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Abstract

This paper offers a systematic treatment of risk-sharing rules for insurance losses, based
on a list of relevant properties. A number of candidate risk-sharing rules are considered,
including the conditional mean risk-sharing rule proposed in Denuit and Dhaene (2012)
and the newly introduced quantile risk-sharing rule. Their compliance with the proposed
properties is established. Then, methods for building new risk-sharing rules are discussed.
The results derived in this paper are helpful in the development of peer-to-peer insurance (or
crowdsurance), as well as to manage contingent risk funds where a given budget is distributed
among claimants.

Keywords: pooling, peer-to-peer (P2P) insurance, crowdsurance, conditional mean risk-
sharing rule, quantile risk-sharing rule, comonotonicity.



1 Introduction and motivation

In a risk-sharing pool, each participant is compensated from the pool for his or her individual
losses. In return, he or she pays an ex-post contribution to the pool, which is determined so
that the sum of all the individual contributions matches the aggregate loss of the pool. The
simplest case arises when the pool is homogeneous (i.e. the individual losses are identically
distributed) and comprises exchangeable losses. In this case, a natural risk-sharing rule
consists of every participant contributing ex-post an equal part of the aggregate loss and the
latter is thus distributed uniformly over all pool members. We refer the reader to Albrecht
and Huggenberger (2017) for a thorough investigation of the homogeneous case.

The problem to find an appropriate and simple risk-sharing rule in the heterogeneous case
appears to be considerably more complex. For insurance purposes, some degree of standard-
ization is needed so that risk sharing cannot integrate all aspects of individual preferences
(e.g. individual utility functions) but only general behavioral traits, such as risk aversion.
In this setting, Denuit and Dhaene (2012) introduced and investigated the conditional mean
risk-sharing rule, where each participant contributes the conditional expectation of the loss
brought to the pool, given the aggregrate loss covered by the pool. The properties of this
risk-sharing rule have been further explored e.g. by Denuit and Robert (2021a, 2021b).

Recently, risk sharing has been re-visited in the context of peer-to-peer (P2P) insurance
or crowdsurance. P2P insurance refers to risk sharing networks where a group of individu-
als pool their resources together to insure against a given peril. P2P insurance systems so
revive the ancestral compensation mechanism consisting in using the contributions of the
many to balance the misfortunes of the few. See, e.g., Abdikerimova and Feng (2022) and
the references therein. Such risk-sharing mechanisms are also found in mutual insurance
arrangements or partnerships among lawyers, farmers, or physicians for instance, who form
risk pools to protect themselves against professional risks. Natural catastrophes and ma-
jor industrial risks (e.g., induced by nuclear plants) are also typically covered by funds or
pools where risk sharing operates. There is thus a clear need for a better understanding of
risk-sharing rules to support the development of these emerging markets or strengthen the
resilience against major risks.

In its pure form, P2P insurance does not transfer any risk to a partnering insurer so
that there is no insurer who buffers the random difference between total premiums and
total claims with own capital. It thus requires a high level of trust among participants.
The reason is that the contributions to be paid ex post are theoretically unlimited and
remain unknown until the end of the period, and some participants may be unable, or
unwilling to pay their contributions at that time. Also, unless participants are ready to
pay expensive contributions, the risk-bearing capacity of the community is limited. This
is why in practice P2P insurance commonly includes some transfer to a partnering insurer.
To avoid counterparty risk and to be able to deal with larger sums insured, Denuit (2020)
considered a system where the upper risk layer is transferred to a partnering insurer whereas
the community pools the lower layer, under the conditional mean risk-sharing rule. The
risk sharing is then limited to the lower layer of individual risks. By partnering with an
established insurance company, the community benefits from the claim settlement expertise
developed by the insurer and its risk-bearing capacity. Each participant brings a deposit ex
ante, replacing the insurance premium, with the guarantee that the final amount due never
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exceeds this down payment. If the common fund is insufficient to pay for the claims then
the insurance carrier pays the excess. Conversely, if the pool has few claims then the surplus
is given back to the participants or to a cause the pool members care about. A cash-back or
give-back mechanism thus operates ex post to distribute the surplus. The analysis conducted
in this paper also applies to this hybrid solution combining P2P insurance for the lower layer
and traditional risk transfer to a partnering insurer for the upper layer, by restricting the
losses to be shared to their lower layer.

Inspired by the literature devoted to premium calculation principles and risk measures,
we propose a list of desirable properties for risk-sharing rules and we analyze the compliance
of the conditional mean risk-sharing rule and the newly introduced quantile risk-sharing
rule with this list. We also explain how to generate new risk-sharing rules by combining or
adapting existing ones in various ways. This also allows us to bridge seemingly unrelated
risk-sharing rules.

Part of the list of properties for risk-sharing rules proposed in this paper are in fact
“conservation properties”, in the sense that when they hold, they guarantee that certain
properties of the stand-alone risk-sharing rule (where everyone keeps his or her own risk, see
Example 2.4 for a formal definition) remain valid. The following properties that we consider
in this paper belong to this class of “conservation properties”: reshuffling, normalization,
translativity, positive homogeneity, constancy, no-ripoff, and actuarial fairness. The stand-
alone risk-sharing rule satisfies all these properties. Then, there are other properties which
in one way or another, guarantee that the risk-sharing rule satisfies some properties that
“improve” the situation compared to the stand-alone situation (or at least, they do not
worsen the situation compared to the stand-alone situation). These properties could be
called as “improvement properties”. The following properties that we consider in this paper
belong to this class: willingness-to-join (or convex-order improvement) and comonotonicity.
The motivation for sharing risk enters via the improvement properties that we impose on
the risk-sharing rule. The willingness-to-join property means in fact that when joining
the pool, participants replace the original loss by a new loss which is “of the same size”
(in the sense that expectations are equal) but which is “less variable” (in the sense that
the newly allocated loss is likely to have less very large values, with smaller variance and
stop-loss premiums). This corresponds to a particular stochastic dominance relation called
convex order. Strict improvements are identified by comparing the variances before and
after pooling. The comonotonicity property guarantees that the interests of the different
participants are aligned. In practice, the willingness-to-join property should always hold to
ensure the success of the risk-sharing scheme, whereas the comonotonicity property may be
desirable or not, depending on the goal that participants want to reach. Next, there are
some properties which modify the pool by redistributing losses among participants before
pooling operates. The idea here is that redistribution operates locally, among pairs or small
groups of participants, whereas risk-sharing rules act globally within the pool. The fair-
bilateral-redistributing property, the fair-merging property and the fair-splitting property
fall in this category. They guarantee that participants in the pool are not affected by local
redistribution by others. These properties are referred to as “local redistribution properties”.
Notice that these properties are not relevant for all risk-sharing rules. For instance, we do not
apply them to the stand-alone risk-sharing rule (since some participants redistribute losses
among them and thus do not stay alone) nor to rules depending on quantities that do not
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adjust when losses are redistributed (as it will be the case for some rules used to illustrate
this paper). Finally, there are properties corresponding to the behavior of the risk-sharing
rule within some specific pools, containing perfectly positively dependent (or comonotonic)
losses or exchangeable losses. This leads to the stand-alone property for comonotonic losses
and the uniformity property for exchangeable losses that can be considered as “specific-pool
properties”.

Notice that other authors have proposed relevant properties for risk sharing. For instance,
Hieber and Lucas (2020) imposed self-sufficiency, positivity and fairness for the distribution
of mortality credits in their modern life-care tontines. In economics, Bourles et al. (2021)
studied the implications of altruistic transfers in risk sharing. As far as we are aware, most
properties proposed in the present paper have not yet been formalized in the literature
devoted to risk sharing and open the door to a more systematic treatment of risk-sharing
rules for insurance losses. We do not address the related problem of capital allocation
which requires the specification of risk measures for every participant. Considering personal
insurance lines, it seems indeed difficult that participants elicit risk measures governing their
individual choices. We refer the reader e.g. to Filipovic and Svindland (2008) for a nice
exposition and the connection between optimal capital and risk allocations. Let us also
mention the contribution by Embrechts et al. (2018) who characterize (Pareto-)optimal
risk-sharing rules, where the (Pareto-)optimality is expressed in terms of a sum of quantile-
based risk measures applied to the individual losses in the pool. The approach in the present
paper is different as we investigate properties that risk-sharing rules may or may not obey,
and we determine the properties of some existing as well as newly introduced risk-sharing
rules.

Several papers have also been devoted to cost sharing, adopting a game theoretic perspec-
tive. See e.g. Chen et al. (2017) for an application of this approach to risk sharing. These
authors proposed two properties for an allocation rule: stability and monotonicity employ-
ing concepts of core and population monotonicity from cooperative game theory. Stability
requires that no participant would face lower risk if he or she were alone rather than par-
ticipating in the pool. Monotonicity requires that a new entry will not lead to higher risks
allocated to existing participants. These concepts are very appealing but they appear to be
difficult to transpose in the setting of this paper because they also require introducing risk
measures. We come back to this issue in the concluding section.

It is noteworthy that the present paper proposes a list of properties that only depend on
the losses or their distribution function and not on contextual elements such as individual or
group preferences, risk measures, etc. This is in contrast with the well-developed literature
devoted to optimal risk sharing (with potentially different definitions of Pareto optimality)
where these contextual elements are required. Here, we propose a criterion based on the
convex stochastic order relation which is closely related to several theories for choice under
risk and risk measures but only involve the joint distribution of the losses to be shared. In
this way, we thus avoid the introduction of any contextual element in our analysis. It may
of course be possible to consider other stochastic order relations, but the convex order is
widely used in actuarial science and economics so that it seems to be the ideal candidate in
our setting.

The remainder of the text is organized as follows. Section 2 precisely defines risk sharing
and risk-sharing rules. Some simple examples are given which are further used to illustrate
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the properties listed in Section 3. Section 4 is devoted to the conditional mean risk-sharing
rule. After having recalled its definition, we study its compliance with the properties pro-
posed in Section 3. Section 5 introduces the new quantile risk-sharing rule, where participants
all contribute the quantile at the same probability level of their individual losses. The prop-
erties of this new risk-sharing rule are thoroughly investigated. Section 6 proposes different
modifications to the conditional mean risk-sharing rule, resulting from a distribution change
agreed by participants before risk sharing operates. This allows us to relate several existing
risk-sharing rules, which offers a better understanding of their respective properties. Section
7 generates new risk-sharing rules from existing ones, by convex combination, network struc-
ture or restriction of the risk sharing to claimant participants. The latter approach applies to
contingent risk funds where individuals contribute ex ante a fixed amount that is distributed
ex post among those participants having experienced a pre-defined event. The final Section
8 discusses the results in connection to commercial insurance and emerging P2P insurance.
The proofs of the main results are gathered in the appendix.

2 Risk sharing and risk-sharing rules

Consider n individuals, numbered i = 1, 2, . . . , n. Each of them is exposed to some peril
causing a random non-negative monetary loss at the end of a given observation period,
taken to be the time interval (0, 1). Let us denote the loss of person i by Xi ≥ 0. Unless
stated otherwise, we assume that the random variables Xi have finite means. These losses are
defined on a common probability space (Ω,F ,P). We assume that this space is rich enough
to contain all the random variables mentioned throughout the text. A n-dimensional random
vector of lossesXn = (X1, X2, . . . , Xn) will be called a pool (of losses). The joint (cumulative)
distribution function of the pool Xn is denoted by FXn , the marginal distribution functions
of the individual losses being denoted by F1, F2, . . . , Fn, respectively. The total loss faced
by the n participants in the pool Xn is denoted by Sn =

∑n
i=1Xi. Throughout the paper,

all equalities and inequalities between random variables are assumed to hold almost surely.
Similarly, (in-)equalities between random vectors are meant to hold componentwise and
almost surely. The latter are not to be confused with stochastic inequalities (corresponding
to convex order in this paper).

Without any insurance or pooling, any individual bears his or her own loss, which means
that individual i suffers the loss xi, where xi stands for the realization of Xi, which will
be observed at time 1. Throughout this paper, we make the notational convention that a
random variable is denoted by an upper-case letter (e.g. Xi), while its realization (observed
at time 1) is generally denoted by the corresponding lower-case letter (e.g. xi). A random
vector is denoted by a bold upper-case letter with subscript indicating its dimension (e.g.
Xn), while its realization (known at time 1) is denoted by the corresponding bold lower-case
small letter (e.g. xn).

Instead of each individual bearing his or her own risk, the participants in the pool Xn

may decide to share their risks. Following von Bieberstein et al. (2019), we focus in this
paper on formal risk pools where losses are observable and risk sharing among members can
be specified in an explicit and perfectly enforceable contract, in the sense of the following
definitions.
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Definition 2.1 (risk sharing). Risk sharing in a pool Xn = (X1, X2, . . . , Xn) is a two-
stage process. In the ex-ante step at time 0, the random losses comprised in the pool Xn are
re-allocated by transforming Xn into another random vector H (Xn) of the same dimension:

H (Xn) =
(
H1 (Xn) , H2 (Xn) , . . . , Hn (Xn)

)
, (2.1)

where all Hi (Xn) ≥ 0, and such that the full allocation property

n∑
i=1

Hi (Xn) =
n∑
i=1

Xi (2.2)

is satisfied.
The ex-post step takes place at time 1, at the moment that the realization xn = (x1, x2, . . . , xn)

of the pool Xn is observed. At that time, each participant i to the pool Xn receives the real-
ization xi of his or her loss Xi from the pool. In return, each participant i contributes to the
pool the realization Hi(xn) of his or her re-allocated loss Hi (Xn).

We are now ready to provide a formal definition of risk-sharing rules.

Definition 2.2 (risk-sharing rule). A risk-sharing rule H is a mapping which transforms
any pool Xn into another random vector H (Xn) of the same dimension, see (2.1), where
all Hi (Xn) ≥ 0, and such that the full allocation condition (2.2) is satisfied.

Some risk-sharing rules H depend on individual losses Xi only through the aggregate
loss Sn. For an aggregate risk-sharing rule, the only information that is not known at time
0 is thus the outcome of Sn, while for a general risk-sharing rule, the information not known
at time 0 is the outcomes of the individual losses Xi. They are said to be aggregate risk-
sharing rules. We refer the reader to Feng et al. (2020) for a discussion of this kind of rule,
in comparison with general ones. For an aggregate risk-sharing rule H , we will often use the
simpler notation H (Sn) for H (Xn).

Depending on the risk-sharing rule under consideration, H may require the knowledge
of the joint distribution function FXn of Xn or just of a set of parameters (such as the
mean values or the dimension of Xn, for instance). By a slight abuse of notation, we keep
the simple notation Hi(Xn) for the amount allocated to participant i, without referring
explicitly to the underlying joint distribution function or parameter values.

