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Abstract

We present and estimate a parsimonious multi-factor affine term structure model for joint
bond markets. We extend the standard affine models by focusing on joint markets and
by incorporating the exchange rate dynamics in the estimation procedure. Estimation is
done by means of a Kalman filter algorithm. We find that our particular three factor
model is quite successful in fitting bond correlations, both within and between national
bond markets. Moreover, the model sheds light on some of the most persistent puzzles
in empirical finance, e.g. the UIP puzzle and the home bias puzzle. Finally, we apply
the model to test for international diversification gains in unhedged bond portfolios, con-
ditional on the information that is present in the term structures of both countries. We
find that exchange rate risk is sufficiently priced such that the inclusion of foreign bonds
allows for an improved risk-return trade-off from the perspective of a domestic investor.
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1 Introduction

In this paper we propose a model to account for the interdependencies both within and
between bond markets. The main motivation behind this paper lies in the observed high
correlations between bond yields across the maturity spectrum and across countries. This
observation at least suggests the presence of a limited number of latent factors that drive the
yield curves across countries. The presented model belongs to the class of affine term structure
models (Duffie and Kan, 1996) extended to an international framework. The international
extension is accomplished through a theoretical specification of ’local’ (domestic or foreign)
and 'common’ (international) factors driving the respective instantaneous interest rates in
both countries. The basic idea of using common and local factors was originally presented
by Ahn (1999). While the common factor will mainly model the international correlations,
both the local and common factor will generate the within market correlations for each bond
market respectively. Moreover, we assume the instantaneous drift of the pricing kernel of each
country to be a function of the domestic and common factor only, whilst its diffusion term
is assumed to be a function of all three factors (including the foreign local factor, that is).
The justification for this framework follows from the idea that domestic investors not only
care about domestic and international shocks in evaluating their bond portfolio. They also
take foreign local shocks into account to the extent that their portfolio consists of foreign
bonds. An implication of this foreign risk spill-over effect is that local factors play a possibly
important role in explaining both the dynamics and the term structure of risk premia in
international markets. This paper contributes to the literature by elaborating and estimating
the model within a continuous-time conditional affine framework, along with an application.!

Our particular joint bond market model is in theory flexible enough to incorporate various
stylized facts of the international bond markets, such as the forward premium puzzle and
time-varying correlations between local and foreign yields. Traditional single market term
structure models (such as Duan and Simonato, 1999, and de Jong, 2000) cannot do this
and, hence, this work can be viewed as a theoretical extension to these type of models. We
also extend the standard affine models by incorporating the exchange rate dynamics in the
estimation procedure. Using arbitrage free pricing conditions we derive the price dynamics
and interrelations as well as the implications for exchange rate predictions. By exploiting both
the cross section information as well as the time series information, we are capable of efficiently
identifying the key parameters that are left unidentified in an unconditional approach. More
specifically, the model allows for identification of the domestic and foreign prices of risk on all
factors, including the domestic price of risk on the foreign local factor and including the bond
factor prices of risk for exchange rate uncertainty. The latter identification is accomplished

by including the exchange rate dynamics endogenously in the estimation procedure, while the

!To the best of our knowledge, there is no similar paper that tries to fit the international bond markets
within the proposed framework. Ahn restricts himself to an unconditional model estimation and advocates
the conditional approach in his conclusions.



former is accomplished by assuming the latent factors to be dependent.

Full identification of the model parameters allows us to address important issues in in-
ternational finance, such as the existence of international portfolio diversification gains and
the uncovered interest rate parity (UIP) puzzle. We apply this model to the UK-US joint
bond market. We choose this particular market as a first test case because very strong in-
terrelations have been reported in the literature. Taking the viewpoint of a UK-investor who
initially only invests in the UK, we study the question whether this investor can enhance
the mean-variance characteristics of his portfolio by also investing in the US market on an
instantaneous investment horizon, conditional on the information that is present in both term
structures. Obviously, there is a trade-off between the additional spanning possibilities and
the incurred unpriced exchange rate risk implied by the inclusion of foreign bonds in an un-
hedged portfolio. In essence, the outcome will depend on whether or not the exchange rate
risk is sufficiently priced in the market. The part of the exchange rate risk that is orthogonal
to the bond market factors remains unpriced in our model and will serve as a deterrent for
international bond diversification. Finally, we also present the Fama beta statistic implied by
our model. Our model predicts rational deviations from UIP, due to the presence of time-
varying risk premia. Hence, our Fama beta statistic will be more in line with the empirical
literature that documents this deviation from UIP (Fama, 1984).

The remainder of the paper is organized as follows. In section 2 we present the theoretical
pricing equations implied by the factor and pricing kernel specification. In section 3 uncondi-
tional and conditional estimation results are presented, along with a discussion. In section 4
a mean variance efficiency analysis is performed on an international unhedged portfolio. This
enables us to evaluate whether the inclusion of foreign bonds in your portfolio is beneficial in

terms of the risk-return trade-off. Finally, section 5 presents conclusions.

2 A model for joint bond markets

Endogenous term structure models typically study a particular national bond market and
derive zero coupon (domestic) bond prices as a function of the dynamics of the (domestic)
instantaneous interest rate, r(t). The modeling of joint bond markets naturally extends this
framework and merely requires an assumption about the foreign instantaneous interest rate,
r*(t), and about how these two rates are linked to each other. Assuming a complete probability
space (€2, F,P) and in the absence of arbitrage opportunities, only technical conditions are
required for the existence of an equivalent martingale measure @) (Duffie, 1996, pp. 110-111).
Such a probability measure ) has the property that any domestic or foreign security with
certain payoff 1 at time ¢t + 7 has a price at time ¢ of:

t+7 t+7

p(T,t):EtQ exp —/r(u)du , p*(T,t):EtQ exp —/r*(u)du , (1)



where EtQ denotes F;-conditional expectation under Q).

In this section, we use arbitrage free pricing theory to construct a particular three factor
joint bond market model. More specifically, we derive the dynamics of the joint bond prices
and the corresponding exchange rate within the Cox-Ingersoll-Ross (1985, CIR, henceforth)
class of models. Moreover, inspired by Ahn (1999), we characterize factors as either ’"domestic’,
"foreign’ or "’common’. Next to deriving the implied yield dynamics we analyze the implications
for correlations among yields both within and between markets and for the exchange rate

dynamics.

2.1 Common and local factors

Formal term structure models are based on assumptions about the number and specific dy-
namics of the underlying sources of uncertainty that drive the instantaneous interest rates.
We start off by defining the domestic and foreign instantaneous interest rates (r(t) and r*(t),
respectively) as affine functions of their "local’ and 'common’ factors. In particular, we assume
one driving factor, F»(t), that is common to both the instantaneous interest rate in the home
and foreign country and two strictly local factors, F1(t) and F3(t).2 Formally:

r(t)=Fi(t) + Fy (1),
(2)

r*(t) = Fa (t) + F3 (1) .
The dynamics of the latent factors are modeled by means of a system of square-root dif-
fusion equations. Define F (t) as the vector of factors F(t) = (Fy (t),Fy(t), F3(t))" and
let W (t) = (W (t),Wa(t), W3 (t)) be a vector of Wiener processes under the historical

probability measure P. The dynamics of the factors are then governed by:

dF (t) = K (F (t) — 0) dt + S1SpdW (1), 3)

where K, K = diag(—k1, —Kk2, —K3), determines the convergence speed of each factor towards
his unconditional mean 6, § € IR?. The matrices ¥£; and ¥ model the variance component
of the factors. X allows for time variability in the conditional variance function by modeling
the level dependence of factor volatility (as in CIR, 1985). More specifically, we restrict Xp
to be diagonal:

Yp =diag(o1\/F1 (t),00/F2 (), 037/ F5 (1) ). (4)

Allowing full identification of all parameters while still remaining parsimonious, we impose

the following rather simple covariance structure among the factors:

20bviously, the model can be easily extended to a higher number of driving factors.



1 0 0
21 = o1 1 Xo3 . (5)
0 0 1
The local factors Fy and F3 are uncorrelated but each local factor is allowed to move together
with the common factor F5.3 To keep the model as parsimonious as possible, we restrict the
other off-diagonal elements to be zero. As long as X; is diagonal, all factors are indepen-
dent. Positive (negative) entries for xg; and xa3 generate positive (negative) unconditional
covariance between the local and the common factor, while conditional covariances will also
depend on the level of the factors themselves. As such the model is sufficiently flexible to
generate unconditional and conditional covariation of either sign in the factors. Dai and Sin-
gleton (2000) conclude that it is important for a multifactor affine model to permit negative
correlation among the factors. The dynamics of the factors also determine the conditional
covariation among the factors. This covariation will be passed entirely on to the covariation of
the asset prices that are linear in the factors (e.g. yields and expected exchange rate returns,
see below). The first two conditional moments of the factors can be calculated as (de Jong,
2000):

E [F(t+h)]=0+exp{Kh}(F(t)—0),

h (6)
van(F (t+)) = [ exp{K(h =)} B1B [0 S| Shexp (K (- )} ds,
0
with E; the expectation operator (under the historical probability measure P) conditional
upon time t information, cov; the conditional factor covariance matrix, and exp{Kz} =
diag(e™F1% e=r2® oTR3T) Yy 4

We change measure from P to Q by applying Girsanov’s theorem?®, dW;(t) = dW;(t) —

31t is straightforward to show that non-diagonality of 3; (an extension to the model as proposed by Ahn) is
a necessary requirement to identify the foreign market prices of risk, A}, ¢ = {1, 2,3}, in a conditional setting.

