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Abstract

The axiomatic literature on technical efficiency measurement has drawn atten-
tion to the indication problem of the Debreu-Farrell (DF) measure. We follow a
shadow price approach to preserve the DF benchmark while reconciling it with the
Koopmans efficiency characterization. First, we define a set of Koopmans efficient
references that can be rationalized in a similar way as the DF projection. The indica-
tion problem is then captured using a measure of implicit allocative or mix efficiency,
also interpretable as a dominance measure in price space. We consequently present a
mix-adjusted DF framework for efficiency measurement in which e.g. the Zieschang
[24] procedure can be fitted.



1 Introduction

As a rule one is ultimately concerned with the concept of allocative efficiency, but there
are instances where focusing on technical efficiency is not without its interest. This is
e.g. the case when market prices for inputs and outputs are not readily available. Or,
as could be the case for non-profit or government organizations, when it is conceivable
that such prices differ from the shadow prices implicitly considered by those in charge.
A technical efficiency gauge has been introduced by Debreu [8] and Farrell [14] and has
since then been applied quite extensively. This Debreu-Farrell (DF) measure, which is
the inverse of Shephard’s distance function, is obtained by equiproportionate shrinkage
or expansion of input respectively output vectors onto their best practice frontiers. It is
however no longer the unique technical efficiency measure available. Some other proposals
emerged following the axiomatic approach to technical efficiency measurement as initiated
by Fare and Lovell [12]. The most important reason why such alternative measures were
introduced pertains to the problem that the DF measure does not always satisfy the
rather fundamental condition known as ‘indication of efficient vectors’. That is, for some
types of production technologies the radial projection yielded by the DF method can in
fact still be a technically inefficient point in the commonly accepted sense of Koopmans
[17]. This is immediately obvious if one considers the example of a Leontief technology.
In an input-oriented context, radial shrinkage to a point on the L-shaped isoquant does
not necessarily imply that all ‘waste’ has been eliminated. One can usually proceed by
a further non-radial reduction to arrive at a vertex point where no input can be further
decreased without decreasing at least one output. If this (potential) deficiency would
only be associated with the Leontief technology then one is facing a fairly minor problem
indeed. But it also extends to more general and frequently employed cases where the
reference technology is constructed nonparametrically, for example when this technology
is obtained as the convex monotonic hull of observed input and output vectors. Since
Afriat [1] this last representation is of particular importance if one follows a ‘revealed
preference’ approach to producer behavior. It has been advocated by Varian [23] for its
use in testing regularity conditions and for non-parametric efficiency measurement itself
by Banker et al. [3]. Below we will mainly work in this setting, but it should be recalled
that the indication problem of the DF technical efficiency measure, sometimes labeled
its ‘slack problem’, may appear in any technology which allows for the presence of zero
marginal rates of technical substitution (or transformation).

The DF technical efficiency measure remains very popular, even when applied in
problem-prone technologies. There are at least four good reasons for this. First, on the
empirical level, reference technologies are normally approximative in nature and therefore
the indication problem may be considered as an accidental and somewhat artificial con-
sequence. Second, on the theoretical level, the axiomatic approach as further developed

by various authors such as e.g. Bol [2], Russell [20, 21| and Christensen et al. [6] has



forwarded the insight that no universally best measure exists. Third, these axioms mostly
refer to desirable mathematical characteristics of a (efficiency) gauge function, whereas
some authors (e.g. Kopp [18] or Russell [19]) clearly took a favorable stance towards the
DF measure given its economic interpretation for the class of convex monotonic technolo-
gies. And fourth, it has been claimed e.g. by Ferrier and Lovell [15] that slacks may
be viewed essentially as resulting from allocative rather than technical inefficiency. In
this paper we depart from the first of these arguments and thus consider the indication
problem as a genuine problem indeed. We also put less emphasis on the purely axiomatic
approach. This leaves us to draw on the last two arguments when aiming to reconcile the
economically attractive DF benchmark with the Koopmans characterization of technical
efficiency.

To do so we first provide in section 2 a quick refresher to the potential conflict between
the two, phrasing the indication problem in terms of the shadow prices implicitly present
in the production technology. In these particular terms —which were notably the ones
used by both Debreu [8] and Koopmans [17]— it is easily seen that the DF method may
vield best practice reference vectors that implicitly allow for zero shadow prices. On the
other hand, consistent with the two fundamental theorems of welfare economics in the
case of a convex monotonic hull, one needs a vector of strictly positive shadow prices
to eliminate any further (non-radial) waste and be technically efficient in the Koopmans
sense.! Once this stage has been set we hold on to the shadow price approach in the
remainder of the paper. In section 3 we use it to identify a set of reference vectors that
are Koopmans efficient and at the same time retain the economic interpretation behind the
DF measure. We also show that the method proposed by Zieschang [24] selects reference
vectors that belong to this set. This method has the characteristic that one first radially
projects on a reference isoquant, and then corrects for residual waste along the isoquant
to obtain an adequate reference. Note that the compensated price response to which this
second stage amounts falls in line with the above claim that slacks result from (implicit)
allocative inefficiency rather than purely technical inefficiency.

