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Abstract

Several Data Envelopment Analysis (DEA) models use a radial distance measure
that is based on the Debreu-Farrell notion of (in)efficiency. While this measure has
an attractive interpretation, its use may be problematic if slacks or zeros in the data
are present. The additive DEA model can perfectly deal with these problems, but
the meaning of its associated scores is less intuitive than the one attached to the
radial measures. We introduce an alternative efficiency measure, based on the results
of the additive model, that can be decomposed in a Debreu-Farrell component and
a factor that captures differences in input-output mixes w.r.t. those of the best
practice reference observation. On an aggregate level, this second component can be
considered as an indicator of the dispersion between radial efficiency measurement
and results based on the Pareto-Koopmans efficiency notion. On the individual level,
the measure allows to regard relative inefficiency as resulting from (i) a divergence of
implicit cost price vectors, and (ii) a cost level that is too high, even after adjustment
for the implicit cost prices.
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1 Introduction

Data Envelopment Analysis (DEA) as an efficiency measurement tool essentially starts
from observed data, usually in the context of production, to (i) create a best practice
envelope by means of mathematical programming techniques, and (ii) use this reference
frontier and a distance concept to compute efficiency measures for all observations. While
several DEA-models exist, many of them have in common the use of a relative radial
distance measure to be employed in the second of these above steps. Indeed, the two
benchmark DEA models of Charnes, Cooper and Rhodes (CCR; 1978,1979) and Banker,
Charnes and Cooper (BCC; 1984) aimed to put into practice the notion of efficiency as
expressed in the earlier work of Debreu (1951) and Farrell (1957). In an environment where
multiple inputs are used to produce multiple outputs, the Debreu-Farrell input measure
is computed as one minus the maximum equiproportionate reduction in all inputs which
still allows for production of the given amount of output, while the Debreu-Farrell output
measure is also defined with reference to the maximum feasible equiproportionate output
expansion.

Next to this ‘historical’ explanation for their popularity, these measures have some
attractive properties both for the practitioner who needs to communicate DEA results,
and for the scholar interested in the relationship between DEA and the microeconomic
theory of production. The former can summarize multiple dimensions in one scalar, and
express the (in)efficiency ‘score’ of any observed productive unit as a degree. The latter
may well appreciate the close link between the Debreu-Farrell measure and Shepard’s
distance function, and the related fact that —even if prices are not observed— the mea-
sures have a straightforward cost interpretation. Specifically, they can be written as the
ratio of minimal to actual costs (input orientation) or actual to maximal revenues (output
orientation), independently of the price vector which is used [see Russell (1985)].

Next to the Debreu-Farrell efficiency notion, there exists another widely used concept
introduced by Koopmans (1951), which is commonly referred to as Pareto-Koopmans
efficiency. In this case a decision making unit (DMU) is said to be technically efficient if
an increase in any output or a decrease in any input requires a decrease in at least one other
output or an increase in at least one other input. The radial (equiproportionate) nature of
comparisons is clearly abandoned in the second of these notions. Evidently then, Debreu-
Farrell efficiency does not necessarily imply Pareto-Koopmans efficiency. Indeed, if slacks
are present, the Debreu-Farrell approach may lead to an observation being compared to
a reference DMU which is not Pareto-Koopmans efficient. The problem is somewhat
mitigated by appending any slacks, weighted by the “infinitesimal” constant ¢, to the
value of the radial measure. It is known that this often employed solution does have
some drawbacks. First, as in any practical application € must be given some value, it
can give rise to computational problems [see Ali (1994)]. A second, more fundamental
critique is that, though the use of ¢ excludes Pareto-Koopmans dominated observations
from being identified as efficient, it falls short in eliminating the total impact of slacks on
the eventual efficiency scores. Especially when slacks are large and occur frequently they
could influence the efficiency scores and rankings considerably, which in turn could result
in wrong management conclusions.



In some applications slacks indeed appear systematically while not being insignifi-
cantly small. In such cases it seems more appropriate to call for non-radial measures
computed from comparison of each observation to a reference DMU which is not domi-
nated in the Pareto-Koopmans sense. The Fire-Lovell (1978) and the Zieschang (1984)
measures are two examples belonging to this class. A comparative study by Ferrier,
Kerstens and Vanden Eeckaut (1994) shows that both measures have some favourable
characteristics, making them a recommendable alternative for the radial measure when
substantial amounts of slacks are present.