"Defining ai; (¥ 4,5) as the IR*-vector that solves V z € R® : aj;z = [S1diag (z) ¥1];;» we can reformulate
this conditional variance-covariance matrix as:

vardF (6 + W)y = 1—exp if—’(_n; ,+ Kj) h}a;j9+
3 ! 7
e} e (k)] ) ). v

Ki + Kj — Kg
k=1

where a;j, is the k-th row element in the column vector a;;. [Z1diag (z) E'l]ij denotes the ij-th element of the
matrix X1 B[S rX7]|E] evaluated in any point E[F (¢ + h)] = .

®Here and in the following, the tilde refers to the value under Q. Note that the foreign currency version of
Girsanov’s theorem is written as:

dW; = dW; — U; \/F(t)dt, i={1,2,3,}

AT A3 A3
where U™ is defined analogous to ¥, U™ = <—1 22 —3>

0'170'270'3



A
—\/ t)dt, where — is to be understood as the price of risk for factor i (scaled by its
oy

standard deviation for convenience), i = {1,2,3}. Hence, the risk neutral factor dynamics

can be written as:

dF (t) = K (F () = 0) dt + S %pdW (1), (8)

where K and 0 denote the risk adjusted analogues of K and 6:

K=K — YA,

0=K1A0,
and where A = dmg()\l, )\2, )\3)

2.2 Zero coupon bond prices

In this section, we derive the implications of the above common-local structure for the inter-
national bond markets in the absence of arbitrage opportunities. More specifically, we analyze
the implied covariation between bonds within a national and across national bond markets.
Applying this methodology to bond holding (period) returns, we arrive at a parsimonious
description of covariation of these individuals investment opportunities that can be used to
construct various financial statistics on international (hedged) bonds (e.g. duration, Sharpe
ratio’s, ...).

Intuitively put, arbitrage free pricing implies that expected returns are equal to the in-
stantaneous interest rate over all possible investment strategies, under Q. Letting p(7,t) =
p(7, Fi(t), F»(t), F3(t)) denote the price at time ¢ of a domestic bond maturing at time ¢ + 7

(note the dependence on the local foreign factor), equality of expected returns implies that:

D(7, F(t)) =7 (t) p(r, F (1)), (10)

where D denotes the Dynkin operator. Using It6’s lemma to solve for the dynamics of the
bond prices and taking the expectation under the risk neutral probability measure yields
exponential bond price solutions:

p(r,F(t)) = exp {~A(7) = B(r) F (1)},
(1)
p* (1, F(t) = exp {=A* () = B* () F (1)},

where A(7) and A*(7) denote scalars and B(7), B*(7) are both IR? vectors (e.g. B(7) =
(B1(7), Ba(7),B3(7))'). The loadings are the solution of the following system of ordinary
differential equations (ODEs):



BT _ g, ks —1/2223 7) aij,

dr i=1j5=1
dA ~ -
) _ 4o+ (ROYB(),
dr
(12)
dB* () o g * (7) B3
=Dy — K¥B*( —1/22223 T) aij,
i=1j=1
dA* (T) * o 1) *
T = Ag+ (R0Y B (7).
where the boundary conditions are defined by equation (2): By = (1,1,0), B = (0,1,1),
Ap = Af = 0. These conditions ensure that equation (2) will hold continuously. Initial

conditions for this system of ODEs are B (0) = B*(0) = (0,0,0), and A(0) = A*(0) = 0.
Note that we allow the loading of each factor to be country specific, since prices of risk on each
factor risk may differ. We will let the data determine whether financial markets in the two
countries price the sources of risk differently. The system of ODEs cannot be solved in closed
form. We use a standard fourth order Runge-Kutta procedure to solve for the factor loadings
numerically. The procedure is found to be reliable and accurate for the typical problems
encountered in the affine term structure literature.

If we have a solution for the bond price loadings, implications for yields (levels, covariances
and correlations between yields), term premia and holding period returns follow naturally.

Indeed, given that the yield of a maturity 7 zero coupon bond is defined as y (7, F(t)) =

1
—=1Inp (7, F(t)), we are able to express yields as affine functions of the latent state variables:
-

y(r,F(0) = ZA() + B (1) (1),
(13)

v (r, F(1) = 24 (1) + 2 B* (1) F (1).

The covariance between two yields with respective maturities 71 and 72 can be shown to be:

covy [y (71, F(t + 1)),y (t2, F(t + h))] = B (1) vary [F(t + 1)] B (72),
(14)
covg [y (71, F(t +h)) ,y* (T2, F(t + h))] = B (11)" vary [F(t + h)] B* (13) .
The foreign market case is similar.
While expected holding period returns under the risk neutral measure ) will be equal to
the instantaneous riskless interest rate, this will not be the case under the historical probability

measure. It is straightforward to show that:

DRp(1,F(t)) =DFp(r,F(t)) — B (1) $1AF(t) p(7,F(t)), (15)



implying the following affine endogenous risk premia on domestic bonds: B (1) L1AF(¢).
Note the impact of the foreign local factor level on domestic term premia (spill-over effect).
In this kind of models, the foreign local factor may play a potentially important role in
explaining both the dynamics and the term structure of risk premia in international markets.
An analogous representation can be derived for the foreign risk premia.

Within the class of affine models the covariance between holding returns is linear in the
factors. If we denote the return over a holding period h for a bond with time to maturity
7; by hr (h,T;), 7; > h, then the covariance between the holding returns on two bonds with

respective maturities 771 and 79 can be shown to be:

h
covg [hr (h, 1), hr (h,T2)] = /Et [B (t1 —u) Ele(Hu)zg(t%)z’lB (T2 — u)} du,
0
(16)
h
covy [hr (h, 1), hr* (h,T9)] = /Et [B (t1 — ) Ele(Hu)E/F(Hu)E’lB* (19 — u)} du.
0

The foreign within market case is analogous.

Note that since E; [B (11 —u)' 21 Sr(t+u) E/F(tJru)ElB (T2 — u)} is linear in the factors, the
holding return covariance will be linear in the factors and thus by definition time-varying.
The covariance matrix of holding returns thus depends on the factor dynamics as well as
on the factor loadings (depending on both the factor dynamics and the prices of risk). No
closed form expression is available in this setting, since our factors are dependent according
to (5). However, the covariance matrix is easily calculated by means of numerical analysis.

Obviously, instantaneous correlations can be computed analogously.

2.3 Incorporating the exchange rate dynamics

While the analysis in the previous section suffices to discuss most issues of hedged portfolios,
a full description of the characteristics of international portfolios requires the modeling of the
exchange rate dynamics. We extend the current version of the model by incorporating the
relation between exchange rates and bond prices in the model. This analysis is pursued under
the maintained assumption of arbitrage free pricing in conjunction with that of complete
markets. However, we explicitly take into account that bond market factors explain little of
the exchange rate variability. We do this by assuming driving factors for the exchange rate
that are not in the set of the bond market factors.

If markets are complete, exchange rates play a fundamental role in ’equalizing’ the do-
mestic and foreign pricing kernels, M (t) and M* (t), respectively. Formally, as shown in
Backus, Foresi and Telmer (1998) and Ahn (1999), the exchange rate, S (t), defined as the
home currency price of a unit of foreign currency, obeys the no-arbitrage condition and is

endogenously derived as:



St+7) M (t+7)
St — M@+T1)’

(17)

or

st+71)—st)=m"(t+717)—m(t+71), (18)
where the small scripts denote logs, s (t) = 1n S (t) and m(t) = In M (¢).

We assume the following specification for the stochastic part in the pricing kernel dynamics

under the historical probability measure:

3
d]\]‘j ét)) = —r(t)dt =3 vi/F (0dZ; (t) — 0dVi (1),

=1

(19)
" 3
e = e - ot VI (1) = 7V ()

Several issues should be emphasized here. First, all three factors enter in the stochastic part
of the pricing kernel dynamics. The fact that the foreign local factor appears in the diffusion
of the domestic pricing kernel in both countries is essential to the model implications. As
argued by Ahn (1999) and given integrated bond markets, domestic investors could possibly
care about foreign local shocks to the extent that they are investing in foreign securities.
Foreign local shocks do not affect the instantaneous interest rate and hence do not enter the
drift term. Since term premia are equal to the covariance between bond returns and the
pricing kernel changes, the foreign local factor could still play an important role in explaining
both the dynamics and the term structure of risk premia in international markets, to the
extent that agents incorporate these (foreign) shocks in their risk evaluation.

