the actuarial equivalence between available
reserve and future premiums on the one hand, and future surrender values and health
benefits paid by the insurer on the other hand. This yearly process gives rise to a sequence
of yearly premiums π(k), k = 0, 1, . . ., where the superscript “(k)” is used to denote that
the updated values are based on the experienced inflation that was observed up to and
including time k, whereas future inflation is assumed to be f per year. We suppose that
the contract stipulates that premiums, reserves and eventually also withdrawal payments
may be updated (on a yearly basis) according to a well-defined procedure, in order to
restore the broken actuarial equivalence. The updated value for the health benefits at
time k ∈ {0, 1, . . . , ω − x} based on information available up to time k, will be denoted

by b
(k)
x+k+j, j = 0, 1, . . . , ω − x− k. Hence,

b
(k)
x+k+j = b

(k)

x+k+j × (1 + f)j ,

where b
(k)

x+k+j is the average health benefit to be paid out to a policyholder aged x+ k+ j

in year (k, k + 1). Again, we assume that appropriate estimates for the values b
(k)

x+k+k are

available at time k. Furthermore, w
(k)
x+k+j+1 stands for the time-k updated value of the

withdrawal payment at time k + j + 1, taking into account the observed inflation until
time k and an assumed inflation of f per year beyond time k.

Taking into account these new series of values b
(k)
x+k+j and w

(k)
x+k+j+1 that are available

at time k, premiums, reserves and withdrawal benefits are updated at that time and give
rise to π(k) for the new yearly premium to be paid from time k on. Throughout this paper,
we set w

(k)
ω+1 = 0. The procedure of the yearly updating is considered in detail in Section

3.

We assume that, apart from the assumed medical inflation, the other elements of the
technical basis (interest, mortality and lapse rates) are in line with the reality that unfolds
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Figure 1: The 2-decrement model.

over time. This simplifying assumption implies that these elements do not require a yearly
update in order to maintain actuarial equilibrium. It allows us to isolate and investigate
the effect of medical inflation on its own. Notice however that the methodology proposed
hereafter can easily be adapted to take into account deviations of interest, mortality and
lapse rates from the ones assumed in the technical basis. This issue will be discussed in
Section 7.

2.2 Discrete-time double decrement model

We describe the lifelong health insurance policy considered in the previous subsection in a
two-decrement Markov model, with states “active” (i.e. policy in force), “withdrawn” (i.e.
policy has been cancelled) and “dead”, abbreviated as “a”, “w” and “d”, respectively. A
graphical illustration is in Figure 1. We denote as Xk the status of the contract at time k,
starting from X0 = a. The stochastic process {Xk, k = 0, 1, 2, . . .} describes the history
of the contract.

For j and k ∈ {0, 1, 2, . . .}, we define the sojourn (or non-exit) probability jp
aa
x+k as

jp
aa
x+k = Pr[Xk+j = a|Xk = a]. (1)

In words, the quantity defined in (1) is the probability that a policy in force at age x+ k
is still in force j years later. The probability that a policy in force at age x+k has ceased
j years later (due to death or withdrawal), is denoted by jq

aa
x+k. This “exit” probability

can be expressed as

jq
aa
x+k = Pr[Xk+j 6= a|Xk = a] = 1− jp

aa
x+k. (2)

We also introduce the probabilities jq
ad
x+k and jq

aw
x+k, which are defined by

jq
ad
x+k = Pr[Xk+j = d|Xk = a] and jq

aw
x+k = Pr[Xk+j = w|Xk = a]. (3)

These are the probabilities of leaving the portfolio due to respectively death and with-
drawal between ages x+ k and x+ k + j.

The following relations are well-known:

jp
aa
x+k + jq

ad
x+k + jq

aw
x+k = 1 (4)

5



and

j+1p
aa
x+k = paax+k × jp

aa
x+k+1 =

j∏
l=0

paax+k+l. (5)

In accordance with standard actuarial notation, we omit the index j when it is equal to
unity. The ultimate integer age ω is such that paaω−1 > 0, while paaω = 0.

2.3 Actuarial values, premiums, reserves and the equivalence
principle

In this paper, we assume a constant yearly technical interest rate i, and denote as v =
(1+i)−1 the corresponding annual discount factor. Notice however that all results hereafter
can easily be generalised to include varying deterministic technical interest rates, i.e.
replacing i with a sequence i1, i2, . . . Premiums are paid at the beginning of the year, as
long as the policy is in force. Let

äaax =
ω−x∑
j=0

jp
aa
x vj

be the actuarial value at policy issue of an annuity-due paying an amount of 1 per year,
as long as the health insurance contract is in force. Furthermore, let

B(0)
x =

ω−x∑
j=0

jp
aa
x vj b

(0)
x+j (6)

be the actuarial value at time 0 of all health-related benefits, and let

W (0)
x =

ω−x∑
j=0

jp
aa
x qawx+j v

j+1 w
(0)
x+j+1 (7)

be the actuarial value at time 0 of the withdrawal option.

At policy issue, the level premium π(0) for a policyholder aged x is then determined
from the equivalence principle:

π(0) äaax = B(0)
x +W (0)

x . (8)

Remember that the actuarial values B
(0)
x and W

(0)
x , as well as the yearly premium π(0),

are determined under the assumption of a yearly medical inflation f .

Solving equation (8) for π(0) leads to the level premium to be paid yearly in advance.
It is important to notice that the equivalence relation (8) does not always provide an
explicit expression for this premium. This is the case for instance when the withdrawal
payments, and hence also W

(0)
x , are defined in terms of the available reserve or in terms

of the premiums paid so far. In Sections 4 and 5, we consider reserve-dependent and
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premium-dependent withdrawal payments and present a methodology that leads to an
explicit expression for π(0) in these cases.

Let us introduce the notation V
(0)
x+j+1 for the available reserve of the contract at time

j + 1, in case of a yearly medical inflation f in the interval (0, j + 1) as predicted at time
0 . Assuming the technical basis used for determining the premium level at policy issue,
these reserves can be determined from the forward recursion

V
(0)
x+j+1 =

(
V

(0)
x+j + π(0) − b(0)x+j − qawx+j v w

(0)
x+j+1

) (
paax+j v

)−1
, (9)

or equivalently,

v V
(0)
x+j+1 = V

(0)
x+j + π(0) − b(0)x+j + qadx+j v V

(0)
x+j+1 − qawx+jv

(
w

(0)
x+j+1 − V

(0)
x+j+1

)
, (10)

which holds for j ∈ {0, 1, . . . , ω − x− 1}. The initial available reserve V
(0)
x is given by

V (0)
x = 0. (11)

The quantity V
(0)
x+j can be interpreted as an estimate for the available reserve per policy

in force at time j, based on the technical assumptions made at policy issue. Notice that
recursions are common in actuarial calculations related to long-term contracts; see e.g.
Giles (1993) for some examples. Often, explicit solutions are available.

