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Abstract We develop a series of novel conceptual tools to systematically account 
for errors-in-variables in Data Envelopment Analysis (DEA). These tools allow for 
statistical inference while requiring minimal statistical distribution assumptions, and 
therefore constitute a valuable addition to the tools currently available for dealing with 
errors-in-variables. An empirical application for large European Union financial 
institutions illustrates the proposed approach. 
 
Keywords: Data Envelopment Analysis (DEA), errors-in-variables, efficiency depth, 
robust reference sets, financial institutions 
 
 
1. Introduction 
Data Envelopment Analysis (DEA), originating from Farrell's (1957) work and 
popularized by Charnes et al. (1978), is a collection of non-parametric methods for 
evaluating the productive efficiency of Decision Making Units (DMUs). DEA does 
not require an explicit specification of a functional relationship between inputs and 
outputs or a statistical distribution for the inefficiencies. These features are the key 
advantage of DEA over alternative parametric approaches. However, the original 
DEA methodology requires the production process is completely characterized by the 
observed input-output variables, which are free of errors. This is generally recognized 
as the most serious limitation of DEA. 
 
In practice, the data sets are almost always incomplete and contaminated by errors. In 
addition to obvious typographical or measurement errors, there are at least three other 
important potential sources of errors. Firstly, the use of instrumental variables when data 
is not available for some relevant inputs or outputs entails the possibility of errors. For 
example, much empirical research uses accounting data that can give a flawed 
representation of the underlying economic values, e.g. because of debatable valuation 
and depreciation schemes. Secondly, aggregation over production establishments, input-
output variables and time periods, which is a frequent practice in DEA applications, 
introduces another potential source of errors. Thirdly, the variables included in the model 
may not fully account for all omitted input-output variables. Note that the influence of 
omitted variables could be accounted for by appropriate compensation on the 
variables included in the model. Ignorance of this compensation when it would be 
necessary may be viewed as an error in the included production variables.  
 
Unfortunately, DEA results are highly sensitive to errors-in-variables, because DEA 
relies on comparison with extreme observations (see also Sexton et al., 1986). A 
potential solution to errors-in-variables is to analyse the sensitivity of DEA results 
with respect to variations in the data (e.g. Charnes et al. (1985), Charnes and Neralic 
(1990), Charnes et al. (1992) and Zhu (1996)). However, the correct interpretation of 
the outcomes is not immediately clear in general. For example, sensitivity to a 
particular data variation is meaningless if that specific variation is highly unlikely. 
Stochastic DEA models that explicitly account for the statistical distribution of the 
errors provide another potential solution. In the DEA literature, a number of such 
models have been proposed (e.g. Gong and Sun (1995), Land et al. (1994), Olesen and 
Petersen (1995), Post (1997), Cooper et al. (1998), Gstach (1998), and Li (1998)). 
However, in contrast to the nonparametric nature of the original DEA models, the 
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stochastic models typically require the specification of a particular statistical 
distribution for the errors. Unfortunately, in many research environments, the 
specification of the error distribution can not be justified using prior theory or 
available economic data.  In addition, the robustness of stochastic DEA models with 
respect to erroneous distribution assumptions remains as an open question. 
  
In this paper, we develop a series of novel tools to systematically account for errors-in-
variables in DEA. We introduce novel concepts including efficiency depth and robust 
reference sets. These conceptual tools allow for statistical inference while requiring 
minimal statistical distribution assumptions, and therefore constitute a valuable addition 
to the tools currently available for dealing with errors-in-variables.  
 
The rest of the paper is organised as follows. Section 2 discusses the essentials of the 
original DEA model and the role of errors-in-variables. Section 3 introduces a 
nonparametric test statistic (efficiency depth) for testing for efficiency in case of 
errors-in-variables. Section 4 introduces robust reference sets and robust efficiency 
measures. Section 5 provides Mixed Integer Linear Programming models for 
computing the test statistic and the robust efficiency measures from empirical data. 
Section 6 illustrates our approach using an empirical application for large European 
Union financial institutions. Finally, Section 7 presents our conclusions. 