This leads us in section 4 to explicitly address the question regarding the measurement
of implicit allocative efficiency, or ‘mix efficiency’ for short. Several equivalent representa-
tions for gauging this kind of efficiency are forwarded: directly in terms of product mixes
when drawing on a directional cosine representation of vectors, as a relative Euclidean
distance measure in commodity space (i.e. in the same way the original DF measure is
usually represented), or as a relative distance measure between isocost hyperplanes (which
directly reveals the dominating character of ‘mix efficient’ references). A short discussion

pertaining to the commensurability of the proposed mix efficiency measure forms the

LOn the most general level, the second welfare theorem as defined with respect to convex technologies
does allow for the presence of some zero prices. This special, somewhat pathological case occurs when the
marginal rate of technical substitution (transformation) smoothly goes to zero at certain efficient points.
While our discussion below focuses on technologies with non-smooth transitions for sake of clarity, it can
easily be extended to cover such a case.



subject of section 5.

As regards the question of technical efficiency measurement, adhering to the shadow
price perspective thus implies that the indication problem of the otherwise intuitive DF
measure can be overcome by complementing it with the mix efficiency measure. Or stated
otherwise, that at least for some non-radial efficiency gauges the earlier critique pertaining
to their vague economic intuition seems less valid. In section 6 we show that the traditional
DF measure can be complemented with the kind of mix efficiency component identified
in section 4 to yield a mix-adjusted DF measure. Our main findings as well as some
additional comments are summarized in section 7.

Throughout the paper we focus on input efficiency but an analogous treatment applies
to the output oriented case. Also, while only the Afriat technology is explicitly considered,
the insights straightforwardly carry over to other convex piecewise linear formulations
surveyed in Fare, Grosskopf and Lovell [11]. Furthermore, the obtained results can be
readily adapted to a parametric setting. The following vector inequality conventions will
be used: for x,y € R", (i) x >y if and only if x; > y;, i = 1,...,n, (ii) x 2 y if and only
if z; 2 y;, and (iii) x > y if and only if x; = y; and x # y. We use (z;,x;) to represent

the (column) vector with (row) elements z; and z;.

2 Characterizing technical efficiency

The starting point is the production technology 7T transforming an input vector x =
(x1,...,zn) € IRY into an output vector u = (u1, ..., um) € R with at least one element

of each x and wu strictly positive:
T = {(x,u) € R}7"™ | x can produce u} .

Suppose a set of N input-output combinatiuons belonging to 1" is observed. To sim-
plify exposition we will further concentrate on the Afriat [1] technology representation T4,

which is the smallest convex set that includes all observations and satisfies the monotonic-

ity property:

N N N
TA={ (x,u) cRT"™ | x > Z/\jxj’ u = Z/\juj7 Z/\j = 1,220 VA,
j=1 Jj=1 Jj=1

Because of its convex nature and piecewise (linear) construction T4 is particularly
well suited for illustrating the difference between the DF and Koopmans efficiency char-
acterizations. Moreover it is well-grounded both in the literature on testing for regularity
conditions of production (see [23] and [4]) and the axiomatic non-parametric approach to
production technology estimation (see [3]).

Suppose the observed input-output vector (x,,u,) € T is to be evaluated and factor

prices are unknown. Technical input efficiency is estimated by comparing x, to the input



correspondence .
N N N
LA) = xR [ x 2 A%, uS ) Ay, Y oA = 1,020 ¥
j=1 j=1 j=1

Two subsets of LA(uo) that are particularly relevant in the following discussion are

its isoquant and efficient subset, respectively:

Isoq LA(u,) = {xeR} |xe LA(u,) and Az ¢ LA (u,) for A € [0, 1)}, (2)
Eff L(u,) = {x € R? | x € L4(u,) and x <xthenx ¢ LA(uo)} . (3)

The DF measure of technical efficiency for an observation (x,, u,), denoted as Epp(x, u,),
is defined as follows for L*(u,):

Epr(x,u,) = min {/\ ey | Mx, € LA(uO)} )

In words, Epr(x,u,) gives the maximum equiproportionate reduction of all inputs in
X, that still allows to produce u,. From (2), Epr(x,u,) attains the maximum value
of one if and only if x, € Isoq LA(uO). The indication problem relates to the fact that
Epr(x,u,) = 1 is not sufficient for x, € Eff L*(u,), where (3) is consistent with
the commonly accepted Koopmans [17]| characterization. The latter declares an input
combination efficient if and only if, for a given output level, it is impossible to reduce
any input without simultaneously increasing another. Indeed, while Ef f LA(uo) C Isoq
LA(u,) both subsets do generally not coincide and it follows that observations identified
as DF efficient are not necessarily efficient in the Koopmans sense. Further, following the
DF procedure inefficient input-output combinations may be evaluated with respect to a
reference that is Koopmans dominated by another feasible point.

