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Abstract

In this paper, we present a stylized continuous time model integrating the macroeconomy
and the bond markets. We use this framework to estimate (real) interest rate policy
rules using information contained in both macroeconomic variables (i.e. output and in-
flation) and in the term structure of interest rates. We extend the standard Kalman filter
procedure in order to estimate this model efficiently. Application to the U.S. economy
shows that this model is able to estimate the macroeconomic dynamics accurately and
that the standard feedback rule only in observable factors is not valid within this frame-
work. Moreover, we find that observable macroeconomic variables do not explain much
of the term structure. However, (filtered) stochastic central tendencies of these macro-
economic variables do. Finally, both observable and non-observable factors determine the
risk premia and hence the excess holding returns of the bonds.
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1 Introduction

In this paper, we present and estimate a continuous time term structure model incorporating
both observable economic aggregates (output and inflation) and latent variables. This model
is thus capable of describing formally the interrelations between the macroeconomy and the
bond markets. Such a formal description is important for several reasons. First, it allows us
to take the standard (multi-factor) term structure models one level deeper by at least partially
linking and interpreting the latent factors in terms of observable economic aggregates. Second,
it makes possible the estimation and validation of policy reaction functions of a central banker
(the so-called feedback rules) based on information in the entire term structure (instead of
information contained in the short rate only). Third, it enables the analysis of the effects of
alternative monetary policy rules on the bond markets throughout the spectrum of maturities.
In this paper, we mainly focus on the first two reasons for introducing this new model and
estimation technique.

Turning to the first of the reasons mentioned, one motivation to estimate such a hybrid
model is the (partial) identification of the driving factors behind the yield curve. Standard
(multi-factor) term structure literature identifies the determinants of the dynamics of the
yield curve mainly in terms of factors defined on the yield curve itself. These factors are then
frequently labeled as level, slope and curvature factors according to their effects on the yield
curve. However, these concepts do not bring us any further in understanding the driving
forces behind the yield curve. An alternative to these fully latent factors is the derivation of
a complete general equilibrium model linking the term structure to the exogenous factors of
the economy (see, for instance, Bakshi and Chen (1996), Berardi (2001), Buraschi (1996) and
Wu (2000)). This approach has the advantage that the latent factors are defined on the whole
economy and thus have a clear and unambiguous meaning in terms of economic aggregates.
However, given the current state of explicit general equilibrium modeling, it may be too early
to impose all of the cross-sectional restrictions imposed by any such a general equilibrium
model on the empirical data. In this paper, we follow the alternative (intermediate) route of
identifying the driving forces behind the term structure. More specifically, we only impose the
necessary no-arbitrage conditions on a continuous time vector autoregressive (VAR) system
containing both observable and latent factors. As such, we avoid the need to fully specify the
structure of the economy while still retaining the possibility of a (partial) identification of the
driving factors behind the term structure in terms of observable macroeconomic aggregates
(see Ang and Piazzesi (2001), Piazzesi (2001) and Fleming and Remolona (2001)).! The

contribution of this paper is that we recast these VAR models in a continuous time framework

! Obviously, the inclusion of observable factors does not necessarily imply identification of the latent factors
in the model. However, we allow for a clear and unambiguous identification of the latent factors by construction.
Specifically, we impose the latent factors to serve as stochastic attractors for the observable factors.



that allows for an unambiguous interpretation of the latent factors. More specifically, the
model is such that latent factors have the interpretation of central tendencies, i.e. long-run
expectations of the observable (macro) factors. As shown by Kozicki and Tinsley (2001),
modeling long-run expectations (endpoints in their terminology) is crucial for fitting the
longer end of the yield curve.

