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Abstract

In this paper, we analyze the economic value of predicting index returns
as well as volatility. On the basis of fairly simple linear models, estimated
recursively, we produce genuine out-of-sample forecasts for the return on the
S&P 500 index and its volatility. Using monthly data from 1954 to 1998,
we test the statistical significance of return and volatility predictability and
examine the economic value of a number of alternative trading strategies.
We find strong evidence for market timing in both returns and volatility.
Joint tests indicate no dependence between return and volatility timing,
while it appears easier to forecast returns when volatility is high. For a
mean-variance investor, this predictability is economically profitable, even
if short sales are not allowed and transaction costs are quite large.
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1 Introduction

In the academic literature on stock market predictability the prevalent view until
the 1970s was that stock prices are very closely described by a random walk and
that no economically exploitable predictable patterns exist. More recent empir-
ical work, however, reports evidence that stock returns are to some extent pre-
dictable, either from their own past or from other publicly available information,
like dividend yields, price-earnings ratios, short and long interest rates, changes in
industrial production, or simply from calendar dummies; see, for example, Fama
and Schwert (1977), Keim and Stambaugh (1986), Campbell (1987), Fama and
French (1989), Breen, Glosten and Jagannathan (1989), Harvey (1991), Bekaert
and Harvey (1995), Pesaran and Timmermann (1995, 2000), Kandel and Stam-
baugh (1996), and Sullivan, Timmermann and White (1999). While the majority
of this literature focuses on the statistical evidence of predictable time variation
in expected returns, several authors have explicitly addressed the economic value
of this predictability (see, for example, Solnik, 1992, Pesaran and Timmermann,
1995, 2000, and Jacobsen, 1999). In this case, the question is whether a given trad-
ing strategy outperforms a passive investment strategy, where trading is based on
information that is genuinely available at each time an investment decision is made,
taking into account, for example, transaction costs and short-sales constraints.
Another source of predictability that is well-documented exists in the volatility
of stock market returns; see, for example, Engle (1982), Bollerslev (1986), French,
Schwert and Stambaugh (1987), Pagan and Schwert (1990) and Bollerslev, Engle
and Nelson (1994) to name a few. Only a few recent papers (e.g. Fleming, Kirby
and Ostdiek, 1999) examine the economic significance of volatility timing, by con-
sidering trading rules that exploit the predictability in second moments of returns.
In this paper we analyze the economic significance of jointly predicting stock mar-
ket index returns and their volatility. While this problem has been neglected in the
literature, it is of considerable interest. On the one hand, it is possible that any
predictability in expected returns is accompanied by a change in the conditional
variance, so that the economic value of return predictability is overstated by stud-
ies that assume that variances are constant. On the other hand, the exploitation
of both sources of predictability is expected to result in investment strategies that

outperform strategies that exploit only one source.



While the ability to predict returns from publicly available information is of-
ten associated with a violation of market efficiency, this is not necessarily the
case. On the one hand, rational asset pricing models may imply time-varying risk
premia that lead to predictable patterns in observed asset returns. For example,
Lucas (1978) shows that rational expectations can result in predictable variation
in expected returns. More recently, Kirby (1998) analyzes the question to what
extent several well-known pricing models are consistent with the ability to pre-
dict returns on size-based portfolios and concludes that, in general, returns are
“too predictable”. Further, Lewellen and Shanken (2000) argue that estimation
risk, due to investors uncertainty about the parameters of the return generating
process, may also lead to return predictability, while Brock and Hommes (1997)
show that an evolutionary asset pricing model with heterogenous traders may re-
sult in persistent deviations from rational expectations fundamental values. On
the other hand, it is likely that most empirical studies evaluating within-sample
predictability overstate out-of-sample predictability because of overfitting, finite
sample biases and data snooping; see, for example, Bossaerts and Hillion (1999)
and Sullivan, Timmermann and White (1999).

In this paper we consider a mean-variance investor, who allocates his wealth
every month to the Standard & Poor’s 500 index and the short-term Treasury bill
(used as a proxy for the risk free rate). Asset allocation is based upon an informa-
tion set that includes the results of two simple models for predicting index returns
and volatility, estimated using data that were genuinely available. This way, we
truly focus on ex ante predictability. The mean-variance investor will invest rel-
atively little in stocks if the predicted excess return is low and/or the predicted
volatility is high. We assume that the investor uses only public information to
generate forecasts, and that his transactions do not influence prices. Furthermore,
we assume that the investor rebalances his portfolio only once a month. The co-
efficients of the models are re-estimated each month when new information comes
available, so that each month the investor revises his beliefs about expected returns
and volatility.

The main goal of this paper is to analyze the economic value of trading strate-
gies based on exploiting the predictable components in both the first and second
moment of stock returns, using post-war U.S. data from 1954 to 1998. First, we

analyze the statistical evidence for the existence of market timing in returns and



volatility, both at the monthly frequency, using the non-parametric tests of mar-
ket timing skills proposed by Henriksson and Merton (1981), Cumbey and Modest
(1987) and some extensions. As volatility is unobserved, even ex post, these test are
not directly applicable to volatility timing, and we propose some adjustments using
daily data. These enable an easy and relatively reliable way to test for volatility
timing. Because in many cases both return and volatility forecasts will be used to
determine an investor’s portfolio weights, it is important to simultaneously eval-
uate the existence of return and volatility timing and their interdependence. We
do so by extending the existing tests to this multivariate case. This allows us,
for example, to investigate whether a good return forecasts is typically associated
with a bad volatility forecast or vice versa.

Next, we consider a number of different trading rules: the optimal (condi-
tionally mean-variance efficient) strategy and a sub-optimal switching strategy,
using predictions from the return model, the volatility model or both, and three
buy-and-hold strategies. Furthermore, we take into account short-sales constraints
and transaction costs. In addition to reporting summary statistics for the returns
on these strategies, we report Sharpe ratios, Jensen’s alphas and Treynor-Mazuy
measures. Each of these measures, however, suffers from some drawbacks in the
presence of time-varying expected returns and volatility. Therefore, we also ex-
press the economic value of each strategy by going back to the investor’s utility
function and answer the following question: how much would an uninformed in-
vestor, with a given risk aversion, be willing to pay to switch from a static to a
given dynamic portfolio (compare Fleming, Kirby and Ostdiek, 1999)? That is,
what is the maximum fee the investor would be willing to pay to switch from the
static strategy to the dynamic one?

The remainder of this paper is organized as follows. Section 2 introduces a
mean-variance investor and presents a number of alternative investment strategies.
Section 3 describes the data used in our analysis and briefly presents preliminary
results based on estimating the models over the entire sample and two subsamples.
Section 4 presents the results of several market timing tests and analyzes the
statistical significance of predictability of stock index returns and their volatility.
In Section 5, we analyze a number of trading strategies to study the economic

significance, and, finally, Section 6 concludes.



2 Trading Rules of a Mean-Variance Investor

Consider an investor maximizing a mean-variance utility function and composing
his portfolio from a risky asset and a risk free asset. For a given level of (initial)
wealth, the investor’s optimization problem is given by

max U (Et {rp,t+1} ) VCLT‘t {Tp,tJrl}) ) (1)

W1

where w1 denotes the proportion of the portfolio allocated to the risky asset, and

Tpt+1 is the return of the investor’s portfolio, which is equal to

Tri41 + Wit (Tmgs1 — Trag1),s (2)

where 7., ;11 denotes the return on the risky asset in period ¢ + 1, and ry;41 the
risk free return.

More specifically we assume the following utility function:

1
E, {Tp,t+1} - E”Yvart {Tp,tﬂ} ) (3)

where v denotes the coefficient representing the investor’s degree of risk aversion.
Solving the maximization problem shows that the optimal portfolio weight for the

investor is given by

E{Tmis1} — Treet (4)
YVary {rm+1} .

If the risk aversion increases, the fraction invested in the risky asset will decrease.

* _
Wy =

If the expected excess return on the risky asset increases, the investor ceteris
paribus wants to increase his proportion invested in the risky asset. The conditional
variance, which represents a measure of the risk involved, is negatively related to
this proportion. If we assume that short selling and borrowing at the risk free rate
is not allowed, the portfolio weights must lie between 0 and 1, and the optimal

portfolio weight becomes

wiy, = 0 it wg, <0,
wi, i 0<w, <1, (5)

-1 if  wh, >

We will compare the performance of the optimal rules with a passive (buy-

and-hold) strategy and a sub-optimal switching rule (as used in e.g. Pesaran and
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Timmermann, 1995), in which 100% is invested in the market return if the expected

excess return is positive, and 100% in the risk free return otherwise. In formula:

wiy, =1 if B {rmesr — g} >0,

=0 otherwise. (6)

While wyf,; is an optimal trading rule, w;¥, generally is not.! One may suspect
that the switching rule involves less transaction costs because it will have periods
in which the portfolio remains unchanged.

The important elements in these trading rules are the conditional expectation
and the conditional variance of the risky return. In the empirical application we
shall approximate these conditional moments by fairly simple functions of historical
returns and other observed variables. Let X; denote a row vector of variables that
is observed at time ¢, including a constant. These variables are used to predict the
excess return 7y, 1 = Tmt41 — Tf 41 ON the stock market index (the risky asset),

by assuming that
Tfn,erl :X56+55+1’ S = 1,2,...,t, (7)

where F;{e;.1} = 0 and 6 is a vector of unknown coefficients. In the empirical
section, the parameters in § are estimated recursively by OLS, using information
from periods 1 to t. We thus use a recursive regression where estimation is based

on windows of expanding size. The model in (7) implies that
Efrn it = X, (8)

so that, with the estimate 5; for & , we obtain the conditional forecast for the excess

return in period ¢ + 1, denoted by 77, ,,,, as
P, ie1 = Xiby. (9)

This forecast is updated every period because new information becomes available
(Xt11, Xi42,...) and because the coefficient estimate is updated as well. Infor-
mation about future values of 77, , or X; is not used at any point in time, so a
comparison of 7 ;. ; with realized returns ry,,,; is truly a measure of ex ante

predictability.

!Note that the switching rule is optimal when v = 0 and short-sale and borrowing restrictions

are present.