The potential conflict between the two concepts is illustrated for a two-input situation
in figure 1 where the input efficiency of a vector (x;, u;) is to be measured. In the diagram
Eff LA(u;) corresponds to the facet AB whereas Isog L*(u;) also contains the vertical
and horizontal facets AC and BD. Maximal radial contraction of the two inputs results
in projecting x; on x, and correspondingly Fpp (x;,u;) = ||xe|| / [|x:]]. Clearly x, is not
Koopmans efficient as it exhibits a slack in the second input.

Both efficiency characterizations also have a specific shadow price representation. Let
us first define the correspondence capturing all shadow price vectors under which x € Isoq

LA(u,) is cost minimizing over L4(u,):
¥x € Isoq L (u,) : P(x,u,) = {p ceR?|0<p-x<p-x Vx € LA(uo)} .

P(x,u,) defines the set of the supporting hyperplane(s) tangent to L* (u,) in x.?

2There is an immediate link between our definition of the correspondence P (x,u,) and the popular,
single-valued cost function concept. For our purposes the use of P (x,u,) is more adequate given that a
similar approach was followed by Debreu [8].



Two further definitions are used for notational convenience:

Xpr (X0, W) = Epr (X0, u,) X,

Ppp(x0,u,) = P(xpr(Xeu,),u,).

Or, xpr (X, u,) is the reference yielded by the radial DF projection and Ppp(x,,u,) its
associated set of implicitly cost minimizing price vectors.
We can now state the equivalent formulation of Epp (x,,u,) which Debreu [8] derived

in order to justify the collinear projection:?

Proposition 1 (Debreu [8]) For all x, € LA (u,) .x € Isoq LA(u,), ppr € Ppr(x,,u,)
and p € P(x',u,) :

! !
Bpr (x5, m,) = PRI X00 o W) 5 B X
PpDrFr - Xo P X

The DF procedure thus applies an implicit ‘benefit-of-the-doubt’ weighting when look-
ing for a best practice reference. That is, it yields a maximal ratio of reference to actual
costs with prices chosen so as to make xpp (X,,1,) cost minimizing. As such, the DF
measure possesses an evocative interpretation as an upper bound to economic efficiency
(see also Russell [19]). This benefit-of-the-doubt characterization is also clear from figure

1. Indeed, ||xe|l/ ||x:]| for example exceeds / I|xi|]| and —to an even greater extent—

!
Xe

ng / ||xs]|, where both x, and x. respectively lie on the supporting (‘isocost’) hyper-

planes of the isoquant facets AB and BD.
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3Shephard [22] obtained the same result from the duality between his input distance function and the
cost function. For a recent discussion of the shadow price interpretation of the Shephard distance functions
(and consequently the DF measures) we refer to [10].



It should be noted that ppr in proposition 1 may contain some zero entries, whereas

Koopmans [17] showed:
Proposition 2 (Koopmans [17]) For x €L4(u,) :
xe Eff L*w,) < Ip € P(x,u,) :p € IRY .

So, for each element of the efficient subset one can construct a strictly positive price
vector under which it becomes cost minimizing. In the illustration of figure 1 all elements
on the segment AB clearly meet this Koopmans condition. However, this is no longer so
for x., for which a zero shadow price is accorded to the second input in the corresponding
cost ratio of proposition 1.

This implicit price characterization provides an economic intuition for the indication
problem associated with DF measures. In the next section we tackle the question which
references combine the attractive interpretation of the DF projection with the intuitive

notion of Koopmans efficiency.

3 Benefit-of-the-doubt pricing and Koopmans efficiency

Proposition 1 provides a shadow cost efficiency characterization for xpp (x,,u,) which
makes it interesting from an economic point of view. However, it may still be that
xpr (Xo,u,) & Eff LA(u,). We now show that references which preserve both a benefit-

of-the-doubt interpretation and pass the test for Koopmans efficiency belong to:
Xp (xo,u,) = {x |x e Eff LA(uo) and x < xpr (xo,uo)} )

This set contains all x € Eff LA(u,) that weakly dominate xpr (X,,u,). In the
illustration of figure 1 we have Xp (x;,u;) = {A}.
With respect to Xp (X,,u,) we can state a result very similar to that formulated in

proposition 1:4

Proposition 3 Forallxp € Xp (X, u,) x € Bff LA(u,)\Xp (x,,u,),Pp € P(xp,u,)
andp € P(x'u,) :

! !
PpD Xp -, P "X
PbD - Xo :p/'xo

Thus, for each xp € Xp (X0, u,) the associated shadow cost ratio will never be lower
than for any x € Eff LA(uo) \ Xp. The interpretation is analogous to the one of
proposition 1. The important difference is that proposition 3 is defined with reference to
Eff L*(u,), whereas proposition 1 concerns Isog L*(u,). Hence, recalling proposition
2, the result just stated is appealing since it allows to use strictly positive shadow price

vectors in comparisons.