Ferrier, Kerstens and Vanden Eeckaut noted however another problem associated with
the Fére-Lovell and Zieschang efficiency measures, viz. the fact that they, just as radial
measures [see Thompson, Dharmapala and Thrall (1993)], cannot easily handle zero input
and output data!. While at first sight a solution may be offered by affine displacements
of the data, Ali and Seiford (1990) made clear that translation invariance pertains only
to the classification of DMUs as efficient or inefficient. The actual efficiency scores and
rankings can be altered. Moreover, this limited invariance only holds for models such
as the BCC-model, containing a convexity constraint which reflects the assumption of
variable returns to scale. These features carry over to the Fére-Lovell and the Zieschang
classification.

A model that handles both the slack-problem and the occurrence of zeros in data is the
additive model of Charnes et al. (1985), which we will discuss in somewhat more detail
below. For the moment we point at some problems associated with the scores obtained
from the additive DEA-model as it was originally formulated. First, unlike the Debreu-
Farrell measures the scores lack an attractive “degree” interpretation. They equal zero for
an efficient observation and are negative for an inefficient observation. No dimensionless
meaning attaches to the magnitude of the negative value, the latter being constructed as a
sum of slacks. However, this can be and has been overcome by a particular rescaling of the
scores (see below). A second inconvenience is that efficiency analysis based on this model
is not ‘oriented’. Unlike e.g. the BCC model, the original additive DEA model does not
split up global efficiency of an observation into an input and output component. Pastor
(1994) showed that this second drawback can easily be solved by a simple modification of
the original additive model, which will be introduced in the next section.

We will use the latter modification to introduce an alternative relative (input and
output) efficiency measure computed from the additive results. The associated efficiency
scores can be decomposed in an appealing way. Specifically, they are the product of a
classical radial measure and a factor that captures differences in input-outputmixes of an
evaluated observation vis-a-vis its best practice reference. Thus, even if the nature of a
dataset prevents or complicates the use of a Debreu-Farrell measure, related information
can be obtained from a slack-based measure. Moreover, if the same dataset justifies
the use of non-radial projections on the efficient frontier, this implies that an inefficient
observation can in principle also learn from the input-output mix of its best practice

'In fact Fire, Lovell and Zieschang (1983) proposed a solution for the zero problem. The idea was
to modify the measures so that any influence of zero dimensions on the efficiency measure was avoided.
This implied, however, that the performance of different observations was measured relative to spaces of
different dimensionality.



reference observation. In general, aggregate information about the importance of the
mix-deviation factor can be considered as an indicator of the dispersion between Debreu-
Farrell efficiency measurement and results obtained by referring to the Pareto-Koopmans
efficiency notion. In the third section the output measure will be illustrated using the
application of Nash and Sterna-Karwat (1996). The final section will reproduce our main
findings and briefly comment on some possible generalizations.

2 Proportional slack based measures: construction
and interpretation

As a preliminary step let us first consider the original additive model as it was formulated
by Charnes, Cooper, Golany, Seiford and Stutz (1985). This model relates efficiency
results to the notion of Pareto-Koopmans efficiency. Referring to the previous section,
inefficiency in the Pareto-Koopmans sense implies that for the examined DMU there
exists at least one other feasible input-output vector which weakly exceeds all of the
DMU’s output levels while simultaneously not using more of any of the DMU’s input
levels, with strict inequality of at least one component (input or output). The test for
Pareto-Koopmans optimality for an observation o thus amounts to solving the following

linear program?:

Model 1 : Additive Model

min z, = —elst —el's™
Ast s~

such that:
Y\—sT =Y,
XA =57 =-X,
efA=1
A st sT >0
where Y is a non-negative output matrix and X a non-negative input matrix, with
ith columns Y; and X, respectively. The vectors s™ and s~ contain the output and input
slacks. The vector e is the sum vector.
Clearly the efficiency score, z,, is exclusively composed of a sum of slacks. As such z,

is not units invariant, a problem that can be solved by prescaling the data. A commonly
used scaling procedure is to divide each input (or output) in a DMU’s vector by the