Remark 2.3. In the hybrid solution combining P2P insurance for the lower layer and tra-
ditional risk transfer to a partnering insurer for the upper layer, as described in the intro-
duction, Xi corresponds to the part of the loss that is not transferred to the partnering
insurer. In liability insurance for instance, some large losses may happen which exceed the
risk-sharing capacities of the P2P insurance community. Considering that loss amount Yi
for participant i is a compound sum of the form Yi =

∑Ni

k=1Cik, an excess-of-loss cover
may be needed to cap losses caused by a given event to some maximum li. In this case,
the amount

∑Ni

k=1(Cik − li)+ is transferred to the insurer and does not enter risk pooling.
The corresponding premium must be supported directly by participant i. The random vari-
able Xi then corresponds to the part of the loss not transferred to the insurer through the
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excess-of-loss cover. In our example,

Xi =

Ni∑
k=1

min{Cik, li}

when participants retain an amount up to li for each per-event loss Cik while the upper layer
(li,∞) of each Cik is transferred to the partnering insurer through an individual excess-of-loss
cover.

Let us now have a look at some simple examples of risk-sharing rules that will be used
to illustrate the properties listed in the next section. The first one corresponds to the case
where individuals decide not to pool their risks.

Example 2.4 (stand-alone risk-sharing rule). The case where each participant in the pool
bears his or her own risk can be described by the straightforward risk-sharing rule

H (Xn) = Xn. (2.3)

This is just the stand-alone situation where each agent keeps his or her own initial loss. The
pool just acts as a register to collect data about individual losses, without re-allocating them
among participants.

The most simple and well-known risk-sharing rule consists of equally sharing the aggre-
gate loss Sn. In this case, Sn is uniformly distributed over all participants, leading to the
following risk-sharing rule.

Example 2.5 (uniform risk-sharing rule). The uniform risk-sharing rule Huni is an aggre-
gate risk-sharing rule defined as

Huni
i (Xn) = Huni

i (Sn) =
Sn
n
, i = 1, 2, . . . , n. (2.4)

Individual contributions are thus equal for all participants.

Proportional rules have been widely used in a risk-sharing context in practice. Partici-
pants adopting such rule agree to take a fixed percentage of the total loss Sn, in accordance
with the expected values, the variance or the standard deviation of the losses they bring to
the pool, for instance. In this paper, we consider the following simple rule.

Example 2.6 (mean proportional risk-sharing rule). The mean proportional risk-sharing
rule Hprop is an aggregate risk-sharing rule defined as

Hprop
i (Xn) = Hprop

i (Sn) =
E[Xi]

E[Sn]
Sn, i = 1, 2, . . . , n.

Participants adopting Hprop thus agree to take a fixed percentage of the total loss Sn, in
accordance with the expected values of the losses they bring to the pool compared to the total
expected loss.
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The idea behind the following two risk-sharing rules is that participants can be ranked
according to any relevant characteristic reflecting their risk-bearing capacity, and losses are
allocated to them according to their magnitude.

Example 2.7 (order statistics risk-sharing rule). Recall that order statistics, denoted as
X(i), correspond to the components of Xn ranked in ascending order, that is, X(1) ≤ X(2) ≤
. . . ≤ X(n). Under the order statistics risk-sharing rule for a pool Xn, the re-allocated loss
vector is defined by

Hord (Xn) =
(
X(1), X(2), . . . , X(n)

)
. (2.5)

Considering for instance age as an indicator of financial strength, the largest loss X(n) could
be allocated to the oldest participant, numbered n, the second-largest X(n−1) to the second-
oldest numbered n−1, and so on. The risk-sharing rule Hord is not an aggregate risk-sharing
rule.

Example 2.8 (multiple layer risk-sharing rule). Consider increasing limits 0 < d1 <
d2 < . . . < dn−1 defining layers for the total loss Sn, irrespective of the distribution of
X1, X2, . . . , Xn. Under the multiple layer risk-sharing rule, the re-allocated loss vector for
any Xn is defined by

H layer (Xn) = H layer (Sn) =
(

min{Sn, d1}, (Sn−d1)+−(Sn−d2)+, . . . , (Sn−dn−1)+
)
. (2.6)

Participant i thus covers that part of the aggregate loss Sn in the layer (di−1, di), setting
d0 = 0 and dn =∞.

Notice that another possibility would be to let the limits di depend on the (distribution
of the) total losses comprised in the pool, for instance by taking for di the quantile at level
i/n of Sn. In the definition of the multiple layer risk-sharing rule, the limits are defined
without reference to the total losses and reflect participants risk-bearing capacities.

For applying the uniform, the order statistics or the multiple layer risk-sharing rules,
we do not need to know anything about the joint distribution function FXn of Xn. These
rules are thus free of model risk but are not necessarily reasonable choices, depending on the
circumstances. The mean proportional risk-sharing rule depends on the joint distribution
function FXn of Xn through expected values, only.

3 Properties of risk-sharing rules

Goovaerts et al. (1984) pioneered the systematic study of the properties that any premium
principle should/could possess. Afterwards, numerous authors suggested various require-
ments that any risk measure should/could satisfy. The interested reader is referred to Denuit
et al. (2005) for a general account of the topic. We propose hereafter a non-exhaustive list of
reasonable (not necessarily independent) requirements that a risk-sharing rule should/could
fulfill and discuss their interpretation. Some requirements are directly inspired from premium
calculation principles or risk measures, whereas others are tailored to risk-sharing rules.
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3.1 Conservation properties

As explained in the introduction, we begin with properties to be maintained, that is, prop-
erties of the stand-alone risk-sharing rule that may also be desirable in general for any rule.

3.1.1 Reshuffling

Let π be a permutation of {1, . . . , n}. We say that the pool Xn is reshuffled into the pool
Xπ

n if both random vectors are composed of the same individual losses, but only their places
are interchanged, that is, Xπ

n =
(
Xπ(1), Xπ(2), . . . , Xπ(n)

)
. The reshuffling property expresses

the idea that the order in which the individual participants are considered does not change
their contribution. This is precisely stated next.

Definition 3.1 (reshuffling property). A risk-sharing rule H satisfies the reshuffling prop-
erty if for any pool Xn and any of its reshuffled versions Xπ

n, one has that

π(i) = j ⇒ Hi (Xn) = Hj (Xπ
n) for any i = 1, . . . , n. (3.1)

Example 3.2. The uniform risk-sharing rule satisfies the reshuffling property since individ-
ual contributions are equal for all participants.

Example 3.3. The mean proportional rule satisfies the reshuffling property since

π(i) = j ⇒ Hprop
i (Xn) =

E[Xi]

E[Sn]
Sn = Hprop

j (Xπ
n) for any i = 1, . . . , n.

Example 3.4. Neither the order statistics rule nor the multiple layer rule satisfy the reshuf-
fling property since the numbering of participants reflects their risk-bearing capacity and the
magnitude of losses or layer they assume.

3.1.2 Normalization

For premium calculation principles, the normalization property means that a zero risk leads
to a zero premium. From the full allocation condition (2.2) and the assumed non-negativity
Hi (Xn) ≥ 0 for all i, we deduce that

Xi = 0 for all i⇒ Hi(Xn) = 0 for all i.

It seems reasonable to require that a participant bringing a zero loss should not contribute
ex post to Sn. This is in essence the following property, which can be seen as an appropriate
normalization property for risk-sharing rules. Its statement requires the following notation.
For any pool Xn, the reduced pool without participant l, denoted as X

(\l)
n−1, is defined as

follows:
X

(\l)
n−1 = (X1, X2, . . . , Xl−1, Xl+1, . . . , Xn) . (3.2)

Notice that we do not change the label of the individual losses when moving from Xn to
X

(\l)
n−1. In other words, for any i ∈ {1, 2, . . . , l − 1, l + 1, . . . , n}, we call Xi the ith component

of X
(\l)
n−1 so that X

(\l)
n−1 has no lth component. This means that in the counting, we skip l and

we do not change the “names” of the remaining participants. We make a similar convention
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for the random vector H
(
X

(\l)
n−1

)
. Precisely, for any i ∈ {1, 2, . . . , l − 1, l + 1, . . . , n}, we

call Hi

(
X

(\l)
n−1

)
the ith component of H

(
X

(\l)
n−1

)
. We are now ready to state the following

definition.

Definition 3.5 (normalization property). A risk-sharing rule H satisfies the normalization
property if for any pool Xn with Xj = 0 for some j = 1, . . . , n, one has that

Hi (Xn) = Hi

(
X

(\j)
n−1

)
for any i 6= j, (3.3)

where X
(\j)
n−1 is defined in (3.2).

Taking into account the full allocation condition (2.2), the normalization property (3.3)
leads to

Xj = 0⇒ Hj (Xn) = 0. (3.4)

Considering (3.3)-(3.4), the normalization property means that individual contributions re-
main unchanged if a zero risk is added to the pool and that a zero risk has a zero contribution.
This reasoning can be iterated so that we see that any subset of losses Xj = 0 can be ex-
cluded from the risk sharing when participants agree to use a risk-sharing rule satisfying the
normalization property.

Remark 3.6. If the risk-sharing rule satisfies the reshuffling property then the normaliza-
tion property can be defined by considering only a given participant, for instance the last
one. Precisely, a risk-sharing rule H satisfying the reshuffling property also satisfies the
normalization property if for any pool Xn = (X1, X2, . . . , Xn−1, 0), one has that

Hi (Xn) = Hi (Xn−1) for all i 6= n, (3.5)

where Xn−1 = (X1, X2, . . . , Xn−1).

Example 3.7. The uniform risk-sharing rule does not satisfy the normalization property.
Considering for instance n = 3, we see that

Huni
1

(
(X1, X2, 0)

)
=
X1 +X2

3
6= X1 +X2

2
= Huni

1

(
(X1, X2)

)
.

Participant 3 bringing a zero loss to the pool must also contribute to total losses under the
uniform rule.

Example 3.8. The mean proportional rule satisfies the normalization property, as shown
next. Since it satisfies the reshuffling property, it is enough to consider the last participant
and establish the validity of (3.5). Clearly, Sn = Sn−1 when Xn = (X1, X2, . . . , Xn−1, 0)
and Xn−1 = (X1, X2, . . . , Xn−1) so that Hprop

i (Xn) = Hprop
i (Xn−1) for i = 1, . . . , n − 1.

Moreover, Hprop
n (Xn) = 0 since E[Xn] = 0 when Xn = 0.

Example 3.9. Neither the order statistics rule nor the multiple layer rule satisfy the nor-
malization property since they are both based on a specific ranking for participants to the pool
who are attributed a given order statistic or layer, whatever the loss they bring to the pool.
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3.1.3 Translativity

The property of translativity is often imposed on premium calculation principles as well
as on risk measures. It basically means that adding a constant to a given loss shifts the
premium and capital in a similar way. Hereafter, we define an adapted version of translativity
for risk sharing. Let us introduce the notation 1i,n to indicate the n-dimensional vector
(0, 0, . . . , 0, 1, 0, 0, . . . , 0), with all components equal to 0, except the ith component which
equals 1.

Definition 3.10 (translativity property). A risk-sharing rule H satisfies the translativity
property if for any pool Xn and any participant j = 1, . . . , n, one has that

Hi (Xn + c 1j,n) = Hi (Xn) for all i 6= j and any c ≥ 0. (3.6)

Translativity of a risk-sharing rule means that in case a particular participant’s loss is
increased by a deterministic amount c ≥ 0, the contributions of the other participants remain
unchanged. Applying the full-allocation property (2.2) toXn and toXn+c 1j,n, respectively
leads to

Hj (Xn + c 1j,n) = Hj (Xn) + c, (3.7)

which means that any increase of Xj by a deterministic amount c ≥ 0 results in the same
increase of the contribution for participant j.

Remark 3.11. If the risk-sharing rule satisfies the reshuffling property, it is enough to
consider a given participant to define the translativity property, for instance the last one
j = n.

Despite its reasonableness, it turns out that translativity is not fulfilled by the simple
risk-sharing rules considered so far (except the stand-alone one).

Example 3.12. The uniform risk-sharing rule does not satisfy the translativity property.
Considering for instance n = 3, we see that

Huni
1

(
(X1, X2, X3 + c)

)
=
S3 + c

3
6= S3

3
= Huni

1

(
(X1, X2, X3)

)
.

Participants 1 and 2 must thus also contribute to the deterministic increase in the loss brought
to the pool by participant 3.

Example 3.13. The mean proportional rule does not satisfy the translativity property since,
for all i 6= n,

Hprop
i (Xn + c 1n,n) =

E[Xi]

E[Sn + c]
(Sn + c) 6= E[Xi]

E[Sn]
Sn = Hprop

i (Xn) .

The constant addition c is thus also shared among all participants under the mean propor-
tional rule whereas for a risk-sharing rule satisfying the translativity property, it should be
assumed by participant n, only.

Example 3.14. Neither the order statistics rule (since adding a constant c to Xj may modify
order statistics) nor the multiple layer rule satisfy the translativity property.

Some risk-sharing rules satisfying the translativity property will be discussed in the next
sections.
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3.1.4 Positive homogeneity

Positive homogeneity for premium calculation principles and risk measures means that mul-
tiplying the risk under consideration with a positive constant implies multiplying the initial
premium or capital value with the same constant. It appears to be reasonable for risk-sharing
rules too, and is formally defined as follows.

Definition 3.15 (positive homogeneity property). A risk-sharing rule H satisfies the posi-
tive homogeneity property if for any pool Xn, one has that

Hi (cXn) = cHi (Xn) for all i and any c ≥ 0. (3.8)

Example 3.16. The uniform risk-sharing rule satisfies the positive homogeneity property
since

Huni
i (cXn) =

cSn
n

= cHuni
i (Xn) for i = 1, . . . , n.

Example 3.17. The mean proportional and the order statistics rules both satisfy the positive
homogeneity property.

Example 3.18. The multiple layer rule does not satisfy the positive homogeneity property
since the limits dj remain unchanged.

3.1.5 Constancy

Let us now consider the case where the risk brought by one participant to the pool is not
random, but equal to some non-negative constant c with probability 1. The case c = 0
corresponds to normalization.

Definition 3.19 (constancy property). A risk-sharing rule H satisfies the constancy prop-
erty if for any pool Xn with Xj = c for some constant c ≥ 0 and j = 1, . . . , n, one has that
(3.3) holds true.

Taking into account the full-allocation condition (2.2), applied to Xn and X
(\j)
n−1, respec-

tively, it follows from Definition 3.19 that

Xj = c⇒ Hj (Xn) = c. (3.9)

The constancy property means that in case the risk brought by participant j to the pool
is equal to some non-negative constant c, then this participant should only contribute that
amount c to the pool, whereas the contributions of the other participants are not depending
on whether the constant is added to the pool or not.

Remark 3.20. If the risk-sharing rule satisfies the reshuffling property then the constancy
property can be defined by only considering a given participant j in the pool with a constant
loss c ≥ 0, for instance, the last one with j = n.

As it was the case for translativity, it turns out that the elementary risk-sharing rules
considered so far do not satisfy the constancy property (except the stand-alone one).
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Example 3.21. The uniform risk-sharing rule does not satisfy the constancy property. Con-
sidering for instance n = 3, we see that

Huni
1

(
(X1, X2, c)

)
=
X1 +X2 + c

3
6= X1 +X2

2
= Huni

1

(
(X1, X2)

)
.

The deterministic loss X3 = c is thus also distributed uniformly over the three participants
and not only supported by participant 3 under the uniform rule.