*Proofs of our results are given in the appendix.



To make the result somewhat more intuitive, take again figure 1. Shadow cost ratios

of x; obtained using any pa € P(A,u;) are not below Hx;’ /IIxi]|. In geometric terms,
one can always find a supporting hyperplane through A that crosses the radial somewhere
between x; and x.. Obviously, no other element belonging to the facet AB would yield a
strictly higher ratio value.

While proposition 3 indicates that an appropriate reference (from a shadow price per-
spective) can be found in Xp (x,, u,), it does not immediately identify a unique reference.
Of course, if Xpr (X,,u,) € Eff LA(u,) then Xp (X0, o) = {Xpr (X,,u,)}. Also, even
when xpr (X,,,) & Eff LA(u,) the set Xp (x,,u,) will always be a singleton if n = 2
(see our illustration). In general it could be that Xp contains more elements. The follow-
ing proposition demonstrates that each input vector zp € Xp (X,,u,) is justifiable from

a shadow cost efficiency perspective:

Proposition 4 For all XD,X/D € Xp (x0,u,) with xp # X/D, given a strictly positive

plD € P (xh,u,), there always exists a strictly positive pp € P (xp,u,) such that:

’ ’

PD " XD > Pp Xp
= ! :

PbD Xo pD'Xo

As proposition 4 applies to all xp € Xp (X,,u,) there is no a priori reason to further
discriminate in terms of implicit cost efficiency.

In the literature there have been some proposals that in fact yield references belonging
to Xp (Xo,u,). Conceptually, they can be interpreted as multi-stage procedures where
the DF method is applied in the first stage. If there remains an indication problem with
the obtained xpp (x,,u,) it is subsequently overcome by moving downward along the
isoquant until Eff LA(u,) is reached. An example is the procedure of Zieschang [24],
where the second stage applies the non-radial projection proposed by Fére and Lovell
[12] to XpF (X0, u,). That is, X7 (X0, u,) = AZ (X,,0,) - XpF (X,, u,) With Az (x5, 1,) =
(M, ..., A\Z) € R? solving:

n
)\lryr.l.i.’rin {;Al | (MEDFL, o AnZprn) € L2 (u,), A € [0,1] for i =1, n} ,

where pp1,...,2ppn are the row elements of xpp (X,,u,) . The sum of unidimensional
shrinkage factors (contained in Az) is minimized. Of course, when xpp (X,,u,) € Eff
LA (u,) each of these factors equals unity (i.e. Az = (1,...,1) and the second stage is
redundant). It is easily checked that xz € Eff L(u,) and xz (X,,u,) < Xpr (X,,u,) by

construction, so that xz (x,,u,) € Xp (%,,u,).5°

®Strictly speaking the possibility of zero input values is excluded. However, Fire, Lovell and Zieschang
[13] proposed a way to circumvent this problem (see also Zieschang [24]).
Two other examples of multi-stage procedures that select references in Xp (x%0,u0) are presented in

[3] and [7].



So far we have shown that vectors xp € Xp (x,,u,) have a sound economic grounding
as input references for (x,,u,), and we also presented a procedure to obtain such an
appropriate reference. However, we have not yet related this to an efficiency measure.
The attractiveness of the DF gauge (see proposition 1) does not straightforwardly extend
when using X (X,,u,). In particular, for xp # xXpr (X,, u,) typically P (xp,u,) will be
multi-valued resulting in different shadow cost ratios. This prevents direct construction
of an efliciency measure with an associated traditional shadow price representation.

We therefore opt for another avenue in this paper, and explicitly split up inefficiency
in the potential radial improvement as captured by the popular DF measure and the
residual Koopmans inefficiency resulting from the possibility that xpp (x,,u,) ¢ Eff
A (u,). In fact, building on the results hitherto obtained, we hold on to the DF pro-
cedure to project on Isog L* (u,) and proceed by evaluating any presence of slacks in a
second stage. The question is then how this residual inefficiency is to be treated. We take
the perspective that zero shadow prices (or zero marginal rates of technical substitution)
reflect implicit allocative inefficiency. This in turn refers to suboptimal proportions of
the different amounts of inputs consumed. Putting it differently, the remaining Koop-
mans inefficiency essentially pertains to input mixes and could thus also be termed ‘mix
inefficiency’. In the next section we propose a way to evaluate this additional source of

suboptimal behavior.