2For the purpose of this paper it suffices to consider only the so-called envelopment formulation of the
additive model. Note that one could equally well use the dual, “multiplier” formulation.
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average observed input (or output) in its category. The analysis can then be performed
on the scaled data. This procedure boils down to substituting the objective function of
model 1 by the following:
,\,Isl}ri,Islf 2o = —eTDy_AlsJr — eTDw_js_

with D,, and D, , representing the diagonal matrices of output and input averages,
respectively. Still, this formulation lacks the degree interpretation associated with the
Debreu-Farrell measure. To obtain a relative score, the following measure, first proposed
by Charnes, Cooper, Golany, Seiford and Stutz (C?GS?;1984), can be computed from the
additive results:

e’ D, 1Y XN + el D, IX\

2 2
= 1
CGs e’ DY N + el DX\ + el Dy lst* + el D s™ (1)

where the superscript (*) denotes an optimal value. Loosely speaking, the measure is
computed as the ‘sum of targets’ divided by a sum of the ‘sum of targets’ and the ‘sum of
slacks’ [see also Haag, Jaska and Semple (1992)]. The C?GS? measure has the property
that scores are ‘dimensionless’ in that they lie between zero and one.

Model 1 provides a measure for the overall efficiency of an observation. It is conceivable
that in some applications one is interested in allowing for a separate reference point for
input and output (in)efficiency. This information would be obtained by an input oriented
and an output oriented additive model respectively [Pastor (1994)]. Essentially, this re-
quires each observation to be compared with all Pareto-Koopmans efficient feasible input-
output combinations that use at most the same amount of input (output orientation) and
with all Pareto-Koopmans efficient members of the production set that produce at least
the same amount of output (input orientation), respectively. Overall Pareto-Koopmans
efficiency is achieved by an observation which is as well input as output efficient.

In a first step one should identify the Pareto-Koopmans efficient DMUs. To do so the
original additive model should be applied. Suppose there are N observations of which the
additive model labels ¢ as efficient. Let us denote by X* and Y* the input and output
matrices associated with these efficient observations. For each of the N — ¢ inefficient
observations the following input and output oriented additive problems should then be
solved:



Model 2 :
Input Oriented Additive Model

min z, = —els™
A st s~
such that:
Y*\— st =Y,

—X*A—s =-X,
efx=1

Ast,s >0

Model 3 :
Output Oriented Additive Model

min z, = —elst
A st s~

such that:
Y*AN—st =Y,
—X*A—s =-X,
efd=1

Ast s >0

The input and output efficiency measures we present below are easily computed using
the results of models 2 and 3. We will first concentrate on the input measure, so as to
sketch the basic intuition. Afterwards we will introduce and apply the output measure.

Solving model 2 results in an input efficiency rating which measures the maximum ¢;
or one-norm distance that a particular DMU lies from the reference vector on the (input)
efficiency frontier. The same reference vector is also used for determining our efficiency
measure, which explains the “slack-basedness” appearing in the title of this paper. Now,
however, we switch from the one-norm orientation to the more popular two-norm, /s
or euclidean distance to arrive at a proportional measure. The input efficiency of an
observation with input vector x and slack vector s~ is then computed using the following
simple formula:

lzrll _ VZrTR

=] VaTz

, With xg =2 — s~ (2)

Like the Debreu-Farrell measure, (2) shows that the “degree” of inefficiency is com-
puted by dividing two radial distances. However, the numerator is no longer found using
equiproportionate input projections. Taken together it implies that the directions of the
two radial vectors will in general not coincide. This deviation has a clear intuition, as we
will now demonstrate.

In figure 1 an input vector z, (= (7,4)) is drawn. Suppose that the additive model
has selected vector x,(= (2,3)) as its reference vector. The vectors z, and x, differ in
two dimensions. First, there is the obvious fact that x, Pareto-dominates z,. Second,
the input mixes of z, and x; differ. Indeed, the proportion % for z, is % whereas it

only amounts to % for x,. The latter results from different implicit cost price vectors,
respectively v, (= (1,7/4)) and v, (= (1,2/3))3.

Applying (2) yields an efficiency score of 44.72 % for x,. This score can be decomposed
in two factors. To see this we first construct the lines perpendicular to the radials through

3The first input is taken as the numéraire.



