Discussion of ‘Asymptotic theory of outlier detection

algorithms for linear time series regression models’

Christophe Croux and Ines Wilms

Faculty of Economics and Business, KU Leuven

We would like to congratulate the authors on their great effort in studying the asymptotic theory of
outlier detection algorithms. In the first part, they provide an overview of the asymptotic distribution of
estimators based on outlier detection. In the second part, they discuss the gauge, the fraction of wrongly
detected outliers, for which they derive an asymptotic theory. The results for the forward search procedure
are particularly impressive and of practical relevance.

In this discussion note, we (i) investigate the sampling variation of the empirical gauge, and (ii) study
the power of the outlier detection test by means of a modest simulation study. An important contribution
of the paper by Johansen and Nielsen (2015) is that the asymptotic results are valid for a wide range of

regressors. For this reason, we also consider two time series settings in our simulation study.

Sampling variation of the empirical gauge

The authors prove that the empirical gauge of Huber skip estimators (Huber, 1964) converge in probability
to the size of the underlying test. This results does not depend on the type of regressors, hence, regressors
may have a deterministic or stochastic trend. We consider the 1-step and 2-step Robustified Least Squares, a
special case of the m-step Huber skip estimator where the initial estimator is the full sample Least Squares.
Besides, we also take the Least Trimmed Squares (Rousseeuw, 1984) with trimming proportion 50% as initial
estimator.

Let the number of regressors k be one or five, and the sample size n = 100. Bold symbols refer to vectors,
and a bold constant refers to a vector of length k where every component equals the constant. The three

simulation designs are

1. Linear regression model:
yi = a+ 8% + e,

fori=1,...,n, where a = 0.5, 8 = 1, x; are i.i.d. Ni(0,I), and ¢; are i.i.d. N(0,0.12).
2. Stationary time series model:
Yi =+ dyyio1 + PLxi_1 + €,
fori=1,...,n, where a = 0.5, ¢, = 0.4, ¢, = 0.2, x; are i.i.d. Ni(0,I), and ¢; are i.i.d. N(0,0.12).

3. Trending time series model:
yi = a+ B'x; + €,



Table 1: Empirical gauges for the three designs (with each n = 100), population gauge 7, and number of

regressors k with either the Least Squares or the Least Trimmed Squares as initial estimator.

Design Steps  Initial estimator v =0.05 v = 0.005
k=1 k=5 k=1 k=5
Linear regression 1-step  Least Squares 0.0504 0.0479 0.0049  0.0040
2-step  Least Squares 0.0518 0.0508 0.0050 0.0041

1-step  Least Trimmed Squares 0.0625 0.0689 0.0092 0.0112
2-step  Least Trimmed Squares 0.0617  0.0692 0.0086 0.0105

Stationary time series 1-step Least Squares 0.0500 0.0478 0.0044  0.0039
2-step  Least Squares 0.0518  0.0505 0.0044 0.0039
1-step  Least Trimmed Squares 0.0653 0.0707 0.0096 0.0126
2-step  Least Trimmed Squares 0.0648 0.0714 0.0090 0.0118

Trending time series 1-step  Least Squares 0.0477 0.0478 0.0044  0.0041
2-step  Least Squares 0.0492  0.0507 0.0044  0.0042
1-step  Least Trimmed Squares 0.0609 0.0698 0.0085 0.0123

2-step  Least Trimmed Squares 0.0600 0.0703 0.0079 0.0116

for i = 1,...,n, where @ = 0.5, B8 = 1, regressors x; = 0.5 + @ + v;, with v; are i.i.d. Ng(0,I) and

autoregressive error terms €; = 0.5¢;_1 + u;, with u; are i.i.d. N(0,0.12).

The empirical gauges for the three simulation designs are in Table 1. The empirical gauges of the Huber
skip estimators with Least Squares as initial estimator are accurately sized, also for the two time series
models.

For k = 1, empirical gauges of the 1-step and 2-step estimators are very similar and close to the population
gauges. For k = 5, the empirical gauges slightly deviate from the population ones. A small-sample size
correction might improve the results, but this requires future research.

Using the Least Trimmed Squares, a robust estimator, as initial estimator, the empirical gauges are more
distorted. This holds for both the 1-step and 2-step estimator. The Least Trimmed Squares estimator is less
efficient than the Least Squares estimator (in absence of outliers, and at normal errors), which creates small

size distortions.