Second, in order to analyze the implied exchange rate dynamics implicit in the information
of the yield term structure, it will be essential to model the correlation between the risks
inherent in the term structure, dW(t), and the risks that drive the pricing kernel. There
is clearly no a prior: link between these pricing kernel risks and the ones that describe the
term structure. We model the relation between the pricing kernel shocks and the shocks in
the factors by making distinction between pricing kernel shocks that are transmitted into the
bond markets, i.e. dZ (t), and those that are not. The latter group of shocks is, by definition,
not identifiable within our proposed bond market framework and hence we aggregate them
into some measure of aggregate idiosyncratic risk, dVi(t) and dV;*(t). The relation among
the factor shocks, dW (t), and the pricing kernel shocks transmitted in the bond market,
dZ (t), is allowed to be partially, as proposed by Ahn (1999). This is rather intuitive. The
pricing kernel, by definition, prices all assets in the economy (see the beginning of section 2),
including, say, stocks. Hence, given the different volatility dynamics between, say, bonds and
stocks, the underlying factors are deemed to be substantially different.

More formally, we impose the following instantaneous covariance structure on the shocks:



dZ;dW; = p;dt, dZ;dW; = 0, dVidW; = 0, dvidVy =0
(20)
avirdw; =0, dzZ;dVy = 0, dz;dVy = 0,
for i # j,i=1{1,2,3} and 5 = {1,2,3}.

This correlation pattern will be important for the identification of the factors and the
specification of the term premia. It will turn out that the magnitude of p;, i = {1,2,3}, is
important from an empirical point of view to end up with a Fama beta coefficient that is
substantially different from the one implied by UIP (see below).

Given the definition of the pricing kernel dynamics, we can derive the exchange rate

dynamics by applying It6’s lemma to ds(t), ds(t) = ds (m(t),m*(t)):5

3
s (1) = (r (1) = r* (§) di + 5 3 (o7 = %) F (6 dt + 3 (03, — o3
\ i—1 (21)

+ Z (UZ‘ — U;k) \/E (t)dZi (t) + JMdV1 (t) — (J'}kwdvl* (t) .

i=1
In appendix A, we show that the expected exchange rate return over a discrete time interval
is an affine function of the current bond factors, F'(t). A similar result is shown to hold for

the conditional variance of the exchange rate changes. Formally for all 7:

Ei[s(t+7)—s(t)] = As (1) +Bs (1) F(t),

(22)
vary [s(t+7) —s(t)] = Ay (1) + By (1) F (1),
where )
Ag (1) = TZQM (1 - T}{‘ (1-— exp{—/{ﬂ})) + % (03, — o33 T,
i=1 ¢
Bgi(r)=r 0‘1 (1 —exp {—kit}), i={1,2,3),
(23)

1
041=1+§(U%—UT2),
2 *2)

05225(7)2_7)2

a3=—1+%(1’§—”§2)7

50r, equivalent:

ds(t) . - . 2
S0 = (OO e ) RO ok |

+ Z (i — ) \/F; ()dZ; (t) + opdVi (t) — o dVi ().

10



and
3

Ay (1) = TZ@Z' (v; —v;-k)2 (1 — T}{

i=1

(1- exp{—wn) + (0% + o) T,

(24)

Bui(r) =7 (i~} = (L-exp{-mr})),  i={123}

i
Finally, we can easily derive that the market price of risk parameters v; and \;, ¢ = {1, 2,3},

are related to each other as:

Ao
= Aifoi (25)
Pi Pi
This market price of risk equality is important. It allows for the identification of the exchange
rate dynamics by means of the bond market factors. It can be considered a projection on the

factors of the bond market.

3 Empirical analyses of joint bond markets
3.1 Data

Exponential-affine models are considerably easier to estimate if the data consist of zero coupon
yields. Such data are rarely available, except for short term maturities. Therefore, most
studies use zero coupon yields that are estimated from prices of (government) coupon bonds.
Recently however, researchers often use the yields as implied by LIBOR and swap rates
(Piazzesi, 2000, Duffie and Singleton, 1999). Though not strictly without default risk, these
may be more relevant than government bond rates, since most interest rate derivatives are
priced by means of LIBOR and swap rates. Moreover, they are only minimally affected by
credit risk because of their special netting features (Duffie and Huang, 1996).

Monthly observed LIBOR rates of 3, 6 and 12 month maturities are retrieved for the UK
and the US (we picked every first Tuesday of each month from Datastream). Swap rates as
well for maturities of 2 to 5 years. We then construct the zero-coupon LIBOR yields from
the semi-annually coupon based swap rates according to Piazzesi (2000, p. 17).

We constructed 7 series of each 118 monthly observations for each country (14 series
in total, nd = 118, N = N* = 7). First observation is 07/04/1987, last observation is
02/12/1997. The as such constructed (LIBOR) yield dynamics for the selected maturity set
are visualized in figure 1. Some descriptive statistics are reported in table 1. We collected
the monthly exchange rate dynamics from Datastream.

There are substantial differences in the average term structure and in the dynamics of the
term structures between the countries. The UK term structure is inverted in the first halve of
the sample (and is on average inverted) while the US term structure has a normal inclination
for the entire sample. The average yield curve is upward sloping for the US and inverted

hump shaped for the UK (with the hump located near the one year maturity). All yields

11
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Figure 1: Constructed US-UK (LIBOR) yield data as implied by swap rates.

are very persistent, with first-order monthly autocorrelations between 99.6% and 99.8% (not
reported here). The average volatility curve, as measured by the sample standard deviation,
is downward sloping for both countries.

The correlations among yields of bonds with differing maturities within and between the
national bond markets are also reported. It is noteworthy that the correlations within national
bond markets are extremely high (ranging from a low of 89% to a high of almost 100%) and
monotonically decreasing with maturity. Focussing on the cross-country correlations, we
observe significant and positive correlations, but to a lesser degree and with no such clear
pattern.

Given these high correlations the idea originated that a limited set of factors might drive
the complete yield curve of a given market. We will report unconditional and conditional
evidence to support and motivate this statement. Also, we observe that annualized monthly
log exchange rate changes correlate negatively with each yield series. The in absolute value
monotonically increasing correlation is weak and does not exceed 5% (10%) between the UK

(US) yield series and the log exchange rate changes.

3.2 Unconditional analysis of joint bond markets

3.2.1 Factor Analysis

In order to increase intuition about the proposed conditional model, we will introduce it by

estimating its unconditional counterpart. Factor analysis (FA) has been put forward in the

12



Table 1: Summary statistics UK-US bond and exchange rate dynamics.

uk uk uk uk uk uk uk us us us us us Uus us As

3m 6m 1yr 2yr 3yr dyr 5yr 3m 6m 1yr 2yr 3yr dyr 5yr t+1
Mean | 9.33 9.21 9.04 9.09 9.19 925 930| 6.15 6.20 6.34 6.85 7.15 739 7.57 | -0.005
Std. 3.26 3.10 280 241 214 192 1.79]193 1.8 1.7v9 1.73 1.61 1.52 1.44 | 0.415

correlations

gﬁl 1.00 1.00 0.99 096 095 094 094 | 0.72 0.70 0.67 0.68 0.70 0.71 0.72 | -0.01
gﬁl 1.00 1.00 098 0.97 096 095|074 0.72 070 070 0.72 0.74 0.75| -0.02
"fkr 1.00 099 0.98 098 097|076 075 073 074 076 0.77 0.78 [ -0.03
gyr 1.00 1.00 099 099|079 0.78 0.77 0.79 081 0.82 0.83| -0.03
g?]jr 1.00 1.00 1.00 [ 0.79 0.78 0.78 0.80 0.82 0.83 0.84| -0.03
Zkr 1.00 1.00 | O0.77 0.77 076 0.79 0.81 0.82 0.84 | -0.03
gw‘ 1.00 | 0.76 0.76 0.75 0.78 0.80 0.82 0.83 | -0.04
5 1.00 1.00 0.99 096 094 091 0.89| -0.07
e 1.00 0.99 0.98 0.95 093 091| -0.08
%57, 1.00 0.99 097 0.95 093 -0.08
g 1.00 1.00 098 0.97| -0.08
u 1.00 1.00 0.99 | -0.08
i 1.00 1.00 | -0.08
v 1.00 | -0.08
A8t+1 1.00

Means and standard deviations are reported in percentages p.a.. As¢y1 stands for the p.a. monthly change in log
exchange rate between period t and t + 1.
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literature as a particularly suitable tool to deal with many noisy and independent (though
highly correlated) variables. The technique is robust to the distribution of the underlying
factors (unlike the Kalman filter) and the unconditional orthogonality among factors is en-
sured. The disadvantage is, of course, the sample-specific character of the result and the
almost complete lack of economic meaning attached to the factors. In the following, we will
tackle the latter critique by imposing economic structure while still keeping the explanatory

power of the factors unchanged. The FA model in our case can be stated as follows:

Hops B L+ 2
2N x 1] [2N x3][3x1]  [2n x 1]
where Y; is the vector of demeaned monthly yield changes, containing the N* yield series of
the foreign country stacked underneath the N series of the domestic country (for convenience
we assume N* = N henceforth), B is the so-called factor loading matrix and F' is the vector
of factors.