 
 
2. The original model 
 
DEA is used for evaluating efficiency of the DMUs relative to the "best-practice" 
production possibilities' frontier. Theoretically, the production possibilities can be 
represented by the production set: 
 
(1) { }yxyxP sm output  producecan input ),( +

+ℜ∈= , 
 
where  and  denote input and output vectors respectively.  mx +ℜ∈ sy +ℜ∈
 
Unfortunately, the production set is typically unknown and has to be approximated 
using empirical production data of a sample of comparable DMUs. In this study,  
represents an index set, and , with , and 

, with , represent the input-output vectors for 

the DMUs in the sample. The original DEA methodology assumes that the production 
vectors are feasible, i.e. . In addition, the original methodology 

assumes the observed values for the input-output variables are free of errors.  

J
T

JcardxxJX )...()( )(1=
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In this study, we adhere to the assumption that the production vectors are feasible. 
However, we explicitly assume that the input-output variables may contain errors. 
Specifically, we assume the true values are not observed and that only inaccurate 
estimates are available, that randomly deviate from the true values1. In the analysis 

                                                           
1 The observed values are possible estimators. However, depending on the particular theory and data 
available, alternative estimators could be used, such as the mean of a sample of multiple observations. 
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below, we will let  
 
(2) ,  )(,...,1;,...,1ˆ Jcardjsrwyy rjrjrj ==′+=
 
(3)  )(,...,1;,...,1ˆ Jcardjmiwxx ijijij ==+=
 
represent the estimated values, where  denote the errors in output (input) 

variables. In addition, we use , with , and 

, with . For simplicity, we assume that the errors-in-

variables are independent random variables with a symmetric zero-mean distribution. 
Independence is assumed both between the different errors-in-variables and between 
the errors-in-variables and the true production vectors. Notice that we do not impose a 
particular distribution function, and that we allow for heteroskedasticity of errors 
across DMUs and across input-output variables, so as to preserve the nonparametric 
nature of the DEA methodology.  

)( ijrj ww′

cardxx ˆ...ˆ( 1= T
JJX ))(ˆ

)(

)ˆ sjy⋅⋅

)ˆˆ(ˆ 1 mjjj xxx ⋅⋅⋅=
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JcardyyJY )ˆ...ˆ()(ˆ
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In DEA, the production set is approximated as the smallest subset in input-output 
space that is consistent with the assumptions imposed on the production possibilities, 
and the implicit or explicit assumptions imposed on the statistical distribution of the 
observations in the data set. We have already introduced the original distribution 
assumptions (the production vectors are feasible and measured accurately). For the 
sake of transparency, this study restricts the production assumptions to the 
assumptions of the original Banker, Charnes and Cooper (1984) model, henceforth the 
BCC model. However, we emphasise that the analysis presented in the subsequent 
sections directly applies to alternative production assumptions, such as those imposed 
in the original Charnes, Cooper and Rhodes model or in the free disposal hull model 
(Deprins et al., 1984, Tulkens, 1993). The BCC model assumes that the production set 
satisfies free disposability and convexity. The associated approximation is the convex 
monotone hull of the observations: 
 
(4) { } .  ;1);(ˆ);(ˆ),()( )( JcardTTTsm eJYyJXyxJT +

+
+ ℜ∈=≥ℜ∈= λλλλ  

 
Consider the following example that is carried throughout the paper. Table 1 presents 
the data set on 7 hypothetical DMUs that operate under a single-input single-output 
technology.  
 

Table 1: Example data set 
 

DMU Input Output 
A 20 12 
B 37 32 
C 39 27 
D 9 15 
E 10 20 
F 32 38 
G 13 25 

 

 4 



Figure 1 displays the associated BCC set, which is bounded by the line segments 
through DEGF and the extensions from D and F. 
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Figure 1: Original DEA set 
 
 
Apart from different empirical production sets, different DEA models use different 
efficiency measures. In this study, we focus on the Farrell (1957) input efficiency 
measure. However, the analysis applies directly to alternative efficiency measures, 
like output efficiency and non-radial measures. Focusing on the evaluation of DMU 

, the input efficiency measure is defined as: Jj∈
 
(5) { }PyxPyx jjjj ∈= ),(min),( θθθ

θ
. 

