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Abstract

This paper proposes a practical way for indexing level premiums in lifelong medical insur-
ance contracts, in order to take into account observed medical inflation. The indexing can be
achieved by considering only premiums, without explicit reference to reserves. This appears
to be relevant in practice as reserving mechanisms may not be transparent to policyhold-
ers and as some mutual and shareholder insurers do not compute contract-specific reserves,
managing the whole portfolio in a collective way. Note that the similarity with the existing
literature on life insurance comes from the lifelong nature of the contracts considered in
our setting. However, in the case of health insurance covers the value of future benefits is
random.
The present study originates from a proposal for indexing lifelong medical insurance level
premiums in Belgium. As an application, we study the impact of various indexing mecha-
nisms on a typical medical insurance portfolio on the Belgian market.

Key words and phrases: health insurance, reserving, inflation, premium update, solvency
evaluation.



1 Introduction

Consider a portfolio of lifelong health insurance contracts covering medical expenses (in
excess of Social Security, say, as it is often the case in continental Europe). We deal here
with SLT health insurance contracts, where SLT stands for ”Similar to Life Techniques” in
the context of Solvency 2. We assume that the contracts stipulate that no surrender value
is paid out in case of policy cancellation. The (unpredictable) increase of medical costs in
the future generates a systematic risk for the health insurance provider. Therefore, medical
inflation is usually not guaranteed when setting the level premiums of the contracts at policy
issue. Instead, premiums and eventually also reserve (also known as mathematical reserve
or policy value) are regularly updated, accounting for observed medical inflation over the
previous years.

In this paper, we propose a simple but actuarially sound method that takes into account
the observed medical inflation ex-post via a yearly recalculation of the premium levels. The
premium-updating mechanism is based on a medical inflation index. This index quantifies the
global increase in prices of medical goods and services and may thus differ from the classical
consumer price index. Notice that a one-step version of the formula used in the present paper
has been derived by Schneider (2002, Section 8) in the particular case of no reserve update.
Here, this formula is extended to a multi-period setting, allowing for premium and/or reserve
revisions. The case where the reserve is also updated is studied in Pitacco (2014, Section
5.4). To the best of our knowledge, the present paper is the first to provide a comprehensive
study of the updating mechanism in lifelong health insurance cover, including sensitivity
analysis and a comparison between the individual and the aggregate methods.

Lifelong health insurance contracts and related premium updating mechanisms have been
investigated in Vercruysse, Dhaene, Denuit, Pitacco and Antonio (2013) as well as in Dhaene,
Godecharle, Antonio and Denuit (2015). In the current paper, we aim to derive a practical
indexing method and to assess the approximation suggested by the indexing mechanism
adopted for mutual and shareholder insurers in the Belgian market. This approximation
consists in applying a factor ‘1.5’ to the medical inflation in order to take into account the
increase of the reserve. Specifically, we show that indexing can be achieved by considering
only premiums, without explicit reference to reserves. This appears to be relevant in practice
as reserving mechanisms may not be transparent to policyholders and as some insurers do
not compute contract-specific reserves, managing the whole portfolio in a collective way.
The present study originates from a proposal for indexing medical insurance premiums in
Belgium. As an application, we study the impact of various indexing rules on a typical
medical insurance portfolio on the Belgian market.

The remainder of this paper is organized as follows. In Section 2, we describe the actuarial
model for the health insurance contracts considered in this paper. Section 3 presents the one-
step revision of the premium amount and/or of the accumulated reserve, as a consequence
of medical inflation. Section 4 extends this one-step formula to periodic revisions during
the coverage period. In Section 5, we consider the indexing mechanism recently proposed in
Belgium. We show that the simple rule implemented after a Royal Decree dated March 2016
allows insurers to update premium amounts accounting for necessary reserve revaluations.
In Section 6, we replace the individual revision formula with a collective one, considering all
policyholders who entered the portfolio during a given year (i.e. a cohort of new contracts).
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In Section 7, the indexing is performed for the whole portfolio, accounting for new business
and lapses. The final Section 8 concludes the paper, revisiting some assumptions.

2 Actuarial model

2.1 Two-decrement model

The origin of time is chosen at policy issue. Time t stands for the seniority of the policy
(i.e., the time elapsed since policy issue). The policyholder’s (integer) age at policy issue is
denoted by x, so that upon survival at time k, he or she has reached age x+ k. We denote
the ultimate integer age by ω, assumed to be finite. This means that survival until integer
age ω has a positive probability, whereas survival until integer age ω+1 has probability zero.

We describe the lifelong health insurance policy considered in the previous section in a
two-decrement Markov model, with states “active” (i.e. policy in force), “withdrawn” (i.e.
policy has been cancelled) and “dead”, abbreviated as “a”, “w” and “d”, respectively. Let
Xk be the status of the contract at time k, starting from X0 = a. The stochastic process
{Xk, k = 0, 1, 2, . . .} describes the history of the contract.

For j and k ∈ {0, 1, 2, . . .}, we define the sojourn (or non-exit) probability jp
aa
x+k as

jp
aa
x+k = Pr[Xk+j = a|Xk = a]. (2.1)

In words, the quantity defined in (2.1) is the probability that a policy in force at age x + k
is still in force j years later. In accordance with standard actuarial notation, we omit the
index j when it is equal to unity. The ultimate integer age ω is such that paaω−1 > 0, while
paaω = 0.

The probability that a policy in force at age x+ k has ceased j years later (due to death
or withdrawal), is denoted by jp

a•
x+k. This “exit” probability can be expressed as

jp
a•
x+k = Pr[Xk+j 6= a|Xk = a] = 1− jp

aa
x+k. (2.2)

We also introduce the probabilities jp
ad
x+k and jp

aw
x+k, which are defined by

jp
ad
x+k = Pr[Xk+j = d|Xk = a] and jp

aw
x+k = Pr[Xk+j = w|Xk = a]. (2.3)

These are the probabilities of leaving the portfolio due to death and withdrawal, respectively,
between ages x+ k and x+ k + j.

2.2 Benefits and level premiums

The expected annual health cost at age x + j, which is denoted by bx+j, is clearly random

due to medical inflation. Let b
(0)
x+j be an estimate at time 0 for the expected medical expenses

in year (0, 1) for a person aged x + j at time 0. At time 0, the insurer needs an estimate

of the future costs for premium calculation, starting from the current expected cost b
(0)
x+j

for individuals aged x + j, increased by the assumed inflation rate. The insurer assumes a
constant yearly medical inflation f ≥ 0 over the coming years. Hence, b

(0)
x+j (1 + f)j is an

estimate at time 0 of the expected medical expenses in year (j, j + 1) for a person aged x+ j
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in the beginning of that year. The results that we present hereafter can easily be generalised
to the case of non-constant but deterministic estimates for future inflation in the coming
years.