Figure 1: An illustrative example

8 - \(26/2)=x1+(3/2)x2
™~ N\ (65/7)=x, +(47)x,
~ .
- , \
6 - « Xc A
RN \
~ \
~
N ~ 6\
= \K -
é_ 4 B N /\6 X a
IS AN - ANN -
N
Xb \
RN \
N
2 AN
. ~
v ~
, ~N _
5 ~ (13/2)=x, +(3/2)x,
S ™~
0+ ‘ ‘ | |
0 2 4 6 8
Input x |

r, and xp. These lines take the form 3; = wlwz; (i = a,b), with w, and w;, equalling

(1,4/7) and (1, 3/2), respectively. Both perpendiculars are depicted in figure 1, together
with a line through x, which is parallel to the perpendicular through x,. This allows us
to identify x., which is the closest projection of z, on the radial through x;.

In fact x, corrects for the deviation between v, and v,. In order to get from z, to x,
one first needs to adjust the input-mix (z, — z.), so as to apply an equiproportionate
reduction of all inputs (z. — ;) afterwards. The inefficiency of x, thus results from (i) a
deviation from the reference cost price vector and (ii) a cost level which is too high, even
after adjustment for the implicit cost prices.

An appropriate measure for (i) is the cosine of the angle between the vectors z; (or
z.) and z,. The ratio of the cost level of x; over the cost level of z. constitutes a measure
for (ii). In fact, the latter is a measure for the ratio of minimal to actual costs after
correction for the implicit price vector. This clearly refers to the cost interpretation of
the radial efficiency measures stressed by Russell (1985). We can now decompose the
input efficiency measure (2) as follows:

Proportional, Slack Based Input Efficiency Score for x,

t level b
_ costlevel b x cosf, with 6 the angle between z, and z; (or z.)
cost level ¢

ngEb .’Egl‘b
= T X

wyZa ||zl X ||zl
= 0.5 x0.8944



= 44.72 %

The above example illustrates how the input efficiency measure (2) can be decomposed
into two components. The first component captures the radial inefficiency due to a higher
cost level after adjustment for the implicit vector (Debreu-Farrell component (DF)). The
second component captures the inefficiency due to the deviation of the actual (implicit)
cost price vector from the reference cost price vector (Implicit Price Correspondence com-
ponent (IPC)). Its value will equal one if both cost price vectors coincide, and it will be
lower as the price vectors deviate. Measure (2) thus expresses the idea that in a multi-
ple input setting there are two sources of inefficiency. Indeed, efficiency does no longer
only depend on a ratio between minimal to actual inputs but also on the proportion be-
tween the several inputs. Stated otherwise, as compared to the Debreu-Farrell measure
the input-outputmixes of observations that are found to be inefficient (or equivalently,
their implicit price vectors) are no longer sacrosanct when looking for a best practice
reference DMU. Instead, the picture is reversed and inefficient DMUs can learn from the
input-output mix of their identified reference DMUs.

In the general case the additive model will identify vector zy as the reference input
vector for x. Denoting the vectors which define the perpendicular on the radials through
x and xR as respectively wr and w, we get:

T T
Input Efficiency Measure = || wRTxR T TR 3
[zl wrz 2] x 2kl

An analogous formulation holds for the slack based output efficiency measure?:

T T
URY « Y Yr (4)

upyr |yl x l|yzll

Output Efficiency Measure =

where y and yr denote the actual and reference output vector, respectively. The
vectors u and ug define the perpendiculars on the radials. Note that these perpendiculars
coincide with the implicit isorevenue lines, so that v and ug are in fact implicit revenue
price vectors. The interpretation of the output measure follows immediate. It is notably
the output measure (4) which will be used in the next section.

3 Application

To illustrate the measure and its decomposition we will apply it on a problem taken
from Nash and Sterna-Karwat (1996). These authors analysed the efficiency of financial
product cross-selling for a sample of 75 bank branches. Cross-selling efficiency refers to
the amount of related products that is sold with the sale of a major product. In the
study housing loans were identified as being the major product. Four associated products

4Note that one cannot take % as a measure for output efficiency as this ratio can be decomposed in

: ol “éy v yr 1043 1
the following way: Torl = wlyn X {1 / (HyH ~TonT ) |- Deviations from the reference output proportions

would thus be rewarded, which is clearly undesirable.
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were selected. The ratio of each of these products over the amount of housing loans sold
provides a partial measure of cross-selling efficiency. The Nash and Sterna-Karwat data
are (also) reported in the appendix.