In a very similar fashion we consider a linear model for the conditional variance
of 7, ¢11, which is explained from a set of variables Z;, observed at time ¢, and po-
tentially different from X;. Besides macroeconomic and financial variables, Z; can
contain lagged dependent variables (see, e.g., Kothari and Shanken, 1997). Again,
the coefficients are estimated recursively using information from observations 1 to

t, applying OLS to
€§+1 :ZS¢+58+17 s = 1727"'7t7 (10)

where €2, is the squared prediction error of regression (7). That is, eZ,; =
(Trse1 — X558)2. A similar model for conditional volatility is used by, e.g., Breen,
Glosten and Jagannathan (1989), while Schwert (1989) runs regressions of the ab-
solute prediction error on its own lagged values and lagged values of volatilities in
economic fundamentals like output, inflation, the interest rate and the corporate
bond yield. The conditional forecast for the variance of the excess return in period
t+ 1, is given by

Vardry, 1} = Zt{bta (11)

where the coefficients are estimated using information from period ¢ and before.
The models for the conditional expectation and variance are deliberately cho-
sen to be linear and rather simple with fixed selections for the variables included
in X; and Z;. First, while the recent literature presents more complicated nonlin-
ear models, for example based on neural networks or GARCH-type specifications,
these techniques and approaches were certainly not available to investors in the
major part of our sample period. Second, we want to limit the specification search
for alternative models in order to reduce data snooping biases as much as pos-
sible. Pesaran and Timmermann (1995, 2000) and Bossaerts and Hillion (1999)
use statistical model selection criteria at each point in time to select the “best”
model to predict future returns (that is the best subset of X, variables). As we a
priori restrict attention to one specification only, the economic value of our trading
strategies is a conservative estimate compared to these studies. Also note that we
do not claim in any way that the specification we employ is ‘correct’. Within sam-
ple it determines the best linear predictor from a given set of explanatory variables,

and we simply use it to generate a series of one-month ahead forecasts.



3 Data and Some Preliminary Results

Because we do not perform any statistical tests to determine the “best” forecast
model, and no other model selection criteria are employed, our procedure is not
subject to data snooping in a strict sense. However, the choice of variables that we
include in our analysis is a potential source of indirect data snooping biases, because
it is tempting to include variables that appeared to have significant explanatory
power in other studies that use partly the same data set. To avoid this, it is
important to only include variables that have some economic rationale or whose
significance is based on out-of-sample (pre-sample) evidence.

Many early studies, including Angas (1936), Prime (1946), and Dowrie and
Fuller (1950), document that the state of the business cycle is an important indi-
cator for the stock market. While financial theory does not provide much guidance
on which business cycle indicators to select, fundamental variables suggested in this
context include dividend yields, company earnings, changes in short-run and long-
run interest rates, industrial production, liquidity measures and the inflation rate.
Early studies, most notably Mandelbrot (1963), also document the persistence in
stock market volatility, particularly at higher frequencies. The variables in our
analysis are chosen to match the above categories.

The data set we use is an updated and expanded version of the one employed by
Pesaran and Timmermann (1995), which has a monthly frequency and covers the
period 1954:1 to 1992:12. We have updated the data set to capture a more recent
time period (until 1998:9). We use the following financial and macroeconomic
series: the return on the Standard & Poor’s 500 (S&P 500) index, the 3-month
Treasury bill, the price-earnings ratio on the S&P 500, dividend yield on the S&P
500, inflation, industrial production, the 12-month Treasury bill, monetary growth,
and the commercial paper-Treasury yield spread.

While Pesaran and Timmermann (1995) use the one-month Treasury bill re-
turn, we use the return on the three-month Treasury bill to approximate the risk
free rate. This measure is also used in related papers, e.g. Harvey (1991) and
Pontiff and Schall (1998). Duffee (1996) claims that the one-month Treasury bill
return is a poor proxy for the risk free rate, due to its idiosyncratic volatility.
Moreover, the 3-month Treasury bill rate has the advantage that its data are more

widely available than for 1-month Treasury bill rate, so that it is more likely that



Figure 1: Excess Returns S&P 500 Index (1954:1 - 1998:9).
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a portfolio manager would have selected the former. To avoid look-ahead bias,
we include the financial variables with one lag, and the macroeconomic variables
with two lags, as the macroeconomic variables are typically only available with a
two-month lag.

Table 1 presents some summary statistics for the monthly stock index return,
the risk free rate, and the excess return. The excess return, which is displayed in
Figure 1, does not exhibit any obvious patterns, except perhaps for some business
cycle effects. For the entire sample period, January 1954 to September 1998, the
average return on the Standard & Poor’s 500 index is approximately 1.06% per
month, while the average return on the three-month Treasury Bill is approximately
0.45% per month. The standard deviation (which is an indication for the corre-
sponding risk) is, as expected, much higher for the stock index return. Looking at
two subperiods (which are chosen to include half of the data points) it appears that
for the first subperiod, 1954:1 to 1976:5, the average monthly return on the stock
index and on the risk free rate is somewhat lower than in the second subperiod,
1976:6 to 1998:9. Finally, as is well known, the monthly stock index return and
excess return exhibit a high level of kurtosis. The appendix provides details about
the definitions and sources of the variables employed.

To obtain an indication to what extent the excess returns are predictable us-
ing financial ratios and macroeconomic variables, Table 2 presents the estimation

results for model (7) using the entire sample period (i.e. within-sample); this is



Table 1: Summary Statistics

Mean, standard deviation, skewness, and kurtosis of monthly stock
index return, risk free rate, and excess return. The stock index
return is measured by the return on Standard & Poor’s 500 index
and the risk free rate is the 3-month Treasury bill rate published by
the Federal Reserve Bank of St. Louis. The first column presents the
statistics over the period 1960:1-1998:9; the second and third column
correspond to the two subperiods of 1960:1-1979:5 and 1979:6-1998:9

respectively.

1954:1-1998:9 1954:1-1976:5 1976:6-1998:9

T =537 T = 269 T = 268

Monthly Stock Index Return
Mean (%) 1.0577 0.8943 1.2218
Std. dev. (%) 4.0565 4.0493 4.0647
Skewness -0.3930 -0.0151 -0.7683
Kurtosis 5.1819 3.8908 6.5542
Monthly Risk Free Rate
Mean (%) 0.4474 0.3323 0.5629
Std. dev. (%) 0.2210 0.1480 0.2221
Skewness 1.0022 0.3974 0.9964
Kurtosis 4.3303 2.5625 3.6959
Monthly Excess Return on Stocks

Mean (%) 0.6104 0.5621 0.6589
Std. dev. (%) 4.0813 4.0882 4.0814
Skewness -0.4114 -0.0537 -0.7701
Kurtosis 5.1190 3.8208 6.4278

a simple linear projection of the monthly excess return on the S&P 500 index on
one or two lags of the monthly price-earnings ratio, dividend yield, inflation rate,
change in industrial production, short and long interest rates, monetary growth,
and the commercial paper-Treasury yield spread. In early studies, these variable
are argued to be able to predict stock market returns through their relationship
with the business cycle. The price-earnings ratio is employed as a measure of com-
pany earnings, while monetary growth and the commercial paper-Treasury yield
spread measure liquidity. It should be stressed that the estimates in Table 2 are
not used to study the economic significance of predictability. They are merely
presented to obtain some idea about the within-sample evidence of predictability
of stock market returns. As explained in Section 3, we shall use the recursive mod-
elling approach to generate genuine out-of-sample forecasts. Table 2 presents the

estimation results of the entire sample period (1954:1-1998:9) and two subperiods
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(1954:1-1976:5 and 1976:6-1998:9), so that we can examine whether the estimation
results are robust over the two subsamples. Clearly, there is some statistical evi-
dence of within-sample predictability with R?s ranging from 11 to 23%, while the
F-statistics in Table 2 indicate rejection of the null hypothesis of constant expected
returns (with p-values of 0.00). To allow for heteroskedasticity of unknown form,
the t-statistics are based upon the heteroskedasticity-consistent covariance matrix
estimator proposed by White (1980).

The estimated coefficient for the price-earnings ratio is negative for the entire
sample period and both subsamples, and is significant for the entire sample and
the second subsample at conventional levels. A negative sign corresponds with the
literature and could be interpreted as a mean-reversion effect due to undervalua-
tion or overvaluation. For none of the specified samples the dividend yield has a
coefficient which is significantly different from zero (as in Sentana and Wadhwani,
1991), while elsewhere in the literature often a significantly positive value is found.
An explanation for this difference in findings is that the dividend yield and the
price-earnings ratio may represent the same proxy (namely a variable which in-
dicates whether the market is overvalued or undervalued), see also Kothari and
Shanken (1997). Leaving out the price-earnings ratio results in a positive and
significant coefficient for the dividend yield, which supports this suspicion.

The inflation variable has a (marginally significant) negative impact on the
excess return, which is intuitively plausible because inflation is an indicator of an
overheating economy, which is usually followed by a bear market. We include inter-
est rates with one and two lags, to allow excess returns to depend upon differences
in interest rates as well as their levels. The coefficients of the short interest rates
tend to have a negative sign, while their long term counterparts tend to be positive;
this is also found in Solnik (1993). A negative sign of the short term interest rate is
consistent with the interpretation that the interest rate is a proxy for business cycle
effects in stock returns, as interest rates tend to be high at the peak and just after
the peak of a business cycle. The coefficient of the rate of growth in the monetary
base is only statistically significant in the first subperiod. The estimated value of
the slope coefficient of the commercial paper-Treasury yield spread, which is an

indicator for the default risk?, is negative and statistically significantly different

2 Adding the default premium on corporate bonds, i.e. the yield spread between Baa-rated and

Aaa-rated corporate bonds, in the prediction model produced only marginally different results.
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Table 2: Linear Model for Excess Index Returns

Regression of monthly stock index excess returns of the S&P 500 index on lagged explana-
tory variables for the periods 1954:1 to 1998:9, 1954:1 to 1976:5, and 1976:6 to 1998:9 respec-
tively. The conditioning variables are the lagged price-earnings ratio (PE), lagged dividend
yield (DIV), twice-lagged inflation rate (IN F'L), twice-lagged change in industrial produc-
tion (IP), lagged and twice lagged short and long interest rate (I3;_1,13; 2,112, 1,112; o
respectively), twice lagged monetary growth variable (M B), and the lagged commercial
paper-Treasury yield spread (C'P). Heteroskedasticity corrected t-statistics are reported
in square brackets. The values in parentheses, which correspond to the F-statistic, are
p-values. Adj. R? denotes the R? adjusted for the degrees of freedom.