Throughout the paper, a superscript “(k)”, k = 0, 1, 2, . . . , indicates that the quantity
under consideration is based on information about medical costs available at time k. Here-
after, π

(k)
x,j denotes the premium to be paid at time k for a contract that was underwritten

at time j ≤ k at age x.
The tariff π

(0)
x,0 is determined from a technical basis, i.e. from assumptions about mortality,

surrenders, interest and medical inflation. In this note, in order to emphasize on the medical
inflation risk, we assume that the realizations of the technical basis follow the assumption.
This means that the assumptions about mortality, surrenders and interest rates are not
subject to revision. In addition, we assume that adverse selection has been ruled out by the
insurer using an appropriate underwriting policy. We do not go into details on the aspects of
adverse selection and its impact, however, we refer to Newhouse (1996) and Ellis et al. (2000)
for more information about the topic in the health insurance market. On the other hand,
the uncertainty about future medical inflation levels induces systematic risk. Therefore, the
amount of future premiums is revised on a yearly basis, using the observed inflation in the
past year. We assume that in later years there is no update of the constant inflation scenario
f that was used for premium calculation at time 0 so that the whole process is based on the
tariff π

(0)
x,0 known at policy issue.

The level yearly premium π
(0)
x,0 for a health insurance contract underwritten at current

time 0 on an insured aged x is determined by means of the equivalence principle. Let v(0, j)
be the discounting factor over the period (0, j). The expected present value (or actuarial

value) B
(0)
x of the benefits paid by the insurer is then given by

B(0)
x =

ω−x∑
j=0

b
(0)
x+j (1 + f)j jE

aa
x (2.4)

where jE
aa
x is the actuarial discounting factor accounting for mortality, lapses and interest,

over the period (0, j), i.e.

jE
aa
x = v(0, j)jp

aa
x .

Furthermore, let äaax be the actuarial value of an annuity-due paying a unit amount per year,
as long as the policy is in force, i.e.

äaax =
ω−x∑
j=0

jE
aa
x . (2.5)

We then have

π
(0)
x,0 =

B
(0)
x

äaax
. (2.6)

In the following sections, we present an actuarially sound methodology for revising the
level of the premium as inflation emerges over time. In order to ease the notations, we drop
the superscript “aa” for the actuarial discounting factor and the annuity value and simply
denote jE

aa
x as jEx and äaax as äx.
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3 Adapting the premium and/or the reserve level at

time 1

3.1 Accumulated reserve

Suppose that we have arrived at time 1 and that the policy that was underwritten at age x
at time 0 is still in force. This means that at time 1, a positive prospective reserve

V
(0)
x+1 = (1 + f)B

(0)
x+1 − π

(0)
x,0 äx+1, (3.1)

is required for the insurer now age x+ 1, where B
(0)
x+1 and äx+1 are defined similarly to (2.4)

and (2.5), respectively.

Taking into account that the premium π
(0)
x,0 was determined via the equivalence princi-

ple (2.6), the prospective expression (3.1) for V
(0)
x+1 at time 1 can be transformed into the

retrospective expression

V
(0)
x+1 =

(
π
(0)
x,0 − b(0)x

)
(1Ex)

−1 , (3.2)

which stands for the available reserve of the policyholder.

3.2 Revision of benefits

Suppose that the inflation for medical expenses observed during the first year is given by
f (1). This means that at time 1, due to the observed medical inflation in the past year, the
expected annual medical expenses b

(0)
x+1+j have to be updated to

b
(1)
x+1+j =

(
1 + f (1)

)
b
(0)
x+1+j, j = 0, 1, 2, . . . (3.3)

Notice that we assume in (3.3) that medical inflation over the past year is age-independent.
This assumption and how it can be relaxed is discussed in the closing Section 8.

Taking into account this assumed uniformity of medical inflation over all ages, we find
that at time 1, the actuarial value of future benefits (1 + f)B

(0)
x+1, which was based on

estimates available at time 0, has to be updated to

B
(1)
x+1 = (1 + f (1))B

(0)
x+1. (3.4)

3.3 Premium and/or reserve update

The required (prospective) reserve thus becomes

B
(1)
x+1 − π

(0)
x,0 äx+1,

which coincides with the available (retrospective) provision V
(0)
x+1 in (3.1) only if the observed

inflation f (1) in the first year is equal to the assumed inflation f at time 0. This means that,
due to the update of the actuarial value at age x+1 of future medical expenses, the available
provision V

(0)
x+1 that was determined without knowing the observed medical inflation in the
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first year, turns out to be insufficient to cover future liabilities in case f (1) > f . In order to
restore the actuarial equivalence, the premium π

(0)
x,0 and/or the available provision V

(0)
x+1 will

have to be updated to levels π
(1)
x,0 and V

(1)
x+1, respectively. Any pair

(
V

(1)
x+1, π

(1)
x,0

)
satisfying the

equality
V

(1)
x+1 = B

(1)
x+1 − π

(1)
x,0 äx+1 (3.5)

will perform the task of resetting the actuarial equivalence. Hence, updating the premium
and the available provision at time 1 can be performed in an infinite number of ways. Notice
that (3.5) is the prospective reserve at time 1, based on updated benefits and premiums.

Subtracting (3.5) from (3.1), we find that for any pair
(
V

(1)
x+1, π

(1)
x,0

)
which restores the

actuarial equivalence, the new premium level π
(1)
x,0 at time 1 is given by

π
(1)
x,0 = π

(0)
x,0 +

(
f (1) − f

)
π
(0)
x+1,0 −

V
(1)
x+1 − V

(0)
x+1

äx+1

(3.6)

where

π
(0)
x+1,0 =

B
(0)
x+1

äx+1

(3.7)

is the level premium at time 0 for a health insurance contract underwritten at that time on
a person aged x+ 1.

Remark 3.1. In the special case where f = 0 and the insurer decides to update the premium
according to the observed medical inflation f (1), i.e.

π
(1)
x,0 =

(
1 + f (1)

)
π
(0)
x,0,

we find from (3.1), (3.4) and (3.5) that

V
(1)
x+1 =

(
1 + f (1)

)
V

(0)
x+1.

This means that in case no inflation is taken into account to determine the initial premium
level π

(0)
x,0, indexing the premium according to the observed medical inflation f (1) requires the

same proportional update of the available reserve.