Example 3.22. The mean proportional rule does not satisfy the constancy property. Indeed,
let Xn = (X1, X2, . . . , Xn−1, c), for some constant c > 0, and let Xn−1 = (X1, X2, . . . , Xn−1).
Then we have that, for any i 6= n,

Hprop
i (Xn) =

E[Xi]

E[Sn−1 + c]
(Sn−1 + c) 6= E[Xi]

E[Sn−1]
Sn−1 = Hprop

i (Xn−1) .

Example 3.23. Neither the order statistics rule nor the multiple layer rule satisfy the con-
stancy property.

Examples of risk-sharing rules satisfying the constancy property will be discussed in the
next sections.

Remark 3.24 (Normalization and translativity imply constancy). One can easily prove
that a risk-sharing rule H satisfying the normalization property (3.3) and the translativity
property (3.6), also satisfies the constancy property. Indeed, it follows from the translativity
property that for any i 6= n, we have that

Hi

(
(X1, X2, . . . , Xn−1, c)

)
= Hi

(
(X1, X2, . . . , Xn−1, 0) + c 1n,n

)
= Hi

(
(X1, X2, . . . , Xn−1, 0)

)
.

Taking into account the normalization property, we then find that

Hi

(
(X1, X2, . . . , Xn−1, c)

)
= Hi

(
(X1, X2, . . . , Xn−1)

)
for i ∈ {1, . . . , n− 1}.

A similar proof can be given for the case where Xj = c, for any j.

3.1.6 No-ripoff

Define the largest value for the loss Xi as

F−1i (1) = inf{x ∈ R|Fi(x) = 1},

where inf ∅ =∞, by convention. It seems to be unfair to ask participants to contribute more
than their maximal loss value F−1i (1). This is in essence the no-ripoff requirement.

Definition 3.25 (no-ripoff property). A risk-sharing rule H possesses the no-ripoff property
if for any pool Xn, one has that

Hi (Xn) ≤ F−1i (1) for any i = 1, 2, . . . , n. (3.10)

12



Taking into account the fact that the re-allocated losses have to be non-negative, we find
that the no-ripoff condition implies that any reallocated loss Hi (Xn) is valued in

[
0, F−1i (1)

]
.

This intuitive requirement may nevertheless be violated when participants adopt the simple
risk-sharing rules considered so far, as shown next.

Example 3.26. The uniform risk-sharing rule does not satisfy the no-ripoff property. Con-
sidering for instance n = 2 and X2 = (U, 2U) with U uniformly distributed over the interval
[0, 1], we have

Huni
1

(
(U, 2U)

)
=

3U

2
∈ [0, 1.5]

while F−11 (1) = 1.

Example 3.27. The mean proportional risk-sharing rule does not necessarily satisfy the no-
ripoff property since we might end up with Hprop

i (Sn) > F−1i (1) when Sn becomes large. This
questions the appropriateness of the mean proportional risk-sharing rule in adverse scenarios.

Example 3.28. Neither the order statistics rule nor the multiple layer rule satisfy the no-
ripoff property.

Examples of risk-sharing rules satisfying the no-ripoff property will be discussed in the
next sections.

3.1.7 Actuarial fairness

Actuarial fairness of a risk-sharing rule means that on average, participants do neither gain
nor lose from risk sharing, in the sense that their expected contribution (by joining the pool)
is equal to their expected loss (when staying alone).

Definition 3.29 (actuarial fairness property). A risk-sharing rule H satisfies the actuarial
fairness property (or is said to be an actuarially fair risk-sharing rule) if for any pool Xn,
one has that

E [Hi (Xn)] = E [Xi] for any i = 1, 2, . . . , n. (3.11)

Example 3.30. The uniform risk-sharing rule does not satisfy the actuarial fairness prop-
erty. Considering for instance n = 2 and X2 = (U, 3U) with U uniformly distributed over
the interval [0, 1], we see that

Huni
1

(
(U, 3U)

)
= 2U

and

E
[
Huni

1

(
(U, 3U)

)]
= 1 6= 1

2
= E[U ].

Example 3.31. The mean proportional rule satisfies the actuarial fairness property since

E [Hprop
i (Xn)] =

E[Xi]

E[Sn]
E[Sn] = E [Xi] , for any i = 1, 2, . . . , n.
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Example 3.32. The order statistics rule does not satisfy the actuarial fairness property
since the inequalities

E
[
Hord

1 (Xn)
]

= E[X(1)] = E[min{X1, . . . , Xn}] < E[X1]

and
E
[
Hord
n (Xn)

]
= E[X(n)] = E[max{X1, . . . , Xn}] > E[Xn]

are generally true, except in some trivial cases. This means that participant 1 gains on
average by joining the pool whereas participant n looses on average by doing so. Also, the
multiple layer rule does not satisfy the actuarial fairness property.

3.2 Improvement properties

3.2.1 Willingness to join or convex-order improvement

Usually, risk-sharing rules are set up such that each person i prefers paying Hi(Xn) over
paying Xi corresponding to the stand-alone position. Hence, participants are willing to
join the pool. This preference could be expressed in different ways. It is important to
realize that we aim at some standardization, as it is commonly the case with traditional
insurance products. This is a necessary requirement for managing large insurance pools.
Thus, individual preferences are only partially taken into account. First, by selecting the
level of risk retention at individual level, for instance within a predefined menu of deductibles.
Second, even if the proposed coverage is not optimal for each individual participant, given
his or her particular preferences, it must be attractive to all members of a reasonable class
(e.g. risk-averse) economic agents.

In this paper, we use the following stochastic dominance relations expressing the common
preferences shared by all risk-averse economic agents in the expected utility setting for choice
under risk. Given two losses X and Y , X is said to be smaller than Y in the increasing convex
order, henceforth denoted by X �ICX Y if E[u(κ−X)] ≥ E[u(κ−Y )] for any non-decreasing
concave utility function u and wealth level κ, provided the expectations exist. The increasing
convex order is also called stop-loss order in actuarial science since it can be characterized
by pointwise comparison of stop-loss transforms: X �ICX Y ⇔ E[(X − d)+] ≤ E[(Y − d)+]
for all real d. The case where X and Y have the same expected value corresponds to the
convex order �CX which is defined as follows:

X �CX Y ⇔ X �ICX Y and E[X] = E[Y ].

Thus, �CX only applies to losses with the same expected value. The term “convex” is used
since X �CX Y ⇔ E[g(X)] ≤ E[g(Y )] for all convex functions g for which the expectations
exist. The stochastic inequality X �CX Y intuitively means that X and Y have the same
“size” (as E[X] = E[Y ] holds) but that Y is “more variable” than X. For instance, the
variance of Y is larger than the variance of X. For a thorough description of the convex and
increasing convex orders and of their applications in insurance studies, we refer the reader
to Denuit et al. (2005). A general reference about stochastic order relations is Shaked and
Shanthikumar (2007).
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Definition 3.33 (willingness-to-join property). A risk-sharing ruleH satisfies the willingness-
to-join property if for any pool Xn, one has that

Hi(Xn) �CX Xi holds for every i = 1, 2, . . . , n. (3.12)

Remark 3.34. Notice that replacing the convex order �CX with the increasing convex order
�ICX in (3.12) leads to the same definition. In other words, it suffices to require �ICX instead
of the stronger �CX in (3.12). Indeed, this is because

Hi(Xn) �ICX Xi for every i = 1, 2, . . . , n⇒ E[Hi(Xn)] ≤ E[Xi] for every i = 1, 2, . . . , n.

But the full allocation condition (2.2) implies that

n∑
i=1

E[Hi(Xn)] =
n∑
i=1

E[Xi]

so that E[Hi(Xn)] = E[Xi] must in fact hold for every i = 1, 2, . . . , n, and the stronger
stochastic inequality Hi(Xn) �CX Xi is valid. This reasoning also shows that the willingness-
to-join property for all risk-averse economic agents implies actuarial fairness.

Example 3.35. The uniform risk-sharing rule does not satisfy the willingness-to-join prop-
erty since it is not actuarially fair.

Example 3.36. The mean proportional rule satisfies the willingness-to-join property if

Hprop
i (Sn) =

E[Xi]

E[Sn]
Sn �CX Xi holds for every i = 1, 2, . . . , n,

which is equivalent to

Sn
E[Sn]

�CX
Xi

E[Xi]
for every i = 1, 2, . . . , n.

The latter �CX-inequality means that Sn and Xi must be ranked in the Lorenz order. Hence,
the willingness-to-join property does not hold in general for the mean proportional rule but
it does in some particular cases. We refer the reader to Section 2.4.2 in Denuit and Robert
(2021c) for more details.

Example 3.37. Neither the order statistics rule nor the multiple layer one satisfy the
willingness-to-join property, because none of them is actuarially fair.

The inequality in the sense of the convex order appearing in Definition 3.33 is not strict.
Equality with respect to the convex order is meant in distribution: if Hi(Xn) is distributed
as Xi (as it is the case with the stand-alone risk-sharing rule) then participant i is indifferent
between joining the pool or staying alone. Therefore, we consider that joining the pool leads
to a strict improvement for participant i if Hi(Xn) is not distributed as Xi, that is, if there
exists a convex function g such that E[g(Hi(Xn))] < E[g(Xi)]. The following simple test can
be used to check whether there is a strict improvement, based on the respective variances of
Hi(Xn) and Xi.
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Proposition 3.38. For any risk-sharing rule H satisfying the willingness-to-join property
and any pool Xn, there is a strict improvement for participant i if Var[Hi(Xn)] < Var[Xi]
and this participant is indifferent between joining the pool or staying alone if Var[Hi(Xn)] =
Var[Xi].

Proof. Recall that given two random variables X and Y ,

X �CX Y and Var[X] = Var[Y ]⇒ X and Y are identically distributed.

See e.g. Theorem 3.A.42 in Shaked and Shanthinkumar (2007). Therefore, there is a strict
improvement for participant i if Var[Hi(Xn)] < Var[Xi] and participant i is indifferent
between joining the pool or staying alone when these variances are equal.

Since variances are often easy to compute, this provides the analyst with an effective test
to check whether some risk-sharing rule satisfying the willingness-to-join property leads to
a strict improvement when participants pool their respective losses.

Remark 3.39. Notice that Hi(Xn) can be distributed as Xi for other risk-sharing rules
than the stand-alone one. Assume for instance that FSn is continuous and define H as
Hi(Xn) = Hi(Sn) = F−1i

(
FSn(Sn)

)
. Then, Hi(Sn) is distributed as Xi and participant i is

indifferent between joining the pool or staying alone according to Definition 3.33. Replacing
Xi with Hi(Sn) may nevertheless be considered as attractive by participant i when the latter
is less correlated to his or her random end-of-period wealth.

3.2.2 Comonotonicity and aggregate risk-sharing rules

Recall that the left-continuous inverse of the distribution function FY of a random variable
Y is defined by

F−1Y (p) = inf {y ∈ R | FY (y) ≥ p} , p ∈ [0, 1] . (3.13)

As previously stated, inf ∅ =∞ by convention in (3.13). A random vector Y n = (Y1, . . . , Yn)
is said to be comonotonic if Y n is distributed as

(
F−1Y1

(U), . . . , F−1Yn
(U)
)

for some random
variable U uniformly distributed over the interval [0, 1]. Intuitively stated, Y n is comonotonic
if the increase of one of its components implies an increase of all its other components.
Comonotonicity is an important dependency structure, with many applications in insurance
and finance, see e.g. Dhaene et al. (2002a, 2002b) and Deelstra et al. (2010).

In the context of risk sharing, comonotonicity of the re-allocated loss vector H (Xn)
might be a desirable property since it ensures that the interests of all participants are aligned,
in the sense that they all have an interest in keeping their losses as small as possible. This
leads to the following definition.

Definition 3.40 (comonotonicity). A risk-sharing rule H is said to be comonotonic if for
any pool Xn one has that H (Xn) is a comonotonic random vector.

Comonotonicity is also referred to as the no-sabotage condition, after Carlier and Dana
(2003). It ensures that no individual contribution Hi(Xn) is allowed to increase more than
the total losses. It turns out that comonotonic pools play an important role in the study of
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risk-sharing rules, in the same vein as comonotonic risks do for premium calculation principles
and risk measures. The structure of comonotonic pools is further studied in Section 5.3.1.

We know from Denuit and Dhaene (2012) that H is comonotonic if, and only if, there
exist non-decreasing functions gi such that Hi (Xn) = Hi (Sn) = gi(Sn). Comonotonic
risk-sharing rules according to Definition 3.40 are thus necessarily aggregate ones.

Example 3.41. The uniform risk-sharing rule satisfies the comonotonicity property since
the random vector (Sn/n, . . . , Sn/n) is obviously comonotonic.

Example 3.42. The mean proportional risk-sharing rule satisfies the comonotonicity prop-
erty, since individual contributions are equal to the aggregate losses Sn up to positive coeffi-
cients.

Example 3.43. The order statistics risk-sharing rule does not satisfy the comonotonicity
property, because it is not an aggregate risk-sharing rule.

Example 3.44. The multiple layer risk-sharing rule satisfies the comonotonicity property,
since the payment in each layer is a non-decreasing function of Sn.

3.3 Local redistribution properties

In this section, we consider several types of local redistributions of the losses related to two (or
more) participants in a pool. Essentially, such an operation involves two (or more) individuals
who decide to redistribute the losses they face amongst each other, whereas all the losses
belonging to the other participants remain unchanged. In such a situation, it may sound
reasonable to assume that for any participant with unchanged losses after the redistribution,
also the contribution to the pool remains unchanged by this redistribution. In case this
property would not hold, two (or more) participants could decide to redistribute their losses
in order to decrease their contributions. Due to the full allocation condition, this would
lead to an increase of the contributions of the participants not involved in the redistribution,
and this might be considered as “unfair” towards them (hence the names “fair bilateral
redistributing”, “fair merging”, “fair splitting”, and “fair redistributing” attributed to the
properties considered in this section). As indicated in the introduction, the properties listed
in the paper are not necessarily desirable in all situations. The present study establishes the
validity of these properties for commonly-used risk-sharing rules and this helps the analyst
to select an appropriate rule in the situation under consideration.

3.3.1 Fair bilateral redistributing

Suppose that participants k and l of the poolXn decide to redistribute their individual losses
Xk and Xl among each other before they enter the risk-sharing agreement. In particular,
Xk is replaced by X ′k ≥ 0 and Xl is replaced by X ′l ≥ 0, such that X ′k +X ′l = Xk +Xl. Such
a bilateral redistribution does not change the loss of any participant different from k and l.
The only changes in the losses happen for participants k and l. These changes are such that
the joint losses of participants k and l after the redistribution are equal to their joint losses
before the redistribution. A reasonable property for a risk-sharing rule applied to Xn might
then be that the contribution paid by any participant different from k and l is not impacted
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by this mutual redistribution. A risk-sharing rule satisfying this property for any bilateral
redistribution of any pool is said to satisfy the fair-bilateral-redistributing property.

Definition 3.45 (fair-bilateral-redistributing property). A risk-sharing rule H satisfies the
fair-bilateral-redistributing property if for any pool Xn, for any different participants k and
l of this pool and any non-negative X ′k and X ′l such that X ′k +X ′l = Xk +Xl, one has that

Hi (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n) = Hi (Xn) (3.14)

holds for any i different from k and l.