1954:1-1998:9 1954:1-1976:5 1976:6-1998:9
Explanatory Variables* T =537 T = 269 T = 268
Constant 0.0918 -0.0203 0.1147
[2.9881] [-0.2277] [3.1033]
PE; 4 -0.2919 -0.1098 -0.3019
[-3.0026] [-0.4411] [-2.5880]
DIV, -0.0460 0.2174 -0.0878
[-0.9460] [1.3593] [-1.2579]
INFL; o -0.1679 -0.3216 -0.1079
[-1.8823] [-1.9622] [-0.7803]
IP, 5 -0.1260 -0.0772 -0.1506
-3.0902] -1.1264] -2.2431]
13; 4 -0.0528 -0.1558 -0.0171
[-1.0695] [-1.1345] [-0.3177]
13: 2 -0.1209 -0.1732 -0.1857
[-1.6326] [-1.0441] -1.9039)
112, 4 0.0099 -0.0136 0.1239
[0.1217] [-0.0978] [1.1854]
112, o 0.1252 0.2834 0.0425
[2.5223] [2.8259] [0.8310]
MB;_o 0.0855 0.4643 -0.0660
[1.1872] [3.4041] -0.4782)
CP,_4 -0.3265 -0.5120 -0.3180
[-3.0631] [-3.0513] [-2.0316]
R? 0.128 0.230 0.114
Adj. R? 0.112 0.200 0.080
DW 2.028 2.026 2.031
F-statistic 7.746 (F(10,526)) 7.717 (F(10,258)) 3.306 (F(10,257))
(0.0000) (0.0000) (0.0005)

* For a more detailed description of the variables: see the Data Appendix.
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Table 3: Linear Model for Squared Unexpected Returns

Regression of squared prediction errors on lagged squared prediction errors (SQ:_1)
and lagged short interest rate (I3;—;) for the periods 1954:1 to 1998:9, 1954:1 to
1976:5, and 1976:6 to 1998:9 respectively. Heteroskedasticity and serial correlation
corrected t-statistics with truncation lag 2 are reported in square brackets. The values
in parentheses are p-values, which correspond to the F-statistic. Adj. R? denotes the
R? adjusted for the degrees of freedom.

1954:1-1998:9 1954:1-1976:5 1976:6-1998:9
Explanatory Variables* T =537 T = 269 T = 268
Constant 0.0009 0.0007 0.0013
[5.1810] [2.0066] [2.9746]
SQi—1 0.1391 0.1591 0.1046
[2.5385] [2.0066] 2.1128]
13; 4 0.0007 0.0012 0.0000
[2.0025] [1.2758] [0.0521]
R? 0.023 0.038 0.011
Adj. R? 0.020 0.030 0.003
Fstatistic 6.342 (F(2,534))  5.182 (F(2,266)) 1.461 (F(2,265))
(0.0020) (0.0062) (0.2339)

* For a more detailed description of the variables: see the Data Appendix.

from zero. We have not included any calendar effects in the model, like a January
dummy, because these effects typically lack economic rationale and are potentially
the mere result of data snooping. However, when we include a January dummy
in the model the results are basically unchanged. Note that because the January
effect is especially documented for small-cap stocks, its effect on the value-weighted
stock index is expected to be small.

Table 3 reports the results from estimating the volatility model over the entire
sample and the two subsamples. These are simply OLS results where the squared
prediction error in (7) is explained from its lag and the short interest rate. To
allow for autocorrelation and heteroskedasticity of unknown form, the ¢-statistics
are based upon the heteroskedasticity and autocorrelation adjusted standard errors
of Newey and West (1987). The lagged squared prediction error has a positive and
significant impact on current volatility, which indicates that large monthly shocks

in returns tend to be followed by large shocks. The estimated coefficient of the

Apparently, the impact of this variable is captured rather well by the commercial paper-Treasury

yield spread.
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Figure 2: Out-of-Sample Predicted Excess Returns S&P 500 Index (1960:1 -
1998:9).
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lagged short term interest rate has a positive sign, but is only marginally significant
when using the entire sample. Similar results were found in Breen, Glosten and
Jagannathan (1989).

4 Nonparametric Tests for Market Timing

The empirical results in the previous section do not necessarily imply that there is
any statistically significant out-of-sample predictability in index returns or volatil-

ity. To analyze the out-of-sample forecasting power of the linear model for the S&P

e

m.t» based on the recursive OLS

500 index, we use the predicted excess returns, 7
estimates and thus using information up to time ¢ — 1 only. We assume that the
investor starts investing in January 1960, such that he uses the information prior
to 1960, i.e. from 1954:1-1959:12, to estimate his initial model. Consequently,
we use the first 72 months as the base estimation period. Figure 2 displays the
one-month ahead forecasts for the S&P 500 returns in excess of the risk free return.
The figure shows a substantial degree of persistence in the predicted returns, with
an estimated first order autocorrelation coefficient of 0.72. The number of zero
crossings is limited, so that the switching strategy, as discussed above, involves
reasonable long periods without switching. Over the entire period, the squared

correlation coefficient between the predicted and actual excess returns is 6.3%,
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which is only half of the within-sample R? of 12.8%.

A more formal comparison of the predicted (75, ,) and actual excess returns
(rfm) can be obtained in a variety of ways. First, we present in Table 4 the contin-
gency table corresponding to the Henriksson and Merton (1981) (HM henceforth)
test for market timing. This table is simply a cross-tabulation of the signs of
Pt and rp .. Table 4 shows that, over the entire sample period, the sign of ry, ,
is predicted correctly in 266 out of 465 months (57.2%). The idea behind the
HM test is that there is an indication of market timing if the sum of the (esti-
mated) conditional probabilities of a correct forecast exceeds one (which makes it
a one-tailed tests). Given the figures in Table 4 for the entire sample period, the
estimated probability of a correct forecast conditional on a down market, p;, equals
93/(93+104) = 0.4721, and the probability of a correct forecast conditional on an
up market, po, equals 173/(465 — 93 — 104) = 0.6455. Consequently, the sum of the
conditional probabilities of a correct forecast equals 1.1176, which exceeds unity,
thus providing an indication of market timing ability. A formal way to test this
is to use the nonparametric HM test statistic, which is asymptotically standard

normally distributed under the null hypothesis. It is given by

nll __ niono1

HM = e, (12)
\/ T n2(n—1)

where nq; is the number of correct bear market forecasts, ng1, n1g are the numbers
of bear markets and bear market forecasts, respectively, while ngy, ns denote the
number of bull markets and bull market forecasts, respectively. The total number
of evaluation periods is n. As the test statistic exceeds the one-sided 5% critical
value of 1.64 for the entire period and both subperiods, the absence of market
timing has to be rejected statistically. Note that the evidence for the last two

decades is slightly weaker.
The HM test, testing whether p; + po = 1 against the alternative that the sum
exceeds unity, is asymptotically equivalent to a one-tailed test on the significance

of the slope coefficient «; in®

Iige >0y = oo + anlgre oy + v, (13)

3To see this note that ag = P{rg,, > Olrs, <0} =1 —py, and oy = P{75,, > Olr,, >
0} — P{r5, ;> 0lrs,: <0} =p1 +pa— 1.
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Table 4: Nonparametric Market Timing Test

This 2 x 2 contingency table is a cross-tabulation of the signs of 7,

m,t
and 77, ;, which are obtained from recursive out-of-sample estimations.
The Henriksson-Merton test for market timing has a standardized nor-
mal distribution in large samples. The critique value of the one-tailed
test with a 5% significance level is 1.64. Figures correspond to the
period 1960:1-1998:9 (T" = 465); the figures between brackets corre-
spond to two subperiods of 1960:1-1979:5 (T" = 233) and 1979:6-1998:9

(T = 232) respectively.

Tt <0 Tt > 0 Total
Troe < 0| 93 (45; 48) 95 (33; 62) 188 (78; 110)
Pt > 0| 104 (66; 38) 173 (89; 84) 277 (155; 122)
Total 197 (111; 86) 268 (122; 146) | 465 (233; 232)

Proportion of correctly predicted signs: 57.2% (57.5%; 56.9%)
Henriksson-Merton test: 2.5507 (2.1748; 1.9624)

where Iy denotes the indicator function, equal to one if its argument is true
and zero otherwise. Breen, Glosten and Jagannathan (1989), BGJ henceforth,
conduct a very similar test, interchanging the role of the two variables in (13).
That is, It -0y is the dependent variable, and Iz ¢y the independent variable.
The correspé)nding t-statistic is exactly the same aé the one obtained from (13).
Cumbey and Modest (1987), CM henceforth, extend this test such that not just
the sign of the realized excess return matters, but also its magnitude. This involves
a regression of 17, , upon a constant and Iz ~oy. Finally, Bossaerts and Hillion
(1999), BH henceforth, use a regression of rfn:t upon 77, . In both cases the null
hypothesis is that the slope coefficient is zero, which is tested against the one-sided
alternative that it is positive.* Table 5 presents the results of these regression-based
tests for market timing. As expected, the HM and BGJ tests result in statistics
which are virtually the same as those reported in Table 4. The CM and BH tests,
however, yield substantially larger tests statistics of 3.66 and 5.62 over the entire
sample period, respectively. This means that the model is not only capable to
predict the sign of the excess return, but also capable the order of magnitude.
Without exception, each of the tests indicates significant out-of-sample fore-

casting power of the recursive regression model for the S&P 500 index. This is

*Bossaerts and Hillion (1999) employ a two-sided alternative, which seems less appropriate.
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consistent with a large body of recent literature, for example, Campbell (1987),
Breen, Glosten and Jagannathan (1989), Pesaran and Timmermann (1995, 2000),
but deviates from the conclusion of Bossaerts and Hillion (1999), who do not find
any significant out-of-sample predictability for excess returns on the S&P 500 for
the period 1990:6-1995:5. If we focus upon the most recent half of our sample
period, the evidence for out-of-sample predictability is still clear, but somewhat
less pronounced than for the first half. This is in line with the within-sample R*s
reported in Table 2.

The tests reported in Tables 4 and 5 do not take into account volatility timing.
In fact, the different tests are not directly applicable to test for volatility timing
because the conditional volatility is unobserved, even ex post. While the major-
ity of volatility forecast evaluations in the literature rely upon the use of ex post
squared (unexpected) returns, it is recently stressed by Andersen and Bollerslev
(1998) that such a comparison is inappropriate and substantially underestimates
the predictive performance of volatility models. The reason for this is that squared
returns provide very noise measurements of actual volatility due to the idiosyn-
cratic noise in the return process. To overcome this problem we essentially follow,
among others, Schwert (1989) and Andersen and Bollerslev (1998) and construct
a measure of ex post (monthly) volatility that is based on cumulative squared
daily returns. Using high-frequency data to calculate the low-frequency ex post
volatilities, substantially reduces the noise in the series, thus improving the ex post
volatility measurements.

If daily returns do not exhibit any autocorrelation, the variance of the return

in month ¢ can be estimated as
G =Y (rig — )%, (14)

where N; is the number of trading days in month ¢, ; ; the return on day 7 in month
t, and 7; denotes the average daily return in month ¢. Andersen and Bollerslev
(1998) use a similar method to compute daily volatility using intradaily returns.
It is well known, however, that daily stock index returns exhibit positive first-order
autocorrelation. The most common explanation of this phenomenon is infrequent
or non-synchronous trading of securities (see, e.g., Lo and MacKinlay, 1990). If
daily returns are positively correlated, the estimator in (14) will underestimate

the true volatility of monthly returns. Therefore we follow French, Schwert and
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Table 5: Regression-Based Tests for Market Timing

Market timing tests based upon simple regressions, using the sign and level
of actual excess returns and predicted excess returns, obtained from recursive
out-of-sample estimations. The test statistics of the different versions of the
test correspond to the t-statistics of the slope coefficient. A slope coefficient
of zero corresponds to the case of no market timing ability. The t-statistics
are given in parentheses. The first column presents the estimation results
over the period 1960:1 to 1998:9; the second and third column correspond to
the two subperiods of 1960:1-1979:5 and 1979:6-1998:9 respectively.