The second reason to adopt the procedure presented in this paper is related to the de-
termination of the equilibrium instantaneous riskless interest rate. While general equilibrium
models can endogenously derive the equilibrium interest rate, other approaches cannot. In
order to obtain the dynamics of the instantaneous interest rate, it has become standard to
assume a direct link between monetary policy and this instantaneous rate in the form of a
feedback interest rate rule (see, for instance, Wu (2000) or Ang and Piazzesi (1999)). Over
the past ten years, these policy rules have been studied extensively with mixed success. For
instance, in a multi-country study Clarida, Galf and Gertler (1998) find mixed evidence for the
existence of a Taylor rule. The Taylor rule seems to be successful in replicating the dynamics
of the short-run (say, three months) interest rates, especially after 1980. However, it fails
entirely in modeling the entire term structure dynamics. More specifically, when estimating
Taylor rules in an arbitrage-free model for the term structure, we find that the Taylor rule
breaks down completely! This suggests that some crucial factors modeling the dynamics of
the longer end of the yield curve are left out in this standard Taylor rule (see also Kozicki
and Tinsley (2001)). These factors are included in this paper in terms of latent factors. We
also define the equilibrium instantaneous interest rate in terms of an error-correction model
(ECM) with a long-run attractor comprised of a long-run policy rule for the real interest rate.
This policy rule is defined in terms of both observable and non-observable macroeconomic
factors. This definition of the instantaneous interest rate closes the model. Together with
the no-arbitrage conditions and assumptions about the prices of risk, the interest rate defini-
tion determines the sensitivities of other bond rates and, as such, determines the whole term
structure of interest rates. In this way, we contribute to the literature by estimating policy
rules on the entire term structure of interest rates, as opposed to the standard approach of
estimating Taylor rules on short- term interest rates only. Our model also provides a panel
data test on the validity of feedback policy rules. If monetary authorities follow some type
of feedback rule known by the market then the dynamics of the variables entering the policy
rule together with the (assumed) risk attitude of agents determine the entire term structure
of interest rates in a complete capital market.

Finally, our approach, i.e. casting the model in continuous time, gives us several advan-
tages over the existing literature. First, only by estimating a continuous time model, we
can analytically impose the no-arbitrage condition carefully within a broad class of models.

As such, arbitrage opportunities can be ruled out in continuous time and hence also for any



longer discrete time investment interval. Second, although we face the standard Vasicek re-
strictions for the dynamics of the factors, we extend the model to allow for time-varying risk
premia along the lines of Duffee (2001) and Dai and Singleton (2001). This extension allows
us to analyze the effects of macroeconomic variables on the size and sign of the risk premia.
Third, our model identifies structural shocks in both the observable and latent variables and
thus allows us to analyze impulse responses and variance decompositions of the yield curve
in terms of well-defined structural shocks.

The remainder of the paper is organized as follows. In Section 2, we discuss the macroeco-
nomic model we impose on the data. This model is expressed in terms of the VAR dynamics
both in terms of the output gap and inflation as well as in terms of the effects of latent
factors. We also introduce the continuous time (real) interest rate policy rule along the lines
stated above. Subsequently, we derive the bond price determination by stating the continu-
ous time macro model in discrete time state space form. Section 3 deals with the empirical
implementation of the model. A crucial problem is that the introduction of observable fac-
tors (containing strong cyclical components, for instance in the output gap) may generate
imaginary eigenvalues, rendering the traditional spectral decomposition estimation procedure
of term structure models, as proposed in the literature (e.g. de Jong (2000)), theoretically
infeasible’?. We introduce an alternative estimation procedure that solves the basic problem
-the computation of a matrix exponential- in an efficient way. The estimation results are
presented in Section 4. In this section we also perform a variance decomposition analysis in
order to measure the importance of macroeconomic shocks in the variability of the yield curve.
Next, we analyze the impulse responses of the yield curve to the different structural shocks
and we end the section with an evaluation of the forecasting performance of the model. We
conclude in Section 5 by summarizing the main findings and pointing out some issues for

future research.