From the full-allocation condition (2.2) we immediately find that the following additivity
property must hold:

Hk (Xn) +Hl (Xn) = Hk (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n)

+Hl (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n) .

This means that for a risk-sharing rule satisfying the fair-bilateral-redistributing property,
the bilateral redistribution of Xk and Xl by replacing Xk and Xl by X ′k and X ′l such that
X ′k + X ′l = Xk + Xl, does not change the contribution of any participant different from k
and l. The only changes in the contributions happen for participants k and l. These changes
are such that the joint contributions of participants k and l after the bilateral redistribution
are equal to their joint allocated losses and contributions before this redistribution.

Example 3.46. The uniform risk-sharing rule satisfies the fair-bilateral-redistributing prop-
erty. Indeed, for any i different from k and l we have that

Huni
i (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n) =

Sn
n

= Huni
i (Xn) . (3.15)

Notice that also participants k and l have to contribute the same amount Sn/n, before as
well as after the redistribution. We can conclude that under the uniform risk-sharing rule,
not any individual contribution is changed by bilaterally redistributing losses, which means
that (3.15) holds for any participant in the pool.

Example 3.47. The mean proportional risk-sharing rule satisfies the fair-bilateral-redistributing
property. Indeed, for any i different from k and l, we have that

Hprop
i (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n) =

E [Xi]

E [Sn]
Sn = Hprop

i (Xn) .

Furthermore, one has that

Hk (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n) =
E [X ′k]

E [Sn]
Sn

and

Hl (Xn + (X ′k −Xk)× 1k,n + (X ′l −Xl)× 1l,n) =
E [X ′l ]

E [Sn]
Sn.
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Example 3.48. The order statistics risk-sharing rule does not satisfy the fair-bilateral-
redistributing property. Indeed, consider the pool (X1, X2, X3) and the redistributed pool
(X1, X2 +X3, 0). Then we have that

Hord
1

(
(X1, X2, X3)

)
= min {X1, X2, X3}

while
Hord

1

(
(X1, X2 +X3, 0)

)
= 0.

Obviously, these contributions for the first participant are in general not equal.

Example 3.49. The multiple layer risk-sharing rule satisfies the fair-bilateral-redistributing
property because the contributions of this risk-sharing rule only depend on the aggregate
claims Sn and on the limits di, i = 1, 2, . . . , n− 1, which do not change by a redistribution.

The following example illustrates the fact that not all aggregate risk-sharing rules satisfy
the fair-bilateral-redistributing property.

Example 3.50. Consider the risk-sharing rule defined by

Hvar
i (Xn) =

Var [Xi]∑n
j=1 Var [Xj]

Sn

for any pool Xn of which at least one of the individual losses has a strictly positive variance.
As an example, consider the pool (X1, X2, X3) and its redistributed version (X1, X2 +X3, 0).
Then we have that

Hvar
1

(
(X1, X2, X3)

)
=

Var [X1]∑3
j=1 Var [Xj]

S3,

whereas

Hvar
1

(
(X1, X2 +X3, 0)

)
=

Var [X1]

Var [X1] + Var [X2 +X3]
S3.

Obviously, the contribution for participant 1 may change after the bilateral redistribution
between participants 2 and 3 (unless the losses are mutually independent).

Remark 3.51. Consider a risk-sharing rule satisfying the reshuffling property. In this case,
it is sufficient to require the condition (3.14) to hold for a single pair (k, l) to define fair
bilateral redistributing. One can choose for instance k = n− 1 and l = n.

3.3.2 Fair merging

Let us consider a special case of the bilateral redistributions defined in the preceding section.
Suppose that starting from a pool Xn, we replace Xk by X ′k = Xk + Xl and Xl by X ′l = 0.
This means that the redistribution consists of moving the full loss Xl from l to k. In this case,
the original poolXn is transformed into the poolXn+Xl×(1k,n − 1l,n). After redistributing,
we end up with a pool containing a participant with a zero-loss. It seems reasonable that
in such a situation, the losses are shared among the n − 1 remaining participants, while
participant l with zero-loss is free of any contribution and is therefore withdrawn from the
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pool. This kind of operations is considered in this subsection, where we define the fair-merging
property.

Departing from an n-dimensional pool Xn, we introduced the (n− 1)-dimensional pool

X
(\l)
n−1; see (3.2). Let us now also introduce the notation X

(l→k)
n−1 for the (n− 1)-dimensional

pool derived from the original pool Xn in the following way:

X
(l→k)
n−1 = Y

(\l)
n−1 with Y n = Xn +Xl × (1k,n − 1l,n) .

This means that X
(l→k)
n−1 is obtained by first merging Xk and Xl into Xk +Xl and attributing

this merged loss completely to participant k, while making participant l loss-free. In other
words, in the first step, we replace the pool Xn by the pool Y n as defined above. In the
second step, we remove participant l (with the zero-loss) from the merged pool, that is we

replace Y n by Y
(\l)
n−1.

Having introduced this new notation, we are now ready to define the fair-merging prop-
erty, which is based on a condition which has to hold for any bilateral redistribution that
leads to a zero-claim for one of the participants involved.

Definition 3.52 (fair-merging property). A risk-sharing rule H satisfies the fair-merging
property if for any pool Xn, and any different k and l in {1, 2, . . . , n}, one has that

Hi

(
X

(l→k)
n−1

)
= Hi (Xn) for any i different from k and l. (3.16)

Taking into account the full allocation condition (2.2) we find the following relation
between the contributions of participants k and l before the merge and the contribution of
participant k after the merge:

Hk

(
X

(l→k)
n−1

)
= Hk (Xn) +Hl (Xn) .

For any pool Xn, we have that merging Xk and Xl by replacing Xk by Xk + Xl and Xl by
0 does not change the losses of the participants different from k and l.

Example 3.53. The uniform risk-sharing rule does not satisfy the fair-merging property.
Indeed, for any i different from k and l, we have that

Huni
i

(
X

(l→k)
n−1

)
=

Sn
n− 1

, while Huni
i (Xn) =

Sn
n
.

Remark 3.54. Any risk-sharing rule satisfying the fair-bilateral-redistributing property and
the normalization property, also satisfies the fair-merging property.

Example 3.55. The mean proportional risk-sharing rule satisfies the fair-merging property.
Indeed, for any k and l with k 6= l, we have that

Hprop
i

(
X

(l→k)
n−1

)
=

E [Xi]

E [Sn]
Sn = Hprop

i (Xn) for any i different from k and l.

Notice that this conclusion also follows immediately from the fact that the mean proportional
risk-sharing rule satisfies the fair-bilateral-redistributing and normalization properties, as
sated in Remark 3.54.

20



Example 3.56. The order statistics risk-sharing rule does not satisfy the fair merging prop-
erty. Indeed, consider the pool (X1, X2, X3) and the merged pool (X1, X2 +X3). Then we
have that

Hord
1

(
(X1, X2, X2)

)
= min {X1, X2, X3}

while
Hord

1

(
(X1, X2 +X3)

)
= min {X1, X2 +X3} .

Obviously, the contributions for the first participant before and after the merge are in general
not equal.

Remark 3.57. The fair-merging property is not meaningful for all risk-sharing rules. Con-
sider for instance the multiple layer rule. The fair-merging property would require the
adaptation of the limits di.

The following example illustrates the fact that not all aggregate risk-sharing rules satisfy
the fair-merging property.

Example 3.58. Consider the risk-sharing rule Hvar introduced in Example 3.50. Consider
again the pool (X1, X2, X3) and the merged pool (X1, X2 +X3). Then we have that

Hvar
1

(
(X1, X2, X3)

)
=

Var [X1]∑3
j=1 Var [X1] + Var [X2]

S3,

whereas

Hvar
1

(
(X1, X2 +X3)

)
=

Var [X1]

Var [X1] + Var [X2 +X3]
S3.

Obviously, the contribution for participant 1 may change after the merging operation between
participants 2 and 3.

Remark 3.59. Consider a risk-sharing rule satisfying the reshuffling property. In this case,
it is sufficient to require the condition (3.16) to hold for a single pair (k, l) to define fair
merging. For instance, one could take k = n− 1 and l = n.

3.3.3 Fair splitting

Suppose that participant k of the pool of losses Xn decides to split his or her loss Xk into
the sum X ′k +Xn+1, i.e.

Xk = X ′k +Xn+1 (3.17)

where X ′k ≥ 0 is retained by participant k and Xn+1 ≥ 0 is passed to a new participant n+1
to be added to the pool. Notice that in general k and n+1 will be different participants, but
it may also be possible that behind participants k and n + 1 is a single person, who wants
to split his or her risk for some reason. By this split, the original n-dimensional pool Xn is
replaced by the (n+ 1)-dimension pool (Xn+ (X ′k −Xk)× 1k,n, Xn+1).

Obviously, this splitting operation leaves the losses of all participants in the pool Xn

unchanged, except for participant k who moves part of his or her original loss to the new
participant n+1. This observation gives rise to a reasonable property for a risk-sharing rule,
stating that for all participants with unchanged losses after the split, also the contributions
after this split remain unchanged.
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Definition 3.60 (fair-splitting property). A risk-sharing rule H satisfies the fair-splitting
property in case for any pool Xn, for any k ∈ 1, 2, . . . , n, and any non-negative random
variables X ′k and Xn+1 satisfying (3.17), one has that

Hi (Xn) = Hi

(
(Xn+ (X ′k −Xk)× 1k,n, Xn+1)

)
if i is different from k and n+ 1. (3.18)

Notice that splitting often results in perfectly dependent (or comonotonic) pieces in
applications to insurance, for instance X ′k = min{Xk, d} and Xn+1 = (Xk − d)+ for some
non-negative deductible d, or X ′k = αXk and Xn+1 = (1 − α)Xk for some quota share
α ∈ (0, 1). In Definition 3.60, we leave the dependence structure in the pair (X ′k, Xn+1)
unspecified and only require that (3.17) holds true.

Suppose that the risk-sharing rule H satisfies the fair-splitting property. For any Xn

the full allocation condition (2.2) then leads to

n∑
i=1

Hi (Xn) =
n+1∑
i=1

Hi

((
Xn+ (X ′k −Xk)× 1k,n, Xn+1

))
. (3.19)

Taking into account the fair-splitting condition (3.18), we find that

Hk (Xn) = Hk

(
(Xn+ (X ′k −Xk)× 1k,n, Xn+1)

)
+Hn+1

(
(Xn+ (X ′k −Xk)× 1k,n, Xn+1)

)
. (3.20)

From (3.18) and (3.19) we thus can conclude that the following holds for any risk-sharing
rule satisfying the fair-splitting property: splitting the loss Xk of participant k into a loss
X ′k for participant k and a loss Xn+1 = Xk − X ′k for a new participant n + 1, leaves the
contribution of any participant different from k unchanged, while the contribution of the kth
participant before the split is equal to the sum of the contributions of participants k and
n+ 1 after the split.

Example 3.61. The uniform risk-sharing rule does not satisfy the fair-splitting property.
Considering for instance the pool (X1, X2) and the pool (X1, X

′
2, X2 −X ′2) obtained after

splitting X2, we see that

Huni
1

(
(X1, X

′
2, X2 −X ′2)

)
=
X1 +X2

3
6= X1 +X2

2
= Huni

1

(
(X1, X2)

)
.

Example 3.62. The proportional mean risk-sharing rule satisfies the fair-splitting property
since, for any k = 1, 2, . . . , n, and any non-negative random variables X ′k and Xn+1 satisfying
(3.17), one has that

Hprop
i

(
(Xn+ (X ′k −Xk)× 1k,n, Xn+1)

)
=

E[Xi]

E[Sn]
Sn = Hprop

i (Xn)

for any i different from k and n+ 1.

Example 3.63. The order statistics risk-sharing rule does not satisfy the fair-splitting prop-
erty. Indeed, consider the pool (X1, X2) and the pool (X1, X

′
2, X2 −X ′2) obtained after split-

ting X2. Then we have that

Hord
1

(
(X1, X2)

)
= min {X1, X2}
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while
Hord

1

(
(X1, X

′
2, X2 −X ′2)

)
= min {X1, X

′
2, X2 −X ′2} .

Obviously, the contributions for the first participant before and after the split are in general
not equal.

Remark 3.64. As it was the case with the fair-merging property, the fair-splitting property
is not meaningful for all risk-sharing rules. For instance, applying the fair-splitting property
to the multiple layer risk-sharing rule would require the adaptation of the limits di. Therefore,
we do not discuss the fair-splitting property in that case.

The following example illustrates the fact that not all aggregate risk-sharing rules satisfy
the fair-splitting property.

Example 3.65. Consider the risk-sharing rule Hvar introduced in Example 3.50. As an
example, consider the pool (X1, X2) and the pool (X1, X

′
2, X2 −X ′2) obtained after splitting

X2. Then we have that

Hvar
1

(
(X1, X2

)
) =

Var [X1]

Var [X1] + Var [X2]
S2,

whereas

Hvar
1

(
(X1, X

′
2, X2 −X ′2)

)
=

Var [X1]

Var [X1] + Var [X ′2] + Var [X2 −X ′2]
S2.

Obviously, the contribution for participant 1 may change after the splitting operation between
participants 2 and 3.

Remark 3.66. Consider a risk-sharing rule satisfying the reshuffling property. In this case,
it is sufficient to require the condition (3.18) to hold for a single value of k to define fair
splitting. For instance, one could take k = n.

Remark 3.67. Any risk-sharing rule satisfying the fair-redistributing property and the
normalization property, also satisfies the fair-splitting property. The proportional mean risk-
sharing rule is an example of a rule which satisfies the fair-distributing property, the nor-
malization property, and as a consequence, also the fair-splitting property.

3.3.4 Fair redistributing

In this subsection, we introduce the fair-redistributing property for risk-sharing rules. As
we will see, it is a stronger property than fair bilateral redistributing, fair merging and fair
splitting in the sense that the latter three properties are implied by the fair redistribution
property.

First, we have to define a redistribution within a pool. Consider the poolXn = (X1, X2, . . . , Xn).
Then we say that the pool Y m = (Y1, Y2, . . . , Ym) is a redistribution of the pool Xn if the
following condition holds:

n∑
i=1

Xi =
m∑
j=1

Yj.
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Notice that we do not put any restriction on m, which may be equal to n, smaller than n or
larger than n.

Next, we make some notational conventions. A participant i from the original pool Xn

who is also present in the redistributed pool Y m, will be labelled by the same index i in both
pools. If there is an index i in the original pool which does not appear in the redistributed
pool Y m, that means that participant i from the pool Xn is absent in the new pool Y m.
Lastly, if index i is present in the redistributed pool Y n but not in the original pool Xn,
this means that participant i is not present in the original pool Xn but has been added to
the second pool Y m. Let us illustrate these conventions by some examples.

Example 3.68. Starting from the original pool X3 = (X1, X2, X3),

� (Y1, Y2, Y3) = (X1, X2 +X3, 0) is the redistributed pool where participant 1 keeps his or
her original loss X1, participant 2 is allocated the merged loss X2 +X3 and participant
3 is allocated the zero-loss.

� (Y1, Y2) = (X1, X2 +X3) is the redistributed pool where participant 1 keeps his or her
original loss X1, participant 2 is allocated the merged loss X2 + X3 and participant 3
is absent in the redistributed pool.