 
An empirical estimator for this efficiency measure is obtained by substituting the 
empirical production set T  for the true production set  and the observed 
production vector ( for the true production vector ( , i.e.:  

)(J P
)ˆ,ˆ jj yx ), jj yx

 
(6) { } .  ;1;ˆ)(ˆ;ˆ)(ˆmin))(ˆ,ˆ( )(

,

JcardT
j

T
j

T
jj eyJYxJXJTyx +ℜ∈=≥≤= λλλθλθθ

λθ
  

 
This estimator can be computed by solving a Linear Programming model (see e.g. 
Banker et al. (1984) for details).  
 
We illustrate the Farrell input measure (6) for our example data set in Figure 2. DMUs 
D,E,G and F are Farrell input efficient, which also appears from the fact that they lie 
on the boundary of the BCC production set in Figure 1. DMU B and, to an even 
greater extent, DMUs A and C would obviously be revealed as inefficient when using 
the original BCC model.  
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Figure 2: Original DEA efficiency scores 

 
If the underlying production assumptions (convexity and free disposability) and 
statistical distribution assumptions (production vectors are feasible and measured 
accurately) hold, the BCC set is contained within the true production set, i.e. 

, and the evaluated production vector is measured accurately, i.e. 
. In that case, the efficiency estimator is biased above true 

efficiency, i.e. 

PJT ⊆)(
()ˆ,ˆ( jj yx = ), jj yx

),())(ˆ,ˆ( PyxJTyx jjjj θ≥θ , and hence inefficiency relative to the 
convex monotone hull is sufficient evidence to diagnose DMU j as inefficient, i.e.:  
 
(7) 1),(1))(ˆ,ˆ( <⇒< PyxJTyx jjjj θθ . 
 
However, errors-in-variables complicate matters. The influence of errors-in-variables 
is difficult to assess in general, because it depends on both the statistical distribution 
of the true production vectors in the production set and the errors-in-variables. Errors-
in-variables generally cause uncertainty for the exact location of the evaluated 
production vector within the true production set. In addition, observations can lie 
outside the true production set, causing the empirical production set to extend beyond 
the true production set. Hence, if errors-in-variables are relevant, inefficiency relative 
to the BCC set does not provide sufficient evidence for diagnosing a DMU as 
inefficient.  
 
 
3. Efficiency Depth 
If errors-in-variables are relevant, dominance by a single observation, or a convex 
combination of a few observations, is not convincing evidence for inefficiency. This 
finding motivates the following statistic: 
 
DEFINITION 1 Efficiency depth for DMU  is the maximum number of 
observations that is consistent with efficiency of that DMU, and is defined as:  

Jj∈

 
{ } .  1))(ˆ,ˆ()(max)ˆ,ˆ( ==

⊆
KTyxKcardyx iiJKjj θδ  
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If a DMU is efficient in the original BCC model, its efficiency depth statistic equals 
card(J). The higher the efficiency depth associated with a DMU, the greater the 
evidence that supports efficiency of that DMU. In fact, classifying a DMU as 
efficient requires removing at least other observations from the 
data set. In this sense, efficiency depth is parallel to the notion of regression depth in 
econometrics (see e.g. Koenker (2000)). 