2 A stylized model

The model is constructed in such a way that it fits perfectly within the class of affine term
structure models (ATSM). As such, it is well-suited for analyzing the implications of observ-
able macroeconomic aggregates for the term structure of interest rates. First, we set out the
assumptions concerning the macroeconomic framework and the monetary policy rule. Sec-
ond, we rewrite the model in a general state space representation and, finally, we analyze the

implications for the term structure of interest rates.

% According to Dai and Singleton (1997, NBER working paper version of Dai and Singleton, 2000), "the
assumption that the eigenvalues are real rules out some potentially interesting dynamics associated with
complex eigenvalues”. Beaglehole and Tenney (1991) expand the class of interest rate processes to allow more
dynamic possibilities. In particular, they present processes with decaying oscillatory behavior.



2.1 Dynamics of macroeconomic and latent factors

In this section, we present a simple and stylized continuous time model for the dynamics
of macroeconomic aggregates, i.e. the output gap y (¢) and inflation 7 (¢). In order to ease
the empirical implementation of the model, we assume from the start that backward-looking
models are good approximations of reality. The macroeconomic model is then built by the

assumptions imposed on its dynamics:

dy () = [ryy (" (1) =y (1)) + Fym (7 (8) = 7 (1)) + Ky (0" (1) = p (1))] d + 07y d Wy (1)

dr (1) = [Kmy (" (1) =y () + Fnr (77 () = 7 (8)) + Kimp (0" (1) = p (1))] dt + oxd Wi (1) "
1
dy™ (1) = Ky=y (O —y* (1)) dt + 0= dW- (1)

dm* (t) = Kpregr (Ops — 7 (t)) At + e dWos (t)

where W; (t), i = {y, m, y*, 7*}, denote independent Wiener processes defined on the prob-
ability space (2, F, P) with filtration F;. As such, we can interpret the shocks dW(t) as
structural shocks in output gap, inflation and structural (long-run) output gap and infla-
tion, respectively. The dynamics of the system are basically modeled in terms of (latent)
central tendencies (y*and 7*) and in terms of deviations from these central tendencies, e.g.
(y (t) — y* (t)). Formally, we only allow deviations from the central tendencies to determine
the short-run dynamics of the respective macroeconomic variables. In this way, we actually
ensure that the exogenous central tendency variables will act as long-run attractors in this

system.? The model is closed with the following definition for the instantaneous interest rate

r(t):

r(t)=m(t)+p () (2)

We (implicitly) assume that the monetary authority uses a feedback rule for the real interest
rate. More specifically, we assume that changes in the (ex-post) real interest rate p are a
response to deviations of the output gap and/or inflation from their central tendencies and to
a mean reverting (real interest rate smoothing) component relative to a stochastic long run

mean p* (t):

dp (t) = (Kpy (Y* () =y (t)) + Kpr (7 (t) — 7 (1)) + Kpp (p* (t) — p (1)) At + 0, dW, () 5
P* () =50 + vy () + 7T (8) + 7o y™ (8) + v (2) -

3Note that these long-run central tendencies can only serve as long-run attractors if the dynamics are stable.
In the estimation of the system we impose stability of the factors and thus the long-run attracting property of
the exogenous central tendencies.



Note that the above equations define a central bank policy rule in terms of the real interest rate
dynamics. This policy rule can be decomposed into a long-run policy rule for the real interest
rate, captured by the stochastic process p* (t) . We allow this long run rule to be dependent
on both observed macro-economic series as well as their central tendencies. However, The
central bank also has a short run policy function, as can be inferred from the actual expected
dynamics in (3). The central bank also responds to deviations in the output and inflation
from their central tendencies.

The dynamics conform well to the standard macroeconomic view. More specifically, we
allow each of the observable economic variables, output gap and inflation, to be affected
through three channels: the (instantaneous) real interest rate (p), the other economic variable
(output gap or inflation) and, finally, a mean reverting component modeling the possible
inertia in the adjustment process. Central tendencies of output and inflation are assumed to
be strictly exogenous and independent processes.