The factor decomposition produced by a factor analysis is not unique. Rotating the
factors simultaneously rotates the factor loadings. However, some rotations may be more
easily interpreted than the original factors produced by the factor analysis. In line with the
proposed model of section 2, we want to change the interpretation of the factors F; to a ’local
UK factor’ Fl, a 'local US factor’ F3 and a factor ’common’ to both countries FQ. The local
domestic factors are defined as having zero loadings on the instantaneous maturity foreign
bonds, hence we will need to use some kind of proxy. We impose an orthonormal factor
rotation that reflects the desired decomposition. The factor analysis assumptions and the

orthogonal rotation employed is explained in detail in appendix B.

3.2.2 Discussion

Notice that we assumed in section 2.1 that merely three factors are adequate in describing
the joint term structure of the UK-US dataset. This is not obvious a priori. We will present
some simple unconditional factor analysis evidence in this subsection. Fitting an international
three-factor model over the complete time period resulted in a explanatory powers of 97.4%
and 91.3% respectively on average over all maturities. To gauge how much is lost by merging
two term structures we estimated a three factor model on each market separately. This
resulted in explanatory powers of 98.7% and 99.4% on average for the UK and US market.
The loss for the UK is negligible (1.3% on average), while the loss for the US market is
significantly larger, especially at the short end (8.1% on average). From table 2, we conclude
that three factors do a fairly good job in describing the joint market dynamics both through
time and across the maturity spectrum. This is due to the significant correlations within and
across the two countries considered.

Figure 2 reports the cumulative percentage of explained variation in the observed data

when respectively 1, 2, and 3 factors were used, averaged over all 14 maturities (a 2-year
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Table 2: Three factors per country versus an international three factor model:
How much do we loose ?

Model UK Us UK-US
# Factors 3 3 3
Maturity UK US

3m 99.6 99.3 96.3 75.6
6m 99.5 98.8 99.3 86.8
lyr 98.8 99.6 95.9 95.8
2yr 96.8 99.5 95.9 98.2
3yr 99.0 99.7 98.7 96.5
4yr 99.1 99.9 98.5 94.7
Syr 98.0 99.4 97.1 91.7
average 98.7 99.4 974 91.3

The table presents explained unconditional vari-
ance statistics for the complete sample (April 7,
1987 until December 2, 1997). We report results
for different settings: 3 factors for the 7 maturity
UK sample, the same for the US, and finally the
3-factor 14 maturity case for the joint UK-US mar-
ket.

moving window was used, for further details see Bliss, 1997). A single factor explains at least
40% throughout the whole period under consideration. Adding two factors raises the interest
rate variation explained to at least 90% overall. The ability of a few factors (not tied to any
particular theory) to explain changes in interest rates is remarkably constant. From 1993
onwards, cumulative explanatory power was somewhat lower than before.

The previous findings were based on the initial factors and loadings. We want to impose
more economic structure on these factors by minimizing the local factor three month load-
ings with respect to the foreign country, while retaining the orthogonality condition. This
effectively alters the interpretation of the factors into local and common factors as discussed
above. The explanatory power of the resulting factors is reported in table 3. It is seen that
cumulative explanatory power remains the same as is to be expected (compare with table
2). The proportions of total explained variances of the foreign yields accounted for by the
domestic local factor are small but non-negligible (6.5% and 2.0% respectively on average
for UK and US, quasi monotonically increasing towards the long end (hump at the 4 year
maturity)). The explanatory power of the common factor increases quasi monotonically to-
wards the long end of the term structure, while the opposite evolution is noted for the local
factors in their home country. We conclude that the empirical results support the theoretical
specification of our factor decomposition. Also, in our eyes, the importance of the common
factor in the total explanatory power of the factor model is the translation of the significant
international correlations between these countries. Finally, the effect of the local factor on

the foreign country term structure while being small, is non-negligible, possibly signalling
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Figure 2: Cumulative variation explained by unconditional factor analysis of UK-US joint
term structure (2 year window).

spill-over effects.

There is an important caveat to be mentioned with respect to these unconditional results,
motivating the research for more formal term structure models. The factors above are possibly
inconsistent with the no-arbitrage principle and serve at most as a motivating exercise. We
will now report the estimation results from a consistent arbitrage-free model for the joint
UK-US term structure where we explicitly allow the foreign factor to play a role in describing

the domestic term structure.

3.3 Conditional analysis of joint bond markets

3.3.1 Estimation results

The model parameters have been identified using an approximate Kalman filter and quasi
maximum likelihood estimation. The Kalman filter procedure is explained in detail in ap-
pendix C. The estimated parameters describe three factors that differ in their rates of
mean reversion and volatility and combine to reproduce the shape of the joint term structure
through time. We show that our three factors, though highly restricted by the nature of the
framework in section 2, perform well in fitting the 14 maturity joint term structure. To this
end, we report the errors made in fitting the correlations within and between bond markets.

The quasi maximum likelihood parameter estimates under the empirical probability mea-
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Table 3: Explained variance by orthogonally rotated factors.

Maturity United Kingdom United States
Total Total
of Proportion of Proportion
var. explained by var. explained by
expl. | UK com US expl. | UK com US
3m 96.3 | 943 20 0.0 75.6 | 0.0 26.7 489
6m 99.3 | 90.0 0.0 0.9 86.8 | 0.2 349 51.8
lyr 95.9 | 75.7 2.7 1.7 95.8 | 1.2 444 50.3
2yr 95.9 | 26.7 41.2 94 98.2 | 29 51.0 443
3yr 98.7 | 183 53.1 99 96.5 | 3.2 521 41.2
4yr 98.5 | 13.5 59.4 12.0 94.7 | 3.7 523 38.7
Syr 97.1 | 11.4 61.3 11.7 91.7 | 3.3 522 36.1
average 97.4 | 47.1 43.7 6.5 91.3 | 2.0 44.8 44.0

We used the Newton Raphson algorithm with step-halving grid search and
inverse of Hessian gradient calculation to find the optimal 61,62 and 63. Con-
vergence after 10 iterations, where the convergence criterion, based on the max-
imum absolute difference in both parameter and functional values between two
successive iterations, is set to le-14.

sure P are presented in table 4.” The estimates characterize a rather slow mean reverting
and stable common factor, in contrast to faster mean reverting and volatile local factors.
Implied halving times are approximately 8 months, 18 months and 9 months respectively.
The corresponding dynamics of the filtered latent state variables together with the implied
instantaneous maturity interest rates for both countries are shown in figure 3. The 6 para-
meter values seem excessive compared to the 3-month empirical means in table 1 that serve
as a proxy for the riskless interest rates. However, given the non-zero covariance between the
factors, this simple relation does not hold anymore. Instead, when using the empirical means
from the filtered factor dynamics, we get 9.51% and 5.96% respectively.

The magnitudes of the standard deviations are reasonable, given that we are capturing
the information in two term structures by means of only 3 factors. The UK measurement
error standard deviation magnitudes are in line with those of a typical one factor model fit,
while those of the US can be compared with two factor fits (compare e.g. with tables 4 and
7 in de Jong, 2000). This difference in fit is clearly visible in figure 6 below. Obviously,

including an extra common factor will improve this fit, but this extension is left for future

"Technicalities: estimation was performed with the GAUSS®© constrained maximum likelihood (CML)
routine, using Newton-Raphson’s algorithm with step-halving line search. The convergence criterion, based on
the maximum absolute difference in both parameter and functional values between two successive iterations,
is set to le-4. Convergence was found to be relaible for a set of diiferent starting values. The (discrete)
sampling frequency considered in the estimation is monthly, i.e. A =1/12. When state variables turned zero,
we imposed them to be zero. Thus, the Kalman filter estimator is linear only for F;(t) > 0. Prior to estimation
on our dataset, we checked a simpler version of our program for correctness by replicating the results of Duan
and Simonato (1998, the Fama & Bliss dataset) in terms of parameter levels and robust standard errors.
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research. The interpretation of h, differs from a measurement error standard deviation and

is discussed in appendix C.2.

Table 4: QML parameter estimates for the UK-US joint bond market.