One can easily verify that the solution of recursion (9), with initial value (11), can be
expressed in the following retrospective form:

V
(0)
x+j =

j−1∑
l=0

(
π(0) − b(0)x+l − q

aw
x+l v w

(0)
x+l+1

) (
j−lp

aa
x+l v

j−l)−1 , (12)

for j ∈ {0, 1, . . . , ω − x}. Taking into account the equivalence principle (8), the available

reserve V
(0)
x+j can also be expressed prospectively:

V
(0)
x+j = B

(0)
x+j +W

(0)
x+j − π(0) äaax+j, (13)

with

B
(0)
x+j =

ω−x−j∑
l=0

lp
aa
x+j v

l b
(0)
x+j+l (14)

W
(0)
x+j =

ω−x−j∑
l=0

lp
aa
x+j q

aw
x+j+l v

l+1 w
(0)
x+j+l+1 (15)

äaax+j =

ω−x−j∑
l=0

lp
aa
x+j v

l. (16)

Notice that B
(0)
x+j in (14) includes the benefit payment at time j, whereas the first with-

drawal benefit included in W
(0)
x+j is the one that will be paid out eventually at time j + 1.

7



As we have assumed that w
(0)
ω+1 = 0, the last term in (15) is equal to zero. The superscript

“(0)” in (14) and (15) indicates that both actuarial values are based on the information
available at policy issue (i.e. at time 0), taking into account an assumed medical inflation
of f per year. In particular, we find from (13) that

V (0)
ω = b(0)ω − π(0), (17)

which states that the available reserve at the last possible integer age ω is equal to the
difference of the health benefit and the premium to be paid immediately. Equations (11)

and (17) provide us with initial and final values for the reserve trajectory j 7→ V
(0)
x+j.

3 Updating the health insurance contract

Before explaining the mechanism of yearly updating the health insurance contract, we
introduce some notations for actuarial values, which will be used throughout the remainder
of this paper. For k ∈ {0, 1, 2, . . . , ω − x} and j ∈ {0, 1, 2, . . . , ω − x− k}, let

B
(k)
x+k+j =

ω−x−k−j∑
l=0

lp
aa
x+k+j v

l b
(k)
x+k+j+l (18)

be the actuarial value at time k + j of the health benefits to be paid at time k + j and
beyond for a policy still in force at time k + j. Similarly, let

W
(k)
x+k+j =

ω−x−k−j∑
l=0

lp
aa
x+k+j q

aw
x+k+j+l v

l+1 w
(k)
x+k+j+l+1 (19)

be the actuarial value at time k + j of the future withdrawal option for a policy still in
force at time k + j. The actuarial values (18)-(19) are calculated taking into account the
observed medical inflation until time k, while a constant yearly medical inflation of f from
time k on.

In the lifelong health insurance contract that we consider in this paper, the deviation
between the observed and the assumed medical inflation is taken into account ex-post as
it emerges over time, by adapting the premium, the withdrawal benefits and the available
reserve from year to year. The procedure how to adapt these quantities is described below.

Suppose that the policy is still in force at time k ∈ {1, 2, 3, . . . , ω − x}. Reeval-

uations up to time k − 1 have led to the updated values b
(k−1)
x+k+j and w

(k−1)
x+k+j+1, j ∈

{0, 1, 2, . . . , ω − x− k}, for the health benefits and the withdrawal payments, respectively.

Notice that b
(k−1)
x+k+j and w

(k−1)
x+k+j+1 are based on the observed medical inflation until time

k− 1, while assuming a medical inflation of f per year from time k− 1 on. Furthermore,
premiums have been adapted from year to year and have reached level π(k−1) at time k−1.

We assume that at each time 1, 2, . . . , k − 1, the available reserve, the withdrawal
benefits and the premium have been reset in such a way that the available reserve (i.e.
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the available assets) and the required reserve (i.e. the actuarial liabilities) are equal. In

particular this means that at time k − 1, the available reserve V
(k−1)
x+k−1, the withdrawal

values w
(k−1)
x+k−1+j, j = 1, 2, . . ., and the premium π(k−1) have been chosen such that they

satisfy the following relation:

V
(k−1)
x+k−1 = B

(k−1)
x+k−1 +W

(k−1)
x+k−1 − π

(k−1) äaax+k−1, (20)

with B
(k−1)
x+k−1 and W

(k−1)
x+k−1 defined according to (18) and (19), respectively. The right-

hand side in (20) is the actuarial value at time k − 1 of the future liabilities (also called
the required reserve at time k − 1) of the contract under consideration, based on the
information available at that time. Splitting the payments related to year (k − 1, k) from
the other payments and taking into account (5), we can rewrite (20) as follows:

V
(k−1)
x+k−1 = b

(k−1)
x+k−1 + qawx+k−1 v w

(k−1)
x+k − π

(k−1)

+paax+k−1 v
(
B

(k−1)
x+k +W

(k−1)
x+k − π

(k−1)äaax+k

)
. (21)

Having arrived at time k, the reserve available for a policy still in force at age x + k,
taking into account all information up to time k − 1, is denoted by V

(k−1)
x+k . It is given by

vV
(k−1)
x+k =

(
V

(k−1)
x+k−1 + π(k−1) − b(k−1)x+k−1 + qadx+k−1 v V

(k−1)
x+k − qawx+k−1 v

(
w

(k−1)
x+k − V

(k−1)
x+k

))
,

or equivalently,

V
(k−1)
x+k =

(
V

(k−1)
x+k−1 + π(k−1) − b(k−1)x+k−1 − q

aw
x+k−1 v w

(k−1)
x+k

) (
vpaax+k−1

)−1
. (22)

It follows that we can express the available reserve V
(k−1)
x+k in the following prospective

form:
V

(k−1)
x+k = B

(k−1)
x+k +W

(k−1)
x+k − π

(k−1) äaax+k. (23)

This expression states that the available reserve and the required reserve at time k are
equal, provided the technical basis that was used at time k− 1 is still appropriate at time
k.

Suppose now that medical inflation during year (k − 1, k) was such that each future

health benefit b
(k−1)
x+k+j, j ∈ {0, 1, . . . , ω − x− k} that was determined at time k − 1 has to

be replaced by the corresponding adapted health benefit b
(k)
x+k+j, determined at time k,

taking into account observed medical inflation up to time k, while assuming a future yearly
medical inflation f . In particular, we assume that, due to medical inflation, the actuarial
value of future health benefits B

(k−1)
x+k , which is based on observed medical inflation until

time k − 1, has to be replaced by B
(k)
x+k, which is based on observed medical inflation

until time k, see (18). Due to this change in the health benefits, the actuarial equivalence

is broken at time k, in the sense that the available reserve V
(k−1)
x+k is different from the

actuarial value of future liabilities (i.e. the required reserve) at that time.

In order to restore the actuarial equivalence at time k, the premium level π(k−1) and

the available reserve V
(k−1)
x+k are updated to π(k) and V

(k)
x+k , respectively. These changes
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are chosen such that the available reserve V
(k)
x+k is again equal to the actuarial value of the

future liabilities:
V

(k)
x+k = B

(k)
x+k +W

(k)
x+k − π

(k) äaax+k, (24)

where W
(k)
x+k is determined from the updated withdrawal payments w

(k)
x+k+j. The actuarial

equivalence (24) may be obtained in many ways, in the sense that an infinite number of

pairs
(
V

(k)
x+k, π

(k)
)

satisfy relation (24).