The above representation of the dynamics of the economy can easily be restated in matrix
notation. Denoting n as the number of factors in the model, five in our case, we define the

vectors of n factors and shocks and an n x n diagonal matrix S as:

y () dw, (t)
7 (t) dWr (t)
f)=| p@) , AW (t) = | dW, (?) , and
y* (t) dWy- (2) (4)
T (t) AW (t)
S =diag (0y,0x,0,, 0y, 0rx)
the dynamics of the economy can be restated as follows:
df (t) = K (¢ — £ (t)) dt + SAW (1), (5)
where
Ryy = KypTy Ryr — KypVn Kyp “HRyy = RypTyx —HRyr = RypTVr
Koy = KnpYy — Kar — KapYr  Krp  —Kay — KrpVye —Kgr — KrpYos
K= Kpy—HKppvy Kopr = KppVr Kpp —HKpy = KppTYyr —Kpr = KppVmx
0 0 Koy 0
0 0 0 0 Ka*g*
and

-1 /
Y =K (KypV mpVos KoV Fyryr Oy e Ore )
Note that due to the fact that the matrix K is in general not diagonal, closed form equations
for the expectation of the level and/or the covariance matrix of the factors are not easily
obtained. Obviously, these concepts are of great importance in terms of forecasting the

future evolution of the state (of the economy). Running ahead of things, one can construct



the mean and covariance matrix of the factors by numerically solving a system of ordinary
differential equations (ODEs) for the raw moments of each of the factors involved (see Section
3.1.2 below).

2.2 Implications for bond markets

Equation (5) completely specifies the dynamics of the macroeconomic variables and the in-
stantaneous (policy) interest rate. This system, therefore, must also determine (up to some
risk premium component) the term structure of interest rates and its dynamics. Absence of
arbitrage opportunities in fact implies that zero-coupon default-free bond prices at time ¢,

maturing at T, p (¢,T") are defined as:

T
p(t,T)=E? (exp (—/’)“(’LL) du)) , (6)

t
where ) denotes the risk-neutral probability measure. In general, this risk-neutral proba-
bility is unknown and can only be specified by assuming some specification for the prices of
factor risk. Following Duffee (2001), time variability in the prices of risk can be captured by
specifying prices of risk as an affine function of the latent factors. The vector containing the

(time-varying) prices of risk & is defined as:
£ (t)=SA + ST'Ef(t),

where A = (Ay, Ar, \p, Ay Ar+)’ and E an n x n matrix containing the sensitivities of the
prices of risk to the levels of the state space factors. Changing measures is then easily done

by means of the Girsanov theorem:

AW (t) =dW (t) — & (t) dt, (7)

where W (t) constitutes a martingale under measure Q. State space dynamics can be restated

in terms of this risk-neutral metric @) as:
df (1) = K (¢ — £ (1)) dt + SAW (1)

K=K+

[

(8)

¥ =K (Ky - S%A)
A functional form for bond prices can be obtained by assuming that bond prices are time

homogeneous functions of the factors f (¢) and the time to maturity 7 =T — t:

p(t.T) = p(E(1).7) = exp (~a(r) ~ b (r) £ (1)) 9)

7



where b (7) is an n x 1 vector and by imposing the no-arbitrage condition in the bond markets:

DY(p(E(t),7)) =rt)pE(),7), (10)

where D9 denotes the Dynkin operator under the probability measure (. The intuitive
meaning of the latter condition is that, once transformed to a risk-neutral world, instantaneous
holding returns for all bonds are equal to the instantaneous riskless interest rate. Obviously,
using Girsanov’s theorem we can immediately infer the implications for the real world by
changing measure from the risk-neutral one to the historical measure P. Changing measure
only affects the drift and, therefore, the instantaneous holding return under the historical

probability measure for a bond with maturity 7 may be written as:

DF(p(E(t),7))
p(E(t),7)
Equations (9) and (10) determine the solution for the functions a (7) and b (7) in terms