Jj∈
)ˆ,ˆ()( jj yxJcard δ−

 
Figure 3 continues the example by illustrating the efficiency depth statistic for the 
artificial production vector H, added to the example data set introduced in Section 2. 
At most 5 observations are consistent with the efficiency of vector H (e.g. A, B, C, D 
and E, or A, C, D, E and G). Equivalently, classifying vector H as efficient requires 
the removal from the data set of at least two observations (e.g. G and F, or B and F). 
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Figure 3: Measuring the efficiency depth of vector H  
 
The statistical distribution of the efficiency depth generally depends on the statistical 
distribution of the true production vectors within the production set and the statistical 
distribution of the errors-in-variables. As discussed above, strong statistical 
distribution assumptions do not fit well to the nonparametric nature of the original 
DEA model. Nevertheless, resorting to the minimal assumptions discussed in Section 
2, we can derive the following theorem (the appendix presents a formal proof):  
 
THEOREM 1 (EFFICIENCY DEPTH THEOREM) For efficient DMU , the 
probability that the efficiency depth δ  is smaller than or equal to q is 
bounded from above by the binomial cumulative density 

. 

Jj∈
)ˆ,ˆ( jj yx




 )(5.0
1 Jcard( ) ∑

−

=

−



 −
=−−

1

0
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1)(,1

q

i
B i
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This theorem allows us to test the zero hypothesis that the evaluated DMU is efficient. 
Specifically,  bounds the p-value for the efficiency 
hypothesis. Hence, efficiency can be rejected at a level of confidence of at least 

. In the remainder of this text, we will refer to the 

probability bound as: 

)1)(,1)ˆ,ˆ(( −− JcardyxF jjB δ

)1)(,1)ˆ −− Jcardy j,ˆ((1− xF jB δ
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DEFINITION 2 The maximum probability of efficiency for DMU equals the 
upper bound for the p-value associated with the maintained assumption of efficiency 
for that DMU, i.e. . 

Jj∈

)1)(,1)ˆ,ˆ(( −− JcardyxF jjB δ
 

For large samples, the binomial cumulative density  can be 
approximated using the cumulative normal density  

( )1)(,1 −− JcardqFB

 

(8) ( ) 
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






−
−−

Φ=−−
1)(

2)(21)(,1
Jcard
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where Φ  denotes the cumulative standard normal density function. ( )⋅
 
To illustrate the use of the efficiency depth theorem, we return to the example. Table 
2 contains the maximum probability of efficiency for different efficiency depths, for a 
sample size of 7.  
 

Table 2: The maximum probability of efficiency 
 

q  ( )6,1−qFB  
1 
2 
3 
4 
5 
6 
7 

0.016 
0.109 
0.344 
0.656 
0.891 
0.984 
1.000 

 
 
Figure 4 depicts the probability of efficiency for each DMU in the data set. 
Obviously, for observations located on the boundary of the BCC set (i.e. D, E, F, and 
G), the efficiency depth equals the sample size (i.e. 7), and the maximum probability 
of efficiency is unity.  
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Figure 4: Maximum probability of efficiency 
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In small samples, like the one above, efficiency is unlikely to be rejected at 
conventional levels of confidence (e.g. 95 or 99 percent). However, the empirical 
application in Section 6 demonstrates that conventional levels of confidence can be 
achieved in larger samples. 
  
Apart from testing for efficiency, the efficiency depth and the associated maximum 
probability of efficiency together constitute a possible tool for discriminating between 
different DMUs. This can offer valuable new insights in addition to the results 
obtainable by the original DEA approach. For example, DMU A has the lowest 
efficiency depth/maximum probability of efficiency, while DMU C has the lowest 
BCC efficiency score (see Figure 2). This reflects the fact that the relatively low 
efficiency score of DMU C is supported by relatively few observations. The original 
model uses the relative distance from a single extreme reference unit as empirical 
evidence against efficiency. By contrast, the efficiency depth approach uses empirical 
evidence in terms of the number of observations that support the efficiency 
classification. As discussed above, the relative distance from a single extreme 
reference unit does not constitute convincing evidence of inefficiency if errors-in-
variables are important. By contrast, the number of supporting observations can 
provide such evidence. Hence, the efficiency depth and the associated maximum 
probability of efficiency are ready, complementary tools for discriminating between 
different DMUs.  
 