UK factor Common factor US factor
K 1.0444* (0.2117) 0.4515* (0.0690) 0.9427* (0.3461)
0 0.0101* (0.0022) 0.0925* (0.0027) 0.0045* (0.0021)
o 0.1489* (0.0205) 0.0563* (0.0049) 0.0679* (0.0366)
A -0.1541% (0.3164) -0.1333* (0.0352) -0.5424* (0.2300)
N 0.4912 (0.2392) -0.1775* (0.0360) -0.7392* (0.3297)
UK O]
hsm  0.0020% (0.0002) 0.0037* (0.0002)
hgm  0.0142* (0.0112) 0.0025* (0.0002)
iy 0.0021* (0.0001) 0.0017* (0.0001)
hoge  0.0039% (0.0003) 0.0003* (0.0000)
hgyr 0.0041* (0.0003) 0.0002* (0.0000)
hagr  0.0043* (0.0003) 0.0713* (0.0000)
hsye  0.0048* (0.0003) 0.0002* (0.0000)
he  0.2493* (0.0661) p? 0.0556 (0.0784)
To1  -0.4290* (0.1395) P> 0.1165 (0.9104)
ro3  -1.4070 (1.2838) 03 0.3951 (8.9802)

QML estimates for our international three factor CIR model with monthly obser-
vations on 3, 6, 12, 24, 36, 48 and 60 months yield series from April 1987 until
December 1997. Robust standard errors between brackets (see appendix C.4). A
star superscript denotes significance at the 5% level. Mean loglikelihood is 80.0191

(without the constant term in the loglikelihood function and without discarding any

initial observations). hYE and h4UyST are scaled in the table, true optimal values are

1000 times smaller.

On average, risk premia evaluated at the unconditional factor means 6 are monotonically
increasing and range from 0.23% for the three month bond to 1.38% for the 5 year bond for
the UK and from 0.30% to 1.14% for the US. Almost all market prices of risk parameter
estimates are statistically significant, A; is the only exception. This implies that there is
significant time variation in the term premia.

The estimated factor loadings are plotted in figure 4. The figure portrays the common
factor as having an effect on yields that decays slower than its local counterpart as maturity
is lengthened. For the UK, the effect of the domestic local factor swiftly dies out and attains

less than half of the common factor effect at the five year maturity. For the US, it even turns
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Figure 3: Filtered local and common factors and filtered instantaneous interest rates.

negative at the long end®. The foreign local factor, finally, has an increasing negative effect
towards the long end and cannot be neglected.

We refrain from presenting a formal Lagrange multiplier test (as in Duan and Simonato,
1999). Nor do we test the model specification by testing the restrictions the model imposes
between the cross sectional pricing equations and the dynamics of the factors (see de Jong,
2000). This is left for future research. However, it is by now well established that the class of
(’complete’) affine models is statistically soundly rejected. Given that a model test is always
a joint test of the factor process specification and the market price of risk specification, this
apparent rejection has been a major motivation to find more flexible parametrizations of the
price of risk (see Duarte, 1999, and Duffee, 2000).

3.3.2 Implications for bond markets

As argued by Dai and Singleton (2000), it is potentially important for a multifactor affine
model to permit negative correlation among the factors. We find evidence for negatively
correlated factors. The covariance between our factors (o2; and oa23) does not allow us to
neatly isolate the interpretation of our three factors however. Rather, we will conduct a
standard impulse-response analysis based on the underlying orthogonal Wiener shocks dW(t).

®The negative loadings at the long end are caused by the factor dependency. They follow as the solution
to the system of ODEs that assures arbitrage free prices.
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Figure 4: Factor loadings.

The effects of these Wiener shocks are visualized in figure 5. Roughly speaking, a Wiener 2
shock shifts both yield curves upwards and represents an international level effect. A Wiener
1 shock mainly tilts and shifts the short end of the UK term structure upwards (where the
effect on the US term structure is less pronounced). A Wiener 3 shock tilts the US term
structure without shifting it, while resembling something between a level effect and a tilting
effect for the UK market. To summarize, an impulse response analysis shows that three types
of shocks are crucial to the model: two portfolio shifting shocks and one (common) level effect
shock.

Table 5: Explained variance by factors for the conditional case (April 7, 1987 until
December 2, 1997).

Maturity UK Us
Total Total

of Proportion of Proportion

var. explained by var. explained by
expl. dom. & com. for. expl. dom. & com. for.
3m 99.6 99.5 0.1 96.5 97.0 -0.5
6m 100.0 99.6 0.4 98.3 97.4 0.9
lyr 99.5 97.7 1.7 99.2 91.9 7.3
2yr 97.4 93.2 4.2 100.0 86.5 13.5
3yr 96.3 87.7 8.5 100.0 77.8 22.2
4yr 95.0 78.4 16.6 100.0 71.5 28.5
Syr 92.8 66.9 26.0 100.0 67.6 32.4
Mean 97.2 89.0 8.2 99.1 84.2 14.9

Table 5 documents the total explanatory power (R? statistic) of the international factor
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Figure 5: Impulse response analysis: the effects of Wiener shocks on the UK and US term
structure.

model and the contribution of each foreign factor versus the combined contribution® of the
remaining two factors for each country. It can be seen that the three factors together capture
most of the variation of the yields in the two countries (ranging from 92.8% to 99.99%).
Compared with the unconditional explanatory power in table 3, this is superior for the US
and the short end of the UK term structure, but somewhat inferior to the long end of the
UK term structure. Also, note that the foreign factor accounts for far more variation in
the long end than was the case in the unconditional analysis. Remember though that the
conditional estimation results are consistent with the absence of arbitrage opportunities, while
the unconditional ones are not.

In figure 6, we plot the data dynamics together with their model fits. As can be inferred
from a visual inspection, the model is able to fit the UK and US yield data rather well, though
the fit deteriorates somewhat towards the long (short) end of the UK (US) term structure.

Multi-factor models are designed to model the correlations among the different bonds
by a limited number of factors. If multi-factor models are to be used (for pricing, risk
management or portfolio performance analysis), these factors should be able to model the
observed international correlations as well. From table 6 we see that our model does fairly

well in fitting the correlations within, but also between bonds, certainly at the short end of the

9The non-zero correlations between the common and domestic factors (z21 and x23) make it impossible to
decompose the explanatory power further.
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Figure 6: Examples of model fit: short and long end of the UK and US term structures.

joint term structure. In general, the fitting error does not exceed 5% in absolute differences,

1986

1088 1990 1992

date

1994

1996 1998

but is far smaller for most correlations.

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

1986

1988 1990 1992

date

3.3.3 Exchange rate risk premium and implications

We included the annualized monthly log exchange rate dynamics as the 15th series. Theoret-
ically the model allows for a Fama beta statistic that substantially differs from the one that
is implied by UIP and, hence, one that is more in line with the documented forward premium
puzzle literature (Fama, 1984, Fama and Bliss, 1987, Campbell and Shiller, 1991). But what
happens if we take the model to the data 7 The Fama beta statistic for a 7; horizon can be

expressed as:

where

Brama: =

%

—As(t),y(T:) —y*(14)

< 1
cov
-

cov (%As (t),y(1s) —y*(73)

1994

var (y(1i) — y*(7:))

)

1996

1998

var (y(1:) —y*(1:)) = (B (15) — B* (13)) var¢ (F(1)) (B (15) — B* (11)) -

22



Table 6: Correlations within and between the UK-US bond markets together with

their model fit error.

B
g,’; . 0.00 0.01 0.02 0.02 001 0.01|-0.02 0.01 0.05 005 003 0.00 -0.02
gj; 1.00 . 0.00 0.01 0.01 0.01 0.00 | 0.00 0.00 0.04 0.04 0.02 -0.00 -0.02
"fk,, 0.99 1.00 . 0.01 0.01 0.00 0.00 000 0.00 0.03 0.03 0.02 -0.00 -0.02
Sy 096 0.98  0.99 . -0.00 -0.00 -0.00 | 0.00 0.00 0.00 0.02 0.01 -0.01 -0.02
g’“,, 095 097 098 1.00 . 0.00 0.00 | 0.00 0.00 0.00 0.00 0.02 0.01 -0.00
ayr 094 096 098 0.99 1.00 . 0.00 | 0.00 0.00 0.00 0.00 0.00 0.03 0.02
g{j,, 094 095 097 099 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
. 072 074 076 0.79 0.79 0.77 0.76 . 0.00 0.01 0.01 0.00 0.00 0.00
gw 070 0.72 0.75 0.78 0.78 0.77 0.76 | 1.00 . 0.00 0.00 0.00 0.00 0.00
fyr 0.67 070 0.73 077 0.78 0.76 0.75 | 0.99 0.9 . 0.00 0.00 0.00 0.01
oy 0.68 070 0.74 0.79 080 0.79 0.78 | 0.96 0.98 0.99 . 0.00 0.00 0.01
gy 070 072 076 081 0.82 0.81 0.80 | 0.94 0.95 0.97 1.00 . 0.00  0.00
ar 071 074 077 082 083 0.82 082 | 091 0.93 095 0.98 1.00 . 0.00
5, 0.72 075 0.78 0.83 0.84 0.84 0.83 | 0.89 0.91 0.93 0.97 0.99 1.00

The lower triangular of this table is the same as the yield correlation subtable in table 1. The upper triangular
reports the absolute errors made in fitting the correlation matrix with our international 3 factor CIR model
(negative numbers imply an underestimation, and vice versa). Monthly observed 3, 6, 12, 24, 36, 48 and 60
months yield series from April 1987 until January 1997.