4 The measurement of mix efficiency

To enable the measurement of mix efficiency we need a characterization of input mixes.
A possibility is to construct the vector of directional cosines, which is defined as follows

for a vector x €L4(u,):

x

cosy = —. (4)
AEY

In cosx = (cosg,,...,c08z,) € IRY} each cosy € [0,1] (I =1,...,n) gives the cosine of

the angle between the vector x and the [th input axis. To clarify the concept we return
to our illustration as recaptured in figure 2. Using A = (a1,a9) and X, = (2.1, Ze2) the
directional cosines corresponding to A and x. are respectively cos,, = cosa; = a;/ || A||

and cosg,, = cos 3; = z¢/ ||xe|| (1 =1,2).
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input 2
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input 1

FIGURE 2

The vector cosy contains dimensional characterizations of the mix of x. The propor-
tions between each pair of row entries of x can equivalently be represented in terms of
directional cosines as x;/x; = cosy, / cosy; for all ¢,j € {1,...,n}. Two input vectors are

collinear if and only if they share the same vector of directional cosines. Formally,
forx,x € L*(u,): x = Ax with A € R <= cosy = cos, . (5)

Hence, given (5), when evaluating the input mix efficiency of the vector (x,,u,) we
can confine attention to its collinear input projection Xpr (X, 1,). Suppose an input
reference x3%, (x,,u,) € Xp (Xo,u,) has been selected for (x,,u,) (e.g. x7}, (x5,u,) =
xz (X5, 1,)). Slightly abusing notation, we denote the directional cosine vectors corre-
sponding to xpr (X,,u,) and x7}, (x,,u,) by respectively cosx,,, and cosy: . Mix effi-
ciency evaluation amounts to comparing these two vectors.

Bach ratio cosx,,,, / COSxs, | (I=1,...,n) gives an angular representation of mix de-
viation (e.g. in figure 2 these are cos,,_, /cosq, < 1 and cosy,, /cosq, > 1). To obtain
an overall mix efficiency measure these dimension-specific values should be combined. In
analogy to the DF technical efficiency measure we propose to take the ratio of price-
weighted sums of the different row elements of cosx,,. and cosy: , usingp € Ppp (X0, 1,)

as the weighting vector. The overall mix efficiency measure is hence defined as:”
p - cos
Eue (x0,u,) = — —EDE vp cPpp (X0, 1,) . (6)
P-COSx:)
Of course, in view of (5) we can rewrite (6) as:

- COS
Eug (x0,u,) = P %% Vp €Ppr (X0, 1,) , (7)
P-cosxy

"It will become clear in what follows why (6) holds for all p €Ppr (Xo, o).

10



which links Eyrg (X5, 1,) directly to the input mix properties of (x,,u,).

The fact that we use Ppr (x,,u,) rather than e.g. P (x}, (x,,u,),u,) as the set of
admissible shadow price weighting vectors in (6) allows for a convenient reformulation of
EnEg (Xo,u,). As it implies p - Xpp (X0, W) = P - X}, (X0, u,) and recalling (4) we get a
third definition of Eyg (%0, u,):

i Gl .
= 2D o o/ (8)
[xpr (%o, 1) |

from which it is immediate that Fyg (x,,u,) = 1 and that Eyg (x,,u,) = 1 if and only

Eng (x0,u,)

if xpp (x,,u,) € Eff L(u,). This norm ratio formulation clearly reveals the analogy with
the way the DF technical efficiency measure is commonly presented.

The ‘indifference’ result as identified in Proposition 4 carries over to the measurement
of mix efficiency. That is, definitions (6), (7) and (8) apply to any selection of x}, (x,, u,) €
Xp (x0,u,). Conversely, equivalence of the three characterizations crucially depends on
the fact that x7}, (x,, u,) belongs to Xp (x,,u,).

The use of Ppr (x,,u,) implies that zero weights are assigned to those input dimen-
sions in which xpp (X,,1,) exhibits slack. The intuition can be sharpened by means of
figure 2. Only the directional cosines with respect to the first axis are weighted positively
as Xe1 implicitly attributes a zero price to the second input. The mix efficiency estimate
is cos a1/ cos B = ||A]| / ||xe||- In general, when xpp (x,, u,) exhibits slack in a particular
dimension the corresponding directional cosine value will be lower for xpp (x,,u,) than
for a vector belonging to Xp (x,,u,) (e.g. in figure 2 cos,,_, > c0sq,). As this cannot be
viewed as mix dominance it is natural to accord a zero weight to these cosines.

EunEe (X0,1,) can also be viewed as a measure of dominance in price space. We know
that the cost level associated with xpr (x,,u,) and x7, (x,, u,) is the same for this price
vector. Let us then reverse the picture and consider all price vectors that imply the same
cost level (arbitrarily fixed at unity) for both input vectors. That is, we consider the

following two hyperplanes in price space:

H(xpp (x0,1,),1) = {7TDF €ERY | wpp-xpr (X, u,) = 1}7

H(x) (xo,m0),1) = {7} € RY |7}, x} (xo,u0) = 1}

We present these hyperplanes for input vectors x. and A of our illustration in figure
3. At the shadow price vector corresponding to x. (with zero weight for the second input)
both hyperplanes intersect. The implicit allocative (or mix) inefliciency of x. is here
revealed by the ‘dominance’ of the hyperplane associated with A over the one associated
with x.. The reason is that, because it uses strictly less of the second input, observation A
allows higher (positive) second input prices to imply the same cost level for each possible
price assigned to the first input. This last point can be generalized: throughout the
domain IR} isocost hyperplanes associated with x%, (x,,u,) € Xp (%o, u,) are located at
least as far away from the origin as those corresponding to xpr (x,,u,). Mix efficiency

decreases the more these distances differ.