1960:1-1998:9 1960:1-1979:5 1979:6-1998:9

Explanatory Variables T =465 T =233 T =232
HM test™®: Ije 50y = Qo+ arlppe S0y + 01

Constant 0.5279 0.5946 0.4419
(15.1728) (13.3545) (8.2398)

Ipe o 0.1176 0.1349 0.1335
’ (2.5660) (2.1926) (1.9746)

BGJ test: I{,,,em>0} =00+ 61[{fﬁ,,,t>0} + vy

Constant 0.5053 0.4231 0.5636
(14.0905) (7.5263) (12.2893)

Igre 303 0.1192 0.1511 0.1249
’ (2.5660) (2.1926) (1.9746)

CM test: ry, . = ¢p + (/)1]{;5””90} + 3¢

Constant -0.0036 -0.0091 0.0003
(-1.2057) (-1.9847) (0.0825)

Igre 303 0.0141 0.0166 0.0141
’ (3.6631) (2.9429) (2.6304)

BH test: 75, , = 0o + 0175, , + v

Constant 0.0029 -0.0021 0.0071
(1.5121) (-0.7516) (2.6962)

Pt 0.5827 0.7094 0.5377
(5.6248) (4.5321) (3.8606)

1t is easily checked that éo = 1 — py, and &1 = p; + p2 — 1 (cf. footnote
4).
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Figure 3: Actual Volatility (Estimated from Daily Data) (1966:1 - 1998:9).
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Stambaugh (1987) and Akgiray (1989), and use an adjusted estimator for the
variance of the return in month ¢, based upon the assuming that daily returns in
month ¢ are appropriately described by a first-order autoregressive process with
coefficient ¢,. In particular, we can use the following estimator for the ex post
monthly variance

Ny Ni—1

52 =3 (rig =) [14+ 2N Y (N, = 5)dh | (15)

i=1 j=1

where gAbt is the first-order autocorrelation coefficient estimated using daily returns
within month ¢.

To determine the ex post monthly variance we have data available of daily
returns on the S&P 500 index from the beginning of 1966 to the end of 1998,
which makes a total of 8453 observations (trading days). As a result, we can
estimate the ex post volatility for a total of 393 months, starting in January 1966.°
While this measure for monthly volatility is an estimate, we shall occasionally refer
to it as the actual volatility, to contrast it with the predicted volatility according
to the linear model in (10).

>The average estimated daily autocorrelation coefficient equals 0.12, and varies between —0.50
and 0.61. We also considered an alternative where the first-order autocorrelation coefficient was
estimated over the entire sample period. This produced an estimate of 0.043. While this resulted
in different values for the test statistics, these were not uniformly larger or smaller. Qualitatively,

all conclusions remained the same.
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Figure 4: Out-of-Sample Predicted Volatility (1960:1 - 1998:9).
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Figure 3 shows how actual ex post volatility varies over the period 1966:1—
1998:9. In this figure, the volatility for each month is calculated according to
formula (15). It is clear from the figure that the variance is not constant over
time, and it tends to cluster: periods with high volatility are followed by some less
volatility periods. Furthermore the crash of October 1987 is easily recognized, as
well as the volatile period in 1998.

The out-of-sample predictions for the monthly variance of the S&P 500 returns
are displayed in Figure 4. The figure shows some small swings in the predicted
volatility combined with many high frequency changes. The squared correlation
coefficient between the predicted and “actual” volatility figures is as low as 2.5%.
This is partly due to the high variation in actual volatilities and its skewed distribu-
tion. On average, predicted volatilities are somewhat below the actual volatilities.®

To compare predicted and actual volatilities, we use the same range of tests
as in Table 5. However, because volatilities are nonnegative, the benchmark in
the contingency table has to be chosen at some positive number. In this case we
choose a benchmark of £ = 0.0012, corresponding to a monthly standard deviation
of 3.46%. This number closely corresponds to the sample median of the actual
volatility. The resulting dummy variables thus distinguish periods with “high”
and periods with “low” (predicted) volatility. Note that the choice of benchmark

6This can be explained by the fact that predicted volatilities ignore estimation error in the

predicted means (see below).
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Table 6: Regression-Based Tests for Volatility Timing

Volatility timing tests based upon simple regressions, using the sign and level
of actual volatility in excess of its benchmark ¢ (0.0012, which is approxi-
mately the sample median) and predicted volatility in excess of its bench-
mark, obtained from recursive out-of-sample estimations. The test statistics
of the different versions of the test correspond to the t-statistics of the slope
coefficient. A slope coefficient of zero corresponds to the case of no volatility
timing ability. The t-statistics are given in parentheses. The first column
presents the estimation results over the period 1966:1 to 1998:9; the second
and third column correspond to the two subperiods of 1966:1 to 1979:5 and
1979:6 to 1998:9 respectively.

1966:1-1998:9 1966:1-1979:5 1979:6-1998:9

Explanatory Variables T =393 T =161 T =232
HM volatility test: I{Vd"’l—l{"’,en)[}>$} =ap+ 0‘1[{&,2n),>§} + Ui
Constant 0.6684 0.4231 0.8033
(22.0760) (7.6526) (27.4372)
I{&?,,,’t>§} 0.1692 0.2275 0.1513
(3.9567) (2.9549) (3.5577)
BGJ volatility test: I{&?R,PE} =g+ 61[{V&7’L—l{7’f’,,"t}>€} +vo
Constant 0.3299 0.3919 0.1724
(6.6102) (6.8852) (1.9017)
I{V&rlfl{"’f,,,,t}>€} 0.2275 0.2288 0.3448
(3.9567) (2.9549) (3.5577)
CM volatility test: 62, , = ¢ + D1l(var, (s, )56} T U3
Constant 0.0012 0.0015 0.0008
(5.6312) (5.3912) (2.0322)
Itvar,_, {re, }>€} 0.0007 0.0010 0.0010
(2.9032) (2.6674) (2.5480)
BH volatility test: 52, ; = 0 + 61Var,—1{rg, ;} + vas
Constant 0.0007 0.0005 0.0007
(1.7811) (0.8407) (1.3403)
Vary 1{ry, .} 0.8010 1.1669 0.6482
(3.1465) (2.9686) (1.8815)

21



is irrelevant for the implementation of the BH test. The results of the different
tests are reported in Table 6. For all of the reported samples, all tests soundly
reject the null hypothesis of no predictability at the 5% level. The results indicate
the presence of statistically significant volatility timing at a monthly frequency.
This is in line with the findings of Fleming, Kirby and Ostdiek (1999), who find
(economically) significant volatility timing using daily data. While volatility is
much more persistent at daily than at monthly frequencies, some statistically sig-
nificant predictability remains at the monthly frequency. The fact that the HM
and BGJ tests provide higher values for the test statistics than the CM and BH
tests, indicates that it is relatively more easy to predict whether volatility is high
or low, relative to the median, than to predict its magnitude.

The two sets of tests above considered market timing in returns and volatility
separately. While this provides useful information, it is possible that a good return
forecast more than average corresponds to a bad volatility forecast or vice versa. It
is therefore useful to consider the joint forecasting power of the two models. A first
way to jointly test for the presence of timing in both moments, implies choosing a
function of returns and volatility one is interested in. Instead of making some ad
hoc choice, we decided to remain within the nonparametric framework and extend
the above contingency tables to incorporate both dimensions simultaneously. To

this end, we constructed a 4 x 4 table, in which we cross-tabulate the signs of the

2

mit — &), 1.e. we compare the signs of the

pairs (7, ,, Var, 1{rg, .} —§) and (r5,,, &
excess return and conditional variance in excess of its median, with their predicted
counterparts. This novel approach provides important insights into the interde-
pendencies of the predictability of the two components. Moreover, evidence of the
joint predictive power can be obtained from this table that classifies observations
according to the 16 different outcomes.

Table 7 presents the 4 x 4 contingency table and the test statistic corresponding
to the nonparametric test for market timing in both moments. In this table the
diagonal cells represent the correctly predicted pairs; from this we see that the signs
of the pairs are predicted correctly in 132 out of 393 cases, i.e. 33.6% are classified
correctly. Under the null of no predictability, we would expect a percentage of
25. A suitable test statistic in case the contingency table is larger than 2x2 is the

generalized Henriksson and Merton test statistic for a m x m contingency table,
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Table 7: Nonparametric Market Timing Test for both Moments
This 4 x 4 contingency table is a cross-tabulation of the pairs (77, ,, 5,271’15 — &) and (75, ,
Var,_i{rg, ;} — £), which are obtained from recursive out-of-sample forecasts, and where
& = 0.0012. The nonparametric test for market timing in first and second moment, which is
a generalization of the Henriksson and Merton test statistic, is a x? test with 9 degrees of
freedom. The critique value of the one-tailed test with a 5% significance level is 16.92. Figures
correspond to the period 1966:1-1998:9 (7" = 393).

rfn,t <0, rfn,t <0, rfnyt >0, rfnyt > 0, Total
Tt > € 6$n,t§§ 6$n,t>§ 6$n,t§§
Pt <0, V&rf,,l{?“fn,t} > &€ 47 18 30 36 131
Tt <0, V&rt_l{rfn’t} <¢ 15 7 6 12 40
Tt > 0, V&rf,,l{rfn,t} > £ 33 25 49 52 159
Pt > 0, VCAL’I"t_l{Tfn’t} <¢ 5 21 8 29 63
Total 100 71 93 129 393

Proportion of correctly predicted pairs: 33.6% (under Hy: 25%)
x2-test: 42.5544 (X§;0.05 =16.92)

given by
m (g — wf
ij=1 n

where m is the number of categories, n;; the number of observations in the category
(4,7), and m;o and ng; are the ith row and the jth column totals. Under the null
hypothesis, the test statistic is asymptotically Chi-squared distributed with (m —
1)2 = 9 degrees of freedom. The realization of this statistic is 42.55 (with a 5%
critical value of 16.92), which clearly shows that there is a significant relationship
between the predicted and realized pairs. The null hypothesis that is actually
tested here is independence between forecasts and realizations. Strictly speaking,
the fact that the test rejects does not imply positive timing ability, just that there
is dependence between forecasts and realizations.”