The Bpsnra1m statistic equals —0.52 for our dataset. This desirable feature of our common-
local factor model cannot be mimicked by traditional factor models of the term structure. In
these models, the Fama beta statistic always exceeds 1, by construction.

Indeed, equation (21) in section 2 gives a tentative rational explanation for the rejection of
the uncovered interest rate parity hypothesis. Our model implies that UIP is expected to hold
only in a risk-neutral world, i.e. if A; = 0 and A} = 0 (if all prices of risk are equal pairwise,
the same statement holds). In general and in our sample, risk averse agents demand non-zero
risk premia, thereby driving the Fama beta statistic away from 1. The model suggests that the
interest rate differential will not contain all relevant information with respect to the expected
(instantaneous) exchange rate change, since this spread is totally independent of the level of
the common factor F5.

Using equation (22), discrete time exchange rate changes may be analyzed with our factor
model. From figure 7, it is clear that our factor model is unable to fit the volatile exchange
rate return series, both in level and squared. The conclusion would be that bond markets
account for little variability in the exchange rate dynamics. This is a common finding in the
literature (see e.g. Ahn, 1999) and should not come as a surprise given that we are imposing
the bond market factors to fit predictions of exchange rate changes and/or volatility and given
that more factors than bond factors play a role in this. Compared to a GARCH(1,1) model
prediction, our model performs worse in terms of the conditional standard deviation fit. It
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Figure 7: Exchange rate return related model fit: predicted level and standard deviation
versus sample realization.

can be seen that our estimates are somewhat biased upwards. This may be due to the rigid
specification of the idiosyncratic risk.

For completeness, we report endogenous term premia in table 7 (evaluated at the uncon-
ditional factor means). We compute term premia as the negative of the covariance between
the pricing kernel returns and the bond returns. The viewpoint taken here is that of a UK
investor who is able to invest in either UK bonds or US bonds, where the latter are to be
converted to the UK currency. In our model, the domestic currency foreign bond returns
contain an extra premium to compensate for the exchange rate risk. The fact that exchange
rate risk is priced is in line with the international arbitrage pricing theory as discussed in
Dumas and Solnik (1995).

In general, bond premia are monotonically increasing over the maturity spectrum (there
is a slight hump at the long end of the US curve). The premia are similar in size across
the two countries. The UK investor that invests in the US will reap an extra premium
for bearing exchange rate risk. This premium amounts to 94 basis points evaluated at the
unconditional factor means. This implies that the combined reward for investing abroad is far
higher compared to investing domestically. The risk of an international investment is higher
as well though, and there is an idiosyncratic part to the exchange rate risk, not priced in the

market. Idiosyncratic risk is defined here as the risk that is orthogonal to the bond market
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Table 7: Endogenous term premia for a UK investor with an instantaneous invest-
ment horizon.

Maturity Term premia Term premia
UK bond investment US bond investment
total (bp) bond exch.r total (bp)

3m 22.6 24.9 94.2 119.1
6m 42.0 46.7 94.2 140.9
lyr 72.7 81.7 94.2 175.9
2yr 110.7 124.9  94.2 219.1
3yr 129.1 142.3  94.2 236.5
4yr 136.4 142.9  94.2 237.1
Syr 137.6 132.7  94.2 226.9

Term premia are denoted in basis points (bp).

factors (see the discussion in section 2.3). We necessarily assumed it to be constant. Since
this risk remains unpriced, it will serve as a deterrent for international bond diversification.
We will investigate in the next section whether the exchange rate is still sufficiently priced
for an agent to place some weight on foreign bonds, when given the opportunity. Obviously,
in a MVE setting, there is a trade-off between the additional spanning possibilities of foreign

bonds, and the unpriced exchange rate risk.

4 Application: the gains from international diversification

Taking the viewpoint of a UK-investor who initially only invests in the UK, we study the
question whether this investor can enhance the mean-variance characteristics of his portfolio
by also investing in the US market, with an instantaneous investment horizon and conditional
on the information that is present in both term structures. As such we can evaluate the
potential gains from diversification for any term structure constellation in the home and
foreign market. This conditional approach is not feasible within the traditional mean-variance
type of analysis. We concentrate on the MVE frontiers that arise from dynamic investment
strategies on the shortest possible time horizon. The instantaneous investment horizon is in
line with the principle of dynamic trading (the cornerstone of the success of the derivative
pricing theory) where investors are able to rebalance their portfolio continuously. Other
instantaneous versus discrete time portfolio management issues are discussed in Nielsen and
Vassalou (1998). Finally, we assume perfect markets and thus leave the incorporation of
transaction costs and short sale constraints for future research.

The UK investor is allowed to invest in the 3 month, 6 month, 1, 2, 3, 4 and 5 year maturity
UK and US bonds. Obviously, he will only be interested in the UK currency denominated
holding period returns of these bonds. Hence, a first step in this analysis consists of generating

the local currency bond returns of domestic and foreign bonds. Using It6’s lemma and the no-
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arbitrage condition, the instantaneous return on investment in domestic bonds with maturity

T is given by:

dp (7, F(t))
p(7, F(t))
Next to the investment proceeds from investing in domestic bonds, investors have access to

= (r(®) = B(r) SAF(t)) dt — B(7) S1SpdW (¢). (28)

returns obtained from investments abroad. The local currency dynamics of these investments
can be derived rather straightforwardly by solving for d (S (t) p* (7, F(t))) using It6’s lemma:

d(SO)p (T FW) _ (0 iy ge iy N
S P [( (t) — B* (7) ElAF(t))+; i (vi—v}) Fi (t)| dt
3

—B* (1) S1ZpdW (t) + Y (vi — v}) VF; (t)dZ; (t) + opdVi — oy dVi.
i=1
(29)

Several issues are noteworthy in this last equation. First, note that the prices of factor risks
that enter in the excess returns of domestic currency denominated foreign bonds are those of
the home country, A. This transformation of foreign prices of risk A* to domestic prices of
risk A is due to the exchange rate dynamics. The role of the exchange rate in this type of
models is exactly that of changing this factor prices of risk to the one of the local currency

(see the discussion in section 2). Second, exchange rate risk is priced (rewarded), as shown

by the additional expected return 23: v;(v; —v}) F; (t) dt. This is in line with the international
arbitrage pricing theory literaturezz;ee Dumas and Solnik, 1995 and the references therein).
Third, the dynamics of domestic currency foreign bond prices are not spanned by the domestic
bond prices since additional stochastic components, dZ(t), enter. These shocks do not have
perfect correlation with the shocks hitting the local bond market, dW(t). In principle, then,
there could be gains from diversification, depending on the prices of exchange rate risk.
Fourth, the risk that remains non-priced in the model (o ,dV; —0%,dV}*) hampers the foreign
bond investment. However, this risk can be hedged by taking opposite positions in foreign
bonds of different maturities, hence the potential gain remains an open question.

In order to assess the potential gains to international diversification we analyze the dif-
ference between the MVE frontier of the local bond market and the frontier arising in the
international bond market case. These MVE frontiers can be constructed easily given the
above price dynamics'’. Suppose we have a portfolio with local currency value P (t) = w'p (t)
with p(¢) an [2N x 1] vector of local currency prices of domestic and foreign bonds. The price

dynamics of the domestic currency portfolio can be written concisely as:

Note that a direct closed form solution for the minimum-variance portfolio (Campbell, Lo and MacKinlay,
1997, pp. 184-185) turned out to be unfeasible. The highly correlated bond returns caused the portfolio
variance matrix to become non-invertible. We solved the problem indirectly instead making use of the Gauss(©)
maximum likelihood routine.
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aP() _ dp()

P (1) p(t)
where C1, Co, C3, C4 and Cs denote auxiliary matrices, defined as follows. Noting that
r(t) = Fi(t) + F2(t) we stack the results for each maturity ¢ in the ith row of Ci, e.g.
[1,1,0] — B(7;)' X1A. The foreign country equivalent is stacked immediately underneath
these, e.g. [1,1,0] — B* (1;)' S1A + (v1(v1 — v}),v2(v2 — v3),v3(vs — v3)). Analogously, let Co
be an [2N x 3] matrix stacking the —B (7;)" rows above the —B* (1;)" rows. The [2N x 3]
matrix C3 contains on the last N rows the vector ((v1 —v}), (v2 —v3), (v3 —v3)) and zero
rows otherwise. Finally, define Cy as diag(\/Fi(t),\/Fa(t),\/F3(t)), p as diag(p;, ps, p3) and
Cs as the identity matrix with the idiosyncratic variance, h2, on its diagonal. Finally, V5 is

=uw'C1F (t) dt + W' CoX1 ZpdW (t) + W' C3CydZ (t) + w’C’5dV2, (30)

just a standard Wiener process.
From this equation we can easily recover the instantaneous expected return and variance

of the portfolio. More specifically:

E, [dg é’ﬂ _ JOLF (1) dt
(31)

2
o l(‘f—é’?> ] = W OO S Chodt + 2/ Co %y S ppCyChodt

+0' C3C4Cy Chwdt + ' Cawdt.
Figure 8 shows this shift for a number of time points. In general, the graphs illustrate that
gains from diversification are considerable and (though less visible) time-dependent. Note that
we have used the instantaneous variance rather than the instantaneous standard deviation
on the horizontal axis. The curve almost becomes a straight line when we put standard
deviations on the horizontal axis, in line with what we would expect.