3.4 Adapting the premium, only

Let us now assume that the level of the available provision is left unchanged, i.e.

V
(0)
x+1 = V

(1)
x+1. (3.8)

This means that the deviation of observed inflation f (1) from assumed inflation f in the first
year is completely financed by the policyholder. From (3.6) it follows then that the new
premium level at time 1 is given by

π
(1)
x,0 = π

(0)
x,0 +

(
f (1) − f

)
π
(0)
x+1,0. (3.9)
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A similar formula has been obtained by Schneider (2002) in the particular case f = 0.

Formula (3.9) shows that the premium increase π
(1)
x,0 − π

(0)
x,0 at time 1 can be interpreted

as the level premium corresponding to a “new” insurance contract underwritten at time 1
offering benefits with actuarial value equal to the benefit increases

(
f (1) − f

)
B

(0)
x+1. This

can be intuitively explained as follows: due to the increase in future medical costs from
(1 + f)B

(0)
x+1 to (1 + f (1))B

(0)
x+1, the policyholder now aged x+ 1 must virtually buy at time 1

a supplementary insurance policy, covering the benefit increase
(
f (1) − f

)
B

(0)
x+1, whose price

is
(
f (1) − f

)
π
(0)
x+1,0 adding to π

(0)
x,0 in (3.9).

Formula (3.9) is a simple rule for updating the premium level at time 1: the new premium

level π
(1)
x,0 follows from the original premium, the observed inflation over the past year and

the insurer’s tariff at time 0. The premium formula (3.9) can be rewritten in the following
form:

π
(1)
x,0 =

(
1 +

π
(0)
x+1,0

π
(0)
x,0

(
f (1) − f

))
π
(0)
x,0.

This expression shows that the actual indexing for the original premium π
(0)
x,0 is

(
f (1) − f

) π(0)
x+1,0

π
(0)
x,0

.

In case no inflation assumption is made at policy issue, i.e. f = 0, the proportional increase
of the premium will be different (and usually higher) than the observed medical inflation
f (1) over the first year. Also notice that in case the inflation assumption in the first year was
too conservative, i.e. f (1) < f , the premium level may be reduced at time 1.

4 Adapting the premium level at time k

4.1 Accumulated reserve

Suppose that we have arrived at time k = 2, 3, . . . and that the policy that was underwritten
on the person aged x at time 0 is still in force. The observed medical inflation up to time
k − 1 has been taken into account by restoring the actuarial equivalence and updating the
premium levels at times 1, 2, . . . , k − 1. Suppose that the deviations of observed inflation
from assumed inflation f are completely financed by the policyholder, which means that
the available provisions are not updated. Let V

(k−1)
x+k−1 and π

(k−1)
x,0 be the available provision

and the premium level determined at time k − 1. They were set such that the actuarial
equivalence at time k − 1 was restored:

V
(k−1)
x+k−1 = B

(k−1)
x+k−1 − π

(k−1)
x,0 äx+k−1. (4.1)

In this formula, B
(k−1)
x+k−1 is the actuarial value at time k − 1 of the future health benefits

related to an insured of age x+ k − 1 at that time, i.e.

B
(k−1)
x+k−1 =

ω−x−k+1∑
j=0

b
(k−1)
x+k−1+j (1 + f)j jEx+k−1,
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where b
(k−1)
x+k−1+j is the expected health benefit in year (k − 1, k) for a person aged x+k−1+j

in the beginning of that year, based on the information available at time k − 1:

b
(k−1)
x+k−1+j = b

(0)
x+k−1+j

k−1∏
l=1

(1 + f (l)).

Notice that we assume that inflation is age-independent. Furthermore, the jEx+k−1 are the
appropriate actuarial discount factors, accounting for mortality, lapses and interest, while
äx+k−1 is an annuity-due paying an amount of 1 per year to the insured with current age
x+ k − 1, as long as the policy remains in force.

The available provision at time k for the policy still in force at that time is then given by

V
(k−1)
x+k =

(
V

(k−1)
x+k−1 + π

(k−1)
x,0 − b(k−1)

x+k−1

)
(1Ex+k−1)

−1 . (4.2)

The available provision acts as a savings account, which first builds up by the premium
surpluses in the early years (when π

(k−1)
x,0 > b

(k−1)
x+k−1), whereas it melts away in later years due

to the premium shortfalls in these years (when π
(k−1)
x,0 < b

(k−1)
x+k−1).

Taking into account the restored actuarial equivalence (4.1) at time k − 1, the available

reserve V
(k−1)
x+k at time k can be expressed in the following prospective form:

V
(k−1)
x+k = (1 + f)B

(k−1)
x+k − π

(k−1)
x,0 äx+k, (4.3)

with

B
(k−1)
x+k =

ω−x−k∑
j=0

b
(k−1)
x+k+j (1 + f)j jEx+k.

4.2 Premium update

Due to the observed medical inflation during the k-th year, the actuarial value of future
health benefits (1 + f)B

(k−1)
x+k based on an evaluation at time k − 1 has to be updated to

B
(k)
x+k which, under the age-uniform medical inflation f (k) ≥ 0, is given by

B
(k)
x+k = (1 + f (k))B

(k−1)
x+k .

At time k, the premium level π
(k−1)
x,0 and/or the available provision V

(k−1)
x+k have to be

replaced by π
(k)
x,0 and V

(k)
x+k, respectively, in order the restore the actuarial equivalence:

V
(k)
x+k = B

(k)
x+k − π

(k)
x,0 äx+k. (4.4)

From (4.3) and (4.4), we find that for any actuarial equivalence restoring pair
(
V

(k)
x+k, π

(k)
x,0

)
,

the updated premium π
(k)
x,0 can be expressed as

π
(k)
x,0 = π

(k−1)
x,0 +

(
f (k) − f

)
π
(k−1)
x+k,k−1 −

V
(k)
x+k − V

(k−1)
x+k

äx+k
, (4.5)
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where π
(k−1)
x+k,k−1 is given by

π
(k−1)
x+k,k−1 =

B
(k−1)
x+k

äx+k
, (4.6)

which is the initial level premium for a lifelong health insurance contract underwritten at
time k − 1 on a person of age x+ k at that time.

Assuming again that the observed inflation f (k) is solely financed by the policyholder,
i.e.