To evaluate the question whether the rejection of the test is due to positive

timing ability, we explore several alternative tests based upon auxiliary regres-

"Recall that in the 2 x 2 case, the alternative hypothesis was one-sided, corresponding to

positive timing ability.
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sions. This allows us to focus the tests upon combinations of predicted signs and
actual signs which are particularly interesting. To do so, we define two sets of
dummy variables. The first set includes four dummy variables corresponding to

four different outcomes in the columns of Table 7. That is,

Ipny = 1 if 7, <0and 672717,5 > ¢, 0 otherwise,
Ig; = 1 if rf,,<0anddl, <& 0 otherwise, (17)
Iey = 1 it ry,,>0and 5,27” > ¢, 0 otherwise,
Ip;y = 1 it ry,>0and 6,27%,5 <¢, 0 otherwise.

The second set includes four dummies corresponding to the different row outcomes,
and are denoted as I 4, I, I, and I , respectively. They are defined in a similar
way replacing actual outcomes by predicted outcomes. Now consider the following

set of equations

Ing = i+ 0&11[;1,,5 + 0412-737,5 + 0413I(j¢ + var,
Ip;y = oo+ CY21]A,,5 + 0422]1;7,5 + 04241[7,,5 + vBt, (18)
IC,t = g0+ 0431[14715 + a33[6’,t + 0434ID7t + Vet
ID,t = Qyy+ 044213,,5 + 0443[&,5 + CY44ID7t + Up,t-

To prevent perfect multicollinearity, in each equation the dummy variable corre-
sponding to the forecast with two incorrect signs is omitted. The coefficients «;;,
j = 1,2,3,4, correspond to the increase in the probability of observing a given
pair of outcomes if the recursive models predict these two outcomes, relative to
the case where the two opposite outcomes are predicted. Similarly, the coefficients
o, 1 # J, j = 1,2,3,4, measure the increase in probability due to forecasting only
one given outcome correctly.

The system of equations in (18) is singular, because v4 +vp+ve+vp, = 1 for
each t. This means that the coefficients in one equation can be expressed as linear

8 When the system is estimated

functions of those in the other three equations.
by the seemingly unrelated regressions (SUR) estimator, this means that either

equation can be dropped with equivalent results (Barten, 1969). However, for ease

8Tt can be shown that the following restrictions hold: cug = 1—aqg—ap— 39 —a1 — o1 — Q3]
Qo = Q1 + Qo1 + @31 — g — Q92; Qu3 = g1 + a1 + agp — g3 — a3y and ayg = aqg + ooy +

31 — Qg — Q34
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Table 8: Regression-Based Tests for Market Timing in both Moments
The tests for market timing, which provides a joint test of predictability in both
moments, are based upon SUR (OLS) of I;; = ajo + a1z, + ajely, + aj3ls, +
ajlpy, +vig, @ = AB,C,D, j = 1,2,3,4 In each equation the dummy that
corresponds to the forecasts with two incorrect signs is omitted. The t-statistics are

given in parentheses. The predictive failure test is a x? test with 9 degrees of freedom.
Estimation results over the period 1966:1-1998:9.

Explanatory Variable Tay Ip, Ic: Ip:+
Constant 0.0794 0.1572 0.1500 0.2748
(1.4898) (5.2349)  (2.2622)  (6.7227)

I;, 02794  -0.0198  0.0790 -
(4.3100) (-0.4437)  (1.0429)

Ig, 0.2956  0.0178 - 0.0252
(3.4583)  (0.2652) (0.2981)

Ie, 0.1282 - 0.1582  0.0522
(2.0363) (2.1324)  (0.9462)

Ip, - 0.1761  -0.0230  0.1855

(3.1234)  (-0.2715)  (2.5861)
Wald test: 42.0026 (x3,0.05 = 16.92)

of interpretation we present results for the full system. Note that because of the
nature of the regressors OLS applied to each equation is numerically equivalent
to SUR.? The SUR (OLS) estimates for the above system, for the period January
1966 to September 1998, are presented in Table 8.

The null hypothesis of independence implies that all partial slope coefficients
in (18) are equal to zero, which corresponds to 9 linearly independent restrictions.
The standard Wald test for these restrictions produces a value of 42.00, so that
the null hypothesis that both returns and volatility are not predictable is soundly
rejected. Note that the Wald statistic based on (18) is very close to the value of
the non-parametric test statistic of 42.55, given in Table 7, which is no surprise
given that these tests are asymptotically equivalent.

Ideally, the diagonal coefficients a1 to ays are positive (and significant), indi-
cating positive timing abilities. Note that three out of four diagonal elements are
significantly positive. If we jointly test the set of restrictions aq; = s = sz =

agy = 0, we obtain a test statistic of 24.16, which is again highly significant for a

Tt is well-known result that OLS and SUR provide identical estimates in case each equation
in the system has the same regressors. This result also holds if regressors are different across

equations but span the same space, as is the case in (18); see Greene (2000, Sect. 15.4).
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Chi-squared distribution with 4 degrees of freedom. When considering the coeffi-
cients in Table 8 a desirable feature is that, in each of the equations, the dummy
for the best pair of forecasts has a coefficient that is larger than the other two dum-
mies. This means that the probability of a given pair of outcomes is larger if both
signs are correctly predicted than if only one sign is correctly predicted. The most
notable violation of this implication is that the estimate for asy exceeds that of amo,
indicating that the model is not very well capable to time whenever simultaneously
excess returns are negative and volatility is low (r¢, , < 0 and 57, , < &), which — in
this sample period — occurs in 18% of the months. For the other combinations the
simultaneous timing is reasonably well. Further, we tested whether the probability
of a correct return forecast is independent of the probability of a correct volatility
forecast. This resulted in a test statistic of 0.302, which is highly insignificant for
a standard normal distribution. Apparently, the fact that the sign of the excess
return is predicted correctly does not increase or decrease the probability that the
sign of volatility (relative to 0.0012) is predicted correctly (or vice versa). Finally,
Pesaran and Timmermann (1995) suggest that the predictability of excess returns
is larger at times when volatility is high. From the above results, we can easily
test the null hypothesis of independence between a correctly signed excess return
forecast and volatility, as measured by the high-low dummy. This results in a value
of 2.238, which implies sound rejection based on a standard normal distribution.
Apparently, periods with larger shocks more than average correspond to periods
with a correctly predicted up- or down-market. As noted by Pesaran and Timmer-
mann (1995) this finding could be consistent with incomplete learning after a large
shock to the economy, as well as with the existence of time-varying risk premia.
Overall, the results in this section indicate the presence of statistically sig-
nificant out-of-sample predictability for both S&P 500 returns and its volatility.
For predicting returns, the evidence is typically somewhat stronger for the period
up to May 1975 than for the period after this date. Pesaran and Timmermann
(1995) also find that forecasting performance is relatively low in the 1980s. For
predicting volatility the strength of the statistical evidence depends upon the ques-
tion whether the evaluation takes into account the actual levels or just the signs
(and forecasts refer to periods of “high” and “low” volatility). Overall, it appears
somewhat harder to predict the actual volatility than to predict its sign.

None of the tests in this section requires the implementation of any particu-
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lar trading strategy. This way, these tests do not allow for the incorporation of
transaction costs or short-sales restrictions or the comparison of alternative strate-
gies. In a sense, one could interpret the rejection of some of the above tests as
a necessary condition for any economically significant predictability. To elaborate
upon the economic value of predicting returns and volatility we shall, in the next
section, analyze the results of a number of trading strategies based upon return

and volatility predictions from our two recursive models.

5 Evaluating Empirical Trading Rules

In this section we consider the mean-variance investor from Section 2, who uses
recursive OLS estimates of model (7) and (10) to determine his optimal portfolio
weights. This results in a portfolio that is estimated to be ex ante conditional
mean-variance efficient. We assume that the investor has a risk aversion coefficient
~ of 6. This choice corresponds with a moderately risk-averse investor that, in a
world without conditioning information, would invest about 50% in the risky asset.
Most of the results below (e.g. Sharpe ratios) are insensitive to the choice of ~,
while occasionally we consider alternative levels of risk aversion as well. Similar
to Section 4, the investor starts investing in January 1960, such that he initially
uses the information prior to 1960, i.e. from 1954:1-1959:12. This means that the
base estimation period consists of 72 months. Besides the optimal trading rule
and the switching rule, as described in Section 2, we will also consider three simple
benchmark strategies: holding only the market portfolio, holding only the risk free
asset, and holding 50% of the wealth in the market portfolio and 50% in the risk
free asset.!’ This latter strategy is especially interesting for the utility-based mea-
sure, as the average weight of most of the dynamic strategies corresponds more or

less with this strategy. The optimal portfolio is evaluated with and without tak-

10 Alternatively, we could compare the results of the active strategies with a so-called un-
informed strategy. This strategy, which is also an active strategy, uses only past returns to
construct the expected return and volatility in a recursive way. The results of this strategy are
not reported here, as this strategy yielded an underperformance relative to the strategies with
50 and 100 percent of the wealth in the market portfolio. Consequently, the economic value of
the active (informed) strategies is a conservative estimate when compared to the strategies with

50 and 100 percent in the market portfolio.
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Table 9: Overview of Passive and Active Strategies

Strategy Description

Passive:

I: 100% market 100% is invested in the market portfolio

IT: 50% market 50% is invested in the market portfolio, and 50% in the risk free
asset

III: 0% market 100% is invested in the risk free asset

Active:

IV: Switching (0-1) 100% is invested in the market portfolio if E¢{rs, ,,;} > 0, and
0% otherwise

V: Optimal p optimal portfolio as in (4) with conditional volatility assumed
constant

VI: Optimal p,o optimal portfolio as in (4) (with volatility timing)

VII: Optimal p (0-1) optimal portfolio with short-sale and borrowing constraints as in

(5) with conditional volatility assumed constant
VII: Optimal p,0 (0-1) optimal portfolio with short-sale and borrowing constraints as in
(5) (with volatility timing)

ing into account future volatility, and with and without short-sale and borrowing
restrictions.!' For convenience, Table 9 presents an overview of the strategies that
are used in this section.

To obtain some idea about the different trading rules, first note that the average
weight of the S&P 500 index in the switching portfolio is 0.596. This also follows
directly from Table 4. For the unrestricted mean-variance portfolios using pre-
dicted returns and predicted returns and volatility, the average weights are 0.188
and 0.494, respectively. The variation in the weights however, is much higher than
for the switching strategy, particularly when volatility timing is used. In some
periods the weights of the unrestricted mean-variance portfolios imply substantial
short positions in the market index or in the risk free asset. If we restrict the
weights to be between 0 and 1, the average weights for the last two strategies be-
come 0.363 and 0.501, respectively. For each of the strategies the portfolio returns
are determined. Table 10 presents the average returns and their estimated stan-
dard deviations over the sample period and the two subsamples, and a number of

additional statistics for investment performance and market timing.