 

4. Robust Reference Sets 
In the previous section we found that the efficiency depth can test for efficiency. This 
finding naturally introduces the idea of measuring efficiency relative to a DEA 
frontier spanned by a subset of DMUs instead of the complete set of observations. 
More specifically, we propose to measure efficiency relative to the smallest set that 
contains k out of card(J) observations and satisfies the maintained production 
assumptions (convexity and free disposability): 
 
DEFINITION 3 The k-unit robust reference set for DMU , 

, is the intersection of the convex monotone hulls of all subsets 
of  observations, that include that DMU, i.e.: 

Jj∈
)(1: Jcardkk ≤≤ℵ∈

JK ⊆ k
 

)(),(
,:

KTjkS
KjkcardKJK

∩
∈=⊆

= . 

 
Notice that all S  reference sets include the evaluated DMU. Self-comparison is 
harmless, because the evaluated unit and the reference unit are equally affected by 
errors-in-variables if the evaluated unit is compared with itself. In this respect, our 
approach is the opposite of the super-efficiency model by Andersen and Petersen 
(1990). That model removes the evaluated DMU from the reference set and includes 
all (n-1) other DMUs, whereas the robust reference sets include the evaluated DMU 
and allow for the removal of (n-k) out of the (n-1) other DMUs. 

),( jk

 
Figure 5 continues the earlier example by displaying the reference set  for the 
example data set. This subset of the original model is constructed as the intersection 
of the convex monotone hulls of all subsets of (at least) 5 observations that include 

),5( AS
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DMU A. Notice that DMU A is located in the interior of this set, because its efficiency 
depth is smaller than 5. 
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Figure 5: Constructing the robust reference set S(5,A)  

 
Obviously, the original BCC set corresponds to the largest robust reference set 

. The smaller robust reference sets , , decompose 
the BCC set into nested reference sets, where each reference set is contained within 
the 'higher level' set, i.e. S(k,j) . 

,j)JS(card )( S(k,j)

card (

)(1 Jcardk <≤

lk ≤),JlkjlS ≤≤⊆ ,1),(
  
Figure 6 decomposes the original BCC set into the different robust reference 
sets S(j,A)  ( 7 ). Notice that DMU A is on the boundary of all robust reference 
sets with cardinality less than or equal to its efficiency depth of 4.  

,..,1=j
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Figure 6: All robust reference sets S(j, A),  j = 1,…,7  
 
By decomposing the original BCC set into nested reference sets, the robust reference 
set approach has some analogy with the context dependent DEA model proposed by 
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Seiford and Zhu (1999). That model decomposes the BCC set into nested reference 
sets by removing from each higher-level set all efficient DMUs. By contrast, the 
robust reference sets remove a fixed number of most influential DMUs, where the 
number of removals can be determined by statistical inference using the efficiency 
depth theorem. 
 
The robustness of the original efficiency estimate can be assessed by comparing to the 
efficiency scores measured relative to k-unit robust reference sets.  
 
DEFINITION 4 The robust efficiency measure for DMU  relative to robust 
reference set equals 

Jj∈
),( jkS

 
))(ˆ,ˆ(max)),(ˆ,ˆ(

,:
KTyxjkSyx jjKjkcardKJKjj θθ

∈=⊆
= , 

 
A DMU  that is classified as inefficient relative to 

, k , has an efficiency depth of at most k-1. Hence, it 
follows from the efficiency depth theorem that efficiency can be rejected with a level 
of confidence of at least 1 . Consequently, if we first specify 
the minimal confidence level required, we can compute the robust efficiency measure 
corresponding to that level. 

Jj∈
1: ≤ℵ),( jkS )(Jcardk ≤∈

− FB ( 1)(,2 −− Jcardk )

 
Continuing the example, Figure 7 displays the 'full house' of efficiency scores for 
DMU A relative to its robust reference sets. For the sake of completeness, we have 
added for each reference set the maximum probability of efficiency for DMUs that are 
classified as efficient relative to that set. 