V
(k)
x+k = V

(k−1)
x+k ,

the premium updating formula (4.5) reduces to

π
(k)
x,0 = π

(k−1)
x,0 +

(
f (k) − f

)
π
(k−1)
x+k,k−1. (4.7)

Hence, the updated premium π
(k)
x,0 at time k is equal to the premium π

(k−1)
x,0 paid the year

before, augmented by the product of the medical inflation deviation
(
f (k) − f

)
observed over

the past year and last year’s premium for a new contract that was issued on a person of age
x+ k.

The updated premium π
(k)
x,0 can also be written as

π
(k)
x,0 =

(
1 +

π
(k−1)
x+k,k−1

π
(k−1)
x,0

(
f (k) − f

))
π
(k−1)
x,0 . (4.8)

This expression clearly shows that the proportional premium increase at time k is different
from the medical inflation deviation

(
f (k) − f

)
that was revealed over the past year. Obvi-

ously, the proportional premium increase depends on the age x at policy issue as well as on
the number k of years that the contract has been in force so far. The proportional increase
of the premium will usually be larger for policies that are longer in force.

From (4.7) which holds for k = 1, 2, 3, . . ., we find that

π
(k)
x,0 = π

(0)
x,0 +

k∑
j=1

(
f (j) − f

)
π
(j−1)
x+j,j−1, (4.9)

with

π
(j−1)
x+j,j−1 =

B
(j−1)
x+j

äx+j
. (4.10)

Formula (4.9) has an intuitive interpretation. Indeed, the premium level π
(k)
x,0 to be paid at

time k is equal to the initial premium level π
(0)
x,0, augmented with the extra premia for all the

virtually added contracts covering the increases in medical costs in any of the first k years.
Using the assumption of an age-uniform medical inflation in each of the past years, we

find that

B
(j−1)
x+j = B

(0)
x+j

j−1∏
l=1

(
1 + f (l)

)
, j = 1, 2, 3, . . . , (4.11)
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provided we set
∏0

l=1(1+f (l)) = 1, by convention. Taking into account (4.10), the expression
above immediately leads to

π
(j−1)
x+j,j−1 = π

(0)
x+j,0

j−1∏
l=1

(
1 + f (l)

)
, j = 1, 2, 3, . . . (4.12)

It follows then from (4.9) that the updated premium level π
(k)
x,0 at time k can be written as

π
(k)
x,0 = π

(0)
x,0 +

k∑
j=1

(
f (j) − f

)
π
(0)
x+j,0

j−1∏
l=1

(1 + f (l)). (4.13)

This is an expression for the updated premium level π
(k)
x,0 at time k for a contract underwritten

to a person aged x at time 0, in terms of the observed inflation levels f (1), f (2), ..., f (k) in the
past years and the insurer’s tariff π

(0)
y,0 at policy issue.

5 Case study: The new indexing mechanism for the

Belgian medical insurance market

5.1 Indexing rule imposed by the Belgian law

In Belgium, public health insurance is organized by the state through the Federal Agency
RIZIV-INAMI and operated by several so-called ”sickness funds” (non-profit organizations).
In addition to this compulsory medical cover, individual or group private health insurance
contracts are sold which pay (part of) the non-covered medical costs and supplements. These
private insurance products are regulated via the so-called “Law Verwilghen” of 20 July 2007
and “Law Reynders” (also called the “Law Verwilghen II”) of 17 June 2009, both named
after the ministers in charge.

Individual private coverages are lifelong by law. In case of level premiums, the initial
premium amount is fixed at policy issue and then linked to the CPI or to a specific medical
index. The Federal Agency KCE studied different indexing mechanisms, see Devolder et
al. (2008). The Royal Decree defining the premium indexing mechanism to be applied by
insurance companies operating in Belgium has been cancelled on December 29, 2011, one of
the reasons being that the updating mechanism for the premiums to adjust for observed but
unanticipated inflation did not take into account the shortfall of the accumulated reserves.

Recently, a Belgian Royal Decree dated March 18, 2016 introduced a new updating mech-
anism for individual private coverages. The newly proposed mechanism, which is intended
to be both appropriate for the insurers and transparent towards the clients, is given by

π
(k)
x,0 =

(
1 + 1.5 f (k)

)
π
(k−1)
x,0 , (5.1)

subject to some restrictions that are not be considered in the present paper (as they only
apply to very special cases, not encountered in our numerical examples). Here it is assumed
that the level premiums are determined without assuming future inflation: in all our nu-
merical illustrations, we always take f = 0. Henceforth, the premiums calculated according
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to (5.1) are called the “1.5 rule premiums” and denoted by π
(k)
x,0 (150%). We compare these

premiums with the ”exact premiums”, which follow from (4.8):

π
(k)
x,0 =

(
1 + α

(k)
x,0 f

(k)
)
π
(k−1)
x,0 , (5.2)

with

α
(k)
x,0 =

π
(k−1)
x+k,k−1

π
(k−1)
x,0

, (5.3)

which holds under the assumption that f = 0 and that reserves are not updated, i.e. V
(k−1)
x+k =

V
(k)
x+k. In order to distinguish the exact premiums (5.2) from the premiums derived from the

1.5 rule, we often denote them by π
(k)
x,0 (exact).

Hereafter, we investigate whether using 1.5 instead of the correct indexing factor appears
to be a sufficiently prudent approach for the insurance company and at the same time, a
not too conservative approach for the insured. Let us mention that (5.1) determines the
maximum premium update allowed by the law, so that we mainly adopt the insurer’s point
of view and examine whether a rule like (5.1) may threaten its solvency or not.

5.2 Technical basis

In this subsection, we describe the technical basis and the assumptions made in our numerical
calculations. The assumed discount factors correspond to a constant yearly interest rate
i = 1%. Mortality is assumed to obey the first Heligman-Pollard law, in the sense that the
”independent mortality rates” for ages x = 25, 26, . . . , 109 are given by

qx
1− qx

= A(y+B)C +De−E(lnx−lnF )2 +GHx (5.4)

with A = 0.00054, B = 0.017, C = 0.101, D = 0.00013, E = 10.72, F = 18.67, G =
1.464 × 10−5 and H = 1.11. Furthermore, we fix the ultimate age to ω = 110. For a
justification of this mortality law, we refer to Pitacco (1999) and Vercruysse et al. (2013).