The sample has two particular features. First there are zeros in the data set as some
branches did not cross-sell certain products during the period considered. This is a first
reason why the popular radial models cannot be employed. But there is also a second
reason why they do not seem appropriate. A number of branches perform relatively well
on some products while there is only a poor performance with respect to other products.
Obviously, in these cases it does seem hard to defend that a measure capturing the
maximum equiproportionate expansion in all outputs will adequately reflect the overall
relative cross-selling efficiency.

In a first exercise the original additive model was employed. From the additive results
the C?GS? scores were computed. It appeared that the many zeros in the data dis-
torted the analysis of the branch cross-selling power considerably. Some branches entirely
specialized in selling large amounts of two or three products. This feature apparently
disadvantaged branches that provided each of the four products, as they were largely out-
performed by linear combinations of specialized DMU’s. No branch selling all four of the
products was identified as being relatively efficient. Therefore, Nash and Sterna-Karwat
introduced a modified additive model, designed so as to mitigate the impact of the many
zero entries. A new ‘output’ was introduced in the form of a count of how many differ-
ent types of products were sold by a branch over the period considered. Its value could
range from 1 to 4. If the corresponding ‘counts’vector is denoted by ¢ (with ¢; as its jth
element), the eventual model, which we will refer to as the “trade-off”-DEA model in the
following, is model 1 (or, equivalently, model 3) with all reference to input being omitted
and the following constraint included:

c'>c,

As noted by Nash and Sterna-Karwat, the idea here is that there exists a trade-off
between offering more products and achieving high loan-product ratios for each of the
products provided®. The above restriction is important in so far that it restricts the set
of potential reference points. The associated slack value is not captured by the objective
function, however.

We also applied a third model to compute cross-selling efficiency scores, viz. the
additive FDH model [see Bardhan et al. (1996)]. The applied model equals model 1 (or
model 3) without references to input and adds to this the integrality constraint A; € {0,1}
(V7). Every inefficient observation is now compared to only one dominating observed
output combination. This entails that an observation which provides, e.g., four products
will be evaluated against an actually observed reference point providing all of the four
products. The reference vector can no longer be a convex combination of two or more
specialized observations. Clearly the FDH additive model is more generous than the two

5To some extent, this view can be reconciled with the argument of Byrnes, Fire and Grosskopf [1984]
that zeros in data represent fundamental characterisations of the observed decision making process. There
it is argued that a manager who does not use a particular input or produce a particular output has made
a conscious decision choice to do so and that it is this decision choice which should be analysed.

9



alternatives discussed above. All observations which are not strictly dominated in each
of the four dimensions by an observed output vector will be labelled efficient.

C?G'S? output scores were computed for all three reference frontiers. Note that in this
particular application formula (1) reduces to:

eTDy’AlY)\*
eTD 1Y X 4 eI D, Lste ’

C?GS? =

so that the ‘sum of slacks’ can at most equal the ‘sum of targets’. Consequently the lower
bound for the C*GS? measure equals one half, which seems odd in comparison with other
efficiency measures. While rescaling the scores is of course always a possibility, there is
still no clear intuition for the cardinal C*G.S? scores. All that can be said a priori is that
they equal one for efficient DMUs and that they will be lower the further an observation
lies from its reference point. The C*G.S? output scores were compared with the efficiency
scores obtained by the output oriented measure (4), and the two parts of which it is
composed.

Table 1 provides some summary statistics about the C?GS? and the price-adjusted
proportional, slack based efficiency results (and their DF' and IPC components) for each
of the three models discussed above (respectively referred to as DEA, trade-off DEA
and FDH). We find that the Spearman rank correlations are much higher for the FDH
application than for the DEA and trade-off DEA applications. This contrasts with the
overall score correlations, which are more or less the same. This result mainly follows
from the fact that the DEA and trade-off DEA scores are mostly very low and for a great
deal packed together, so that small shifts in scores may give rise to substantial shifts in
rankings. The FDH scores, on the contrary, are more evenly distributed over the whole
[0,1]-range resulting in less sensitive rankings.

Still other observations can be made from table 1, such as the relatively high average
and minimum values associated with the FDH model, which reflect the generosity of the
methodology. There is also the relatively low correlation between the C*GS? and IPC
results. This finding has straightforward intuition as the C?GS? measure only captures
the (relative) distance from the target point and does not consider deviations from the
target’s implicit price vector.