From time k on, the level premium π(k−1) that was determined at time k−1, is replaced
by the updated level premium π(k). Notice that the premium increases π(k) − π(k−1) are

financed by the policyholder. Also, at time k, the available reserve V
(k−1)
x+k is increased to

V
(k)
x+k. Obviously, this reserve increase is financed by the insurer. In practice, the reserve

increase may be financed by technical gains on interest, mortality and withdrawals. In our
general setting, the former withdrawal payments w

(k−1)
x+k+j are replaced by revised values

w
(k)
x+k+j, based on the information about medical inflation until time k. The corresponding

increase W
(k)
x+k − W

(k−1)
x+k is financed by the insurer (via a reserve increase) and/or the

policyholder (via increased premiums).

Let us briefly discuss two extreme cases where the effect of inflation is entirely borne
by one of the agents, either the insurer or the policyholder.

Example 1. When the premium is kept unchanged, i.e. when π(k) = π(k−1), we find from
(23) and (24) that

V
(k)
x+k − V

(k−1)
x+k =

(
B

(k)
x+k −B

(k−1)
x+k

)
+
(
W

(k)
x+k −W

(k−1)
x+k

)
, (25)

which means that the health benefit and withdrawal payment increases are completely fi-
nanced by the insurer via an increase of the available assets.

Example 2. When the insurer does not increase the available reserve, i.e. when V
(k)
x+k =

V
(k−1)
x+k , the health benefit and withdrawal payment increases are completely financed by

the policyholder via increased premium payments. In this special case where at time k,
the available reserve is not updated, we find from (23) and (24) that

π(k) − π(k−1) =

(
B

(k)
x+k −B

(k−1)
x+k

)
+
(
W

(k)
x+k −W

(k−1)
x+k

)
äaax+k

. (26)

This means that the premium increase π(k)−π(k−1) introduced at time k can be interpreted
as the level premium for an insurance contract with yearly benefits equal to the health
benefit increases and with withdrawal payments equal to the withdrawal payment increases
of the original contract.

Starting from the available reserve V
(k)
x+k at time k, we introduce the notation V

(k)
x+k+j+1

for the available reserve of the contract at time k+j+1, in case of a future yearly medical
inflation of f in the interval (k, k + j + 1) as predicted at time k. Assuming the technical
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basis used for resetting the actuarial equivalence (24) at time k, these reserves can be
determined from the forward recursion

V
(k)
x+k+j+1 =

(
V

(k)
x+k+j + π(k) − b(k)x+k+j − q

aw
x+k+j v w

(k)
x+k+j+1

) (
paax+k+j v

)−1
, (27)

or equivalently,

v V
(k)
x+k+j+1 = V

(k)
x+k+j + π(k) − b(k)x+k+j + qadx+k+j v V

(k)
x+k+j+1

−qawx+k+jv
(
w

(k)
x+k+j+1 − V

(k)
x+k+j+1

)
, (28)

which holds for j ∈ {0, 1, . . . , ω − x− k − 1}. The initial value V
(k)
x+k is given by (24).

Notice that V
(k)
x+k+j is an estimate for the available reserve per policy in force at time

k + j, based on the information available and the technical assumptions used at time k.

It is easy to verify that the solution of recursion (27), with initial value V
(k)
x+k can be

expressed in the following retrospective form:

V
(k)
x+k+j = V

(k)
x+k

(
jp
aa
x+k v

j
)−1

+

j−1∑
l=0

(
π(k) − b(k)x+k+l − q

aw
x+k+l v w

(k)
x+k+l+1

) (
j−lp

aa
x+k+l v

j−l)−1 , (29)

for j ∈ {0, 1, . . . , ω − x− k}. Taking into account the restored actuarial equivalence (24),

the reserves V
(k)
x+k+j can also be expressed prospectively:

V
(k)
x+k+j = B

(k)
x+k+j +W

(k)
x+k+j − π

(k)äaax+k+j, (30)

with äaax+k+j, B
(k)
x+k+j and W

(k)
x+k+j defined in (16), (18) and (19), respectively. In particular,

we find that
V (k)
ω = b(k)ω − π(k)

x , (31)

which means that the available reserve at the last possible integer age is equal to the
health benefit minus the premium to be be paid at that time.

4 Reserve-dependent withdrawal payments

In this section, we investigate reserve-dependent withdrawal benefits for the lifelong health
insurance contract described in Sections 2 and 3. Specifically, we consider the case where
upon surrender in year (k, k + 1), the withdrawal benefit that is paid out at time k + 1
is a linear function of the available reserve. In particular, we assume that the withdrawal
payment is given by

w
(k)
x+k+1 = (1− βk+1)V

(k)
x+k+1 − αk+1, k = 0, 1, 2, . . . , ω − x− 1, (32)

where αk+1 ≥ 0 is a reserve-independent penalty and 0 < βk+1 ≤ 1 is the non-transferred
(or lost) percentage of the available reserve in case of policy cancellation. The quantities
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αk+1 and βk+1 are fixed at policy issue. Furthermore, we set w
(ω)
ω+1 = 0. Benefits of the form

(32) have been studied in a continuous-time setting by Christiansen et al. (2014), without

allowance for medical inflation. Notice that V
(k)
x+k+1 is a function of π(0), π(1), . . . , π(k). This

implies that at contract initiation, this reserve and hence, the surrender value w
(k)
x+k+1 is

in general unknown. However, when the surrender option is exercised in year (k, k + 1),

the reserve V
(k)
x+k+1 and the withdrawal payment are known at time k + 1, see (22).

Let us first determine the level premium π(0) at policy issue. In order to be able to
determine this premium from the equivalence principle (8), we choose ‘time 0’ observ-
able values for the future withdrawal payments. We propose to estimate the withdrawal
payment in case of surrender in year (j, j + 1) , j ∈ {0, 1, 2, . . . , ω − x− 1} , by

w
(0)
x+j+1 = (1− βj+1)V

(0)
x+j+1 − αj+1, (33)

where V
(0)
x+j+1 is the estimate for the available reserve at time j+1 defined by the recursion

(9), with initial value V
(0)
x = 0. Furthermore, w

(0)
ω+1 is set equal to zero.

Taking into account that the reserves (and hence, also W
(0)
x ) depend on the premium

π(0), we find that the equivalence relation (8) does not lead to an explicit expression for
the initial premium π(0). In order to find such an explicit expression, we insert the values

(33) of the withdrawal benefits w
(0)
x+j+1 in the recursion (9). Re-arranging the terms in

this recursion leads to the transformed recursion

V
(0)
x+j+1 =

(
V

(0)
x+j + π(0) − b(0)x+j − qawx+j v wx+j+1

) (
paax+j v

)−1
, (34)

which holds for any j ∈ {0, 1, . . . , ω − x− 1}, and with initial value V
(0)
x = 0, where

qawx+j = βj+1 q
aw
x+j, wx+j+1 = −αj+1

βj+1

and paax+j = 1− qadx+j − qawx+j. (35)

Furthermore, we set
qawω = 0 and wω+1 = 0. (36)

As βj+1 ∈ (0, 1], we have qawx+j ∈ [0, 1] so that this quantity and paax+j can be interpreted
as probabilities.