Obviously, there is a trade-off between the additional spanning possibilities and the in-
curred unpriced exchange rate risk implied by the inclusion of foreign bonds in an unhedged
portfolio. In essence, the outcome will depend on whether or not the exchange rate risk is
sufficiently priced in the market. The part of the exchange rate risk that is orthogonal to the
bond market factors -the idiosyncratic risk- remains unpriced in our model and will serve as
a deterrent for international bond diversification. Apparently, the (non-priced) idiosyncratic
exchange rate risk does not outweigh the increased spanning possibilities of the inclusion of
foreign bonds for an investor that cares about mean and variance. Put differently, we have
found that exchange rate risk is sufficiently priced to make international bond portfolios su-
perior to domestic ones in their trade-off between risk and return. This model implication
corroborates the so-called home bias puzzle (French and Poterba, 1991). It is puzzling why
portfolios are overwhelmingly dominated by domestic assets, though there are gains to be

reaped from investing abroad in a MVE sense. It goes without saying that the above graphs
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Figure 8: Conditional MVE frontiers from a UK investor viewpoint (instantaneous investment
horizons).

are merely informal evidence for an enlarged efficient set. We leave for future research the
more formal mean-variance spanning tests to analyze whether this is a significant result (in

the statistical sense, see de Roon, 1997).

5 Conclusions

Why should one care about yet another affine term structure model 7 First, because our
model is rather successful in capturing the joint bond market dynamics across time and
across the maturity spectrum, and this despite its tight parametrization. Second, because
it presents theoretical arguments as to why rational deviations from UIP are to be expected
(moreover, this theoretical argument is corroborated by direct evidence). Finally, because our
model allows for (international finance) applications that condition upon the information that
is contained in the term structure, and this within a consistent and arbitrage-free framework.

The model is estimated using a standard Kalman filter algorithm. The empirical results
provide evidence in favor of a limited number of factors, driving the joint bond market. Both
the conditional and unconditional analysis attribute more than 90 percent of the dynamics
of the yield curves to three factors. The foreign local factor explains some of the dynamics of

the yield curve, especially at the longer end of the spectrum.
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The model reports significant statistical evidence for the existence of time-varying risk
premia. The latter provide a tentative explanation for the deviation from UIP. In line with
Dumas and Solnik (1995) we find that exchange rate risk is priced in international asset
markets. Moreover, the remaining non-priced idiosyncratic part of the exchange rate risk
seems not to outweigh the increased spanning possibilities when the portfolio of a mean-
variance optimizing agent is allowed to include foreign bonds as well. In other words, we find
that exchange rate risk is sufficiently priced to make international bond portfolios superior
to domestic ones in their trade-off between risk and return (at least at the instantaneous
investment horizon). Finally, the gains to diversification are time-dependent, pleading for an
active international portfolio management, and they are in line with the reported home bias
puzzle in asset allocation (French and Poterba, 1991).

Further research should present more formal tests about some of the model claims. An
interesting extension is the inclusion of a second common factor. This will enable capturing
less strongly correlated term structures (Germany-US e.g.). More applications may be elab-
orated conditional on the term structure information (obvious candidates are international
portfolio conditional Value at Risk or the pricing of cross-country interest rate derivatives).
Alternative model specifications concern the 'complete’ and ’essential’ affine case (for a de-
finition see Duffee, 2000) or the Gaussian case with exact maximum likelihood. Finally, an
important and challenging extension could be the inclusion of stocks in the information set,
thereby pouring more identifying information into the model concerning the pricing kernel
specification (see Bekaert and Grenadier, 1999).
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APPENDICES

Appendix A: Exchange Rate Calculations

Here we derive the result that the expected discrete-time exchange rate change retains the
linear factor structure within the CIR-class of models. We start from the instantaneous

exchange rate dynamics, i.e. equation (21) in the main text and take conditional expectations:

13 1
Belds (0] = [(F ()~ By (0) + 5 2. (0 — o) Fo(0) + 5 (03 o5 | &t (32)
i=1
Defining
o =14 = (vi—0v}?)
1
=3 (vF —v5?) (33)
1 *2
a3:—1+§( — v3%)
we can rewrite the above conditional expectation as:
Zaz i () dt + 5 (aM o) dt. (34)

t+T1
By definition, Ei[s (t+7) — s (t)] = / Ey [ds (u)], such that plugging in

t+7 t+T
Eys(t+7)—s( /Et [ds (u Zaz/ )}du+;(UM o) T (35)

Note that there are easy closed form expressions for the conditional expectations of the factors

under the assumption of square root dynamics for the factors (see CIR, 1985):

Ey[F; (t+7)] =0; + exp{—riT} (F; (t) — 0:) . (36)

Plugging in these conditional expectations and integrating subsequently results in the desired
linear factor structure, as stated in the upper panel of equation (22). B

An analogous reasoning yields the lower panel of equation (22).
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Appendix B: Factor Analysis and Orthogonal Rotation

The FA model in our case can be stated as follows:

_ /
Yi-p=8 I + =& (37)
2N x 1] [N x3][Bx1] [2N x 1]

where Y; is the vector of demeaned monthly yield changes, containing the N* yield series of
the foreign country stacked underneath the N series of the domestic country (for convenience
we assume N* = N henceforth), B is the so-called factor loading matrix and F' is the vector
of factors.

The random vectors Y; F' and ¢; are assumed to satisfy :

E(F)=0, Cov(F) =1,
EM) = p, Cov(Yy) =% (38)
E(g) =0, Cov (g) =11,

where II is assumed to be diagonal (it should always be verified that the off diagonal elements
are indeed negligible). Spectral decomposition states that any real symmetric matrix, such

as the yield covariance matrix X, can be diagonalized into the form:
Y =VAV’, (39)

where A is the diagonal matrix of ordered eigenvalues of X such that A1 1 > Aso > ... > Aonoan
and the columns of V' are the corresponding [2N x 1] orthonormal eigenvectors of 3. For
our purposes, we take out the three biggest eigenvalues together with their corresponding

eigenvectors V1, Vo and V3. Then the factor loading matrix equals:

B= (\/A1,1V1,\/A2,2V2, \/A3,3V3),- (40)

In the context of factor models, the factors are typically portfolios of traded securities. Here
they are just linear combinations of yields, with weighting vectors Vi/\/A11, Va/\/As2,

Va/\/As3 3 respectively:
/
E:( Vi Va V3 ) Y, (41)

VAL VA2 /A3

The rotation matrix 7" has 9 elements but the orthogonality assumption reduces the free

parameters to three (Bliss, 1997). We built 7" from three orthogonal rotation matrices, each

leaving one column of B unchanged and recombining the two remaining columns, while pre-
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serving the orthogonal structure of the resulting B. Defining:

cosfy sinf; O cosfly 0 sinfy
T1(91) = —Sin91 COSHl 0 9 TQ(GQ) = 0 1 0 9
0 0 1 —sinfly 0 cosfs
] (42)
[ 1 0 0
T3 (93) = 0 COS 93 —sin 93 , T(@):Tl (91)T2(92)T3(93)
0 —sinf3 cosfs

then T'(0) is an orthogonal matrix with free parameters 6 = (61,62, 63)". A nonlinear optimizer
was used to search over feasible values of 61, 62,603 (in the range of —7 to + radials) to find
the values that minimize the absolute value of the domestic factor loadings on the foreign
local factor, id est elements BN+1,1 and Bng. The orthogonality ensures that our rotated
factors keep explaining as much variability as the original ones, while economic structure is
imposed on the B. Since T'-T" = I, it follows that

B'F =B (ITT)F =BF, (43)

or, the rotated factor loadings B’ = B'T and factors F' = T'F explain as much as the original
ones.

By definition, a local factor of one country should have no direct effect on the instantaneous
maturity bond of the other country. The instantaneous maturity bond will be proxied here in
the unconditional analysis by means of the three month maturity bond (this is not the case
in the proposed model). We assume the first rotated factor to be the UK local factor, the
second the common and the third the US local factor. To implement this decomposition, we

solve the following simple optimization problem:

Mg” BJQV-H,I + B%,?» (44)
s.t. (45)
B = B'T(9).