The corresponding “dependent mortality rates” padx in the two-decrement model satisfy
the relation

padx = qx

(
1− pawx

2− qx

)
,

which holds under the assumption of a uniform distribution of decrements in any year for
each of the two single decrement models involved, see Section 8.10.2 in Dickson et al. (2013).
The “dependent lapse rates” pawx are assumed to be given by

pawx = 0.1− 0.002(x− 20)

at age x = 25, 26, . . . , 70 and 0 otherwise.
The severity of medical claims is based on age-specific annual claim amounts including

an accident-childbearing hump and a concave behavior near the end of the lifetime. The
data have been normalized to fit the annual expected hospitalization cost provided by the
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Belgian Mutualité Chrétienne; they are displayed in Figure 1. The minimum age to purchase
a private medical insurance is assumed to be 25.

As mentioned, no medical inflation is taken into account when setting future premiums,
i.e. f = 0. In Figure 2, the resulting insurer’s tariff π

(0)
x,0, x = 25, 26, ..., 109, is depicted.

We observe that the accident-childbearing hump and the concave behavior for higher ages
visible on Figure 1 are impacting the tariff structure, causing the break right before age 40.

5.3 The 1.5 rule

In the remainder of Section 5, we will investigate the evolution over time of the successive
premiums to be paid by an insured of age 25 at policy issue. Concerning the evolution
over time, we assume that experienced interest rates, mortality rates and withdrawal rates
are equal to their corresponding values in the technical basis. Furthermore, we assume an
observed medical inflation of 2 percent, i.e. f (k) = 2% for all k = 1, 2, . . .

In Figure 3, we compare the correctly updated premiums π
(k)
25,0(exact), k = 1, 2, . . .,

determined from (5.2) with the premiums π
(k)
25,0(150%) updated via the 1.5 rule (5.1). We

observe that the 1.5 rule appears to be conservative for the insurer as the related future
premiums are always larger than the correctly updated premiums. In Figure 3, also the
premiums arising from the 1.0 rule, where premiums are updated with a proportion equal
to the observed medical inflation, i.e.

π
(k)
25,0 = (1 + f (k))π

(k−1)
25,0

are shown. Obviously, this 1.0 rule ignores the fact that built up reserves have to be taken
into account in the updating process. As expected, Figure 3 shows that in this case the
updating rule leads to insufficient premiums.

The previous figure does not necessary imply that the correct indexing factors α
(k)
25,0 are

uniformly smaller than 1.5. In order to verify this, we draw the correct indexing factor α
(k)
25,0

as a function of k in Figure 4. We observe that α
(k)
25,0 is initially smaller than 1.5, then it

becomes slightly larger than 1.5 and finally decreases to become again lower than 1.5. Hence,
the 1.5 rule is very conservative in the periods where the available reserve is relatively small.
Overall, we can conclude that replacing α

(k)
25,0 by 1.5 turns out to be conservative on the

premium level for a person who underwrites the policy at age 25. Indeed, the intermediate
period where α

(k)
25,0 is slightly larger than 1.5 is more than compensated by the conservative

premium increases in the initial period, where the exact factors α
(k)
25,0 are (substantially)

smaller than 1.5.

5.4 Sensitivity analysis

In this subsection, we perform a sensitivity analysis by varying the constant interest rate,
the observed medical index and the age of the policyholder.

Apart from the base case i = 1% for the interest rate, we consider two additional scenar-
ios, namely i = 0.5% and i = 5%. Figure 5 shows the effect of these changes on the tariff at
time 0. Obviously, the corresponding premiums are decreasing with the interest rate.

11



Figure 1: Expected annual medical costs b
(0)
y as a function of age y.

Figure 2: Tariff at policy issue: π
(0)
x,0 for x ∈ {25, 26, ..., 109}.
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Figure 3: π
(k)
25,0 (exact), π

(k)
25,0 (150%) and π

(k)
25,0(100%) for k = 1, 2, . . ..

Figure 4: Indexing factor α
(k)
25,0 as a function of time-since-issue k.
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Figure 5: Tariff π
(0)
y,0 at time 0 as a function of age y for different technical interest rates.

In Figure 6 we depict the behavior of the exact indexing factor α
(k)
25,0 for the three interest

rate scenarios considered. Overall, the indexing factor increases with i. The 1.5 rule (5.1)
seems to be more conservative in a context of low interest rates.

In Figure 7, we show ratio
π
(k)
25,0(150%)

π
(k)
25,0(exact)

between the premium updated with (5.1) and (4.8),

respectively, for different interest rate assumptions. The ratio is always greater than 1, mean-
ing that in any of the considered cases the 1.5 rule is conservative.

Returning to the base case for the interest rate, i.e. i = 1%, let us now vary the observed
medical inflation according to the following scenarios: either f (k) = 0.5% for all k = 1, 2, . . .
or f (k) = 3% for all k = 1, 2, . . .. Figure 8 shows the evolutions of the indexing factors α

(k)
25,0

for the two different medical inflation scenarios considered.
In Figure 9, we compare the premiums π

(k)
25,0 (exact) with the corresponding premiums

π
(k)
25,0 (150%) for different inflation scenarios. In this case, the 1.5 rule is more conservative

for higher medical inflation levels. Indeed, we can see in Figure 8 that for an observed
inflation of 0.5%, the 1.5 approximation is under-estimating the exact update after the 25
first years of the coverage.

To end this section, we return again to the base case technical assumptions and consider
a constant inflation scenario with f (k) = 2%. We compare the premium evolution of three
insureds with initial ages 25, 35 and 50, respectively.

Figure 10 shows that α
(k)
25,0 is initially smaller than both α

(k)
35,0 and α

(k)
50,0, but later becomes

greater. Furthermore, for the 35 and 50 year old persons at policy issue, the correct index
factors α

(k)
35,0 < 1.5 and α

(k)
50,0 < 1.5 for any k, showing that in these two cases, the 1.5 rule

is always conservative. In Figure 11, π
(k)
x,0 (exact) and π

(k)
x,0 (150%) for x = 25, 35 and 50 are

shown as a function of k. For the three ages, the premium based on the 1.5 rule is uniformly

14



Figure 6: Indexing factor α
(k)
25,0 for different technical interest rates.

Figure 7: Ratio
π
(k)
25,0(150%)

π
(k)
25,0(exact)

for three different technical interest rate assumptions.
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Figure 8: α
(k)
25,0 as a function of k, for different inflation scenarios.

Figure 9: Premiums π
(k)
25,0 (exact) and π

(k)
25,0 (150%) as a function of k, for the two different

medical inflation scenarios.
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Figure 10: Indexing factors α
(k)
25,0, α

(k)
35,0 and α

(k)
50,0 as a function of k.

larger than the corresponding exact premium, indicating that the 1.5 rule is a conservative
rule in these three cases.