We can conclude that at any time j + 1, the reserve V
(0)
x+j+1 of the health insurance

contract, which is defined by recursion (9) with initial value V
(0)
x = 0, is identical to the

reserve of an artificial health insurance contract with transformed withdrawal payments
wx+j and transformed probabilities qawx+j and paax+j. The reserves of this artificial contract

follow from recursion (34) with initial value V
(0)
x = 0. In the following proposition, we

derive an explicit expression for the initial premium level of the original contract.

Proposition 1. An explicit expression for the inital premium level π(0) of the health
insurance contract with reserve-dependent withdrawal benefits (33) is given by

π(0) =
B(0)
x +W (0)

x

äaax
, (37)
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with

B(0)
x =

ω−x∑
l=0

lp
aa
x vl b

(0)
x+j

W (0)
x =

ω−x∑
l=0

lp
aa
x qawx+l v

l+1 wx+l+1

äaax =
ω−x∑
l=0

lp
aa
x vl.

In these expressions, the qawx+l and wx+l+1 are defined by (35) and (36). Furthermore,

0p
aa
x+j = 1 and for l > 0, we have that

lp
aa
x =

l−1∏
k=0

paax+k

with the paax+k defined in (35).

Proof. In Section 2.3, we have proven that the recursion (9) with initial value V
(0)
x = 0

leads to the retrospective expression (12) with j = ω − x for V
(0)
ω . In a similar way, one

can prove that the transformed version (34) of this recursion with the same intial value

leads to the following retrospective expression for V
(0)
ω :

V (0)
ω =

ω−x−1∑
l=0

(
π(0) − b(0)x+l − q

aw
x+l v wx+l+1

) (
ω−x−lp

aa
x+l v

ω−x−l)−1 .
On the other hand, from (17) we know that V

(0)
ω = b

(0)
ω − π(0). Hence,

ω−x∑
l=0

(
π(0) − b(0)x+l − q

aw
x+l v wx+l+1

) (
ω−x−lp

aa
x+l v

ω−x−l)−1 = 0.

Multiplying each term in this expression by ω−xp
aa
x vω−x leads to

π(0)äaax = B(0)
x +W (0)

x ,

which proves the stated result.

Obviously, B(0)
x and W (0)

x can directly be determined at policy issue. This means that
(37) is indeed an explicit expression for the initial premium level.

Suppose now that we have arrived at time k ∈ {1, 2, . . . , ω − x}, and that the contract
is still in force. At that time, the actuarial value of future health benefit payments, taking
into account medical inflation up to that time is given by B

(k)
x+k, which is defined in (18).

As before, the updated value of the available reserve at time k is denoted by V
(k)
x+k, whereas

the new level premium to be determined at that time is denoted by π(k). We propose

13



to update the values for withdrawal payments at time k using the information about
observed inflation until time k, and assuming a yearly medical inflation of f for future
years:

w
(k)
x+k+j+1 = (1− βk+j+1)V

(k)
x+k+j+1 − αk+j+1, j = 0, 1, , . . . , ω − x− k − 1, (38)

where V
(k)
x+k+j+1 is the available reserve at time k + j + 1 as defined in (27). Furthermore,

as mentioned before, we set w
(k)
ω+1 = 0.

Taking into account that the reserves V
(k)
x+k+j+1 and hence also W

(k)
x+k, depend on the

premium π(k), we find that the restoring equivalence equation (24) does not give an explicit
relation between the updated premium level and the available reserve at time k. In order
to solve this problem, we insert the values (38) for the updated withdrawal payments in
the recursion (27). This leads to the transformed recursion for the available reserves:

V
(k)
x+k+j+1 =

(
V

(k)
x+k+j + π(k) − b(k)x+k+j − q

aw
x+k+jvwx+k+j+1

) (
paax+k+j v

)−1
, (39)

which holds for any j ∈ {0, 1, . . . , ω − x− k − 1}, with initial value V
(k)
x+k. The quantities

qawx+k+j, p
aa
x+k+j and wx+k+j+1 are defined as before. The advantage of rewriting the recursive

relation (29) in the form (39) is that it allows us to find an explicit relation between V
(k)
x+k

and π(k), as shown in the following proposition.

Proposition 2. Consider the lifelong health insurance contract with reserve-dependent
withdrawal benefits (33). The actuarial equilibrium restoring equivalence relation (24) at
time k can be expressed in the following way, which provides an explicit relation between
V

(k)
x+k and π(k):

V
(k)
x+k = B

(k)
x+k +W

(k)
x+k − π

(k)äaax+k, (40)

with

B
(k)
x+k =

ω−x−k∑
l=0

lp
aa
x+k v

l b
(k)
x+k+l

W
(k)
x+k =

ω−x−k∑
l=0

lp
aa
x+k q

aw
x+k+l v

l+1 wx+k+l+1

äaax+k =
ω−x−k∑
l=0

lp
aa
x+k v

l.

In these expresssions, the qawx+k+l, lp
aa
x+k and wx+k+l+1 are defined as in Proposition 1.

Proof. We have proven that the recursion (27) with initial value V
(k)
x+k for the available

reserves leads to the retrospective expression (29) with j = ω−x−k for V
(0)
ω . In a similar

way, one can easily prove that the transformed version (39) of this recursion with the
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same initial value leads to the following retrospective expression for V
(k)
ω :

V (k)
ω = V

(k)
x+k

(
ω−x−kp

aa
x+k v

ω−x−k)−1
+

ω−x−k−1∑
l=0

(
π(k) − b(k)x+k+l − q

aw
x+k+l v wx+k+l+1

) (
ω−x−k−lp

aa
x+k+l v

ω−x−k−l)−1 .
On the other hand, from (31) we know that V

(k)
ω = b

(k)
ω − π(k). This observation leads to

0 = V
(k)
x+k

(
ω−x−kp

aa
x+k v

ω−x−k)−1
+

ω−x−k∑
l=0

(
π(k) − b(k)x+k+l − q

aw
x+k+l v wx+k+l+1

)
×
(
ω−x−k−lp

aa
x+l v

ω−x−k−l)−1 .
Multiplying each term in this expression by ω−x−kp

aa
x+k v

ω−x−k gives rise to (40), which
proves the stated result.

As a consequence of the particular form of wx+k+1, both B
(k)
x+k and W

(k)
x+k do not depend

on V
(k)
x+k+j and π(k). This leads to an easy-to-handle relation between the updated available

reserve V
(k)
x+k and the updated premium π(k) which can be used to restore the actuarial

equivalence at time k. Restoring this actuarial equivalence can be obtained in several
ways (see also Vercruysse et al. (2013)). The insurer could for instance first increase the

available reserve by a certain percentage (financed by technical gains) from level V
(k−1)
x+k

to level V
(k)
x+k, and then use (40) to determine the appropriate new level premium π(k).