Power of the outlier detection test

We evaluate the power of the outlier detection tests related to the 1-step and 2-step Huber skip estimators.
Consider the three simulation designs from the previous section with £k = 1. We take a contaminated setting
where € x 100% of the observations are bad leverage points. We consider two bad leverage point locations!:
one close to the bulk of the data, one distant from the bulk of the data, and two contamination levels
€ = 0.01,0.05. The power of the outlier detection test is assessed by the fraction of actual outliers detected,

averaged over M = 1000 simulation runs.

LFor the linear regression design: point concentration at (x;,y;) = (10,0) and at (50,0); for the stationary time series design:
point concentration at (z;,y:—1,¥:) = (5,5,0) and at (100,100, 0); for the trending time series design: point concentration at
(x4, i) = (400,0) and at (500,0).



Table 2: Power of outlier detection test when either the Least Squares or the Least Trimmed Squares is used

as initial estimator, for the three designs, different contaminated levels € and two outlier locations.

Design Steps  Initial estimator Outliers Outliers
close distant
e=0.01 €=0.05 e=0.01 €e€=0.05

Linear regression 1-step  Least Squares 1.00 0.02 0.36 0.00

2-step  Least Squares 1.00 0.02 0.36 0.00

1-step  Least Trimmed Squares 1.00 1.00 1.00 1.00

1-step  Least Trimmed Squares 1.00 1.00 1.00 1.00

Stationary time series 1-step Least Squares 1.00 0.00 0.00 0.00

2-step  Least Squares 1.00 0.00 0.00 0.00

1-step  Least Trimmed Squares 1.00 0.99 1.00 0.99

2-step  Least Trimmed Squares 1.00 0.99 1.00 0.99

Trending time series 1-step  Least Squares 1.00 0.00 0.00 0.00

2-step  Least Squares 1.00 0.00 0.00 0.00

1-step  Least Trimmed Squares 1.00 1.00 1.00 1.00

2-step  Least Trimmed Squares 1.00 1.00 1.00 1.00

When there is only one outlier (e = 0.01) close to the bulk of the data, all outlier detection algorithms
succeed in detecting the actual outlier: the power of all algorithms equals one, as can be seen from Table 2.
The power of the outlier detection algorithms based on the Least Squares as initial estimator is, however,
affected in all other designs. When the outliers are located far away from the bulk of the data, the power
already deteriorates when there is only one outlier (¢ = 0.01). When the outliers are located close to the
bulk of the data, the power goes to zero only for higher amounts of contamination (e = 0.05). The 1-step
and 2-step algorithms perform similar, as can be seen from Table 2.

This effect occurs since the Least Squares, a non-robust estimator, is used as initial estimator. As soon as
the algorithm includes one non-robust estimator, the power of the corresponding test is affected. Increasing
the number of steps in the algorithm will not improve the power. This problem can be circumvented by
using a robust estimator as initial estimator, such as the Least Trimmed Squares. The power of the outlier
detection algorithms that use the Least Trimmed Squares as initial estimator is much less affected, as can

be seen from Table 2.

Conclusion and further comments

We investigate the performance of the empirical gauge, the fraction of wrongly detected outliers. An im-
portant novelty of the developed asymptotic theory is that the results are valid for trending time series
regressors. Our simulation study on the gauge confirms this. When no contamination is present, using a
robust initial estimator results in a small efficiency loss, and hence, small size distortion compared to using a
non-robust initial estimator. We study the power of the outlier detection test based on the Robustified Least
Squares, and show that it breaks down when bad leverage points are present. This occurs since the outlier

detection algorithm uses a non-robust initial estimator. The non-robust Least Squares estimator is heavily



influenced by the bad leverage points. This leads to large absolute residual values for the clean observations
and small absolute residual values for the outliers. As a result, the actual outliers are not detected as outly-
ing. This effect is known as the “masking effect” (Rousseeuw and Leroy, 1987). This masking effect can be
circumvented by using an initial estimator that is robust, such as the Least Trimmed Squares.

The paper assumes that the density of the errors, f, is known up to a scale parameter. In particular,
the gauge will only be estimated consistently if f is correctly specified. For the consistency of the associated
estimators it is sufficient that f is symmetric. It would be interesting to know whether symmetry is really
necessary, since for M-estimators, for instance, the slope parameter can still be estimated consistently for
asymmetric errors.

It would also be of interest to see how the results change when the cut-off value ¢ is allowed to depend
on the sample size. To address multiple testing issues, it makes sense to let ¢ increase with the sample size.
Finally, the results on the Poisson approximation of the gauge are very elegant, and we wonder whether they

are of use in cases where the number of outliers is very small, but still increase with the sample size.
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