' Note that introducing short-sale and borrowing restrictions does not affect the switching

portfolio in (6).
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Table 10: Evaluation of Various Trading Rules

The results are based on recursive least squares using various trading rules. Mean and Std.

dev. denote the mean return and the standard deviation of the return on the corresponding

strategy in %, respectively. The optimal strategies are based on a risk aversion coefficient

of 6 (see Table 9 for more details). The Sharpe ratio equals the average excess return of
the strategy divided by the sample standard deviation. Alpha, is the OLS estimate of the
intercept in the regression of excess return of the strategy on the excess return of the S&P500

index. The t-statistics for this coefficient are given in parentheses. The Treynor-Mazuy (TM)

test static is the ¢t-value of the squared return coefficient in a regression of the excess returns
upon a constant, the excess return and the squared excess return of the S&P500 index. Panel
A refers to the period 1960:1-1998:9, while panel B and C refer to the two subperiods of 1960:1

to 1979:5 and 1979:6 to 1998:9 respectively.

Mean Std. dev. Sharpe Alpha TM test
Panel A: 1960:1-1998:9 (7" = 465)
Passive:
I: 100% market 0.9697 4.1191 0.1172 - —
IT: 50% market 0.7284 2.0565 0.1174 — —
III: 0% market 0.4870 0.2088 0 - —
Active: (t-stat.)  (t-stat.)
IV: Switching (0-1) 1.1148 2.7656 0.2270  0.0041 (4.2947)  (7.4211)
V: Optimal u 1.6185 4.9949 0.2265 0.0114 (4.9010)  (9.2325)
VI: Optimal 1, 0 29199  10.8453  0.2243  0.0242 (4.7788)  (9.5158)
VII: Optimal p (0-1) 0.9083 2.0740 0.2031  0.0028 (3.5662)  (7.9551)
VII: Optimal p,o (0-1) 1.0112 2.5109 0.2088  0.0034 (3.7296) (7.5733)
Panel B: 1960:1-1979:5 (T' = 233)
Passive:
I: 100% market 0.5967 4.0918 0.0466 — —
IT: 50% market 0.5014 2.0354 0.0463 — —
IT: 0% market 0.4061 0.1423 0 — -
Active: (t-stat.)  (t-stat.)
IV: Switching (0-1) 0.9015 2.8854 0.1717  0.0040 (3.0082)  (2.1467)
V: Optimal u 1.5446 4.4654 0.2550  0.0112 (3.8539) (7.1187)
VI: Optimal u, o 3.0319 10.5041 0.2500  0.0258 (3.7655)  (6.9675)
VII: Optimal p (0-1) 0.7692 2.2045 0.1647  0.0030 (2.6643) (3.7123)
VII: Optimal p,o (0-1) 0.8342 2.6429 0.1620  0.0034 (2.6977)  (2.3150)
Panel C: 1979:6-1998:9 (T = 232)
Passive:
I: 100% market 1.3444 4.1213 0.1883 — —
IT: 50% market 0.9563 2.0567 0.1887 — -
III: 0% market 0.5683 0.2324 0 — —
Active: (t-stat.)  (t-stat.)
IV: Switching (0-1) 1.3291 2.6287 0.2894  0.0045 (3.2711)  (7.7768)
V: Optimal u 1.6927 5.4842 0.2050 0.0122 (3.3587)  (5.8924)
VI: Optimal u, o 2.8075 11.1991 0.1999  0.0236 (3.1481)  (6.4289)
VII: Optimal p (0-1) 1.0481 1.9288 0.2487  0.0027 (2.5860)  (7.2088)
VIII: Optimal p,o (0-1) 1.1890 2.36339  0.2626  0.0035 (2.7911)  (7.9477)




Let us first consider the results for the full evaluation period of January 1960
to September 1998. The average monthly return on the S&P 500 index over this
period is 0.97% with an estimated (unconditional) standard deviation of 4.12%,
while the average risk free return is 0.49%. The standard deviation of the risk
free return is 0.21%. To see whether a trading rule outperforms another one we
will first consider the Sharpe ratio (SR; see Sharpe, 1966), defined as the ratio of
the mean excess return on the (managed) portfolio and the standard deviation of
the portfolio return. For example, if a strategy’s SR exceeds the market SR the
active portfolio dominates (in an unconditional mean-variance sense) the market
portfolio. In general, the SR answers the question whether it is attractive for a
mean-variance investor to invest all his wealth in this active portfolio, apart from a
fraction in the risk free asset. For empirical applications, the (ex post) Sharpe ratio
is usually estimated as the ratio of the sample mean of the excess return on the
portfolio and the sample standard deviation of the portfolio return. The SR of the
market index is 0.117, while the SR of the risk free asset is zero by construction.

Next, consider the returns of the switching strategy (Strategy IV). In this
strategy wealth is completely allocated to the risky asset if the predicted excess
return is positive and to the risk free asset otherwise. The average return of this
strategy is 1.11% per month with a standard deviation of 2.77%. Apparently, this
strategy is able to increase average returns while reducing risk, which is reflected
in the Sharpe ratio of 0.227.

A common way to measure the outperformance or “abnormal” return of an
investment strategy is provided by Jensen’s (1968) alpha, which is the estimated
intercept in a regression of excess returns upon market excess returns, i.e.

Tot = Qp + Byl + Epts (19)

where 77 ; denotes the excess return on the portfolio. A positive value for Jensen’s
alpha indicates that it is reasonable to invest some (positive) part of your wealth
in this portfolio. This measure is equivalent to the more recent unconditional
stochastic discount factor performance measures in which no particular model is
assumed (see, e.g., Chen and Knez, 1996, or Soderlind, 1999). For the switching
strategy, Jensen’s alpha corresponds to an abnormal return of 0.41% per month,
which is statistically highly significant. Note, however, that Jensen’s alpha is

known to suffer from biases in the presence of market timing (see Dybvig and Ross,
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1985 and Grinblatt and Titman, 1989). These biases arise because a successful
market timing strategy implies that beta varies over time, as a function of market
returns, so that inference based on OLS in (19) is invalid.

A simple way to avoid this bias, is proposed by Treynor and Mazuy (1966).
Assume that beta depends linearly on the conditional expected market excess
return, i.e. B, = ¢y + ¢ Ei{ry, .}, such that 8, varies over time. We can obtain
the Treynor and Mazuy’s measure by substituting this into (19), which yields the

following regression equation:!?

e

Tpt = Qp + 9007"7671,1: + ¥ [Tfn,t]Q + Up,i- (20)

A positive ¢, coefficient in (20) is an indication of successful market timing. Hen-
riksson and Merton (1981) suggest to treat (20) as a standard regression model.
The resulting Treynor and Mazuy measures (the t-statistics of the estimate for )
are reported in Table 10. According to this measure the switching portfolio again
significantly outperforms any passive investment strategy.

Next, we consider strategies V to VIII based upon the (estimated) optimal
mean-variance weights. These strategies differ in the amount of information that
is exploited and the restrictions that are imposed. Strategy V ignores any informa-
tion contained in the volatility model and only exploits the return predictions from
the recursive model, while Strategy VI uses information from both models. The
average return on the optimal portfolio using predictability in first moments only
is 1.62%, which increases to 2.92% if predictability in second moments is exploited
as well. The unconditional standard deviations of these returns are 4.99% and
10.84%, respectively, so that the Sharpe ratios of these two strategies are only 0.227
and 0.224. It should be noted that the portfolio weights for these mean-variance
strategies without short-sales constraints are occasionally extreme.!® This is often
profitable, for example in October 1987 these two strategies imply negative port-

folio weights of —0.581 and —1.358, respectively, while the actual excess return on

12Glosten and Jagannathan (1994) explore the inclusion of other nonlinear functions of the
excess return on the market index based on option-like pay offs. A simple case, suggested by
Henriksson and Merton (1981) involves the inclusion of max{ry, ,,0}. Using this term rather than
the quadratic term in (20) results in values for the t-test statistics that are very similar to the

ones reported.

13 Although the computed weights occasionally imply substantial leverage or short positions,

they are not unusual for a typical hedge fund (see, e.g., Fung and Hsieh, 1997).
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the S&P 500 index was —22% and “actual” volatility was 15%. However, investors
often face short-sales constraints or would otherwise prefer dynamic strategies that
involve less trading (or less trading costs). Therefore, we also consider the “opti-
mal” strategies in which we impose a prior: that the portfolio weights are to be
within the [0,1] interval. For the resulting strategies, VII and VIII, the Sharpe
ratios reduce further to 0.203 and 0.209, respectively. While this implies that each
of the dynamic strategies outperforms the static strategies, it also suggests that
the simple switching strategy outperforms any of the “optimal” strategies. How-
ever, the risk of the dynamic strategies is typically overestimated by the sample
standard deviation, particularly in the presence of volatility timing, because the
ex post (unconditional) standard deviation is an inappropriate measure for the
(conditional) risk an investor was facing at each point in time. Note, for example,
that the unconditional standard deviation of the risk free asset is 0.22%, while
the actual risk in any given month is zero. This indicates a potentially severe
disadvantage of the use of Sharpe ratios to evaluate dynamic strategies. Below we
shall therefore compute an alternative measure for the economic gains involved in
a dynamic trading strategy that takes this problem into account.

Considering Jensen’s alphas for the “optimal” strategies V to VIII, as reported
in Table 10, we see that their estimates are significantly positive for each of the
dynamic trading rules. While the ¢-values are of the same order of magnitude
across the different strategies, the estimates are quite different. For the “optimal”
portfolios without short-sales constraints, Jensen’s alpha is much larger than for
the switching strategy. When short-sales restrictions are imposed, the Jensen
measures of the optimal portfolios are, however, smaller.

Looking at the t-values of the Treynor and Mazuy measures it appears that
these are all exceeding the 5% critical value, indicating the presence of statistically
significant market timing for each of the dynamic trading strategies for all subpe-
riods. For the full sample period and for the subperiod 1960-1979, the order of
magnitude of the Treynor and Mazuy’s measures is higher for the optimal trad-
ing rule (Strategy VI) than for the switching rule. For the more recent subperiod
starting in 1979, the opposite appears to be the case. Except for the latter subpe-
riod, introducing short-sale and borrowing constraints lowers the values of these
measures.