Another possibility is that the premium increases are contractually fixed as a function of
observed medical inflation (e.g. the premium increase at time k is 100% of the medical

inflation in the previous year). The updated available reserve V
(k)
x+k follows then from (40).

In Section 6, both cases will be illustrated numerically.

5 Premium-dependent withdrawal payments

Actuaries generally base surrender values on accumulated reserves and this case has been
thoroughly investigated in Section 4. However, this concept may seem obscure to many
policyholders. Moreover, some insurers do not compute individual reserves but rather
manage the entire portfolio as a collective. In order to overcome these concerns and
problems, one might prefer to consider withdrawal payments based on the premiums paid
so far. We will discuss this issue in this section. In particular, we assume that in case of
surrender in the year (k, k + 1), the withdrawal benefit paid out at time k+ 1 is given by

w
(k)
x+k+1 = βk+1

k∑
l=0

π(l) (1 + i′)k+1−l − αk+1, k = 0, 1, 2, . . . (41)

Hence, the withdrawal benefit is equal to a time-dependent fraction βk+1, 0 ≤ βk+1 ≤ 1,
of the accumulated value of the premiums paid until time k, minus a time-dependent
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penalty αk+1 ≥ 0 . We assume that the quantities β1, β2, . . . and α1, α2, . . . are fixed
at policy issue. The coefficients β1, β2, . . . can be chosen such that they approximately
mimic the accumulation of the savings premiums in the reserve, representing the part of
the premiums paid but not consumed to finance past health benefits. The accumulation
of the premiums is performed at a constant interest rate i′, which may be different from
the technical interest rate i. We could for instance set i′ = 0 so that premiums enter the
calculation at nominal values.

At policy issue, the payment for withdrawal in year (k, k + 1) is in general unknown as
it depends on the a priori unknown stream of future premium payments π(1), π(2), . . . , π(k).
However, when the surrender option is exercised in year (k, k + 1), the surrender benefit

w
(k)
x+k+1 that is actually paid out is fully specified at time k+ 1, based on the information

that is available at that time about previous medical inflation.

In order to be able to determine the initial level premium π(0) from the equivalence
principle (8), we have to choose values for the future withdrawal payments observable
at time 0. We propose to estimate the payment in case of withdrawal in year (j, j + 1) ,
j ∈ {0, 1, 2, . . . , ω − x− 1} by

w
(0)
x+j+1 = βj+1

j∑
l=0

π(0) (1 + i′)j+1−l − αj+1. (42)

This means that w
(0)
x+j+1 corresponds to the withdrawal payment w

(j)
x+j+1 in case of a

medical inflation of f per year and no adaptation of the premiums until withdrawal.

Proposition 3. Assuming (42), an explicit expression for the initial premium level π(0)

of the health insurance contract with premium-dependent withdrawal benefits (41) is given
by

π(0) =
B

(0)
x −

∑∞
j=0 jp

aa
x qawx+j v

j+1 αj+1

äaax −
∑∞

j=0 jpaax qawx+j v
j+1 c

(0)
j+1

(43)

with

c
(0)
j+1 = βj+1

j∑
l=0

(1 + i′)j+1−l. (44)

Proof. We can rewrite (42) as follows:

w
(0)
x+j+1 = c

(0)
j+1 π

(0) − αj+1 (45)

with the c
(0)
j+1 defined in (44). Inserting the surender values w

(0)
x+j+1 in the actuarial equiv-

alence relation (8), while taking into account (15), leads to the explicit expression (43)
for the initial level premium π(0).

Suppose now that we have arrived at time k ∈ {1, 2, . . .} and that the policy is

still in force. The available reserve V
(k−1)
x+k at this moment is given by (22). Taking into

account the information about medical inflation up to time k, the future health benefits
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are re-estimated and their updated actuarial value B
(k)
x+k follows from (18). In general, the

actuarial equivalence will be broken at time k. Therefore, the insurer updates the available
reserve V

(k−1)
x+k to level V

(k)
x+k, while the premium π(k−1) is replaced by π(k). Furthermore,

the previously chosen values w
(k−1)
x+k+j+1 for future withdrawal payments are replaced by

the values w
(k)
x+k+j+1, j ∈ {1, 2, . . .}, which are defined by

w
(k)
x+k+j+1 = βk+j+1

k+j∑
l=0

π(min{k,l}) (1 + i′)k+j+1−l − αk+j+1. (46)

This means that at time k, the future withdrawal payments are determined using the
information about medical inflation until time k, while assuming a future inflation of
f per year. The new values for the reserve and the premium are chosen such that the
actuarial equivalence is restored, i.e. such that (24) holds.

Proposition 4. Consider the lifelong health insurance contract with premium-dependent
withdrawal benefits (41). The actuarial equilibrium restoring equivalence relation (24) at

time k can be expressed in the following explicit relation between V
(k)
x+k and π(k):

V
(k)
x+k = B

(k)
x+k +

ω−x−k∑
j=0

jp
aa
x+k q

aw
x+k+j v

j+1d
(k)
k+j+1

−π(k)

(
äaax+k −

ω−x−k∑
j=0

jp
aa
x+k q

aw
x+k+j v

j+1c
(k)
k+j+1

)
(47)

with

c
(k)
k+j+1 = βk+j+1

k+j∑
l=k

(1 + i′)k+j+1−l (48)

d
(k)
k+j+1 = βk+j+1

k−1∑
l=0

π(l)(1 + i′)k+j+1−l − αk+j+1. (49)

Proof. The updated withdrawal payment w
(k)
x+k+j+1 can be rewritten as

w
(k)
x+k+j+1 = c

(k)
k+j+1 π

(k) + d
(k)
k+j+1, (50)

with c
(k)
k+j+1 and d

(k)
k+j+1 defined by (48) and (49), respectively. From (19) and (50), it

follows that the actuarial value of future withdrawal benefits W
(k)
x+k can then be expressed

as follows:

W
(k)
x+k =

ω−x−k∑
j=0

jp
aa
x+k q

aw
x+k+j v

j+1
(
c
(k)
k+j+1 π

(k) + d
(k)
k+j+1

)
. (51)

Combining (24) and (51) yields the announced result.
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Restoring the actuarial equivalence at time k can be obtained in several ways, as
pointed out before. The insurer could for instance first increase the available reserve using
technical gains and then deduce the new premium level from (47). Another possibility is
that the premium increases are contractually fixed as a function of past medical inflation,
the updated available reserve then following from (24). In Section 6, both cases will be
illustrated numerically.

6 Numerical illustration

6.1 Technical basis

We consider a contract issued to a policyholder aged x = 25. This contract covers medical
expenses in excess of Social Security, as those commonly sold in Belgium. Additional
background information can be found in the KCE reports 96 by Devolder et al. (2008).
The technical basis assumes a yearly interest rate i of 2%.