Unlike the C%2G'S? measure, the measure (4) also captures the deviation from the
reference implicit price vector. Figure 2, which displays the histograms for the IPC
components in the DEA, trade-off DEA and FDH applications, suggests that these price
deviations can differ considerably across observations. It is seen that the most stringent
model, the original DEA additive model, implies generally low IPC' scores. Application
of the most generous model, i.e. the additive FDH model, on the other hand, leads to
higher IPC' scores. But even then price deviations are distributed over a substantially
large range. In general, such results may act as a signal that, as far as the examined dataset
is concerned, there is a wide dispersion between Debreu-Farrell efficiency measurement
and results obtained by referring to the Pareto-Koopmans efficiency notion.
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Table 1: Summary statistics

DEA trade-off DEA FDH
Scores correlation (Pearson):
C?*GS*-price-adjusted 0.9890 0.9859 0.9808
C?GS?*-DF 0.9913 0.9861 0.9812
C*GS%-IPC 0.4965 0.6437 0.6179
Rankings correlation (Spearman):
C?GS?-price-adjusted 0.2701 0.7590 0.9557
C?*GS?-DF 0.5377 0.8336 0.9714
C*GS*-IPC -0.0137 0.6050 0.8761
Standard deviation of scores:
C?GS? 0.1092 0.1479 0.1971
price-adjusted 0.2258 0.3216 0.4064
DF 0.2263 0.3167 0.3957
IPC 0.2980 0.3180 0.2090
Average score value:
C*GS? 0.5522 0.6051 0.7108
price-adjusted 0.0692 0.1779 0.4449
DF 0.0817 0.2019 0.4617
IPC 0.3799 0.5251 0.8380
Minimum score value:
C?GS? 0.5063 0.5202 0.5216
price-adjusted 0.0002 0.0009 0.0151
DF 0.0026 0.0090 0.0378
IPC 0.0605 0.0985 0.2947

Analysing the price deviations somewhat further, we find for the DEA model and
(to a somewhat lesser extent) for the trade-off version that especially the implicit price
deviations for the fourth product are substantial (see figure 3, where output 2 is taken
as the numéraire). This mainly follows from the fact that one observation (branch 3),
which provided only two products, is heavily specialised in the fourth product. When
searching for reference output combinations for inefficient DMUs, the weight attributed
to this observation is generally high, which causes considerable differences between actual
and reference implicit prices for the fourth product. On the other hand, the FDH model
does not allow to compare with linear combinations of efficient DMUs. Only actually
observed combinations can be used as reference points. The highly specialised DMU thus
only constitutes a possible reference for similarly specialized branches. Apparently this
applies for only two observations (44 and 61).

Let us, finally, take a closer look at some individual results. The appendix gives
the FDH results for the whole set of DMUs. Consider branch 18 which is compared to
observation 11. This observation has a moderate DF' score of 69 percent. Its IPC score,
on the contrary, amounts to 98 percent. Indeed, the output proportions of observation
18 are close to the reference output proportions. This is hardly the case for observation
57, which is dominated by observation 4. The low IPC score can be explained by the

11



Figure 2: Histograms implicit price correspondence (IPC) components
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fact that branch 4, while attaining only moderately higher values for the product ratios
1, 2 and 4, achieves a very high cross-selling ratio for product 3, which is not provided by
DMU 57. The ‘mix efficiency’ of the latter is therefore very low. Observation 48, which
has 1 as reference branch, does not deviate much from its best practice peer w.r.t. the
relative product prices that underly the observed mix. The Debreu-Farrell distance from
the reference point (after correction for the implicit prices) is considerable, however. In
this respect, branch 15, which shares the same reference observation, fares much better.
Observation 48 could also be compared to branch 14. Both have bad scores on the “level-
test”, but branch 48 performs better w.r.t. mimicking the output-composition of its best
practice reference. Such examples indicate that both components of the measure may
provide the researcher with interesting information about (i) whether radial measurement
would yield results that deviate to a considerable extent from Pareto-Koopmans efficiency
measurement, and (ii) the inefficiency of a DMU in relation to its reference observation,
both in terms of input/output composition as well as in level terms.