For the last three years, as can be seen from Figure 2, the predicted excess
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returns on the S&P 500 index were continuously negative. This is mainly caused
by the very high price-earnings ratios and low dividend yields over these years. For
the active strategies this implies zero or negative investments in the stock market.
Of course, with hindsight and knowing the huge increase in US stock prices over
these years, one can conclude that these strategies did not do very well over the
last part of our sample period. However, this does not necessarily mean that these
strategies were ex ante unattractive. In the future it remains to be seen whether
stock prices return to levels that can be rationalized with reasonable dividend or
earnings forecasts (as predicted by Campbell, 2000, and Shiller, 2000), more or less
consistent with our historical forecasting model, or whether structural changes have
occurred that invalidate the use of forecasting models estimated on the basis of
fairly long historical data sets. In the latter case, the specification of a forecasting
model should be more dynamic allowing changing sets of explanatory variables
over time combined with a moving window to estimate the parameters (see, for
example, Pesaran and Timmermann, 2000), or allowing for structural breaks.
Until now, the issue of transaction costs was ignored. Clearly, in determining
the economic value of any dynamic trading strategy transaction costs play an im-
portant role. To examine the economic value of the trading rules when transaction
costs are present, we assume that the transaction costs are equal to 7 percentage
points of the value traded, such that the transaction costs equal (in money terms):
TWi|Awyy1|,where W, denotes the wealth at time ¢, and Aw; 1 = w1 — wy. Con-
sequently the return after transaction costs is equal to 7,41 — 7|Aweyq|. To see
this note that the wealth at time ¢ +1 is equal to Wiy = Wirp 11 — TWi|Awygq| =
Wi(rpi+1 — T|Awgyq|). Table 11 presents the performance measures and tests for
the each of the strategies in the presence of transaction costs. We apply three sce-
narios with low, medium and high transaction costs of 0.1%, 0.5% and 1% of the
value of the trade, respectively. For a passive strategy the inclusion of transaction

costs does not matter.'

14This assumption is a simple approximation and ignores the costs associated with rebalancing
the portfolio. This may result in a slight overestimation of the returns of “passive” strategies
I and II, consisting of the market portfolio, and the portfolio holding 50% risky asset and 50%
riskless asset respectively. In practice, to hold the market portfolio one needs to regularly buy
and sell shares to obtain the right proportions of the portfolio. More specifically, holding the
market portfolio is contrarian. That is, winning assets must be sold and losing assets must be

purchased to keep the portfolio weights constant from period to period. We however neglect this
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Table 11: Evaluation of Various Trading Rules in Presence of Transaction

Costs*

Transaction costs are introduced into the trading environment. The transaction costs are either
low: 0.1% (Panel A); medium: 0.5% (Panel B); or high: 1% of the value traded (Panel C).
Figures correspond to the period 1960:1-1998:9 (T = 465).

Mean Std. dev. Sharpe Alpha TM test
Panel A: Low Transaction Costs (0.1%)

Passive:

I: 100% market 0.9697 4.1191 0.1172 - -
II: 50% market 0.7284 2.0565 0.1174 - -
III: 0% market 0.4870 0.2088 0 - -
Active: (t-stat.)  (t-stat.)
IV: Switching (0-1) 1.0991 2.7659 0.2213  0.0039 (4.1285)  (7.4357)
V: Optimal g 1.5733 4.9733 0.2184 0.0109 (4.7244)  (9.2423)
VI: Optimal p, o 2.8152  10.7986 0.2136  0.0231 (4.5892)  (9.5249)
VII: Optimal p (0-1) 0.8936 2.0742 0.1960  0.0026 (3.3750)  (7.9660)
VIII: Optimal pu, o (0-1) 0.9941 2.5107 0.2020 0.0032 (3.5394)  (7.5887)

Panel B: Medium Transaction Costs (0.5%)

Passive:

I: 100% market 0.9697 4.1191 0.1172 - -
II: 50% market 0.7284 2.0565 0.1174 - -
III: 0% market 0.4870 0.2088 0 - -
Active: (t-stat.)  (t-stat.)
IV: Switching (0-1) 1.0364 27717 0.1982  0.0033 (3.4529) (7.4674)
V: Optimal g 1.3927 4.8933 0.1851  0.0091 (3.9979)  (9.2675)
VI: Optimal p, o 2.3965  10.6256 0.1797  0.0189 (3.8095)  (9.5475)
VII: Optimal p (0-1) 0.8349 2.0773 0.1675  0.0020 (2.6064)  (7.9950)
VIII: Optimal u,o (0-1) 0.9257 2.5136 0.1745 0.0025 (2.7719) (7.6299)

Panel C: High Transaction Costs (1%)

Passive:

I: 100% market 0.9697 4.1191 0.1172 — —

II: 50% market 0.7284 2.0565 0.1174 - -
III: 0% market 0.4870 0.2088 0 - -
Active: (t-stat.)  (t-stat.)
IV: Switching (0-1) 0.9579 2.7896 0.1688  0.0025 (2.5969)  (7.4481)
V: Optimal 1.1669 4.8086 0.1414 0.0068 (3.0472)  (9.2650)
VI: Optimal p, o 1.8731  10.4413 0.1327  0.0136 (2.7901)  (9.5415)
VII: Optimal x (0-1) 0.7615 2.0861 0.1316  0.0013 (1.6648)  (7.9979)
VIII: Optimal u, o (0-1) 0.8401 2.5252 0.1398  0.0016 (1.8084) (7.6349)

* See the notes to Table 10.
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From Table 11, it appears that the average returns for each of the dynamic
strategies decrease substantially when transaction costs increase. Not surprisingly,
this is especially the case for the optimal strategy that also takes into account
future volatility.!> This strategy yields high transaction costs since it entails some
extreme weights. The standard deviations are not much influenced by the transac-
tion costs. Consequently, the Sharpe ratios also decrease rapidly when transaction
costs increase. However, even for high transaction costs, each of the dynamic
strategies outperform the (passive) market portfolio in terms of the Sharpe ra-
tio. Furthermore, the Jensen’s alphas and their corresponding ¢-statistics decrease
monotonically. Finally, the Treynor-Mazuy measure is not very sensitive to the
transaction costs. This is because it merely tests the ability to time to marke-
trather than to measure the economic value of it. In general we can conclude that
our findings are robust to reasonable transaction costs. All active strategies out-
perform the passive ones, and the ranking of the alternative trading strategies do
not change.

None of the three measures above provides an accurate estimate for the eco-
nomic value of return and volatility timing. While the Sharpe ratio overestimates
the risk in case of time-varying volatility, Jensen’s alpha suffers from biases in
case of time-varying portfolio weights (betas). The Treynor-Mazuy measure is at
best a test for the existence of market timing (in beta), but does not provide an
estimate of its economic value. To compare the economic value of the different
trading strategies we go back to our mean-variance investor and ask the question:
how much would this investor be willing to pay to switch from a passive strategy
to a given dynamic strategy. In a recent paper, Fleming, Kirby and Ostdiek (1999)
use a utility-based measure to determine the economic value of a dynamic strat-
egy based on volatility timing (of daily returns) relative to a passive strategy. We
follow a similar approach and calculate the maximum fee, in terms of percentage

per month, an investor with a given level of risk aversion, would be willing to pay

fact, and consequently all predictability results using dynamic trading rules (where transaction

costs are present) compared to static ones are conservative.

15Note that the mean-variance portfolios are no longer optimal in the presence of transaction
costs. While trading rules could be adjusted by taking into account future transaction costs
in the portfolio allocation, we decided not to pursue this. In this sense, our estimates of the

economic value are again conservative.

35



Table 12: Average Realized Utilities

The average realized utilities, obtained using formula (23), for different values of the
risk aversion coeflicient are presented in percentages.

1966:1-1998:9 Ranking Ranking

vy=2 =6 =12 ~v=20 SR

Passive:

I: 100% market 0.8874 0.7067 0.4357 0.0745

IT: 50% market 0.7310 0.6858 0.6181  0.5277

I1I: 0% market 0.5294 0.5294 0.5294 0.5294

Active:

IV: Switching (0-1) 1.1409 1.0618 0.9432 0.7850 3 1

V: Optimal g 3.3363 1.4739 1.0016 0.8127 2 2

VI: Optimal p, o 3.8859 1.6483 1.0888 0.8651 1 3

VII: Optimal p (0-1) 1.0686 0.9232 0.8134 0.7197 5 5

VII: Optimal p, o (0-1) 1.0977 0.9789 0.8555 0.7755 4 4

to switch from a static to one of the dynamic strategies.

Recall that the (ex ante) utility function of a mean-variance investor is given
by

1
Ei{rpe} = g7Vardrpl, (21)
which — for a given weight w,, ;41 for the risky asset — becomes
e 1 2 e
Tfer1 T wp,t+1Et{7"m,t+1} - §7wp,t+1va7"t{7"m,t+1}- (22)

Ex post, we can estimate the average utility level as

1

. 1 T-1 ~
Up = f Z Tpt+1 — §7w§,t+1‘772n,t+1 ) (23)
t=0

where 572717,5 41 denotes the ez post actual variance of the risky return, as presented
in Section 4. Note that for the computation of the ex post mean-variance utility
given in (23) it is essential to use an accurate measure of actual volatility. The use
of squared monthly returns rather than an estimate based on daily data, would
produce an unreliable estimation of the economic value of a dynamic trading rule
(see Andersen and Bollerslev, 1998). Also note that actual volatility is irrelevant
whenever the weight of the risky asset is zero.

The above approach enables us to compare alternative investment strategies

by calculating the associated average utility levels. A given utility level can be
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interpreted as the certain return, in percentage per month, that provides the same
utility to the investor as the risky investment strategy. This way, we can determine
the economic value of market timing by calculating the maximum fee, in % per
month, an investor should be willing to pay for holding the dynamic portfolio rather
than a static one. It also allows comparison of alternative dynamic strategies. This
maximum fee for holding portfolio a rather than portfolio b, A, say, can be found

by solving

Z

=0

1

1 ~2
Tat+1 — ab) 27wat+1 mt+1

Tpt41 — 7wb t+10m t+1 , (24)

= Z
=0
where the indices a and b refer to the two different strategies. From this, it fol-
lows that the maximum fee (on a monthly basis), Ay, can be straightforwardly
computed by taking the difference between two alternative average utility levels.
For different values of «, Table 12 presents the average realized utility values
in percentages per month.'® For example, an investor with v = 6 who currently
holds 50% of his wealth in the market portfolio (Strategy II), has an ex post average
utility of 0.69%. The value of market timing for the different dynamic strategies,
relatively to this passive portfolio is 0.38% per month for the switching strategy
(Strategy IV), 0.79% for the optimal portfolio without future volatility (Strategy
V), 0.96% for the optimal portfolio with future volatility (Strategy VI), and 0.24%
and 0.29% respectively for the strategies with constraints without and with future
volatility (Strategy VII and VIII). These numbers indicates sizeable gains due to
market and volatility timing. While these gains are lower for more risk-averse
investors, any of the dynamic strategies clearly outperforms the static ones, even
if the risk-aversion coefficient is as large as 20. Table 12 also contains the ranking
of the alternative strategies according to this measure and according to the Sharpe
ratio. Obviously, the disadvantage of the Sharpe ratio, which overestimates the
risk involved in the dynamic strategies, is overcome with our utility-based measure.
The results for the utility-based performance measure with transaction costs are
presented in Table 13. Again it is assumed that static strategies do not entail trans-
action costs. Especially the dynamic strategies with extreme weights (strategies

IV and V) suffer substantially from transaction costs. While for low and medium

15In each column, the “optimal” strategies are estimated to be optimal for a mean-variance

investor with the corresponding coefficient of risk aversion ~.
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Table 13: Average Realized Utilities in Presence of Transaction Costs

The average realized utilities, obtained using formula (23), are presented
in percentages. The transaction costs are either low: 0.1%; medium:
0.5%; or high: 1% of the value traded. The risk aversion coefficient is
equal to 6. Break-even transaction costs equalize average utility levels
with those of Strategy II.