6 An aggregate premium indexing mechanism for a

group of new entrants

6.1 Individual vs aggregate indexing approach

The exact premium indexing mechanism (4.8) that we considered so far is based on yearly
restoring the actuarial equivalence on policy level. In this sense, we can call it an individual
premium indexing mechanism. In this section, we will present an aggregate premium indexing
mechanism, where the yearly restoring of the actuarial equivalence is performed at aggregate
level for all insureds that have entered the portfolio at the same time.

Let us consider a portfolio of new entrants at time 0. We follow this portfolio over time,
assuming that the technical basis for mortality, surrender and interest is in line with what is
experienced over time. For each age x, let us denote by l

(k)
x,0 the number of persons who entered

the portfolio at age x at time 0 and who are still in the portfolio at time k = 0, 1, 2, . . .. Of
course, we have l

(k)
x,0 = 0 for x+ k > ω.
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Figure 11: π
(k)
x,0 (exact) and π

(k)
x,0 (150%) for x = 25, 35 and 50 as a function of k.

6.2 Adapting the premium level at time 1

Suppose we are at time 1. In the previous sections, we adapt the premiums on an individual
(contract per contract) basis, using the relation (4.8). This means that the premium is reset

at time 1 in such a way that for each contract, the available provision V
(0)
x+1 and the required

provision V
(1)
x+1 are equal at that time:

V
(0)
x+1 = V

(1)
x+1, (6.1)

with V
(0)
x+1 and V

(1)
x+1 given by (3.1) and (3.5), respectively.

In this section, we propose to restore the equivalence between available provision and
required provision only on an aggregate level, i.e. we replace the individual equivalence
relation (6.1) by the following aggregate equivalence relation:

ω−1∑
x=x0

l
(1)
x,0 V

(0)
x+1 =

ω−1∑
x=x0

l
(1)
x,0 V

(1)
x+1, (6.2)

where x0 is the youngest age in the portfolio. Taking into account (3.1) and (3.5), we find
that (6.2) can be rewritten as

ω−1∑
x=x0

l
(1)
x,0 π

(1)
x,0 äx+1 =

ω−1∑
x=x0

l
(1)
x,0 π

(0)
x,0 äx+1 +

(
f (1) − f

) ω−1∑
x=x0

l
(1)
x,0 B

(0)
x+1. (6.3)
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This is an equality on “aggregate level” for the population at time 1 who entered at time 0.

Without any further requirement, there exists an infinite number of premiums
(
π
(1)
x0,0

, π
(1)
x0+1,0, . . . , π

(1)
ω−1,0

)
that satisfy this aggregate equivalence condition. In order to specify the new tariff, we assume
now that at time 1, each premium is adapted by the same factor, namely

π
(1)
x,0 =

(
1 + α

(1)
0 (f (1) − f)

)
π
(0)
x,0, x = x0, x0 + 1, . . . , ω − 1. (6.4)

Inserting these expressions for the π
(1)
x,0 in the equivalence relation (6.3) leads to

α
(1)
0 =

∑ω−1
x=x0

l
(1)
x,0 B

(0)
x+1∑ω−1

x=x0
l
(1)
x,0 π

(0)
x,0 äx+1

.

Taking into account (2.6), this expression for α
(1)
0 can be transformed into

α
(1)
0 =

∑ω−1
x=x0

l
(1)
x,0 π

(0)
x+1,0 äx+1∑ω−1

x=x0
l
(1)
x,0 π

(0)
x,0 äx+1

.

The indexing factor α
(1)
0 is applied at time 1 for updating the premiums of all policies that

were underwritten the year before. Typically, the numerator exceeds the denominator, so
that α

(1)
0 > 1, and all premiums π

(1)
x,0 are increased by the factor α

(1)
0 (f (1)−f), which is larger

than the difference between experienced and assumed inflation.

6.3 Adapting the premium level at time k

Let us suppose that we have arrived at time k and that at any times 1, 2, . . . , k − 1, we
have reset the premiums on an aggregate level according to a similar procedure as the
one performed at time 1. The time-k aggregate equivalence relation between available and
required provision can now be expressed as follows:

ω−k∑
x=x0

l
(k)
x,0 V

(k−1)
x+k =

ω−k∑
x=x0

l
(k)
x,0 V

(k)
x+k. (6.5)

This means that the available provision at time k, aggregated over all policies that were
underwritten at time 0 and are still in force at time k, is set equal to the required aggregate
provision for this same set of policies. Taking into account (4.3) and (4.4), the equivalence
relation (6.5) can be restated as follows:

ω−k∑
x=x0

l
(k)
x,0 π

(k)
x,0 äx+k =

ω−k∑
x=x0

l
(k)
x,0 π

(k−1)
x,0 äx+k +

(
f (k) − f

) ω−k∑
x=x0

l
(k)
x,0 B

(k−1)
x+k . (6.6)

Let us now again assume a uniform updating mechanism for all policies under consideration,
i.e. the premiums π

(k)
x,0 are determined via

π
(k)
x,0 =

(
1 + α

(k)
0

(
f (k) − f

) )
π
(k−1)
x,0 .
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Inserting these expressions in (6.6) leads to

α
(k)
0 =

∑ω−k
x=x0

l
(k)
x,0 B

(k−1)
x+k∑ω−k

x=x0
l
(k)
x,0 π

(k−1)
x,0 äx+k

,

or, taking into account (4.6),

α
(k)
0 =

∑ω−k
x=x0

l
(k)
x,0 π

(k−1)
x+k,k−1 äx+k∑ω−k

x=x0
l
(k)
x,0 π

(k−1)
x,0 äx+k

(6.7)

for the updating factor α
(k)
0 that is applied to all policies that were underwritten at time 0

and are still in force at time k.

6.4 Numerical illustration

Let us illustrate the aggregate method explained in the previous subsections by a numeri-
cal example. Calculations are performed with the technical basis of Section 5.2. Again, we
assume that experienced interest, mortality and lapse over time follows the technical basis.
Furthermore, we assume an experienced medical inflation of 2% per year.

We consider two different portfolio compositions, see Figure 12. Portfolio 1 has a concen-
tration of younger new entrants at time 0, which is often the case in practice. In Portfolio 2,
the new entrants are uniformly distributed over the ages 20 to 50, followed by a decreasing
number of new entrants up to age 55.

The number of new entrants in each portfolio at time 0 is equal to 10 000. As we observe
from (6.7), the aggregate indexing factors α

(k)
0 depend on the age distribution of new entrants

at time 0.
In Figure 13 the aggregate index factor functions α

(k)
0 are displayed for portfolio 1 and

portfolio 2, as well as the individual index factor functions α
(k)
x,0 for ages x = 25, 35 and 50.