� (Y1, Y2, Y3, Y4) = (X1, X2, X
′
3, X3 −X ′3) is the redistributed pool where participants 1

and 2 keep their original loss X1 and X2, participant 3 is allocated the redistributed
loss X ′3, while participant 4 is a new participant added to the redistributed pool.

� (Y1, Y2, Y3) = (X3, X2, X1) is the redistributed pool where participant 1 bears loss X3,
participant 2 keeps his or her original loss X1 and participant 3 bears loss X1.

� (Y2, Y3) = (X1, X2 +X3) is the redistributed pool where participant 1 is absent in the
redistributed pool, participant 2 is allocated the loss X1 and participant 3 is allocated
the merged loss X2 +X3.

When m = n, the redistribution Y m can be viewed as a reallocated loss obtained from
some risk-sharing rule H . The difference we make is that redistribution operates locally,
among small groups of participants whereas risk-sharing rules act globally among all partic-
ipants in general. Thus, redistribution typically leaves many losses unchanged.

Now we are ready to define the fair-redistributing property. The latter guarantees that
the contributions of participants in the pool are not affected by redistribution between other
participants.

Definition 3.69 (fair-redistributing property). A risk-sharing rule satisfies the fair-redistributing
property if for any pool Xn and any redistributed pool Y m of Xn, one has that

Hi (Xn) = Hi (Y m) for any i ≤ n such that Yi = Xi.

Remark 3.70. The fair-redistributing property implies the fair-bilateral-redistributing, fair-
merging and fair-splitting properties.

Example 3.71. The uniform risk-sharing rule does not satisfy the fair-merging property,
hence it cannot satisfy the fair-redistributing property.
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Example 3.72. The mean proportional risk-sharing rule satisfies the fair-redistributing
property, and hence, it satisfies fair bilateral redistributing, fair merging and fair splitting.

Example 3.73. The order statistics risk-sharing rule does not satisfy the fair-splitting prop-
erty and hence, it cannot satisfy the fair-redistributing property.

3.4 Specific-pool properties

3.4.1 Stand-alone for comonotonic losses

Within a comonotonic pool, it is reasonable to expect that each participant remains with his
or her own loss since no diversification benefit can result from pooling in that case. Hence,
the stand-alone risk-sharing rule appears to be reasonable in that case. These considerations
lead to the following definition.

Definition 3.74 (stand-alone property for comonotonic losses). A risk-sharing rule H is
said to satisfy the stand-alone property for comonotonic losses if for any comonotonic pool
Xn one has that H (Xn) = Xn.

Example 3.75. The uniform risk-sharing rule does not satisfy the stand-alone property for
comonotonic losses. Considering for instance n = 2 and X2 = (U, 2U) with U uniformly
distributed over the interval [0, 1], we see that

Huni
1

(
(U, 2U)

)
=

3U

2
6= U.

Example 3.76. The mean proportional risk-sharing rule does not necessarily satisfy the
stand-alone property for comonotonic losses since Xi does not necessarily coincide with
E[Xi]
E[Sn]

Sn when Xn is comonotonic. The same comment applies to the order statistics and
the multiple layer rules which do not satisfy the stand-alone property for comonotonic losses.

The stand-alone property for comonotonic losses will be satisfied by some of the risk-
sharing rules discussed in the next sections.

3.4.2 Uniformity for exchangeable losses

Definition 3.74 states that for comonotonic risks, the reallocated loss is equal to the original
loss. This requirement considers a special kind of pool and requires that the risk-sharing rule
behaves in a particular way in that case. The property defined in the current section considers
exchangeable losses. Recall that Xn is called exchangeable if its joint distribution function
FXn is symmetric in its arguments. This means that for any permutation π of {1, . . . , n},
the random vector (Xπ(1), Xπ(2), . . . , Xπ(n)) is distributed as Xn. In particular, if Xn is
exchangeable then X1, X2, . . ., Xn are identically distributed and the pool is homogeneous.
The uniform risk-sharing rule Huni thus seems to be appropriate under exchangeability.
Taking these observation into consideration suggests to consider the following property.

Definition 3.77 (uniformity property for exchangeable losses). A risk-sharing rule H is
said to satisfy the uniformity property for exchangeable losses if for any exchangeable pool
Xn one has that H(Xn) = Huni(Xn).
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Definitions 3.74 and 3.77 are similar in the sense that they set a requirement on the
risk-sharing rule only for a special type of pools (comonotonic versus exchangeable losses).

Example 3.78. The mean proportional risk-sharing rule satisfies the uniformity property
for exchangeable losses. It is easy to see that if all expected losses E[Xi] are equal then
Hprop
i (Xn) = Huni

i (Xn).

Example 3.79. The order statistics and the multiple layer risk-sharing rules do not satisfy
the uniformity property for exchangeable losses.

4 Conditional mean risk-sharing rule

4.1 Definition

Let us recall the definition of the conditional mean risk-sharing rule introduced by Denuit
and Dhaene (2012).

Definition 4.1 (conditional mean risk-sharing rule). A risk-sharing rule H is the conditional
mean risk-sharing rule in case for any pool Xn, the contribution for individual i is given by

Hi(Xn) = Hi(Sn) = E [Xi | Sn] , i = 1, 2, . . . , n. (4.1)

The conditional mean risk-sharing rule is henceforth denoted as Hcm.

Under Hcm, each participant must contribute the expected value of the loss brought to
the pool, given the total loss Sn experienced by the pool. When Var[Sn] <∞, we have

E
[(
Xi −Hcm

i (Sn)
)2]

= min
f

E
[(
Xi − f (Sn)

)2]
,

where the minimum is taken over all measurable functions f such that Var[f (Sn)] <∞. In
words, the contribution Hcm

i (Sn) paid by participant i is the closest to the loss Xi brought
to the pool, in the sense that it minimizes the expected squared difference of the risk Xi

and any measurable function f(Sn) of the total loss Sn. It then follows that the net pooling
effects Xi −Hcm

i (Sn) are uncorrelated among participants.

4.2 Properties

In Denuit and Dhaene (2012), several properties of the conditional mean risk-sharing rule
were proven, with special emphasis to Pareto optimality. Let us now establish the validity
of the properties presented in the preceding section for this risk-sharing rule.

Proposition 4.2. The conditional mean risk-sharing rule Hcm satisfies the reshuffling prop-
erty, the normalization property, the translativity property, the positive homogeneity property,
the constancy property, the no-ripoff property, the actuarial fairness property, the willingness-
to-join property, the fair-bilateral-redistributing property, the fair-merging property, the fair-
splitting property, the fair-redistributing property, the stand-alone property for comonotonic
losses, and the uniformity property for exchangeable losses. The conditional mean risk-
sharing rule does not necessarily satisfy the comonotonicity property.
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The proof of Proposition 4.2 is given in Appendix A. We can see that the conditional
mean risk-sharing rule enjoys all the properties listed in Section 3, except the comonotonicity
property. This property is nevertheless valid in particular cases, when the conditional expec-
tations s 7→ E[Xi|Sn = s] are all non-decreasing. Some sufficient conditions for this property
to hold can be provided for pools comprising independent losses, such as the log-concavity
of the distributions of the losses Xi or the large-pool case. We refer the reader to Denuit
and Robert (2021b, 2021c) for more details.

5 Quantile risk-sharing rule

5.1 Definition

For any random vector Xn = (X1, . . . , Xn) with respective marginal distribution functions
F1, . . . , Fn and a random variable U uniformly distributed over [0, 1], we define the comono-
tonic counterpart Xc

n of Xn as Xc
n =

(
F−11 (U) , . . . , F−1n (U)

)
, with corresponding comono-

tonic sum Scn given by

Scn =
n∑
i=1

F−1i (U) . (5.1)

In addition to the left-continuous inverse (3.13), we will also need the right-continuous one.
Recall that the right-continuous inverse of the distribution function FY of some random
variable Y is defined by

F−1+Y (p) = sup {y ∈ R | FY (y) ≤ p} , p ∈ [0, 1] , (5.2)

where sup ∅ = −∞ by convention. For any α ∈ [0, 1], we define the α-inverse F
−1(α)
Y of FY

following Dhaene et al. (2002a) as the following convex combination of the inverses F−1Y and
F−1+Y of FY :

F
−1(α)
Y (p) = α F−1Y (p) + (1− α) F−1+Y (p), p ∈ (0, 1) . (5.3)

For any y in
(
F−1+Y (0), F−1Y (1)

)
, defining αy ∈ [0, 1] as

αy =


F−1+
Y (FY (y))−y

F−1+
Y (FY (y))−F−1

Y (FY (y))
if F−1+Y (FY (y)) 6= F−1Y (FY (y))

1 otherwise

(5.4)

we see that the identity

F
−1(αy)
Y (FY (y)) = y (5.5)

holds true. By convention, we set αy = 0 in case FY (y) = 0 and αy = 1 in case FY (y) = 1.
We are now ready to state the definition of the quantile risk-sharing rule.

Definition 5.1 (quantile risk-sharing rule). A risk-sharing rule H is the quantile risk-
sharing rule in case for any pool Xn, the contribution for individual i is given by

Hi(Xn) = Hi(Sn) = F
−1(αSn )
i

(
FSc

n
(Sn)

)
, i = 1, 2, . . . , n. (5.6)
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In (5.6), Scn stands for the comononotic sum defined in (5.1), while αSn satisfies

F
−1(αSn )
Sc
n

(
FSc

n
(Sn)

)
= Sn. (5.7)

The quantile risk-sharing rule is henceforth denoted as Hquant.

In words, (5.6) means that every participant contributes an amount corresponding to
the generalized quantile of his or her individual loss, at the same probability level. Let us
comment on the definition (5.7) for αSn . For any outcome s ∈

(
F−1+Sn

(0), F−1Sn
(1)
)

of Sn, we
have that αs ∈ [0, 1] is determined from

F
−1(αs)
Sc
n

(
FSc

n
(s)
)

= s. (5.8)

The conventions stated above imply that

F
−1(αs)
Sc
n

(
FSc

n
(s)
)

=
n∑
i=1

F
−1(αs)
i

(
FSc

n
(s)
)

for any s ∈ R (5.9)

which follows from the well-known additivity property of the generalized quantiles of a
comonotonic sum; for more details, see Dhaene et al. (2002a). Taking into account (5.7),
(5.9) shows that the full loss allocation condition (2.2) is fulfilled. In case the individual
contributions are determined with the quantile risk-sharing rule, each member of the pool
contributes the same generalized quantile of his or her own loss Xi and the probability level
of the generalized quantile is determined such that the sum of the contributions constitutes
the aggregate loss. Notice that the quantile risk-sharing rule does not take into account
the dependency structure between the individual losses and only depend on their marginal
distributions.

Remark 5.2. If all marginal distribution functions Fi are strictly increasing on
(
F−1+Sc

n
(0), F−1Sc

n
(1)
)

then the quantile risk-sharing rule simplifies into

Hquant
i (Sn) = F−1i

(
FSc

n
(Sn)

)
, i = 1, 2, . . . , n. (5.10)

Also, (5.8) reduces to F−1Sc
n

(
FSc

n
(s)
)

= s.

The following simple example compares the quantile risk-sharing rule and the conditional
mean risk-sharing one, illustrating their respective differences.

Example 5.3. Consider the pair of individual losses X2 = (X1, X2) with X1 = 2U and
X2 = 1 − U where U is uniformly distributed over the interval [0, 1]. The aggregate loss is
given by S2 = 1 + U , which takes values in [1, 2]. It is straightforward to verify that for any
p in [0, 1] we have that F−11 (p) = 2p and F−12 (p) = p. The comonotonic modification of X2

is given by
Xc

2 =
(
F−11 (U), F−12 (U)

)
= (2U,U) .

The corresponding comonotonic sum equals Sc2 = F−11 (U) + F−12 (U) = 3U . Its distribution
function and quantile function are given by

FSc
2
(s) =

s

3
, for any s in [0, 3]
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and
F−1Sc

2
(p) = 3p, for any p in [0, 1] .

The conditional mean risk-sharing rule for X2 is given by

Hcm
1 (S2) = E [X1 | S2] = X1 = 2S2 − 2 = 2U

and
Hcm

2 (S2) = E [X2 | S2] = X2 = 2− S2 = 1− U,

so that Hcm(X2) = X2, which means that each participant pays his or her own individual
loss.

The quantile risk-sharing rule is given by

Hquant
1 (S2) = F−11

(
FSc

2
(S2)

)
=

2

3
S2 =

2

3
(1 + U)

and

Hquant
2 (S2) = F−12

(
FSc

2
(S2)

)
=

1

3
S2 =

1

3
(1 + U),

so that Hquant(X2) 6= X2. The contributions are comonotonic in this case. Notice that
FSc

2
(S2) is uniformly distributed over the interval

(
1
3
, 2
3

)
. The distribution functions

FHcm
1 (S2)(x) =

x

2
for any x in (0, 2) ,

and

FHquant
1 (S2)

(x) =
3

2
x− 1 for any x in

(
2

3
,
4

3

)
,

cross exactly once, with the first one having the larger right tail. Since the corresponding
expected values are equal, this means that they are ordered in the convex order sense:

Hquant
1 (S2) �CX H

cm
1 (S2) = X1 = 2U. (5.11)

Also, FHcm
2 (S2)(x) = x for any x in (0, 1), while FHquant

2 (S2)
(x) = 3x − 1 for any x in

(
1
3
, 2
3

)
.

Proceeding as above, we find the following convex order relation:

Hquant
2 (S2) �CX H

cm
2 (S2) = X2 = 1− U. (5.12)

Assuming that both participants are risk-averse, we can conclude that each of them will
prefer the quantile risk-sharing rule over the conditional mean risk-sharing rule (which in
this example, comes down to bearing his or her own risk). The quantile risk-sharing rule
thus improves the situation for both participants in this example.

Remark 5.4. Notice that quantiles are often not applicable at individual level to determine
premiums. This is because of the high probability mass at zero exhibited by individual
insurance losses, with P[Xi = 0] = Fi(0) often in the range 90-99%, so that F−1i (p) = 0
for p up to 90-99%. Hence, if premiums charged by the insurer correspond to quantiles
at probability level p, the corresponding premium amounts are 0 if p is smaller than the
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probability mass at zero. A comparable situation may arise with the quantile risk-sharing
rule, as shown next.