Figure 7: The full house for DMU A  
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The full house gives much information in addition to the original model, which 
computes efficiency relative to S(7,A) solely. More specifically, the full house gives 
the efficiency relative to the more robust reference sets and the associated maximum 
probabilities of efficiency. For example, the diagram indicates that the original 
efficiency score of 0.450 can not be demonstrated to involve a high level of 
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confidence, as the efficiency score increases rapidly as the number of included 
observations is reduced. 
 
 
5. Mathematical programming problems 
The original DEA efficiency measure can be computed by solving a Linear 
Programming problem. Computing the efficiency depth statistic and the robust 
efficiency measures is more complicated, because it involves the selection of a subset 
of observations for which the original constraints are satisfied. In this section we show 
the efficiency depth statistic and the robust efficiency measures can be computed by 
Mixed Integer Linear Programming (MILP).  
 
For our purpose, the problem is best phrased in terms of the dual formulation of the 
BCC model (6). That formulation measures efficiency as the distance from a 
hyperplane { }  ;;;1ˆ;),(: 1 ms

j
sm xxyyxggGg ++

+
+ ℜ∈ℜ∈ℜ∈=−+=ℜ→ℜ=∈ ωνµωωνµ that 

envelops all observations. Specifically, the dual amounts to: 
 
(9)  { }. 0))(ˆ),(ˆ(ˆmax))(ˆ,ˆ( ≤+=

∈
JYJXgyJTyx jGgjj νµθ  

 
Using this dual, the efficiency depth statistic can equivalently be defined as the 
maximum number of observations enveloped by a hyperplane  that envelops 
the evaluated unit:  

Gg∈

 
(10) { } .  0)ˆ,ˆ();0)(ˆ),(ˆ()(max)ˆ,ˆ(

,
=≤=

⊆∈ jjJKGgjj yxgKYKXgKcardyxδ  

 
The objective is to maximise the number of observations for which the original 
constraints are satisfied. 
 
Similarly, the robust efficiency problem can equivalently be defined as the distance 
from a hyperplane  that envelops k out of card(J) observations, i.e.:  Gg ∈
 
(11) { } .  0))(ˆ),(ˆ(ˆmax)),(ˆ,ˆ(

;)(:;
≤+=

∈=⊆∈
KYKXgyjkSyx jKjkKcardJKGgjj νµθ  

 
The original objective is maximised subject to the condition that k out of card(J) 
observations satisfy the original constraints. 
 
In the original problem, all observations are enveloped, i.e. . By 
contrast, the efficiency depth statistic and the robust efficiency measures allow for 
non-enveloped observations. To deal with this problem, we first determine an upper 
bound for  in (10) and (11), by solving the following Linear 
Programming problem: 

0))(ˆ),(ˆ( ≤JYJXg

Jjyxg jj ∈),ˆ,ˆ(

 
(12) { } .  0)ˆ,ˆ(;))(ˆ),(ˆ(max)ˆ,ˆ(

,
=≤=

ℜ∈∈ jjGgjj yxgJYJXgyx ξξξ
ξ

 

 

 12



Using this upper bound, the following MILP problem can compute the efficiency 
depth statistic (10): 
 
(13) { }{ } ,  1,0;0)ˆ,ˆ(;)ˆ,ˆ()())(ˆ),(ˆ(max

,
JtyxgyxeJYJXge tjjjj

T

Gg
∈∀∈=−≤

∈
βξββ

β
 

 
where  represents a (n × 1) vector of binomial integers variables.  β
 
Similarly, the following MILP problem can compute the robust efficiency measure 
(11): 
 
(14) { }{ } .  1,0;;1);ˆ,ˆ()())(ˆ),(ˆ(ˆmax

,
JtkeyxeJYJXgy t

T
jjjjjGg

∈∀∈==−≤+
∈

βββξβνµ
β

 

 
These MILP problems are computationally more complex than the original Linear 
Programming problem. However, with modern-day solvers and computation power, 
the problems should not involve substantial computational burden, even for large-
scale problems with numerous DMUs and numerous input-output variables. For 
example, using the CPLEX Mixed Integer Optimizer, the computations for the 
example below (involving 453 DMUs and 4 input-output dimensions) required only 
minimal effort using an ordinary PC desktop.  
 