We observe that a younger portfolio of new entrants leads to larger aggregate index factors
α
(k)
0 in the major part of the curve. Also the individual index factor functions α

(k)
x,0 are larger

in the main part of their domain for younger new entrants. The aggregate index factors α
(k)
0

turn out to be highest (in the major part of the curve) for a portfolio of entrants of age

25 only (as in this case the aggregate factor curve α
(k)
0 coincides with the individual factor

curve α
(k)
25,0). We conclude that in this particular numerical illustration, younger entrants are

better off with the aggregate method than older ones, unless the percentage of elderly new
entrants is sufficiently high, which is usually not the case in practice.

In Figure 14, for ages x = 25, 35 and 50, the individual updated premium curve π
(k)
x,0 (individual)

is compared with the aggregate updated premiums curves π
(k)
x,0 (portfolio 1) and π

(k)
x,0 (portfolio 2).

We observe that

π
(k)
25,0 (individual) ≈ π

(k)
25,0 (portfolio 1) > π

(k)
25,0 (portfolio 2) .

For policyholders aged 50 at policy issue, we find that

π
(k)
50,0 (individual) < π

(k)
50,0 (portfolio 2) < π

(k)
50,0 (portfolio 1) .
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Figure 12: Relative numbers of new entrants l
(0)
x,0 as a function of age x.

Figure 13: Aggregate index factors α
(k)
0 and individual index factors α

(k)
x,0 as functions of k.
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Figure 14: Updated premiums π
(k)
x,0 (individual) and π

(k)
x,0 (aggregate) for different ages and

portfolio compositions.

We can again conclude that for young entrants (x = 25), the aggregate indexing method is
to be preferred, in particular when there is a substantial number of older new entrants. On
the other hand, for older policyholders (x = 50), the individual indexing mechanism always
leads to lower premiums. Notice however that the impact on premiums remains moderate.

7 An aggregate premium indexing mechanism for a

whole portfolio

7.1 Cohort vs portfolio indexing approach

In the previous section, we investigated an aggregate premium indexing mechanism, where
aggregation was performed for a group of new entrants at a particular time. In this section,
we consider an aggregate premium indexing mechanism, where the aggregation is performed
at portfolio level. Each year, the actuarial equivalence will be restored by imposing an
equality between the available and the required provisions for the whole existing portfolio at
that moment. The related proportional increase of the premiums is chosen to be equal for
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all members of the portfolio at that moment.
Hereafter, we will denote by l

(k)
x,j the number of persons observed in the portfolio at time

k, who entered that portfolio at age x at time j ≤ k. At time k, these persons have attained
age x+ k − j. Obviously, we have l

(k)
x,j = 0 for x > ω − k + j.

7.2 Adapting the premium level at time 1

Suppose that we have arrived at time 1. According to the aggregate premium indexing
mechanism at portfolio level, the premiums π

(1)
x,j are chosen such that the available and the

required aggregate provisions are equal:

∑
j≤0

ω−1+j∑
x=x0

l
(1)
x,j

(
(1 + f)B

(0)
x+1−j − π

(0)
x,j äx+1−j

)

=
∑
j≤0

ω−1+j∑
x=x0

l
(1)
x,j

(
(1 + f (1))B

(0)
x+1−j − π

(1)
x,j äx+1−j

)
. (7.1)

We impose a uniform updating mechanism for all insureds in the portfolio at time 1. This
means that the premiums π

(1)
x,j satisfy

π
(1)
x,j =

(
1 + α(1)(f (1) − f)

)
π
(0)
x,j (7.2)

for an aggregate factor α(1). Inserting (7.2) in the equilibrium equation (7.1) leads to the
following expression for the updating coefficient α(1):

α(1) =

∑
j≤0

∑ω−1+j
x=x0

l
(1)
x,j B

(0)
x+1−j∑

j≤0

∑ω−1+j
x=x0

l
(1)
x,j π

(0)
x,j äx+1−j

.

Taking into account that B
(0)
x+1−j = π

(0)
x+1−j,0 äx+1−j, we can rewrite the previous expression

in terms of the premium structure at time 0:

α(1) =

∑
j≤0

∑ω−1+j
x=x0

l
(1)
x,j π

(0)
x+1−j,0 äx+1−j∑

j≤0

∑ω−1+j
x=x0

l
(1)
x,j π

(0)
x,j äx+1−j

. (7.3)

The updated premiums at time 1 follow from (7.2) and (7.3).

7.3 Adapting the premium level at time k

Let us assume that we have arrived at time k and that we have restored the actuarial equilib-
rium at times 1, 2, . . . , k−1 on an aggregate portfolio level, applying a procedure similar to the
one applied at time 1. This has lead to the aggregate updating factors α(1), α(2), . . . , α(k−1).
Now, having arrived at time k, the updated premiums π

(k)
x,j are chosen such that the available
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and the required aggregate provisions for the whole portfolio are again equal at time k:

∑
j≤k−1

ω−k+j∑
x=x0

l
(k)
x,j

(
(1 + f) B

(k−1)
x+k−j − π

(k−1)
x,j äx+k−j

)

=
∑
j≤k−1

ω−k+j∑
x=x0

l
(k)
x,j

(
(1 + f (k)) B

(k−1)
x+k−j − π

(k)
x,j äx+k−j

)
.

Assuming a uniform updating factor α(k) for the premiums, i.e.

π
(k)
x,j =

(
1 + α(k)(f (k) − f)

)
π
(k−1)
x,j (7.4)

for all j and k, the equivalence relation above leads to

α(k) =

∑
j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j B

(k−1)
x+k−j∑

j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j π

(k−1)
x,j äx+k−j

or equivalently, taking into account that B
(k−1)
x+k−j = π

(k−1)
x+k−j,k−1 äx+k−j,

α(k) =

∑
j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j π

(k−1)
x+k−j,k−1 äx+k−j∑

j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j π

(k−1)
x,j äx+k−j

(7.5)

Inserting this expression for α(k) in (7.4) leads to updated premiums π
(k)
x,j at time k.

7.4 Numerical illustration

Let us now illustrate the aggregate method described above by a numerical example. Again,
the calculations are performed with the technical basis and assumptions of Section 5.2. In
addition, we assume that the past observed inflation, i.e. the inflation in the years before
time 0, was equal to 2%.