Due to the special nature of the comonotonic support, see formula (C.1) in Appendix C,
there is a unique point xn corresponding to any outcome s of Scn, of the form (C.2). For any
possible outcome of Scn, there is thus a unique point xn in the connected support of Scn of
which the components sum to s. The components xi are precisely the values involved in the
quantile risk-sharing rule. Hence, the probability that Scn is smaller than, or equal to s is
equal to the value of the joint distribution function of Xc

n at that point, and we know from
Dhaene et al. (2002a) that the joint distribution function of a comonotonic random vector
is equal to the mininimum of the respective marginal distribution functions. This allows us
to write

FSc
n
(s) = min

{
F1

(
F
−1(αs)
1

(
FSc

n
(s)
) )
, . . . , Fn

(
F−1(αs)
n

(
FSc

n
(s)
) )}

. (5.13)

Now, consider losses Xi obeying zero-augmented distributions, as those encountered in
the majority of insurance applications (compound Poisson distributions with continuous
severities, or zero-augmented Gamma or LogNormal distributions, for instance). This means
that Fi(0) > 0 and Fi is continuously increasing over (0,∞). Then, formula (5.13) shows
that the identity FSc

n
(0) = min{F1(0), . . . , Fn(0)} is valid. Once the value of Sn is known

to be equal to s, two situations may occur. Either FSc
n
(s) > max{F1(0), . . . , Fn(0)} and

every participant contributes to the total loss, that is, Hquant
i (s) > 0 for all i. Or FSc

n
(s) ≤

max{F1(0), . . . , Fn(0)} and participants with larger probabilities masses at zero, or no-claim
probabilities, i.e. those participants i for which FSc

n
(s) ≤ Fi(0) do not have to contribute

ex post. Assuming that participants are numbered so that F1(0) < F2(0) < . . . < Fn(0)
and that s is such the Fj(0) < FSc

n
(s) ≤ Fj+1(0), this implies that participants j + 1, . . . , n

do not have to contribute to Sn. This may lead to problematic situations in P2P insurance
schemes since it is reasonable to expect that all participants putting the pool at risk must
contribute to Sn ex post. Assume for instance that the realizations of losses X1, . . . , Xn−1
are all 0 but that Xn = xn > 0. If xn is such that F1(0) < FSc

n
(xn) < F2(0) then participant

1 will have to pay xn (alone) while participant n is the only one having caused some loss
within the pool. This may cause moral hazard issues.

If all no-claim probabilities are equal then the problem disappears. This is the case when
all Fi(0) are zero, or can be considered as being negligible (for instance when X1, . . . , Xn

correspond to business lines or insurance portfolios). The problem also disappears when the
number of participants to the pool becomes sufficiently large, as shown next. The probability
that every participant contributes to the total loss is given by

P[Hquant
i (Sn) > 0 for all i] = P[FSc

n
(Sn) > max{F1(0), . . . , Fn(0)}].

If participants are numbered so that F1(0) < F2(0) < . . . < Fn(0) then this probability is
also equal to

P
[
Sn > F−1Sc

n

(
Fn(0)

)]
= P

[
Sn >

n∑
j=1

F−1j

(
Fn(0)

)]
.

Let us now consider large pools, i.e., the number n of participants becomes larger and larger,
and assume that, for all i = 1, . . . , n, the inequality Fi(0) ≤ η holds for some 0 < η < 1. If
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for all i = 1, . . . , n and for some 0 < ε < 1,

F−1i (η) ≤ (1− ε) E [Xi] ,

then, provided a law of large numbers applies to individual losses Xi, the probability that
every participant contributes to the total loss under the quantile risk-sharing rule tends to
1 as n tends to infinity.

Example 5.5 (scale proportional risk-sharing rule). If Fi (x) = F (x/σi) for some distribu-
tion function F and some particular scale factors σi > 0, then

Hquant
i (Xn) = σiF

−1(αSn )
(
FSc

n
(Sn)

)
for i = 1, . . . , n.

The full allocation condition then gives

F−1(αSn )
(
FSc

n
(Sn)

)
=

Sn∑n
j=1 σj

which allows us to conclude that

Hquant
i (Xn) =

σi∑n
j=1 σj

Sn,

whatever the dependence structure of the individual losses Xi. The quantile risk-sharing rule
then coincides with the scale proportional risk-sharing rule Hscale where participants agree to
share the total loss Sn according to ratios based on their respective scale parameter, divided
by the sum of all scale parameters.

5.2 Properties

Let us now establish the validity of the properties presented in Section 3 for the quantile
risk-sharing rule.

Proposition 5.6. The quantile risk-sharing rule Hquant satisfies the reshuffling property, the
normalization property, the translativity property, the positive homogeneity property, the con-
stancy property, the no-ripoff property, the comonotonic property, the stand-alone property
for comonotonic losses, and the uniformity property for exchangeable losses. The quantile
risk-sharing rule does not necessarily satisfy the actuarial fairness property, the willingness-
to-join property, the fair-bilateral-redistributing property, the fair-merging property, the fair-
splitting property, and the fair-redistributing property.

The proof of Proposition 5.6 is given in Appendix B.

Remark 5.7. Notice that the quantile risk-sharing rule Hquant satisfies the fair-merging
property when Xk and Xl are comonotonic since the identity F

−1(α)
Xk+Xl

(p) = F
−1(α)
Xl

(p) +

F
−1(α)
Xl

(p) holds true for all probability levels p and all α in this case, and because of full
allocation. Similarly, the quantile risk-sharing rule satisfies the fair-splitting property in the
particular case where X ′k and Xn+1 are comonotonic.

Remark 5.8. As the quantile risk-sharing rule only considers the marginal distributions
and not the dependency structure, a stronger property than the uniformity property for
exchangeable losses holds true. Indeed, for the quantile risk-sharing rule we only need equal
marginals to ensure that the risk-sharing rule reduces to the uniform risk-sharing rule.
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5.3 Links between conditional mean and quantile risk-sharing rules

5.3.1 Comonotonic pools

Comonotonic pools play an important role in the study of risk-sharing rules. Within comono-
tonic pools, every individual loss is in fact an increasing function of the aggregate loss of the
entire pool, as shown next.

Proposition 5.9. The pool Xn is comonotonic if, and only if,

Xn =
(
h1(Sn), h2(Sn), . . . , hn(Sn)

)
(5.14)

with the non-decreasing and continuous functions hi, i = 1, 2, . . . , n, given by

hi(s) = F
−1(αs)
i

(
FSc

n
(s)
)
, for any s ∈ R, (5.15)

where αs is defined by (5.8).

The proof of the new characterization of comonotonicity in Proposition 5.9 is given in
Appendix C.

Consider a comonotonic pool Xn. From equations (5.14) and (5.15) in Proposition 5.9,
we find that(

E [X1 | Sn] ,E [X2 | Sn] , . . . ,E [Xn | Sn]
)

= (h1(Sn), h2(Sn), . . . , hn(Sn)) = Xn.

Conversely, if
Xn =

(
E [X1 | Sn] ,E [X2 | Sn] , . . . ,E [Xn | Sn]

)
(5.16)

holds with E [Xi | Sn] non-decreasing in Sn for all i then it follows that Xn is comonotonic.
This leads to the following new characterization of comonotonic pools in terms of those left
unchanged by the conditional mean risk-sharing rule.

Proposition 5.10. The pool Xn is comonotonic if, and only if, it admits the representa-
tion (5.16) where the conditional expectations E [Xi | Sn] , i = 1, 2, . . . , n, are non-decreasing
functions of Sn.

Proposition 5.10 gives a useful characterization of comonotonicity in terms of the con-
ditional expectations defining the conditional mean risk-sharing rule. Propositions 5.9 and
5.10 clearly show that a pool is comonotonic if, and only if, the individual losses it comprises
can be considered as increasing functions of the aggregate loss, meaning in fact that the
randomness of any individual loss is only caused by the randomness of the aggregate loss.

Propositions 5.9 and 5.10 can be summarized as follows.

Proposition 5.11. The following statements are equivalent:

(1) The pool Xn is comonotonic.

(2) Xn = Hquant(Xn).

(3) Xn = Hcm(Xn) with all Hcm
i (Xn) non-decreasing functions of Sn.
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5.3.2 Marginal VaR

The risk-sharing rules Hcm and Hquant can both be obtained from marginal VaR, as shown
next. For λ ∈ Rn

+, let Sn (λ) =
∑n

i=1 λiXi and Scn (λ) =
∑n

i=1 λiX
c
i . Assume that Xn

has a strictly positive density function. It is well-known that F−1Sn(λ)
(ε) and F−1Sc

n(λ)
(ε) are

positive-homogeneous function of order 1 with respect to λ. By Euler’s rule, we deduce

F−1Sn(λ)
(ε) =

n∑
i=1

λi
∂F−1Sn(λ)

(ε)

∂λi
and F−1Sc

n(λ)
(ε) =

n∑
i=1

λi
∂F−1Sc

n(λ)
(ε)

∂λi
.

We then have

∂F−1Sn(λ)
(ε)

∂λi
= E[Xi|Sn (λ) = F−1Sn(λ)

(ε)] and
∂F−1Sc

n(λ)
(ε)

∂λi
= F−1i (ε) .

Hence, we see that

∂F−1Sn(λ)
(ε)

∂λi

∣∣∣∣∣
λ=1,ε=FSn (Sn)

= Hcm
i (Xn)

∂F−1Sc
n(λ)

(ε)

∂λi

∣∣∣∣∣
ε=FSc

n
(Sn)

= Hquant
i (Xn).

6 Generalized conditional mean risk-sharing rules

6.1 Change of distribution

It is possible to offer an additional degree of freedom to the group of participants by allowing
them to base the risk-sharing rule on another distribution for Xn they agree about, leaving
the total loss Sn to be shared unchanged. Thus, all participants agree to replace the actual
(distribution of) loss random vector Xn with (the distribution of) another random vector
for the sake of risk sharing. The latter is called the modification of Xn and henceforth
denoted as M(Xn) = (M1(Xn), . . . ,Mn(Xn)). Possible reasons why participants choose a
modification of the pool to share could be that the joint distribution function of the original
pool is only partly known, or that they do not want to take into account the dependency
structure (maybe because it is unknown). The comonotonic version Xc

n is an example of
such a modified loss random vector that only depends on the marginal distribution functions
of the original pool. This suggests to adopt the following definition.

Definition 6.1 (generalized conditional mean risk-sharing rule). A risk-sharing rule H is
a generalized conditional mean risk-sharing rule in case for any pool Xn, there is a modified
loss random vector M (Xn) with sum Tn =

∑n
i=1Mi(Xn), such that the ex-post contribution

of individual i is given by

Hi (s) = E [Mi(Xn) | Tn = s] , i = 1, 2, . . . , n, (6.1)

where s is the realization of Sn. The generalized conditional mean risk-sharing rule for a
pool Xn based on modified losses M (Xn) is henceforth denoted as Hgcm(Xn;M(Xn)).
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Some compatibility conditions are needed so that the conditional expectation in (6.1)
is well defined and (6.1) defines a risk-sharing rule. Henceforth, we always assume that
the modified loss random vector M (Xn) is such that any outcome of Sn is also a possible
outcome for Tn. Stated more formally, the support for Sn (defined as the set of all the
possible values for Sn, loosely speaking) has to be included in the support of Tn so that the
conditioning makes sense. This is generally satisfied in applications to insurance where the
supports of Sn and Tn are often [0,∞). Henceforth, we tacitly assume that the compatibility
condition is fulfilled.

By a suitable choice of M (Xn), we can then relate many risk-sharing rules to the condi-
tional mean risk-sharing one. For instance, we know from implication (A.1) that the uniform
risk-sharing rule is equivalent to the conditional mean risk-sharing rule with M (Xn) ex-
changeable. This is the approach proposed by Skogh and Wu (2005) who argue that agents
presuming that they are faced with exchangeable risks can share them mutually beneficially.

6.2 Quantile risk-sharing rule as a generalized conditional mean
risk-sharing rule

In this section, we consider the generalized conditional mean risk-sharing rule, where for any
pool Xn, we set M(Xn) equal to its comonotonic version Xc

n =
(
F−11 (U) , . . . , F−1n (U)

)
,

with U uniformly distributed over the interval [0, 1]. This leads to the following definition.

Definition 6.2 (comonotonic conditional mean risk-sharing rule). A risk-sharing rule H is
the comonotonic conditional mean risk-sharing rule in case for any pool Xn, the contribution
for individual i is well-defined and given by

Hi (s) = E [Xc
i | Scn = s] , i = 1, 2, . . . , n, (6.2)

where Scn =
∑n

i=1X
c
i and s is the realization of the pool’s aggregate loss Sn. The comonotonic

conditional mean risk-sharing rule is henceforth denoted as Hccm.

The risk-sharing rule Hccm is thus obtained from Hccm(Xn) = Hgcm(Xn;Xc
n), where

Scn corresponds to Tn in (6.1).
Notice that even with the comonotonic version of Xn, some compatibility conditions are

needed to properly define the generalized conditional mean risk-sharing rule. Consider for
instance n = 2 with X1 and X2 independent and uniformly distributed over the union of
intervals [0, 1] ∪ [2, 3]. The support of S2 is [0, 6] whereas the support of Sc2 is [0, 2] ∪ [4, 6].
If the outcome of S2 is 3 then the conditional expectation (6.2) is not defined. This kind of
problem does not happen with losses having strictly increasing distribution functions over
the interval [F−1+i (0), F−1i (1)]. Another simple sufficient condition is that the support of all
losses Xi is the set of non-negative real values. The risk-sharing rule Hccm is thus applicable
in insurance studies where losses generally obey zero-augmented distributions (as defined in
Remark 5.4).

Let us now investigate the relation between the risk-sharing rulesHquant andHccm. From
the definitions of Hquant and Hccm, together with Proposition 5.11, we see that for any pool
Xn with aggregate loss Sn,

Hccm
i (s) = E [Xc

i | Scn = s] = F
−1(αs)
i

(
FSc

n
(s)
)

= Hquant
i (s) ,
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for any i = 1, 2, . . . , n. This leads to the following result.

Proposition 6.3. For any pool Xn for which the comonotonic conditional mean risk-sharing
rule is well-defined, one has that Hquant (Xn) = Hccm (Xn).

In the following example, we compare the conditional mean risk-sharing rule, the comono-
tonic conditional mean risk-sharing rule, and the quantile risk-sharing rule in a simple case.

Example 6.4 (Continuation of Example 5.3). Consider again the pair of individual losses
X2 = (X1, X2) with X1 = 2U and X2 = 1 − U . The comonotonic conditional mean risk-
sharing rule Hccm defined in (6.2) applied to X2 gives rise to

Hccm
1 (s) = E [Xc

1 | Sc2 = s] =
2

3
s

and

Hccm
2 (s) = E [Xc

2 | Sc2 = s] =
1

3
s,

which means that

Hccm
1 (S2) =

2

3
S2 =

2

3
(1 + U) 6= X1

and

Hccm
2 (S2) =

1

3
S2 =

1

3
(1 + U) 6= X2.

In this example, the comonotonic conditional mean risk-sharing rule leads to comonotonic
contributions. Summarizing what has been obtained in this example and Example 5.3 for the
pool X2 = (X1, X2) = (2U, 1− U), we have that

Hquant (X2) = Hccm (X2) =

(
2

3
(1 + U) ,

1

3
(1 + U)

)
while

Hcm (X2) = X2 = (2U, 1− U),

which is in line with Proposition 6.3.