Since health insurance contracts with a transferable reserve are not currently available
on the Belgian market, we do not have relevant observed lapse probabilities at our disposal.
Therefore we carry out a sensitivity analysis by varying the lapse probabilities according
to the three following scenarios: considering a policyholder buying the contract at age 25,
we consider one-year lapse probabilities qawy at age y ≥ 25 given by

qaw1
y = 0 (52)

qaw2
y =

{
0.1− 0.002 · (y − 20) if 25 ≤ y ≤ 70
0 otherwise

(53)

qaw3
y =

{
0.05 ·

(
cos
(
(y − 25) · π

95

)
+ 1
)

if 25 ≤ y ≤ 120
0 otherwise.

(54)

These lapse probabilities are displayed in Figure 2. Under the first set of lapse probabilities
qaw1
y , policyholders never cancel the contract. The second set of lapse probabilities qaw2

y

has been used by Vercruysse et al. (2013). These probabilities imply a higher propension
to lapse at younger ages for the 25-year-old policyholder under consideration, but no
lapse after age 70. This is often taken as the central scenario on the Belgian market.
Finally, under the third set of lapse probabilities qaw3

y , we have higher lapse probabilities
at younger ages which then decline smoothly to 0 at the ultimate age ω = 120.

Death probabilities are displayed in Figure 3, left panel. Notice that these are not
the qady but yearly death probabilities q′dy based on observations at the general population
level in a single decrement, two state setting, alive or dead. We recover the values for qady
from the following relation:

qady = q′dy

(
1−

qawy
2− q′dy

)
, (55)

which holds under the assumption of a uniform distribution of decrements in any year
for each of the two single decrement models; see Section 8.10.2 in Dickson et al. (2013).
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Figure 2: One-year lapse probabilities qaw1
y (full line), qaw2

y (dashed line), and qaw3
y (dotted

line).

Notice that lapse probabilities enter the calculation of death probabilities so that different
scenarios of policy cancellation impact on all actuarial quantities. Under (52), we have
qady = q′dy but these two probabilities differ under the other scenarios (53) and (54). Figure
3, right panel, displays the three sets of one-year death probabilities used in the numerical
illustrations.

The dashed line in Figure 4 shows the average health benefit b̄
(0)
y in function of policy-

holder’s attained age y, in euros. The shape of y 7→ b̄
(0)
y is inspired from Belgian private

health insurance market experience but the values have been rescaled for confidentiality
reasons. The full line in this figure represents the average health benefits b

(0)
y when a

medical inflation f of 2% per year is taken into account.

6.2 Surrender values

6.2.1 Reserve-dependent benefits

When withdrawal benefits depend on the available reserve, as discussed in Section 4, we
set the non-transferred percentage and the reserve-independent penalty in the definition
of withdrawal payments (32) respectively equal to

βk+1 =

{
1 if 0 ≤ k ≤ 4
0.2 if 5 ≤ k

and αk+1 =

{
0 if 0 ≤ k ≤ 4
150 if 5 ≤ k.

Early cancellations often cause significant losses for the insurer due to unrecovered admin-
istrative costs and commissions. Therefore no withdrawal benefits are paid in the first five
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Figure 3: One-year death probabilities q′dy on a log-scale (left) and one-year death proba-
bilities qady on a log-scale corresponding to the three sets of lapse probabilities (right) qaw1

y

(full line), qaw2
y (dashed line), and qaw3

y (dotted line).
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Figure 4: Average health benefit b̄
(0)
y at age y (dashed line) and inflated values b

(0)
y (full

line) at constant rate f .

years of the contract in this example. Afterwards we fix the non-transferred percentage
at 20% and the reserve-independent penalty at 150.
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6.2.2 Premium-dependent benefits

We also consider withdrawal benefits based on the premiums paid so far defined by (41).
We set the interest rate on the accumulated premiums to i′ = 1%.

The time-dependent fractions βk of the accumulated value of the premiums and the
time-dependent penalties αk are chosen such that the surrender value at time k corre-
sponds to the sum of the savings premiums of the contract with interest accumulation
at rate i′. As these values need to be specified in the policy conditions, we propose to
determine the βk and αk as follows:

0.0

0.2

0.4

0.6

0.8

0 25 50 75
k

β k

 
qy

aw1

qy
aw2

qy
aw3

Figure 5: Values of the βk defined from (56).

1. Define β′k = 1 and α′k =
∑k−1

l=0 b
(0)
x+l · (1 + i′)k−l. A contract with withdrawal benefits

defined by (41) with parameters β′k and α′k defines withdrawal benefits at time k+1
as the sum of the savings premiums at policy issue with interest accumulation at
rate i′:

w
′(0)
x+k+1 =

k∑
l=0

(π(0) − b(0)x+l) · (1 + i′)k+1−l.

2. Calculate the initial premium π
′(0) for a contract with withdrawal benefits as defined

in step 1. Use formula (43) from the approach described in Section 5.

3. Define

βk = max

{
0,

∑k−1
l=0 (π

′(0) − b(0)x+l) · (1 + i′)k−l∑k−1
l=0 π

′(0) · (1 + i′)k−l

}
(56)

and αk = 0 which leads to withdrawal benefits

w
(0)
x+k+1 = max

{
0,

∑k
l=0(π

′(0) − b(0)x+l) · (1 + i′)k+1−l∑k
l=0 π

′(0) · (1 + i′)k+1−l

}
·

k∑
l=0

π(0)(1 + i′)k+1−l. (57)
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These three simple steps base the definition of the withdrawal benefits on the sum of the
savings premiums and ensure that the withdrawal benefits do not get negative. Moreover,
this definition also ensures that the withdrawal benefits never exceed the sum of the
premiums paid so far with interest accumulated at rate i′ since βk ≤ 1. Figure 5 displays
the βk defined from (56).

6.3 Initial premium

Table 1 contains the initial premium π(0) calculated for different types of withdrawal
benefits: surrender value based on the reserve, surrender value based on the premiums,
and no surrender value (i.e. the policyholder does not receive any benefit in case of policy
cancellation). Obviously, the initial premium is identical under the first set of lapse
probabilities qaw1

y as the definition of the withdrawal benefits is irrelevant in that case.
The last column of Table 1 shows the initial premium in case the withdrawal benefits are
always 0. Table 1 illustrates that given any lapse probability, a higher withdrawal benefit
increases the initial premium.

Type of withdrawal benefits Reserve-dependent Premium-dependent No benefits

Lapse probability qaw1
y 484.76 484.76 484.76

Lapse probability qaw2
y 415.50 431.15 267.18

Lapse probability qaw3
y 238.90 256.15 140.50

Table 1: Premium π(0) at policy issue.