We assume that both portfolios exist since 20 years, i.e. since time −20. We consider
three scenarios for the absolute number of new entrants in any year. In a first scenario, we
observe a stable number of 10 000 new entrants per year. In a second scenario, we consider
a linearly increasing number of new entrants over time, from 10 000 entrants at time −20 to
100 000 at time 65. In a third scenario, there is a linearly decreasing number of new entrants
over time, from 100 000 entrants at time −20 to 10 000 at time 65.

Concerning the age-distribution of the new entrants, we consider two portfolios with the
proportions of new entrants in any year as described in Figure 12 for time 0.

In Figure 15, the indexing factors α(k) are shown for each scenario within each portfolio.
We observe that in the first scenario, with 10 000 new entrants per year, the indexing factor
converges to a fixed number. This is due to the use of time-independent probabilities which
implies that in case of stable number of new entrants, the composition of the portfolio
becomes constant from some k. Furthermore, an increasing absolute number of entrants
leads to lower indexing factors than a decreasing absolute number.
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Figure 15: Aggregate indexing factors α(k) at portfolio level for two portfolios.
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Let us now consider three policyholders who enter the portfolio at time 0, at the ages of
25, 35 and 50, respectively. In Figure 16, we show the evolution of their premiums over time.
For each of them, we compare their individually updated premiums (5.2) with the premiums
coming from (7.4), updated via the portfolio-based aggregate method. Concerning the com-
position of the insurance portfolio, we consider each of the portfolios and scenarios described
above. For policyholders aged 25 and 35 at policy issue, any of the aggregate indexing meth-
ods leads to lower premiums than the individual indexing method. For policyholders aged
50 at policy issue, the lowest premiums are obtained when the number of new entrants is
increasing with an age distribution similar to Portfolio 2, while the highest premiums occur
when the number of new entrants is decreasing following the age distribution of Portfolio 1.

Figure 16: Updated premiums: individual vs. portolio aggregation based.

8 Final remarks

As an accurate prediction of future medical inflation is practically impossible, an insurer
selling lifelong health insurance coverage usually does not make a guaranteed assumption
concerning future inflation at policy issue, in order to avoid the risk of underestimating this
inflation. Moreover, the systematic nature of medical inflation, affecting each policy in the
same direction, implies that the Law of Large Numbers, which is the crucial concept on
which insurance business is built, is not applicable. As a consequence, in lifelong health
insurance, the uncertainty concerning medical inflation usually remains with the insureds,
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who will pay variable future premiums which are directly related to the level of inflation that
will emerge over time.

In this note, we described a relatively simple but actuarially adequate individual updating
mechanism (4.7), which can also be expressed as (4.8), for such lifelong health insurance
contracts. The premium level is yearly updated, taking into account the observed inflation
over the past year. From formula (4.8) it follows that the required proportional increase of
the premium does not only depend on the difference between observed and assumed medical
inflation in the previous year, but also on the age at policy issue and on the time since policy
issue.

Although the proposed updating mechanism is technically correct, these dependency
phenomena might not be easy to explain to consumers. Nevertheless, we are convinced that
applying an indexing mechanism that causes less opposition from consumers but is at the
same time less sound, is highly questionable, in particular in case of contracts of a lifelong

nature. In the updating formula (4.8), one could e.g. replace the factor
π
(k−1)
x+k,k−1

π
(k−1)
x,0

by a constant

factor (1 + α). Such a factor, which should depend on the composition of the portfolio, will
likely induce subsidizing solidarity from the ”newer” policies to the policies that are already
longer in force.

In the previous sections, we have implicitly assumed that the technical basis assumptions
concerning mortality, lapse and interest rates are identical to their respective experienced
values that emerge over time. We have also assumed that the insurer’s portfolio is not subject
to adverse selection. This implies that the insurer makes no technical gain on these assump-
tions, and as a consequence, it was reasonable to assume that observed medical inflation is
completely financed by the policyholders. In reality, the above-mentioned assumptions will
be chosen in a conservative way, implying that the insurer will very likely make technical
gains. These technical gains might be (partly) redistributed to the insureds via an increase
of the available provisions, implying a partial financing of the observed medical inflation by
the insurer.

Throughout this note, we made the simplifying assumption that in any year k = 1, 2, . . . ,
observed inflation is uniform over all ages, i.e.

b
(k)
x+j = (1 + f (k)) b

(k−1)
x+j , j = 1, 2, . . . ,

for some age-independent inflation factor f (k). Notice however that the results presented
here can in a straightforward way be adapted to the case of age-specific medical inflation by
replacing the inflation factor f (k) in the formula above by an age-dependent factor. In this
case, we have that

b
(k)
x+j = (1 + f

(k)
x+j) b

(k−1)
x+j j = 1, 2, . . .

Once the age-specific inflation factors f
(k)
x+j have been set, we can determine the global infla-

tion factors f
(k)

x+k from

B
(k)
x+k = (1 + f

(k)

x+k) B
(k−1)
x+k .

Remark that the interpretation of the factors f
(k)

x+k is not straightforward, as it is a weighted
average of the observed inflation factors for all ages from x + k, with weights that depend
on age-specific expected health benefits and actuarial discount factors.
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In the generalized setting with age-dependent inflation, the simple premium updating
rule (4.7) has to be replaced by

π
(k)
x,0 = π

(k−1)
x,0 +

(
f
(k)

x+k − f
)
π
(k−1)
x+k,k−1,

with a similar interpretation as before: the updated premium π
(k)
x,0 at time k is equal to the

premium π
(k−1)
x,0 paid the year before, augmented by the product of the deviation of global

medical inflation factor f
(k)

x+k from the assumed inflation f and the initial premium for a new
contract that was issued the year before on a person of age x+ k.

Apart from the individual updating mechanism (4.8), where the actuarial equivalence is
restored on a policy per policy basis, we also considered two aggregate updating mechanisms.
The first aggregate method is based on a yearly renewed actuarial equilibrium that is applied
to a group of insureds who all entered at the same time. The second aggregate method restores
actuarial equilibrium based on portfolio level.

Summarizing, for any of the three methods the updated premium follows from

π
(k)
x,j =

(
1 + α(k)(f (k) − f)

)
π
(k−1)
x,j .

For the individual method, we only consider the entry of the individual insured under con-
sideration, and hence, j = 0, while the updating factor α(k) follows from (4.8). For the first
aggregate method, we consider the group of entrants at time 0, implying that j = 0 and α(k)

is given by (6.7). Finally, for the portfolio-based aggregate method, we consider all existing
contracts in the current portfolio and hence j = k, k−1, k−2, . . . , while the updating factor
a(k) is given by (7.5).
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