1966:1-1998:9 Break-even
Transaction costs:  0.1%  0.5% 1% transaction costs

Passive:

II: 50% market 0.6858 0.6858 0.6858

Active:

IV: Switching (0-1) 1.0465 0.9855 0.9091 2.4%

V: Optimal pu 1.4265 1.2374 1.0006 1.7%

VI: Optimal u,o 1.5413 1.1134 0.5785 0.9%

VII: Optimal g (0-1) 0.9092 0.8532 0.7831 1.6%

VIIL: Optimal p,0 (0-1) 0.9634 0.9016 0.8243 1.8%

transaction costs, the optimal strategies (without constraints) still outperform the
simple switching strategy, this is no longer uniformly the case if transaction costs
are as high as 1%. When we consider the three dynamic strategies that do not
allow short-sales and leverage, the impact of transaction costs is relatively limited
and does not affect the relative ranking of these strategies. While the switching
strategy beats its two competitors, each of the three restricted dynamic strategies
beats a passive strategy of holding a fixed proportion in the market portfolio. This
is also reflected in the break-even transaction costs, defined as the transaction
costs, in percentages, that yield an average utility equal to Strategy II (holding
50% in market portfolio). In general, transaction costs have to be rather high in
order to make the dynamic strategies uninteresting for a mean-variance investor.
For the switching strategy the break-even transaction costs are as large as 2.4%.
This means that even with transactions costs somewhat below 2.4%, a moderately
risk-averse mean-variance investor'” would be better off, in terms of average utility,
to hold the switching portfolio rather than the static 50/50 allocation.

A final issue that calls attention is that of estimation error. The optimal port-
folio weights employed above are based on estimates for the expected return and
its conditional variance and are therefore not genuinely optimal. While this does

not invalidate the analyses so far, it may indicate that the employed weights are

L"With a risk aversion coefficient of 6.
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too volatile compared to the true but unknown optimal weights, which may ex-
plain the relative poor performance, according to some measures, of the strategies
referred to as optimal, compared to the switching strategy. It is well known that
in general sample efficient portfolios are very sensitive to estimation errors in the
expected returns and (co)variances (see Alexander and Resnick, 1985, Best and
Grauer, 1991, and Britten-Jones, 1999). Several approaches are proposed to mit-
igate the effect of estimation error. For example, ter Horst, de Roon and Werker
(2000) and Maenhout (2000) propose the use of a “pseudo risk aversion coefficien-
t”, that exceeds the investors genuine risk aversion coefficient v, to adjust portfolio
weights for estimation risk. Because in our case the presence of only one risky asset
implies that, in each period, the weights of each strategy are — by construction —
conditionally mean-variance efficient, such solutions do not translate directly to
our problem. Nevertheless, it is an interesting question whether the estimated op-
timal portfolios can be adjusted to account for estimation error so as to improve
performance of the resulting strategy.

We consider two alternative approaches. First, similar to ter Horst, de Roon
and Werker (2000), we increased the risk aversion coefficient when computing the
optimal weights for the mean-variance investor. In particular, we considered the
economic value of a strategy based on a risk aversion coefficient of 12, evaluated
for an investor that has an actual risk aversion coefficient of 6. In the absence
of transaction costs, this reduces the economic average realized utility for this
investor for each of the four portfolios involved. The last four numbers in the
second column of Table 12 reduce to 1.094, 1.509, 0.849 and 0.927%, respectively.
While this does not affect the relative ranking of the strategies, the use of a higher
risk aversion coefficient to compute the optimal portfolio weights does not seem to
lead to strategies that are economically more valuable.

A second approach takes into account the estimation error in the expected
return by increasing the predicted volatility with a component that reflects the
estimation uncertainty in the return forecast. This additional component is equal
to the variance of the (expected) return forecast and depends upon the covariance
matrix of the recursive OLS estimators for § in (7). We compute this variance
using the White (1980) covariance matrix estimator. On average, this increases
the predicted volatilities by 7% and thus reduces the gap between average pre-

dicted volatilities and average actual volatilities in our sample. The effect of this
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correction is that the weights of the risky asset become somewhat smaller. The
correction is relatively high when the forecast variance is high, which is in periods
with extreme (combinations of) values for the explanatory variables in the fore-
casting model. The effects of this correction are very minor. The average utilities
of strategies V to VIII, adjusted in the above way, for a mean-variance investor
with v = 6, are equal to 1.429, 1.665, 0.924 and 0.975%, respectively, and thus
hardly different from those reported in Table 12. Similar results hold for the re-
spective Sharpe ratios. Apparently, these simple corrections for estimation risk do

not result in economically more attractive investment strategies.

6 Conclusions

While it is by now well-known that stock market returns and volatility exhibit
predictable patterns, the explanatory power of the associated models is typically
limited. Moreover, the within-sample goodness-of-fit measures are likely to over-
estimate the predictive performance of such models, because of overfitting, data
snooping and small sample biases. This makes it an interesting question to evalu-
ate the economic value of this predictability. In this paper we analyzed the joint
economic significance of exploiting predictability in both returns and volatility.
First, we estimated two simple linear models for monthly returns on the S&P 500
index for the squared unexpected returns using recursive least squares. The pre-
dictions from these models were used to conduct a number of nonparametric tests
for out-of-sample market timing and volatility timing. The results of these tests
unambiguously indicate the presence of statistically significant out-of-sample pre-
dictability over the period 1960-1998 and its two subperiods. In order to examine
the interaction of the two sources of predictability, a joint test for the presence of
market timing in both moments is proposed. This test soundly rejects the null hy-
pothesis that both returns and volatility are not predictable. Moreover, there is no
systematic relationship between the quality of the return and volatility forecasts.
This indicates, for example, that it is not the case that a good return forecast
typically corresponds to a bad volatility forecast or vice versa. Finally, it appears
that the predictability of returns is larger in times when volatility is high.

To evaluate the economic value of this out-of-sample predictability, a number

of alternative investment strategies were constructed. Besides a simple switching

40



strategy, we also considered the estimated (ex ante) optimal mean-variance effi-
cient portfolio based upon predicted returns and/or volatility, with and without
imposing short-sales restrictions. Summarizing our results, we find that irrespec-
tive of the measure employed all dynamic trading rules outperform static ones.
The Sharpe ratio, alpha, the Treynor-Mazuy test and the ex post average utility
level all indicated sizeable gains from market timing over the period 1960-1998
and its two subperiods. The ranking of the alternative active strategies is not
uniform across the different measures. When the Sharpe ratio is used to evaluate
the strategies’ performances, a switching strategy that invests 100% in the market
portfolio if the predicted excess return is positive and 0% otherwise, unambigu-
ously outperforms the four alternative dynamic strategies, even if transaction costs
are zero or low. On the contrary, Jensen’s alpha uniformly favors the strategy that
exploits both return and volatility forecasts and has no restrictions on its weights.
Note however that the alpha estimates are relatively inaccurate, given that this
strategy is highly risky. Also note that successful market timing may imply that
alpha estimates are biased downwards (Grinblatt and Titman, 1989).

To overcome the problems with the Sharpe ratio and Jensen’s alpha, we propose
a utility based measure of portfolio performance. This allows us to compute average
utility, in terms of an equivalent certain monthly return, of each of the strategies.
This measure also indicates that the economic value of the strategy that exploits
predictability in both moments is largest, unless transaction costs are moderate or
high. For a moderately risk-averse investor with a mean-variance utility function,
the economic value of market timing in returns and volatility corresponds to more
than 11.5% per year. This value is higher than for any other of the strategies.
However, if short-sales and leverage are not allowed, none of the strategies based
on the estimated optimal mean-variance weights manages to outperform the simple
switching strategy. Unless the transaction costs are quite large (2.4%), the latter
strategy dominates each passive portfolios. Finally, note that our findings are
conservative, minimally subject to data snooping, and most results stand up to

reasonable transaction costs and estimation error.
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7 Data Appendix

In this appendix the description and source of the variables are given. The data we
use are an updated and expanded version of those in Pesaran and Timmermann
(1995). The frequency of the data is monthly and covers the period 1954:1 to
1992:12. Using different sources (as indicated below) we expanded the data set to
capture a more recent time period: 1954:1 to 1998:9. The price and dividend data
are based on the end of the month’s Standard & Poor’s 500 index at close. For

more details see Pesaran and Timmermann (1995).

Table 14: Description and Sources of Data

Variable Description and Source

P, Value of the price index of the Standard & Poor’s 500 at the end of the
month. Source: Standard & Poor’s Statistical Service*

Dy 12-month moving average of the dividends per share for the Standard &
Poor’s 500 index. Source: Standard & Poor’s Statistical Service*

RET; Stock index return, calculated as (P; + Dy — P;—1)/Pi_1.

DIV, Dividend yield on the Standard & Poor’s 500 index, calculated as D,/ P;.

PE; Price-earnings ratio. Source: Standard & Poor’s Statistical Service*

INFL, Year-on-year rate of inflation computed using producer price index for

finished goods. Source: Clitebase*

1P, Year-on-year rate of change in industrial production. Source: Citebase,
partly provided by Federal Reserve Statistical Release

13, Return on the 3-month Treasury Bill, converted to a monthly rate.

Source: Federal Reserve Bank of St. Louis

112, Return on the 12-month Treasury Bond, converted to a monthly rate.
Source: CRSP tapes, the Fama-Bliss discount bonds file

M B, Year-on-year growth rate in the narrow money stock. Source: Federal
Reserve Bank of St. Louis

COM, Return on 3-month Commercial Paper, converted to a monthly rate.

Source: Federal Reserve Bank of St. Louis
CP, Commercial Paper-Treasury yield spread, calculated as COM, — I3;.
EXRET; Stock index return minus the three month T-bill rate converted to a
monthly rate, calculated as RET; — 13;.

* Partly provided by DataStream.
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