6.4 Medical inflation scenario

We illustrate the proposed methods by assuming an additional yearly medical inflation
j
[B]
k = 1% (for k ≥ 1) for health benefits, on top of the expected inflation f = 2%

incorporated in the premiums. In the notation of Section 2.1, the assumption of the
expected inflation of f = 2% translates to

b
(0)
x+k = (1 + f)k · b̄(0)x+k = (1 + 2%)j · b̄(0)x+k. (58)

The assumption of the additional medical inflation can be written as

b̄
(k)
x+k+j = (1 + f) · (1 + j

[B]
k ) · b̄(k−1)x+k+j (59)

such that

b
(k)
x+k+j = (1 + f)j · b̄(k)x+k+j = (1 + 2%)j · b̄(k)x+k+j (60)

or
b(k)y = (1 + j

[B]
k ) · b(k−1)y = (1 + 1%) · b(k−1)y . (61)
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6.5 Contract updating mechanisms

As explained earlier, there are many ways to update the contract to account for medical
inflation. As in Vercruysse et al. (2013) we denote the premium increase and the reserve

increase at time k by respectively j
[P ]
k and j

[V ]
k . In this section, we consider the following

two approaches:

Mechanism 1: The premium increase j
[P ]
k is contractually fixed in function of past med-

ical inflation, i.e. j
[P ]
k = j

[P ]
k (j

[B]
k ). Premium updates are then obtained from

π(k)
x = (1 + j

[P ]
k (j

[B]
k )) · π(k−1)

x . (62)

The reserves are adjusted afterwards. For instance, policy conditions could specify
that premiums are updated according to

j
[P ]
k (j

[B]
k ) = (1 + γ) · j[B]

k (63)

where the additional γ accounts for the indexing of the accumulated reserve. In the
numerical illustration in Sections 6.6, 6.7 and 6.8 we consider (63) with γ = 0.

Mechanism 2: The insurer now first increases the available reserve according to

V
(k)
x+k = (1 + j

[V ]
k ) · V (k−1)

x+k (64)

and determines the corresponding new level premium afterwards. We illustrate this
updating mechanism for j

[V ]
k = 1%, i.e. the insurer increases the available reserve

by 1% each year.

6.6 No withdrawal benefits

We start with the case studied in Vercruysse et al. (2013) where the policyholder receives
no withdrawal benefit in case of surrender. Figure 6 shows the available reserve calcu-
lated with information available at time 0. Higher lapse probabilities tend to decrease
the reserve. The reason is that when a policyholder lapses his contract, his reserve is
transferred to the remaining policyholders.

Figure 7 illustrates the evolution of the reserves V
(k)
x+k and the premiums π(k) over time

k when nothing is paid in case of policy cancellation. In absence of withdrawal benefits,
the result of updating mechanisms 1 and 2 described above is exactly the same so that we
do not have to distinguish between the two mechanisms described above. This is because
the expected present value of the withdrawal benefits (51) is zero which reduces actuarial
equivalence (22) at time (k − 1) to

V
(k−1)
x+k = B

(k−1)
x+k − π

(k−1) · äaax+k. (65)

When the additional medical inflation is j
[B]
k = 1% and the reserve is updated by j

[V ]
k = 1%

as in contract updating mechanism 2, the actuarial equivalence is restored by increasing
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Figure 6: Available reserves V
(0)
x+k when no benefit is paid in case of withdrawal for the

different types of lapse probabilities qaw1
y (full line), qaw2

y (dashed line), qaw3
y (dotted line).

the premium by j
[P ]
k = 1%. This is the same premium update as for mechanism 1 as this

mechanism sets the premium increase equal to the additional medical inflation, which we
assume to be 1%. By a similar reasoning the reserve increase resulting from updating
mechanism 1 equals j

[V ]
k = 1%. We conclude that both updating mechanisms have the

same impact on the reserve and premium in this setting.

6.7 Reserve-dependent withdrawal payments

This section illustrates the strategy proposed in Section 4 where the withdrawal benefits
depend on the available reserve. The first column of Table 1 shows the initial premium
for a contract specifying reserve-dependent withdrawal benefits for the different lapse
probability assumptions. The initial premium of the contract decreases as the lapse
probability increases. This is a consequence of the definition and choice of parameters
βk and αk of the withdrawal benefits. As illustrated in Figure 8, the withdrawal benefits
never exceed the available reserve. The part of the reserve not transferred in case of
surrender can be added to the reserve of the remaining policyholders. Therefore, higher
lapse probabilities have a premium reducing effect.

Figures 9 and 10 illustrate the evolution of the available reserve and withdrawal ben-
efits over time under mechanisms 1 and 2, respectively. For both updating mechanisms
the reserve increases over time due to the observed medical inflation. Therefore, the
withdrawal benefits also increase because of their dependence on the reserve. The differ-
ence between both updating mechanisms is visualized in Figure 11. The graph on the
right illustrates the yearly premium increase j

[P ]
k when we use mechanism 2 to account

for observed medical inflation. Under updating mechanism 1 this increase is fixed at the
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Figure 7: Available reserves V
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x+k and premiums π(k) when no benefit is paid in case of

withdrawal for the different types of lapse probabilities qaw1
y (full line), qaw2

y (dashed line),
qaw3
y (dotted line).
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Figure 8: Available reserves V
(0)
x+k (left) and surrender values w

(0)
x+k (right) for the different

types of lapse probabilities qaw1
y (full line), qaw2

y (dashed line), qaw3
y (dotted line).

additional medical inflation (j
[B]
k = 0.01), whereas for updating mechanism 2 the increase

may vary over time. The horizontal line at a premium increase of 1% corresponds to zero
lapse probability qaw1

y as the expected present value of the withdrawal benefits is zero at
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x+k (left) and surrender

values w
(k)
x+k (right) for the different types of lapse probabilities qaw1
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any time which reduces the actuarial equivalence at time k − 1 to (65). For a reserve

increase of 1% and the same increase in B
(k−1)
x+k to account for observed medical inflation,
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Figure 11: Yearly reserve increase j
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k for mechanism 1 (left) and yearly premium increase

j
[P ]
k for updating mechanism 2 (right) for the different types of lapse probabilities qaw1
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the equivalence is restored by a premium increase of 1%. The other lapse probabilities
decrease and converge to 0 over time. Consequently, over time the expected present value
of the withdrawal benefits has a smaller impact on the premium when restoring the ac-
tuarial equivalence. Therefore the curves corresponding to lapse probabilities qaw2

y and
qaw3
y also converge to 1% over time. The point at which the percentage starts to decrease

corresponds to the year after which the withdrawal benefits are strictly positive.

The graph in the left panel of Figure 11 shows the increase of the reserve j
[V ]
k under

mechanism 1. Updating mechanism 2 fixes this increase at 1%. As for the right figure, the
reduced equivalence relation (65) explains why the reserve increase for qaw1

y is constantly
equal to 1% and why the reserve increases for the other lapse probabilities flattens out at
1% in the left figure.