4 Comments and conclusion

While radial efficiency measures possess an attractive interpretation, they do not always
conform to the Koopmans definition of technical efficiency. Moreover, in many cases,
such as the classical CCR and BCC model formulations, strictly positive data entries are
required throughout the complete data domain. Both of these problems restrict their field
of applicability.

A model which does not face the above difficulties is the additive model. The asso-
ciated score lacks an intuitive interpretation, however. Therefore we introduced another
efficiency measure which is constructed from the additive results. In this paper we pro-
posed to solve an (input- or output-) oriented additive model in a first step. Note that
this is not strictly necessary -one could equally well compute input and output scores
directly from the original additive results- but it allows to identify different reference sets
according to the orientation.

The measure discussed in this paper, which has both an input and an output version,
can be decomposed into a Debreu-Farrell and an implicit price correspondence compo-
nent. As we tried to made clear using the Nash and Sterna-Karwat (1996) application,
both components offer information that can be interesting when evaluating productive
activities.

While we have opted to introduce this measure using an oriented additive model,
we note here that in general such a decomposable measure need not necessarily be slack
based. In fact it can be computed as soon as one disposes of a reference point for the DMU
under study. One could, for instance, first identify the reference point used to calculate
the Fire-Lovell (1978) or Zieschang (1984) efficiency score and compute a measure similar
to (4) or (5) in a second step. Especially when the reference price vector differs from
the actual implicit price vector (i.e. when the reference DMU does not coincide with
an equiproportionate projection) the measure presented here captures useful information
precisely on the deviation between these implicit relative prices (and their associated

13



input-outputmixes).

Of course, DEA is an efficiency measurement tool rather than a panacea. Options

concerning the choice of measure(s) or assumptions on the reference technology are finally
in the hands of the evaluator, who should therefore have an eye for the particular problem
and data at hand. This is all the more true if one recognizes, as in our example, the
substantial impact of such options on the eventual efficiency scores and, consequently, on
the possible management conclusions.
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Appendix: Data and FDH results

Product 1 Product 2 Product 3 Product 4 Score

Branch  Actual Reference Actual Reference  Actual Reference Actual  Reference DF PD slack based