6.3 Generalized proportional rules as generalized conditional mean
risk-sharing rules

The change of distribution can also operate on the random vector of proportions. To this
end, notice that the conditional mean risk-sharing rule can be rewritten as

Hcm
i (Sn) = E [Xi | Sn] = SnE [Θi (Sn)]

where the vector of proportions Θn (s) is defined as

Θn (s) =

(
X1

Sn
, . . . ,

Xn

Sn

)∣∣∣∣Sn = s.
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An extension of the conditional mean risk-sharing rule can then be obtained by replacing
(Θn (s))s>0 with a modified vector of proportions

(
M
(
Θn (s)

))
s>0

, but leaving the distri-
bution of Sn unchanged. This defines the generalized conditional mean risk-sharing rule
Hgcm(·;M(Θn)) as

Hgcm
i

(
Sn;M(Θn)

)
= SnE [Mi(Θn (Sn) |Sn]

where M(Θn) is the modified vector of proportions that may be correlated with Sn. An
alternative to replacing Xn with M (Xn) thus consists in adopting another distribution for
the random vector of proportions Θn.

Example 6.5. Consider absolutely continuous individual losses Xi with marginal distribu-
tion functions Fi, i = 1, . . . , n. Assume that M (Θn (s)) obeys the Dirichlet distribution with
parameter α (s) = (α1 (s;F1) , α2 (s;F2) , . . . , αn (s;Fn)) with αi(s;Fi) > 0 for i = 1, . . . , n.
Then

E
[
Mi

(
Θn (s)

)]
=

αi (s;Fi)∑n
j=1 αj (s;Fj)

.

Total losses Sn are thus distributed among participants according to the proportions
αi (Sn;Fi) /

∑n
j=1 αj (Sn;Fj). In particular, if αi (s, Fi) = E [Xi] then

Hgcm
i

(
Sn;M

(
Θn

))
=

E [Xi]

E [Sn]
Sn = Hprop

i (Sn)

and we recover the mean proportional risk-sharing rule.

7 Some non-aggregate risk-sharing rules

In the previous sections, we mainly presented and discussed aggregate risk-sharing rules. Let
us now introduce several risk-sharing rules that do not depend only on the sum Sn.

7.1 Convex combinations

Participants could combine several risk-sharing rules since any convex combination of risk-
sharing rules is itself a risk-sharing rule. This is precisely stated next.

Property 7.1. If H1 and H2 are risk-sharing rules, then, for any δ ∈ [0, 1], δH1 +
(1− δ)H2 is a risk-sharing rule.

Combining the stand-alone rule with an aggregate risk-sharing rule then produces a rule
depending on Xn, not only on Sn.

Example 7.2. A convex combination of the stand-alone and the conditional mean risk-
sharing rule produces

Hi(Xn) = δXi + (1− δ) E[Xi|Sn].

Under exchangeable losses (or replacing the conditional mean risk-sharing rule with the uni-
form one), we obtain

Hi(Xn) = δXi + (1− δ) Sn
n

which resembles a credibility premium. The latter risk-sharing rule has been proposed by
Charpentier et al. (2021).
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7.2 Network-based conditional mean risk-sharing rule

7.2.1 Definition

Another way to design new risk-sharing rules consists in locating participants on a network to
describe the links existing between them. Network structures are particularly effective in the
context of risk sharing within P2P insurance communities, as demonstrated by Charpentier
et al. (2021 and Feng et al. (2020).

For participant i, we define the subset C (i) of participants that are connected with him
or her, with associated weights {wii, wij : j ∈ C (i)} such that wii > 0, wij > 0 for j ∈ C (i),
wii +

∑
j∈C(i)wij = 1. The loss Xi is split into #C (i) + 1 parts. For j ∈ C (i), the parts

wijXi will be considered for the sub-pool attached to participant j. The part wiiXi will be
considered for his or her own sub-pool.

Let
Sw,i = wiiXi +

∑
j∈C(i)

wjiXj

be the aggregated losses considered for participant i’s conditional mean risk-sharing rule. Let
us define respectively the contribution Hii(Sw,i) = E [wiiXi |Sw,i ] of participant i to his or
her sub-pool and the contribution Hij(Sw,i) = E [wjiXj |Sw,i ] of participant j to the sub-pool
of participant i. The contribution of participant i to the global pool is then given by

Hi(Xn) = Hii(Sw,i) +
∑
j∈C(i)

Hji(Sw,j).

These contributions satisfy the full loss allocation condition; see Appendix D for a proof.

7.2.2 Properties

Let us now investigate the properties of the network-based conditional mean risk-sharing
rule. Here, we assume that the network structure and associated weights wij are given
and cannot be modified. As it was the case for the multiple layer rule, fair splitting and
fair merging do not apply to the network-based conditional mean risk-sharing rule. This
is because these properties would imply a modification of the network and weights. The
same comments apply to fair redistribution. Also, the normalization property needs to be
properly interpreted. Indeed, eliminating participant j from the network could be viewed
as assuming that wij = 0 for i ∈ C (j) and therefore as modifying the other weights of the
network. For the normalization property, we implicitly assume that the network and its
associated weights are not modified. Setting the jth component of Xn equal to 0 is not
equivalent to eliminating participant j.

Proposition 7.3. For a given network and set of associated weights, the network-based
conditional mean risk-sharing rule satisfies the reshuffling property provided the weights are
reshuffled according to the components of Xn, the normalization property, the translativity
property, the positive homogeneity property, the constancy property, the no-ripoff property,
the actuarial fairness property, the willingness-to-join property, and the stand-alone prop-
erty for comonotonic losses. The network-based conditional mean risk-sharing rule does not
necessarily satisfy the uniformity property for exchangeable losses.

The proof of Proposition 7.3 is given in Appendix E.
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7.3 Claim-only conditional mean risk-sharing rule

7.3.1 Definition

We could operate the sharing only among participants who suffer a positive loss, letting
the claim-free ones out of the exchange. This is particularly useful to distribute a given
amount of resources among the individuals in need as it is the case in contingent risk funds,
as explained next.

Define

Ii =


1 if Xi > 0,

0 otherwise.

Also, denote as In the random vector (I1, . . . , In). To restrict the sharing to claimants, we
can use the modified conditional mean risk-sharing rule defined as E[Xi|Sn, In]. Since Ii = 0
implies E[Xi|Sn, In] = 0 claim-free participants do not bear any losses. The claim-only
conditional mean risk-sharing rule Hcm,+ is defined as

Hcm,+
i (Xn) = E[Xi|Sn, In], i = 1, 2, . . . , n. (7.1)

Obviously, Hcm,+ satisfies the full allocation condition.
The rule Hcm,+ appears to be useful within contingent risk funds where a fixed budget

b is distributed among participants who suffer from losses. Participant i then receives the
share E[Xi|Sn, In]/Sn of b.

7.3.2 Properties

Let us now investigate the properties of the claim-only conditional mean risk-sharing rule.
It is implicitly assumed here that, for some i = 1, 2, . . . , n, 0 < P[Ii = 1] < 1. Indeed if
P[Ii = 1] = 1 for all i = 1, 2, . . . , n, then the claim-only conditional mean risk-sharing rule
reduces to the conditional mean risk-sharing rule.

Proposition 7.4. The claim-only conditional mean risk-sharing rule satisfies the reshuf-
fling property, the normalization property, the positive homogeneity property, the constancy
property, the no-ripoff property, the actuarial fairness property, the willingness-to-join prop-
erty, and the stand-alone property for comonotonic losses. The claim-only conditional mean
risk-sharing rule does not necessarily satisfy the translativity property, the fair-bilateral-
redistributing property, the fair-merging property, the fair-splitting property, the fair-redistributing
property, the comonotonicity property, and the uniformity property for exchangeable losses.

The proof of Proposition 7.4 is given in Appendix F. Notice that even if the claim-only
conditional mean risk-sharing rule does not satisfy the uniformity property for exchangeable
losses, it does satisfy a slightly adapted version of this property since (F.1) shows that total
losses are uniformly distributed over all claimants in the exchangeable case.
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8 Discussion

8.1 Summary

Based on a list of desirable properties for risk sharing, this paper offers a systematic treat-
ment of different risk-sharing rules for insurance losses, including the conditional mean risk-
sharing rule and the newly proposed quantile risk-sharing rule. Several modifications of the
conditional mean risk-sharing rule have also been suggested.

Some rules considered in this paper are nonparametric in the sense that they do not
require the knowledge of the joint distribution of the losses comprised in the pool. This is
the case for the order statistics, the multiple layer and the uniform risk-sharing rules. Other
ones are very easy to implement since they only involve elementary quantities, such as the
mean proportional risk-sharing rule that only uses expected losses or the scale-proportional
risk-sharing rule. The quantile risk-sharing rule requires the knowledge of the marginal distri-
bution of the losses comprised in the pool, but it does not use their dependence structure. In
that respect, the quantile rule is copula-free. Finally, the conditional mean risk-sharing rule
requires full knowledge of the joint distribution of the losses in the pool. Its implementation
obviously necessitates more computational efforts but all properties discussed in Section 3,
except comonotonicity, are satisfied. Change of distributions may ease computations and the
conditional mean risk-sharing rule reduces to simpler rules under some modified distribution.

The properties established in this paper for the risk-sharing rules under consideration
are summarized in Tables 8.1-8.2, where check marks indicate that the corresponding risk-
sharing rule fulfills the property under consideration. Table 8.1 summarizes the conservation
properties according to the terminology introduced in the introduction to this paper. These
are properties fulfilled by the stand-alone risk-sharing rule (as shown by all check marks
appearing in the first column) that may also be desirable for other rules. Table 8.2 considers
the improvement, local redistribution and specific-pool properties for non-trivial risk-sharing
rules (that is, all rules except the trivial stand-alone one). Notice that the absence of mark
means that the property is not relevant (redistribution for multiple layer or network-based
conditional mean risk-sharing rules, for instance) or does not necessarily hold true. In
the latter case, it can nevertheless be fulfilled in some particular cases. For instance, the
conditional mean risk-sharing rule satisfies the comonotonicity property when losses are
independent with log-concave densities or when their number tends to infinity, under mild
regularity conditions.

Of course, one can imagine other properties than those proposed in this paper, such as
the monotonicity property proposed by Chen et al. (2017) which requires introducing risk
measures whereas comparisons are based on the convex order in this paper. The monotonicity
property could be expressed in the present setting as follows: a new entry in the pool will
not lead to higher risks allocated to existing participants in terms of convex order. Precisely,
considering a pool Xn including participant i and a larger pool Xn+k, k ≥ 1, supplementing
the pool Xn with additional losses Xn+1, . . . , Xn+k, then Hi(Xn+k) �CX Hi(Xn). In some
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Stand- Unif. Mean- Order Mult. Cond. Quantile Network Claim-
alone prop. stat. layer mean only

Reshuffling

Normalization

Translativity

Pos. hom.

Constancy

No-ripoff

Act. fair.

Table 8.1: Summary of the conservation properties fulfilled by the risk-sharing rules consid-
ered in this paper.

sense, this is a generalization of the willingness-to-join property. The conditional mean risk-
sharing rule satisfies this property for independent losses and the uniform risk-sharing rule
fulfills it for exchangeable losses, for instance. It is also worth to recall from the introduction
that we do not consider optimality criteria in the present paper. Several comparison criteria
have been proposed in the literature. The interested reader is referred e.g. to Abdikerimova
and Feng (2022) for a discussion of altruistic transfer plans and to Charpentier et al. (2021)
for a study of maximum coverage for non-linear contracts, for examples in the most recent
literature.

8.2 From risk sharing to insurance

The risk-sharing rules studied in this paper are very helpful to better understand commercial
insurance. Consider individual losses Xi such that s 7→ E[Xi|Sn = s] are continuously
increasing for all i. If not then individual i should not join the pool because he or she could
benefit from an increase in Sn and thus has interests conflicting with other participants.
Consider the case of a commercial insurance company having to pay a rate of return rroc on
the solvency capital put at its disposal. Assume that the solvency capital is obtained from
the Value-at-Risk at probability level 99.5% as under Solvency 2 in the European Union.
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Unif. Mean- Order Mult. Cond. Quantile Network Claim-
prop. stat. layer mean only

Will. to join

Comonot.

Bil. redist.

Merging

Splitting

Redist.

Stand alone
for comonot.

Uniform.
for exchang.

Table 8.2: Summary of the improvement, local redistribution and specific-pool properties
fulfilled by the risk-sharing rules considered in this paper.

41



The total solvency capital VaR[Sn; 99.5%]− E[Sn] can be decomposed into

VaR[Sn; 99.5%]− E[Sn] = VaR

[
n∑
i=1

E[Xi|Sn]; 99.5%

]
−

n∑
i=1

E[Xi]

=
n∑
i=1

(
VaR

[
E[Xi|Sn]; 99.5%

]
− E[Xi]

)
=

n∑
i=1

(
E
[
Xi|Sn = VaR[Sn; 99.5%]

]
− E[Xi]

)
.

Policyholders then receive the loss amount Xi ex post in exchange of the ex-ante premium

π[Xi;Sn] = E[Xi] + rroc

(
E
[
Xi|Sn = VaR[Sn; 99.5%]

]
− E[Xi]

)
where we recognize the conditional mean risk-sharing rule applied to s = VaR[Sn; 99.5%].
This appears to be an appropriate economic premium calculation principle. Similar formulas
hold true replacing the conditional mean risk-sharing rule with any comonotonic risk-sharing
rule.
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APPENDIX

A Proof of Proposition 4.2

Reshuffling property The reshuffling property is valid since individual contributions
Hcm
i (Sn) only depend on (Xi, Sn) which is not modified by reshuffling.

Normalization property The normalization property is valid since Sn = Sn−1 when
Xn = (X1, X2, . . . , Xn−1, 0) and Xn−1 = (X1, X2, . . . , Xn−1).

Translativity property Translativity holds true since, for all i 6= n,

Hcm
i (Xn + c 1n,n) = E[Xi|Sn + c] = E[Xi|Sn] = Hcm

i (Xn) .

Positive homogeneity property Positive homogeneity holds true since

Hcm
i (cXn) = E[cXi|cSn] = cE[Xi|Sn] = cHcm

i (Sn).

Constancy property Let Xn = (X1, X2, . . . , Xn−1, c), for some constant c, and let
Xn−1 = (X1, X2, . . . , Xn−1). Then we have that, for any i 6= n,

Hcm
i (Xn) = E[Xi|Sn] = E[Xi|Sn−1 + c] = E[Xi|Sn−1] = Hcm

i (Xn−1) .

No-ripoff property The no-ripoff property is valid since

Hcm
i (Xn) = E[Xi|Sn] ≤ E[F−1i (1) |Sn] = F−1i (1) , for any i = 1, 2, . . . , n.

Actuarial fairness property Actuarial fairness holds true because

E [Hcm
i (Xn)] = E [E[Xi|Sn]] = E [Xi] , for any i = 1, 2, . . . , n.

Willingness-to-join property The willingness-to-join property is valid since

E[Xi|Sn] �CX Xi holds for every i = 1, 2, . . . , n,

Fair-bilateral-redistributing property This property is valid because Hcm
i (Xn) only

depends on (Xi, Sn) and Sn is not modified by a bilateral redistribution.

Fair-merging property The fair-merging property holds true since, for any k 6= l,

Hcm
i

(
Xn+Xl × (1k,n − 1l,n)

)
= E[Xi|Sn] = Hcm

i (Xn) if i is different from k and l,
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Fair-splitting property The fair-splitting property holds true since, for any k ∈ 1, 2, . . . , n,
and any non-negative random variables X

′

k and Xn+1 satisfying Xk = X
′

k + Xn+1, one has
that, for any i different from k and n+ 1

Hcm
i

(
(Xn+ (X ′k −Xk)× 1k,n, Xn+1)

)
= E[Xi|Sn] = Hcm

i (Xn) .