11
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A natural way to evaluate this dominance in price space is to compare the Euclidean

distances from these hyperplanes to the origin. These distances are given by:

dxpp (X0,u,) =  min  {|l7mpr| | *pF - XpF (X0, u,) = 1},
TDFE T

dys, (X0,u,) = min - A{|wp]l | 7] - xp (x0,1,) =1},
el

and we have:

dXDF <X07 uO)

Eue (x0,u,) = T (o)
xD a9 O

)

The equivalence of this ‘price based’ dominance characterization with the ‘quantity based’
characterization in (8) follows directly from the fact that the distance from a hyperplane
to the origin can be retrieved using its normal. In this case, substituting

1 1

d e — dd e —
xpr (Xo o) = ey 20 e (%0 o) = ey

in (9) immediately yields (8).
A convenient by-product of characterization (9) is that it allows to come full circle
with our particular choice of p €Ppp (x,,u,) as the weighting vector in (6). For this

purpose we switch to the Hesse normal form representations of H (xpp (X0, u,),1) and
H(x3}) (x0,u,),1):

H" (xpr (xo,u,),1) {WDF €RY| Ty - €OSxp e = dxpp (xo,uo)}7

H" (x}) (x0,1,),1) = {71'73 € RY| 7] - cosyy = dyy (%o, uo)} :

12



Using this representation it can be seen that Fyrg (X, 0,) = [Tpr - €0Sxpp| / [71'73 . cosxz)}
for #pr € H" (xpr (X0, 1,),1) and 7}, € H"(x}, (x0,u,),1). The only legitimate way
to employ a common price-weighting vector in the numerator and the denominator as
is done in (6), is to take vectors that lie in the intersection of H™ (xpp (Xo,u,),1)

and H"(x}, (x,,u,),1). These vectors are indeed all p €Ppp (x,,u,) for which p -

XDF (Xm uo) =p- X*D <X07 uO) =15

5 A digression on commensurability

The mix efficiency measure as it has been introduced above is not invariant to the units
in which the different input quantities are measured. The commensurability property has
been especially advocated by Russell [20], and is indeed of interest in cases where it is not
immediately clear which particular measurement unit to choose. Before addressing the
issue more thoroughly, remember that so far we have assumed the projection x}, (x,, u,)
to be given. A first point of interest then concerns the projection procedure itself. The
Zieschang procedure presented in section 3, for example, does satisfy the commensurability
property (see [20]). As such, commensurability poses a problem only to the extent that
it affects the eventual mix efficiency estimate.

To obtain units invariance of Eyg (X,,1,) data rescaling can be applied. The three
examples presented below yield particularly intuitive reformulations of the mix efficiency
measure (computed with respect to the rescaled data) in terms of the original input values.

The norm representation as given in definition (8) provides a convenient point of

departure. We re-express it as:

n ) 1/2
z (x*Dl)
Eue (x0,u,) = = ) (10)

n

> (zpr)?

=1
We further use hats to denote the rescaled counterparts of an input vector x and its entries
xz; (I=1,..,n). We similarly use Eug (x5, 1,) to indicate the mix efficiency estimate

computed with respect to these rescaled vectors.

Example 1 For z; = (xl/w/xlxDFl) (i.e. we divide each input value by the geometric

mean of itself and the corresponding value in Xpr (X,,0,)) we get from (10):

n 1/2

P (x0r10) = % - [Z () /n] " ()

=1

Tt is immediate that the validity of (9) does not depend on the fact that we considered a cost level of
unity. This also implies that this legitimation of (6) holds for all p € Ppr (X0, o).
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This is a monotonic transformation of the arithmetic mean of the original input propor-
tions. It is precisely this value which is minimized in the second (Fdre-Lovell) stage of
the Zieschang projection procedure (cfr. supra). For this particular rescaling, one can

thus re-interpret the Zieschang reference selection procedure as one that minimizes mix

efficiency.

Example 2 For 7; = (901/«/90[9073[) (i.e. we divide each inpul value by the geometric

mean of itself and the corresponding value in X7, (X,,u,)) we get from (10):

B (x001,) = [n/ Z (2o )] " 12)

*
Tpy

This is a monotonic transformation of the harmonic mean of the original input propor-
tions. The fact that the harmonic mean is obtained instead of the arithmetic mean directly
builds on the orientation change implicit in choosing X7}, (X,,u,) as a basis of comparison.
Whereas in (11) one averages over input reductions when going from Xpp (X,,0,) to
X}, (X0, W,), we now look at input expansions to get from X}, (X0, Ws) to Xpr (X0, w,) and
a mix efficiency estimate is consequently obtained as the inverse of an arithmetic mean.
The orientation is thus reversed, resulting in an ‘inverse Zieschang procedure’ and a cor-

respondingly different mix efficiency estimate (see also [5]).