6.8 Premium-dependent withdrawal payments

The second column in Table 1 displays the initial premium π(0) calculated at policy issue
corresponding to the different lapse probability assumptions in (52), (53) and (54). The

evolution of the available reserve V
(0)
x+k when medical inflation and contract updates over

time are not taken into account is illustrated in the left graph of Figure 12. The right
graph of this figure shows the evolution of withdrawal benefits (57) calculated at policy
issue. The withdrawal benefits never exceed the available reserve. As a consequence,
higher lapse probabilities result in lower premiums as demonstrated in Table 1. A lower
premium implies that the sum of the savings premiums is lower and gets negative sooner,
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Figure 12: Available reserves V
(0)
x+k (left) and surrender values w

(0)
x+k (right) for the different

types of lapse probabilities qaw1
y (full line), qaw2

y (dashed line), qaw3
y (dotted line).

so the cap of 0 in definition (56) of βk is reached more rapidly.

The impact of updating mechanism 1 and mechanism 2 on the reserves and withdrawal
benefits is illustrated in Figures 13 and 14, respectively. As expected, for both mechanisms
the reserves and withdrawal benefits have increased. However, withdrawal benefits never
exceed the available reserve.

The difference between both updating mechanisms is highlighted in Figure 15. The
right graph shows the yearly increase in the premium when we use updating mechanism
2 to account for observed medical inflation. Under updating mechanism 1, this increase
is fixed at the additional medical inflation (j

[B]
k = 0.01). The premium increase varies

over time when using updating mechanism 2. When the lapse probability is zero for all
ages, the expected present value of the withdrawal benefits (51) is zero which reduces
the actuarial equivalence at time (k − 1) to (65). Additional medical inflation of 1%
and a reserve update of 1% requires a premium increase of 1% to restore the actuarial
equivalence. For the same reason the curves corresponding to the other lapse probabilities
flatten out at zero: due to the cap of zero on the βk the expected value of the withdrawal
benefits drops to zero over time. Earlier in the contract, the premium increase is lower
than the reserve increase.

Under updating mechanism 2 the reserve increase is fixed at 1%. The left panel of
Figure 15 demonstrates that the reserve increase under mechanism 1 varies over time.
Using the same reasoning as for the graph appearing in the right panel, the reserve
increase for qaw1

y is constantly equal to 1% and the reserve increases for the other lapse
probabilities flatten out at 1%. Earlier in the contract the required reserve update for the
non-zero lapse probabilities is lower than 1%.
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Figure 13: Updating mechanism 1: available reserves V
(k)
x+k (left) and surrender values

w
(k)
x+k (right) for the different types of lapse probabilities qaw1

y (full line), qaw2
y (dashed

line), qaw3
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Figure 14: Updating mechanism 2: available reserves V
(k)
x+k (left) and surrender values

w
(k)
x+k (right) for the different types of lapse probabilities qaw1

y (full line), qaw2
y (dashed

line), qaw3
y (dotted line).
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7 Final discussion and conclusions

In this paper, we considered a lifelong health insurance contract with level premiums.
In order to be able to determine premiums and reserves, a future medical inflation of f
per year was assumed. The contract that we considered was such that a yearly update,
based on the observed inflation in the past year, was possible. In order to maintain the
actuarial equivalence from year to year, premiums and reserves were allowed to be adapted,
according to a procedure specified in the policy. The other elements of the technical basis
(interest, mortality and lapse rates) were assumed to be in line with the reality that
unfolds over time, which implies that these elements do not give rise to a required update
of the contract in order to maintain actuarial equilibrium. This simplifying assumption
allowed us to isolate and investigate the effect of medical inflation on its own.

It is worth mentioning that our proposed approach easily extends to the case where
other elements of the technical basis (mortality, interest, surrender) are modified during
the term of the contract. Indeed, the available reserve (calculated retrospectively) and the
required reserve (calculated prospectively) may well be computed with a totally different
technical basis, differing from the one used for premium calculation. Consider for instance
reserve-dependent surrender values as in Section 4, the accumulated reserve V

(k−1)
x+k at time

k and the required reserve B
(k)
x+k + W

(k)
x+k − π(k) äaax+k may be obtained from two different

sets of actuarial assumptions. Assuming that the basis used for calculating the required
reserve continues to apply in the future, (39) still holds which shows that (40) remains
valid even if other elements of the technical basis are revised, not only expected health
benefits. The approach developed in the present paper is thus very general and allows
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the actuary to deal with periodic revisions of the elements included in the technical basis
during the coverage period.

The elements of the technical basis can even differ from year to year. In essence, the
actuarial equilibrium methodology explained in this paper is only based on two funda-
mental relations. First, there is the relation

V
(k−1)
x+k =

(
V

(k−1)
x+k−1 + π(k−1) − b(k−1)x+k−1 − q

aw
x+k−1 v w

(k−1)
x+k

) (
vpaax+k−1

)−1
, (66)

which allows us to determine the available reserve at time k (before updating) from the
cash flow movement in the past year. Second, there is the relation

V
(k)
x+k = B

(k)
x+k +W

(k)
x+k − π

(k) äaax+k (67)

which restores the actuarial equilibrium at time k, by resetting the premium level from
π(k−1) to π(k), and eventually also the available reserve from V

(k−1)
x+k to V

(k)
x+k.

The methodology explained in this paper can be used in very different situations,
depending on the elements of the technical basis that are guaranteed and those elements
that are subject to revision according to policy conditions. Any adverse departure from
guaranteed components represents losses for the insurer that cannot be recovered by
increasing premiums for the existing portfolio. On the contrary, premiums may be adapted
in case no guarantee has been granted to the policyholder. Let us illustrate these two
different situations on two extreme examples.

Consider first a health insurance contract where not any element of the technical basis
is contractually guaranteed. In this case, the contract is similar to a pooling agreement.
The contract is now updated at time k, starting from the recursion (66), but b

(k−1)
x+k−1,

qawx+k−1, v and paax+k−1 can be considered as corresponding to observed values over the past
year. Premium and reserves are then updated according to (67), for some appropriately
chosen technical basis for the required reserve at time k, which may be different from the
basis used to determine the available reserve.

The policy conditions may also guarantee the technical basis, except for the health
benefits. In this case, the contractual reserve at time k is determined from (66), where
the qawx+k−1, v and paax+k−1 are those specified in the contract. In this case, it may happen

that the accumulated assets for the contract differ from the contractual reserve V
(k)
x+k. If

the guaranteed technical basis turns out to be conservative, accumulated assets exceed
the contractual reserve, resulting in technical profits. The contract can then be updated
according to (67), where V

(k)
x+k is the sum of V

(k−1)
x+k and the participating gain awarded at

time k. This profit sharing mechanism has a reducing effect on the new premium level
π(k).

Above we considered two extreme cases (no guarantees, and all elements of technical
basis, except medical inflation, guaranteed). Of course, intermediate cases, where e.g.
mortality and interest are guaranteed, but inflation and lapse rates are not, may be
considered in the same framework.

This paper confines to deterministic inflation scenarios. The proposed approach never-
theless extends to stochastic medical inflation rates. Specifically, random departures from
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the central medical inflation scenario adopted in initial premium calculation can be gener-
ated from a random walk with drift model, or another time series process. The resulting
variations in premiums and reserves can then be computed according to the formulas
derived in the present paper, so that the actuary has access to the whole distribution of
these quantities and can compute credible intervals, for instance.
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