Fair-redistributing property This property is valid because Hcm
i (Xn) only depends on

(Xi, Sn) and Sn is not modified by redistribution.

Stand-alone property for comonotonic losses The stand-alone property for comono-
tonic losses follows from Proposition 5.9. Indeed, if Xn is comonotonic then Xi = hi(Sn) for
the non-decreasing functions hi defined in (5.15). Therefore,

Hcm
i (Sn) = E [hi (Sn) | Sn] = hi (Sn) = Xi.

Uniformity property for exchangeable losses If Xn is exchangeable then we have for
any i 6= j in {1, 2, . . . , n} that

E[Xi|Sn] = E[Xj|Sn] =
1

n

n∑
k=1

E[Xk|Sn] =
Sn
n
.

This shows that
Xn exchangeable⇒Hcm(Xn) = Huni(Xn). (A.1)

Comonotonicity property The conditional mean risk-sharing rule satisfies the comono-
tonicity property only if, s 7→ E[Xi|Sn = s] is non-decreasing for any i ∈ 1, 2, . . . , n. This is
not true in general. We refer the reader to Denuit and Robert (2021a) for a counter-example
involving independent zero-augmented Gamma-distributed risks.

B Proof of Proposition 5.6

Reshuffling property The quantile risk-sharing rule satisfies the reshuffling property
since the distributions of Sn and Scn are not modified by reshuffling.

Normalization property The quantile risk-sharing rule satisfies the normalization prop-
erty since Sn = Sn−1 and Scn = Scn−1 when Xn = (X1, X2, . . . , Xn−1, 0) and Xn−1 =
(X1, X2, . . . , Xn−1).

Translativity property The quantile risk-sharing rule satisfies the translativity property
since, for all i 6= n,

Hquant
i (Xn + c 1n,n) = F

−1(αSn+c)
i

(
FSc

n+c (Sn + c)
)

= F
−1(αSn+c)
i

(
FSc

n
(Sn)

)
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with

αSn+c =
F−1+Sn+c

(FSn+c(Sn + c))− Sn − c
F−1+Sn+c

(FSn+c(Sn + c))− F−1Sn+c
(FSn+c(Sn + c))

=
F−1+Sn

(FSn(Sn))− Sn
F−1+Sn

(FSn(Sn))− F−1Sn
(FSn(Sn))

= αSn .

Positive homogeneity property The proof of the positive homogeneity property follows
the same lines as the one of the translativity property.

Constancy property Considering the constancy property, letXn = (X1, X2, . . . , Xn−1, c),
for some constant c, and let Xn−1 = (X1, X2, . . . , Xn−1). Then we have that, for any i 6= n,

Hquant
i (Xn) = F

−1(αSn−1+c)

i

(
FSc

n−1+c
(Sn−1 + c)

)
= F

−1(αSn−1+c)

i

(
FSc

n−1
(Sn−1)

)
with

αSn−1+c =
F−1+Sn−1+c

(
FSn−1+c(Sn−1 + c)

)
− Sn−1 − c

F−1+Sn−1+c

(
FSn−1+c(Sn−1 + c)

)
− F−1Sn−1+c

(
FSn−1+c(Sn−1 + c)

)
=

F−1+Sn−1

(
FSn−1(Sn−1)

)
− Sn−1

F−1+Sn−1

(
FSn−1(Sn−1)

)
− F−1Sn−1

(
FSn−1(Sn−1)

) = αSn−1 .

Hence the quantile risk-sharing rule satisfies the constancy property.

No-ripoff property The no-ripoff property is valid since

Hquant
i (Xn) = F

−1(αSn )
i

(
FSc

n
(Sn)

)
≤ F−1i (1) for any i = 1, 2, . . . , n.

Comonotonicity property The quantile risk-sharing rule satisfies the comonotonicity
property by construction as F

−1(αs)
i (FSc

n
(s)) is non-decreasing in s.

Stand-alone property for comonotonic losses Every comonotonic pool is left un-
changed by the quantile risk-sharing pool so that the stand-alone property for comonotonic
losses is valid. See Proposition 5.11.

Uniformity property for exchangeable losses If X1, X2, . . . , Xn are identically dis-
tributed with common distribution function F then the full allocation condition gives Sn =
nF−1(αSn )

(
FSc

n
(Sn)

)
. This shows that

Hquant
i (Xn) = Huni

i (Sn) =
Sn
n
,

whatever the dependence structure of individual losses Xi, so that this applies in particular
to exchangeable losses.
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Actuarial fairness property To show that the quantile risk-sharing rule does not nec-
essarily satisfy the actuarial fairness property, let us consider the case where n = 2, X1

has distribution function F and X2 has distribution function F ◦ g−1 where g is a positive,
continuous and increasing function. We have

P
[
Hquant

1 (X2) > v
]

= P
[
S2 >

(
F−1 + g ◦ F−1

)
◦ F (v)

]
= P [S2 > v + g (v)]

= P
[
h−1 (S2) > v

]
with h (v) = v + g (v). It follows that

E
[
Hquant

1 (X2)
]

= E
[
h−1 (X1 + g (Z1))

]
= E

[
h−1 (X1 − Z1 + h (Z1))

]
where Z1 has the same distribution as X1. If X1 and Z1 are comonotonic or g is a linear
function, then E

[
Hquant

1 (X2)
]

= E [X1]. But this is not true in general.

Willingness-to-join property The quantile risk-sharing rule cannot always be beneficial
for all risk-averse individuals since it does not always satisfy the fairness property. Hence
the willingness-to-join property is not necessarily valid.

Fair-bilateral-redistributing property This property cannot hold since the quantile
risk-sharing rule satisfies the normalization property but not the fair-merging property (see
below), in application of Remark 3.54.

Fair-merging property Moving to the fair-merging property, the quantile risk-sharing
rule does not necessarily satisfy it since, for any k 6= l, F−1Xk+Xl

(p) is not always equal to

F−1Xl
(p) + F−1Xl

(p) if Xk and Xl are not comonotonic.

Fair-splitting property Following the same reasoning as for the fair-merging property,
the quantile risk-sharing rule does not necessarily satisfy the fair-splitting property.

Fair-redistributing property This property cannot hold because the weaker fair-bilateral-
redistributing, fair-merging and fair-splitting properties are not fulfilled. See Remark 3.70.

C Proof of Proposition 5.9

First, suppose that Xn is comonotonic. We define the connected support of Xn as follows:{(
F
−1(α)
1 (p) , F

−1(α)
2 (p) , . . . , F−1(α)n (p)

)∣∣p ∈ [0, 1] and α ∈ [0, 1]
}
, (C.1)

similar to the one introduced in formula (29) of Dhaene et al. (2002a). By convention, we

set F
−1(α)
i (0) = F−1+i (0) and F

−1(α)
i (1) = F−1i (1). Let xn = (x1, x2, . . . , xn) be an element

of this connected support and let s =
∑n

i=1 xi. Following a reasoning similar to the one of
the proof of Theorem 7 in Dhaene et al. (2002a), we find that xn is the unique point of the
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intersection of the connected support and the hyperplane {(y1, y2, . . . , yn) |
∑n

i=1 yi = s}. As
the point (h1(s), h2(s), . . . , hn(s)) with the hi defined in (5.15) is an element of the connected
support of Xn, and moreover,

∑n
i=1 hi(s) = s so that (h1(s), h2(s), . . . , hn(s)) is a point of

the hyperplane considered above, we find that

xn = (h1(s), h2(s), . . . , hn(s)) . (C.2)

As this expression hold for any point xn of the connected support of Xn, we can conclude
that (5.14) holds.

Conversely, let us assume that Xn is given by (5.14), with the functions hi defined
in (5.15). As the functions hi are all non-decreasing, it follows immediately that Xn is
comonotonic, see e.g. Theorem 3 in Dhaene et al. (2002a).

Remark C.1. The characterization of comonotonicity in Proposition 5.9 is similar to the one
established in the bivariate case by Denneberg (1994, Prop. 4.5, item v). While Denneberg
(1994) only proves the existence of non-decreasing and continuous functions hi, explicit
expressions of hi are given here.

D Proof that the network-based conditional mean risk-

sharing rule satisfies the full loss allocation condi-

tion

It suffices to write
n∑
i=1

Hi(Xn) =
n∑
i=1

Hii(Sw,i) +
n∑
i=1

∑
j∈C(i)

Hji(Sw,j)

=
n∑
i=1

E [wiiXi |Sw,i ] +
n∑
i=1

∑
j∈C(i)

E [wijXi |Sw,j ]

=
n∑
i=1

E [wiiXi |Sw,i ] +
n∑
i=1

∑
j∈C(i)

E [wjiXj |Sw,i ]

=
n∑
i=1

E

wiiXi +
∑
j∈C(i)

wjiXj

∣∣Sw,i


=
n∑
i=1

Si =
n∑
i=1

wiiXi +
∑
j∈C(i)

wjiXj


=

n∑
i=1

wiiXi +
n∑
i=1

∑
j∈C(i)

wjiXj =
n∑
i=1

wiiXi +
n∑
i=1

∑
j∈C(i)

wijXi

=
n∑
i=1

Xi

wii +
∑
j∈C(i)

wij

 =
n∑
j=1

Xj.

The full loss allocation condition (2.2) is therefore fulfilled.

49



E Proof of Proposition 7.3

The contribution for participant i to the global pool is given by

Hi(Xn) = Hii(Sw,i) +
∑
j∈C(i)

Hji(Sw,j) = E [wiiXi |Sw,i ] +
∑
j∈C(i)

E [wijXi |Sw,j ]

so that Hi(Xn) may be viewed as a sum of contributions obeying the conditional mean risk
sharing rule within #C (i) + 1 sub-pools.

Reshuffling property The reshuffling property is valid provided we assume that the
family of weights are also reshuffled with the components of the loss random vector Xn.

Normalization property The normalization property is valid since each sub-pool satisfies
the normalization property.

Translativity property Translativity holds true because each sub-pool satisfies the transla-
tivity property and wii +

∑
j∈C(i)wij = 1 for i = 1, 2, . . . , n.

Positive homogeneity property Also, positive homogeneity holds true because each
sub-pool satisfies the positive homogeneity property.

Constancy property Constancy is valid because each sub-pool satisfies the constancy
property.

No-ripoff property The no-ripoff property is valid since

Hi(Xn) = E [wiiXi |Sw,i ] +
∑
j∈C(i)

E [wijXi |Sw,j ]

≤ E
[
wiiF

−1
i (1) |Sw,i

]
+
∑
j∈C(i)

E
[
wijF

−1
i (1) |Sw,j

]
= F−1i (1) .

Actuarial fairness property Actuarial fairness holds true because each sub-pool satisfies
the actuarial fairness property and wii +

∑
j∈C(i)wij = 1 for i = 1, 2, . . . , n.

Willingness-to-join property To establish the validity of the willingness-to-join prop-
erty, let us consider a convex function φ. Jensen’s inequality allows us to write

E[φ (Xi)] = wiiE[φ (Xi)] +
∑
j∈C(i)

wijE[φ (Xi)]

≥ wiiE[φ (E [Xi |Sw,i ])] +
∑
j∈C(i)

wijE[φ (E [Xi |Sw,j ])]

= E[wiiφ (E [Xi |Sw,i ]) +
∑
j∈C(i)

wijφ (E [Xi |Sw,j ])].
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Since φ is convex, we then get

wiiφ (E [Xi |Sw,i ]) +
∑
j∈C(i)

wijφ (E [Xi |Sw,j ]) ≥ φ

E [wiiXi |Sw,i ] +
∑
j∈C(i)

E [wijXi |Sw,j ]


and finally

E[φ (Xi)] ≥ E

φ
E [wiiXi |Sw,i ] +

∑
j∈C(i)

E [wijXi |Sw,j ]

 .
Since the latter inequality holds true for any convex function φ, we have Hi(Xn) �CX Xi.

Stand-alone property for comonotonic losses The stand-alone for comonotonic losses
property holds true because each sub-pool satisfies the comonotonic losses property and
wii +

∑
j∈C(i)wij = 1 for i = 1, 2, . . . , n.

Uniformity property for exchangeable losses Uniformity property for exchangeable
losses does not hold since weights are not necessarily uniform.

F Proof of Proposition 7.4

Reshuffling property The reshuffling property is valid since the rule only depends on
(Xi, Sn, In) which is not modified by reshuffling.

Normalization property The normalization property is valid because assuming Xj = 0
is equivalent to have P[Ij = 0] = 1. Participant j has no claim a.s. and never bear losses.

Positive homogeneity property Positive homogeneity holds true because

Hcm,+
i (cXn) = E[cXi|cSn, In] = cE[Xi|Sn, In] = Hcm,+

i (cXn).

Constancy property Constancy is valid since, if Xj = c > 0, then, for i 6= j,

E[Xi|Sn, In] = E[Xi|S(\j)
n−1, I

(\j)
n−1].

No-ripoff property The no-ripoff property is valid since

Hcm,+
i (Xn) = E[Xi|Sn, In] ≤ E[F−1i (1) |Sn, In] = F−1i (1) , for any i = 1, 2, . . . , n.

Actuarial fairness property Actuarial fairness holds true because

E
[
Hcm,+
i (Xn)

]
= E

[
E[Xi|Sn, In]

]
= E [Xi] , for any i = 1, 2, . . . , n.
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Willingness-to-join property The willingness-to-join property is valid since

E[Xi|Sn, In] �CX Xi holds for every i = 1, 2, . . . , n.

Stand-alone property for comonotonic losses The stand-alone for comonotonic losses
property follows from Proposition 5.9.

Translativity property Assume that P[Ij = 1] < 1 and that c > 0. If the vec-
tor of risks is now Xn + c 1j,n, then participant j always contributes to the payment of
Sn and the contributions of the other participants change. It is clear that, for i 6= j,
Hcm,+
i (Xn + c 1j,n) 6= Hcm,+

i (Xn).

Fair-bilateral-redistributing property This property cannot hold since the claim-only
conditional mean risk-sharing rule satisfies the normalization property but not the fair-
merging property (as shown next), see Remark 3.54.

Fair-merging property The fair-merging property does not hold since from the event
{Xk +Xl > 0} it is not possible to know if {Xk > 0} and {Xl > 0}.

Fair-splitting property The fair-splitting property does not hold since the split of Xk

into X ′k and Xn+1 does not necessarily imply that {Xk > 0}, {X ′k > 0} and {Xn+1 > 0} are
equal.

Fair-redistributing property This property cannot hold because the weaker fair-bilateral-
redistributing, fair-merging and fair-splitting properties are not fulfilled. See Remark 3.70.

Uniformity property for exchangeable losses In case Xn is exchangeable, the claim-
only conditional mean risk sharing rule reduces to a uniform allocation among claimants,
that is,

Xn exchangeable⇒ Hcm,+
i (Xn) = Ii

Sn∑n
j=1 Ij

(F.1)

with the understanding that Hcm,+
i (Xn) = 0 when

∑n
j=1 Ij = 0. Thus, we do not recover

Huni in the exchangeable case.
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