Example 3 For 7; = (gcl/1 /QUDFWUEZ) (i.e. we divide each inpul value by the geometric

mean of the corresponding values in Xpr (X0, W,) and X3}, (X,,u,) ) we get from (10):

Butp (xov) = [(Z () /n> ~ (n/ Z (2 ))] N (13)

1=1
which is the geometric mean of the estimates in (11) and (12) (ignoring the square roots for

simplicity). Somewhat similar to a Fisher ideal index as a means to answer the question
about the most appropriate price or quantity base, this alternative may have particular

appeal to some as it avoids having to choose between the two previous orientations.

6 A mix-adjusted Debreu-Farrell measure

As we have indicated in the introduction, our aim was to preserve the commonly employed
DF measure of technical efficiency in view of its economic intuition while at the same time
dealing with its potential ‘axiomatic’ indication problem. This can now be achieved by
combining the measure Fpp (X,,u,) and the Eyg (X,, u,) measure of implicit allocative

efficiency into a mix-adjusted Debreu-Farrell index:”

Ena (X0,1,) = Epp (X0, W,) - Eyp (X5,1,) (14)

For ease of exposition we assume that the commensurability problem of the mix efficiency component
has adequately been dealt with. Also note that the DF component Epr (Xo, uo) satisfies the commensu-
rability property (see [20]).

14



In view of definition (8) and given that Epp (X, 1) = ||xpr (X0, w,)|| / ||X0|| we can

rewrite (14) as:

which indicates that Fps4 (X,,u,) can also be computed directly. The composite index
Enra (x,,1,) then acts as a non-radial measure for the relative distance from x, to Ef f
L (u,). Its DF component Epp (x,,u,) gives the traditional shadow cost efficiency esti-
mate for x, and measures the distance from x, to Isoq A (u,). It does not only estimate
the (maximum) cost efficiency of x, with respect to xpp (x,,u,) but also with respect to
x}, (X0,u,) (as Ppr (X, u,) = P (xpr (X0, u,) ,u,) C P (x5, (Xx,,u,) ,u,) by definition).
On the other hand, Ey g (x,,u,) deals with the presence of any slack in xpp (x,,u,) and
pertains to the mix properties of x,.

In fact, for the particular rescaling considered in example 2 the mix-adjusted DF
measure defined above is quasi-identical to the Zieschang [24] measure (except for the
square root in (11)). In this respect example 2 is interesting insofar as it links the shadow
price approach followed here to the search for desirable efficiency gauges in the axiomatic

literature.t?

7 Summary and concluding remarks

In this paper we have addressed the well-known indication problem of the DF technical
efficiency measure focusing on the often employed class of convex monotonic technologies,
which allowed us to follow a shadow price approach. Our main findings can be summarized
as follows.

First, we have characterized the set X p of Koopmans efficient references that maintain
the Debreu shadow cost legitimation. We have subsequently indicated that the procedure
introduced by Zieschang [24] always selects such well-grounded references.

Second, we have presented a measure Fu;p of implicit allocative or mix efficiency,
which can also be interpreted as a measure of dominance in the price space. Commensu-
rability of this measure can be ascertained by appropriately rescaling the original data.
One such rescaling yielded a new characterization of the Zieschang projection and mea-
sure. Another one seems appealing given its ‘orientation-independence’.

Third, we have introduced a mix-adjusted DF measure Fj;4 that is decomposable
in the DF and mix efficiency estimate. In line with Russell’s defense of the original DF
measure in [19] we suggest to work notably with the decomposed representation in order
to reveal the two-stage nature of the non-radial projection (first towards the isoquant,

and next along the isoquant towards the efficient subset) more clearly.

00Of course, the axiomatic literature considers a yet broader class of technologies than we do in this
paper. For a convex monotonic hull, the attractiveness of the Zieschang measure on axiomatic grounds is
discussed by Ferrier et al. [16].
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The precise value of Ejr4 of course depends on the choice of a reference xp € Xp.
Proposition 4 learns that, when X is not a singleton, each of its elements is equally well
justifiable from a shadow cost efficiency perspective. Throughout we have deliberately
left open the question which (non-radial) reference belonging to Xp is the most preferred
one. Different perspectives could be adopted. One could take into account feasibility
restrictions on mix adjustments. Or one could return to the axiomatic literature (see e.g.
our discussion of the Zieschang measure). The above discussion makes clear that there is
probably no unique a priori answer. Indeed, it may well be that from one perspective the
Zieschang procedure is most recommendable while another starting point leads to another
xp. Nevertheless, we hope that the insights forwarded in this paper may serve as a guide

when addressing this issue more thoroughly.
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Appendix

Proof of Proposition 3 For xpp € Eff LA (u,) the result follows directly from propo-
sition 1. Let us then consider xpp ¢ Eff A (u,). We have to compare input vectors
xp€Xp(Xo,u,) and x € Eff LA(u,) \ Xp. To facilitate exposition we consider scaled
shadow price vectors pp € P (xp,u,) and p/ cpP <x/, u0> such that pp -xp = p/ x =1

in the following. We are led to proof that for all pairs <p D, p/>:

1 1

= !
PD - Xo P X0

Vv

or p/ *Xo Z PbD - Xo- (15)
Multiplying both sides of the second expression in (15) by Fpp (x,,u,) we obtain:

P -Xpr 2 Pp - Xpr, (16)

where xpp = Xpr (X,, 1,) to save on notation. Of course, from proposition 1 (16) holds
for pp € Ppr (Xo,1,). Let us therefore focus on pp ¢ Ppr (X,,1,). As a preliminary step
remember that Ppp (x,,u,) C P (x,u,) while Ppp (x,,u,) £ P x, u0> by construction.
That is, for ppr € Ppr (X0, u,) (with again for simplicity ppr - xpp = 1) the following

condition is satisfied:

P -Xpr>1=ppr-Xpr,. (17)
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Define p, = pppr + (1 — p)pp. For all p € [0,1] we have p, € P (xp,u,) Indeed,
por -Xp S ppr-x and pp -xp < pp -x for all x € L(u,), so also p, -xp < p, - x for
all p € [0, 1],

Now suppose (16) is not met so that:

P Xpr < Pp - Xpp- (18)
From (17) and (18) there should exist a py for 7 € (0,1) such that p' -xpr = py-Xpr-
Solving for p yields:

!
P Xpr —PD XDF
1 —pp-XprF

p= (19)

As p, € P(xp,u,) we should always have 1 = p;-xp < pp-xpp. However, under
(19) this condition is equivalent to 1 = p - xp, which contradicts (17). We therefore
conclude that (18) does not hold and (16) is indeed satisfied. B

Proof of Proposition 4 We consider two input vector xp € Xp(x,,u,) and X/D €
Xp (x0,u,) \ {xp}. We assume p/D € P(x,u,) with p/D € R%} | given. We have to proof
that a pp € P(xp,u,) with pp € IR’} | can always be constructed such that:

. ! . X/
PD XD 5 Pp Xp (20)
Pbp Xo PD * X

Dividing both sides of (20) by Epr (x,,u,) gives the equivalent condition:

! !
PD Xp > Pp Xp

BN : (21)
Pp Xpr — Pp-XpF

. !
where Xpp = Xpr (X,,u,) to save on notation. We can decompose Xpp, xp and Xp
. — o~ ! 1 o~
in a slack and non-slack subvector. Let us denote xp = (Xp,Xp) ,xp = <XD,XD> and

— ~ — — =
xXpr (X0, ,) = (Xpr,Xpr) such that (for the non-slack subvectors) X, = Xp = Xpp

while (for the slack subvectors) Xp > Xpp and i/D > Xpp. We restate (21):

~1

—/ — o~
Pp  Xpr+Pp Xp
— —_ 7 — 3
Pp Xpr +Pp  Xpr

Pp Xpr+Pp XD
Pp Xpr +Pp - XpF

v

(22)

with corresponding decompositions pp = (Pp, pp) and p/D = <§/D,f5/D>. Obviously, for
PD,Pp € IRTLHF:

J— — — —_ o~ ~
Pp " XDF Pp " XDF PD XD Pp X

=D = =P 2" —Jand ——=— <1, DR L
Pp XDF  Pp - XDF PD -XDF Pp XDF

<1 (23)

Both the left and right hand side of (22) are strictly smaller than one. Let:

~)

—/ — o~
Pp Xpr+Pp - -Xp
J— — o~ o~

Pp Xpr +Pp - XDF

=1—¢, withe > 0. (24)

We now proceed by constructing a pp such that (20) is satisfied. First note that

each ppr € Ppp (Xs,u,) can be decomposed similarly as pp and p/D above so that
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por = (Ppr,0). As xp € Xp (x,,u,) we can define p}, = (Ppr,P})) with p}, € IR} |
appropriately chosen such that p}, € P (xp,u,). We have for all x € L(u,):

A

Por X, (25)

Ppr-Xpr =
Ppr Xpr+Pp-Xp = Ppr -X+DPp X, (26)

where again we use the decomposition x = (X, X). Convex combinations of (25) and (26)
yield for all x € [0,1]:

Por Xpr+k(PDh  Xp) SPpr X+ k(Ph - X). (27)

Denote p}, = (Ppp, kP},). From (27) we know that p%, € P(xp,u,) for all k €
[0,1]. Moreover, pf, € R’ | for £ € (0,1]. So, we can shrink the shadow price vector
associated with Xp independently of that corresponding to Xpp. In fact, it can be made
infinitesimally small while still remaining positive. Using (23) and for a given value of
e > 0, we can always set pp = p% with & € (0, 1] sufficiently small such that:

Pp Xpr 4P Xp 5
Pp Xpr +Pp Xpr —

Combining (24) and (28) yields (20). l

(28)
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