 

6. Application for the EU Banking Industry 
To illustrate our approach, we conducted an empirical application using financial 
statement data of the 453 largest commercial banks in the European Union, for 19972. 
DEA has seen extensive application in the financial industry. For example, Berger and 
Humphrey (1997) find that 69 out of 122 frontier efficiency studies of financial 
institutions use the DEA approach.  
 
For convenience, we use a simplified representation of the bank technology, which 
involves a single output, total earning assets, and three inputs, 1) equity capital, 2) 
debt capital and 3) operational costs (which aggregates all inputs apart from equity 
and debt). All variables are measured in millions of Euro. Following the discussion in 
the previous sections, we focus exclusively on the original input oriented BCC model 
(6).  
 
Figure 9 presents the distribution of the original DEA efficiency estimates. The figure 
suggests substantial inefficiencies throughout the banking industry in the European 
Union. Only 16 banks (i.e. 3.5 percent of the sample) were found fully efficient, and 
the majority of banks have efficiencies of less than 0.5 (the median efficiency is 
0.338, and the mean score is 0.378).  
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2 In this article, we use BankScope data provided by Bureau van Dijk Nederland. See Kuosmanen and 
Post (1999) for further information. 
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Figure 9: Efficiency distribution 

 
These results suggest that astronomical cost savings could be achieved in the banking 
industry. However, before jumping to such far-reaching conclusions, it is reasonable 
to test for the robustness of the results with respect to errors-in-variables. After all, the 
data set contains aggregated accounting variables, which may give a flawed 
representation of the underlying economic variables, because of debatable valuation 
and depreciation schemes. Moreover, these input-output variables only allow for an 
incomplete characterization of the production process in banking industry. 
 
To account for errors-in-variables, we computed, for each bank separately, the upper 
bounds for the probability of efficiency, as discussed in Section 3. Tables 3 and 4 
summarise some interesting test results. In this data set, 2 banks are inefficient at a 
confidence level of 99 percent. Lowering the confidence level increases the number of 
inefficient banks. For example, 5 (3) banks are inefficient at a confidence level of 90 
(95) percent. These findings suggest that efficiency can be rejected at conventional 
levels of confidence in large data sets. 

Table 3: The number of inefficient banks at different levels of confidence 
Confidence level Critical efficiency depth # of inefficient banks 
0.99 200 2 
0.95 208 3 
0.90 211 5 

 
Table 4: Summary of the most significantly inefficient banks 
Bank # Efficiency 

depth 
Maximum 
Probability 
of efficiency 

BCC     
Efficiency    

# of banks 
with smaller 
BCC score 

260 194 0.0015 0.0847 15 
269 199 0.0063 0.1174 58 
252 202 0.0135 0.0983 32 
274 209 0.0603 0.1144 52 
244 210 0.0724 0.0998 34 

 
In general, the banks with low efficiency depths and probabilities of efficiency have 
relatively low efficiency scores in the original BCC model. However, in some cases, 
the efficiency depth and the probability of efficiency gives substantially different 
results as compared to the original model. For example, the bank with the (second) 
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lowest efficiency depth and probability of efficiency, i.e. Bank #260 (Bank #269), 
outranks 15 (58) other banks in terms of BCC efficiency. By contrast, bank #438 
(Bank #120), which has the (second) lowest BCC score of 2.31 (4.04) percent, has an 
efficiency depth as high as 247 (334) banks, yielding a probability bound of 0.978 
(1.000). To further illustrate this point, table 4 includes, for the five 'most significantly 
inefficient' banks, the number of banks with a smaller BCC efficiency score. 
 