1 1176 1176 158 158 183 183 0 0 1,0000 1,0000 1,0000
2 255 255 297 297 0 0 125 125 1,0000 1,0000 1,0000
3 0 0 198 198 0 0 3900 3900 1,0000 1,0000 1,0000
4 215 215 85 85 767 767 62 62 1,0000 1,0000 1,0000
5 77 77 168 168 31 31 38 38 1,0000 1,0000 1,0000
6 158 158 126 126 12 12 19 19 1,0000 1,0000 1,0000
7 0 0 465 465 79 79 0 0 1,0000 1,0000 1,0000
8 120 120 82 82 49 49 156 156 1,0000 1,0000 1,0000
9 85 85 86 86 61 61 146 146 1,0000 1,0000 1,0000
10 80 80 22 22 67 67 146 146 1,0000 1,0000 1,0000
11 57 57 73 73 68 68 139 139 1,0000 1,0000 1,0000
12 94 94 87 87 259 259 20 20 1,0000 1,0000 1,0000
13 0 0 57 57 24 24 780 780 1,0000 1,0000 1,0000
14 215 215 85 85 87 767 27 62 0,1887 0,6103 0,1152
15 851 1176 112 158 0 183 0 0 0,7066 0,9883 0,6983
16 125 215 66 85 152 767 16 62 0,2324 0,8971 0,2085
17 41 41 119 119 72 72 28 28 1,0000 1,0000 1,0000
18 53 57 53 73 65 68 80 139 0,6897 0,9759 0,6730
19 14 215 57 85 232 767 6 62 0,2884 0,9679 0,2791
20 100 100 92 92 41 41 42 42 1,0000 1,0000 1,0000
21 39 215 77 85 105 767 57 62 0,1533 0,8360 0,1282
22 501 501 66 66 203 203 0 0 1,0000 1,0000 1,0000
23 59 59 109 109 40 40 25 25 1,0000 1,0000 1,0000
24 55 215 58 85 90 767 21 62 0,1349 0,8870 0,1197
25 90 215 79 85 37 767 23 62 0,0865 0,5457 0,0472
26 78 215 61 85 21 767 43 62 0,0631 0,4609 0,0291
27 43 215 63 85 29 767 59 62 0,0627 0,5006 0,0314
28 35 215 59 85 61 767 37 62 0,0955 0,7749 0,0740
29 32 215 69 85 30 767 52 62 0,0604 0,5007 0,0302
30 33 215 73 85 47 767 35 62 0,0798 0,6460 0,0516
31 29 77 97 168 25 31 25 38 0,5540 0,9878 0,5473
32 17 215 53 85 27 767 54 62 0,0499 0,4883 0,0244
33 25 215 71 85 16 767 46 62 0,0411 0,3683 0,0151
34 41 215 54 85 17 767 40 62 0,0448 0,4470 0,0200
35 92 92 122 122 374 374 0 0 1,0000 1,0000 1,0000
36 0 0 408 465 0 79 0 0 0,8528 0,9859 0,8408
37 327 1176 150 158 21 183 0 0 0,2859 0,9525 0,2723
38 10 215 61 85 23 767 48 62 0,0433 0,4265 0,0185
39 35 77 101 168 14 31 7 38 0,5570 0,9858 0,5491
40 42 215 55 85 34 767 17 62 0,0633 0,6437 0,0407
41 0 215 72 85 359 767 28 62 0,4387 0,9599 0,4211
42 75 92 87 122 311 374 0 0 0,8199 0,9991 0,8192
43 29 215 63 85 23 767 21 62 0,0473 0,4998 0,0236
44 0 0 102 198 0 0 378 3900 0,0980 0,9774 0,0958
45 11 215 84 85 29 767 18 62 0,0509 0,4478 0,0228
46 28 215 25 85 19 767 27 62 0,0378 0,6073 0,0229
47 0 0 88 88 236 236 42 42 1,0000 1,0000 1,0000
48 215 1176 28 158 87 183 0 0 0,1895 0,9740 0,1846
49 0 0 148 148 304 304 0 0 1,0000 1,0000 1,0000
50 84 215 77 85 203 767 0 62 0,2793 0,9640 0,2692
51 0 0 132 148 304 304 0 0 0,9793 0,9991 0,9784
52 116 1176 137 158 117 183 0 0 0,1245 0,6976 0,0869
53 341 1176 87 158 0 183 0 0 0,2877 0,9816 0,2825
54 0 120 76 82 37 49 120 156 0,5592 0,8335 0,4661
55 67 1176 68 158 172 183 0 0 0,0840 0,5124 0,0430
56 0 92 110 122 270 374 0 0 0,7009 0,9712 0,6807
57 177 215 70 85 0 767 22 62 0,0703 0,2947 0,0207
58 46 215 54 85 186 767 0 62 0,2434 0,9825 0,2391
59 137 1176 108 158 55 183 0 0 0,1306 0,8572 0,1119
60 137 255 108 297 0 0 28 125 0,4176 0,9712 0,4055
61 0 0 132 198 0 0 208 3900 0,0549 0,8704 0,0478
62 52 1176 85 158 136 183 0 0 0,0690 0,4914 0,0339
63 79 1176 104 158 96 183 0 0 0,0880 0,6521 0,0574
64 0 85 85 86 51 61 79 146 0,5536 0,8698 0,4815
65 130 1176 106 158 35 183 0 0 0,1221 0,8557 0,1045
66 137 1176 54 158 55 183 0 0 0,1247 0,9522 0,1187
67 0 215 79 85 243 767 0 62 0,2991 0,9405 0,2813
68 0 215 70 85 246 767 0 62 0,3015 0,9471 0,2855
69 0 0 118 118 64 64 56 56 1,0000 1,0000 1,0000
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Product 1 Product 2 Product 3 Product 4 Score

Branch _Actual Reference Actual Reference Actual Reference Actual Reference DF PD slack based

70 15 255 100 297 0 0 89 125 0,2644 0,8066 0,2133
71 56 1176 148 158 76 183 0 0 0,0716 0,4894 0,0350
72 47 255 89 297 0 0 67 125 0,2771 0,9418 0,2610
73 0 215 40 85 243 767 0 62 0,2940 0,9591 0,2819
74 116 1176 76 158 47 183 0 0 0,1089 0,8932 0,0973
75 108 1176 118 158 33 183 0 0 0,1052 0,7736 0,0814
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