In other words, we are trying to find economic meaningful factors and loadings while preserv-
ing the covariance matrix (and hence the cumulative explanatory power). Note that the eco-
nomic meaningfulness is discretionary to some extent and should be interpreted as conforming
to the model in section 2. We could have chosen to minimize Bg[’l:NJ] -BD:NJ] +BfN+1,3] -B[N+173]
instead, implying a different definition for ’local’ factors. Also, we could have minimized the
variance of B’fL N2 and Bf N+1:2N,2] forcing the second factor to resemble a level effect. But,
in order to be consistent with the model that is developed in section 2, we choose (45).
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Appendix C: QML and the approximate Kalman filter algo-
rithm

C.1 Introduction and related literature

'Data’ is just another word for 'measurements’. Hence, filtering unobserved state variables
from (panel) data necessitates the assumption of no measurement errors or the use of (ap-
proximate!!) filtering techniques. The first approach has been followed by e.g. Pearson and
Sun (1994) and Chen and Scott (1993) and relies on an inversion of the yield curve such that
the state variables can be backed out subsequently. Obviously, the choice of maturities used
in the inversion procedure is not innocuous and the results are potentially very sensitive to
the particular choice made. The second approach is to assume that all the yield series are
measured with some measurement (or observation) error. The presence of these measurement
errors means that our estimated model is built up by a theoretical term structure model and
a measurement error specification. In this case one has to rely on a filtering procedure to back
out the state variables from the yield curve. The main reason for using the Kalman filter is
that the factors are unobservable and must be estimated from measurements contaminated
with errors. The advantages of the Kalman filter algorithm are numerous in this setting: more
efficient estimation, full use of conditioning information and computational efficiency due to
its recursive character. For literature to which this technique is related, see (chronologically)
Harvey, 1989, Pennacchi, 1991, Chen and Scott, 1995, Santa-Clara, 1995, Jegadeesh and Pen-
nacchi, 1996, Ball and Torous, 1996, Gong and Remolano, 1996, Gong and Remolano, 1997,
Lund, 1997, Duan and Simonato, 1999, Babbs and Nowman, 1999, and de Jong, 2000).

C.2 State space representation of the statistical term structure model

The state space representation of a model consists of a measurement equation and a transition
equation. The measurement equation models the cross-sectional variation in the data while
the transition equation models the time series properties of the data, implied by the factor
dynamics.

Model:

YY; AA+ BB'F; + &, & ~N(0,H) (46)

Fon = QK+, M+AlL ~N(0,Q1). (47)

Denote the [(2N+1) x1] data matrix as YY; = [Yi(71), ..., Ya(Tn), Y5 (71), .., Y (TN ), Ase),
where As; is the annualized monthly log exchange rate change one period forward, t =

1 An exact filtering algorithm is computationally infeasible (see Lund, 1997). Instead researchers rely on
the linear Kalman filter and (quasi) maximum likelihood estimation, henceforth (Q)ML.
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{1,...,nd}. AA, BB, F; and &, are [1 x (2N +1)], [3 x (2N +1)], [3 x 1] and [(2N + 1) x 1]
matrices. AA is constructed by stacking 2 A(7), 2 A*(7) and A,(7) next to each other, BB(7)
analogously.

For simplicity, we assume that the measurement errors &, are cross-sectionally and in-
tertemporally uncorrelated.'? H is a diagonal [(2N + 1) x (2N + 1)] matrix with parameters
hi(UK), h3(US), i = {1,...,N}, and h2.'3 The assumption of differences in the diagonal
elements is reasonable given that trading activity and thus the bid-ask spread is not equal
across different maturities and bond markets.

All model parameters, as summarized in table 4, are gathered in the parameter vector .

C.3 The exact Kalman filter algorithm

Initial condition for stationary state variable vector:

Fy=E|F)],
(48)
Py =wvar [F].
Predict: . .
Fiiar = B [Fryn] = OF;,
(49)
Piiap = varg [Fynl = @R + Q.
Update:
Fion = B [Figa] = Fipap + Kipauga,
(50)
Piin = varey [Froa] = LB ap,
where ) .
Kiyn = PyapBBV 3,
(51)
Liya = I3x3 — K ABB'.
Likelihood contribution:
uia =YYin — AA— BB'Fyap,
Via = BB'P, nyBB + H,
and
—2InL; = =20; = In |V;| + u,V, L. (52)

12WWe can conceptually generalize the model to one where the errors are cross-sectionally dependent by filling

(2N +1)(2N)

up H, but we refrain from this given the computational burden of additional parameters.

13The measurement error standard deviation interpretation does not hold for hs and he. In this paper
we define h2 = war [s(t + 7) — s(t)] + hZ. The error implied by the bond factor model also incorporates a
prediction error. Given that this error cannot be identified by definition in our model, we aggregate it into
one single source of rigk, hs.
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Distribution of the estimator ¥:

Following Monte Carlo based evidence in Duan and Simonato (1999) and de Jong (2000),
we assume U to be asymptotically consistent, efficient and normally distributed (see following
discussion). The robust standard errors reported in table 4 are derived from the so-called

robust covariance matrix below:

Vid (9 —99) ~ N (0,551 S5 - 531), (53)
where
1 <6lt)’<8lt>
EBE— - iy
ndt:1 o o
(54)
1 nd
EAE— ft7
nalti1
with , ,
_ O 1Oy O 1y O 55
ft—aﬂQ 3 T 335 Qo0 ]679' (55)
ol; Op, 0N

where ® stands for the Kronecker product and and f; are matrices of dimension

[1xnp|, (2N +1) xnpl, [(2N +1)2 x np] and [ngli ngf?res?)ictively (np stands for the number
of model parameters in ).

The Kalman filter is a recursive algorithm for computing the mathematical expectation
of a hidden state vector Fi, conditional on observing a history of noisy signals on the hidden
state, Ex[F¢|YY:, YYi_1,...,YY]. Information about F; stems from two sources: the predicted
value (determined by the historic term structures and the assumed factor dynamics) and the
observed term structure at time ¢. Both sources contain some error. The prediction because
of the innovations in the state variables between ¢t and ¢t + 1 as well as the uncertainty
about the estimate, the observations because of potential measurement errors. The optimal
linear predictor is formed by combining these two pieces of information, and the Kalman
filter solves this problem. The weights given to the interest rates and to the prediction
depend on the relative sizes of their covariance matrices, so if the interest rates are very
noisy, the updated estimated predictor will differ only little from the ex ante predictor. To
summarize, the Kalman filter procedure updates the estimation every time a new observation
becomes available. The filter first forms an optimal linear predictor of the unobserved state
variables, conditional on the previous estimated values. These estimates for the unobserved
state variables are then updated using the information provided by the observed variables.
As a by-product the filter provides fitting errors together with their conditional variance that
can be used to construct the quasi-loglikelihood function, which in its turn can be used to
find ML estimates of the parameters governing the dynamics of the state variables and the

yield curve.

38



C.4 Statistical inference considerations

The intertemporal dimension of the data is modeled through the transition equation. The
latter describes the dynamics of the state variables but does not rely on a complete character-
ization of the transition distribution (which is the product of 3 non-central x? distributions in
the case of independent factors). Instead, it uses a partial characterization focussing on the
affine form of the first two moments only. These two moments capture all information in case
we would be dealing with a multivariate Gaussian model, and hence the maximum likelihood
inference with a linear Kalman filter is exact. The primary appeal of the exact maximum like-
lihood technique stems from the well known optimality conditions of the resulting estimator
under these ideal conditions: the estimator is consistent, efficient and asymptotically normally
distributed. For our non-Gaussian model a linear Kalman filter is not optimal but the max-
imum likelihood estimation technique based on the Gaussian density may be given a quasi

maximum likelihood interpretation and is optimal within the class of all linear estimators.!*

HFollowing Duan and Simonato (1999) and de Jong (2000), we refrain from implementing the exact but com-
putationally unfeasible filtering recursions (Harvey, 1989, pp. 162-165) and apply a Gaussian QML approach
instead, still based on a linear Kalman filter. This approach yields an asymptotically consistent and efficient
estimator (see Bollerslev and Woolridge, 1992, for a proof). There are, however, two subtleties that invalidate
the above and render it an approximation with unknown theoretical properties. First, the factors themselves
are latent and based upon a linear prediction. These predicted state variables will enter in the conditional
mean and variance imputing errors in the likelihood function. Second, the Kalman filter algorithm is only
linear as long as the state variables are positive. These complications make the QML estimator asymptotically
consistent and efficient only in an approximate sense.

However, to assess the quality of this approximation, Duan and Simonato (1999) and de Jong (2000) perform
Monte Carlo analyses and conclude that the error implied is negligible for reasonable parameter vector con-
stellations within the exponential-affine class of term structure models. Moreover, Duffee and Stanton (2000)
advocate the use of the linear Kalman filter above EMM and an SNP auxiliary model estimation approach
(see Gallant and Tauchen, 1992).

Hence we discard the potential biases and assume the approximate QML estimator to be asymptotically
consistent and efficient such that it can be used for statistical inference.
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