Finally, as discussed in section 4, measuring efficiency relative to robust reference 
sets can assess the robustness of the original DEA results. Figure 10 displays the 
efficiency measure of Bank #269 as a function of the number of observations included 
in the robust reference sets. 
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Figure 10: The full house for Bank #269  
 
The efficiency score increases relatively smoothly as the size of the reference data set 
decreases, reflecting additional empirical evidence for most efficiency levels. 
However, the efficiency measure sharply increased from 11.74% to 17.26% after 
excluding the single most influential bank. Yet, the efficiency measure remained 
below 20% for the next 20 exclusions, which suggests a substantial improvement in 
stability of the efficiency measure was obtained by excluding the single most 
influential bank. These finding suggest that robust reference sets can offer useful 
insights for sensitivity analysis in DEA. 
 
7. Concluding remarks 
We have developed a series of novel conceptual tools to systematically account for 
errors-in-variables in DEA. The efficiency depth statistic can test for efficiency. In 
addition, efficiency depth and the associated maximum probability of efficiency 
statistics constitute ready complements for the conventional DEA performance 
indicators. The robust reference sets decompose the original DEA reference set into a 
series of nested reference sets, and measuring efficiency relative to these sets can 
offer valuable information for assessing the robustness of the original DEA results. 
Unlike the existing techniques for sensitivity analysis in DEA, these tools enable 
statistical inference. In contrast to the existing stochastic DEA models, our approach 
requires minimal statistical distribution assumptions, and hence preserves the 
nonparametric nature of the original model.  
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We focused on presenting a systematic framework that is general enough to deal with 
various types of potential errors. Resorting to minimal assumptions can reduce the 
discriminating power of the technique. However, the application convincingly 
demonstrated that the model can provide discriminatory information in larger 
samples. Still, the model may have little discriminating power in other applications. 
Hence, future research may concentrate on improving the power by introducing 
additional distribution assumptions. Additional assumptions could be meaningfully 
imposed in a context of a specific application area, or if the errors are due to a specific 
source only. In addition, future research efforts could be targeted on relaxing the 
maintained assumptions of symmetry and independence of the error distribution so as 
to avoid specification error.  
 
Appendix 
This appendix develops the proof for the efficiency depth theorem. 
 
PROOF The proof is best phrased in terms of the dual formulation (11), i.e.: 
(i) { }0)ˆ,ˆ();0)(ˆ),(ˆ()(max)ˆ,ˆ(

,
=≤=

⊆∈ jjJKGgjj yxgKYKXgKcardyxδ  

{ }  )ˆ,ˆ()ˆ,ˆ(:max jjiiGg
yxgyxgJicard ≤∈

∈
= . 

The evaluated unit necessarily is included in subset K. By contrast, the inclusion or 
exclusion of the other (card(J)-1) units, i , depends on their location in 
input-output space. The statistical distribution assumptions introduced in Section 2 
allow for statistical inference on the probability of inclusion for these DMUs. 
Specifically, if the errors have a symmetric zero-mean distribution that is independent 
across the different inputs and outputs, then for each DMU  

jiJ ≠∈ :

jiJi ≠∈ : :
(ii) [ ] [ ] ),(),(:5.00)()(Pr)ˆ,ˆ()ˆ,ˆ(Pr jjiijijijjii yxgyxgGguuvvyxgyxg ≤∈≥≤−−−≥≤ ων .  
Hence, if the errors are independent across observations, then for all 

: )(1: Jcardqq ≤≤ℵ∈
{[(iii) } ] ),())(),((:)1)(,1()ˆ,ˆ()ˆ,ˆ(: jjBjjii yxgJYJXgGgJcardqFqyxgyxgJicard ≤∈−−≤≤≤∈Pr .  

In addition, since the production set is convex and free disposable, we have: 
(iv) ),())(),((:1),( jjjj yxgJYJXgGgPyx ≤∈∃⇒=θ . 
Combining (i), (iii) and (iv), we find 
(v) [ ]≤=≤ 1),()ˆ,ˆ( Pyxqyx jjjj θδPr .□ )1)(,1( −− JcardqFB
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