= r(t) — b(7)'SE(1) (11)

of a system of coupled ODEs that, in the general case, can only be solved numerically:

P =+ (R9) o) - 5 3 ()2
- (12)
b (1)

_ 1!
8’7’ —bo Kb(T)

A particular solution to this system of ODEs is obtained by specifying a set of initial conditions
on a and b. Inspection of equation (9) immediately shows that the relevant initial conditions
are: a(0) =0 and b (0) = 0. The vectors of constants ag and bg are defined by the interest
rate definition equation (2) and take in the setting of this paper the values: ap = 0 and byg
=(01100)"

The bond pricing solution differs in important ways from the standard (independent)
multi-factor term structure literature. First, allowing for interrelations among the factors
(i.e. non-zero off-diagonal elements in K) generates a coupled system of ODEs instead of a
set of uncoupled ODEs. The bond pricing solution for the a and b functions, therefore, do
not reduce to the standard multi-factor result (see, for instance, de Jong (2000)). Second, the
factor loadings no longer start from unity at maturity 7 = 0. The introduction of stochastic
central tendencies makes that all of the these factors have zero loadings in the determination of
the short rate. They only influence the instantaneous rate indirectly by serving as a long-run

(stochastic) attractor.



3 Empirical implementation
3.1 Macroeconomic model in state space notation

In this section, we present an efficient estimation method to estimate both the state-space
dynamics, including observable and non-observable factors, as well as the prices of risk, implied
by the term structure. The assumption of the presence of unobserved factors implies that
some filtering procedure needs to be applied to recover the time series of the factors. In
order to avoid ad hoc yield curve inversion procedures (Pearson and Sun (1994), Chen and
Scott (1993)) we opt for a Kalman filter algorithm®. While the Kalman filter estimation
procedure for affine models is well established in the case where all factors are assumed to
be unobserved (see de Jong (2000) and Duan and Simonato (1999)), some issues remain to
be settled once we incorporate observable factors into the state space vector, as is done in
this paper. These issues can be decomposed into two classes. First, there is the issue of the
inclusion of macroeconomic aggregates in the state space that raises two separate problems:
(i) the possibility of imaginary eigenvalues with respect to the spectral decomposition of
the matrix K in equation (5), and (%) the issue of correctly updating the state vector f.
Second, there is the concern for efficiency in the estimation since conditional expectations
and variance-covariance matrices are in general no longer available. We tackle these issues in

the following sections.

3.1.1 Measurement equation

The model is tested on a data set containing yields of different maturities, output gap and
inflation data. In order to estimate the parameters of this model, it is necessary to link
the model to these variables via the measurement equation. First, with respect to the yield
curve, we estimate the parameters so as to fit the observed yield curve as well as possible
given the observed state vector. Let ¥ (t) denote the vector of yields observed at time ¢ for
maturities 7;, i = {1, ....m}, ¥ (t) = (J1 (t,71) , -, Um (t,7m))’, where each g; (¢, 7;) is defined
as g; (t, 1) = —M Second, we use the implied one-step ahead predictions for the
output gap y and the inflation 7 to fit the macroeconomic part of the model. Bringing these
elements together, we require that the model’s parameter estimates are optimized over the

joint set of moments to be fit. That is, we define the measurement equation as:

1This Kalman filter procedure is less time consuming than other algorithms like the Simulated Method of
Moments (SMM) technique. For our Gaussian model a linear Kalman filter together with exact maximum
likelihood (ML) estimation is optimal within the class of all linear estimators. Parameter estimators can be
shown to be efficient and consistent (see Bollerslev and Wooldridge (1992) for a proof). There is, however, one
subtlety to be mentioned. Some of the factors are latent and based upon a linear prediction. These predicted
state variables will enter in the conditional mean and variance imputing errors in the likelihood function.
This complication, however, does not invalidate the asymptotic properties mentioned above. Finally, Duffee
and Stanton (2000) advocate the use of the linear Kalman filter above the EMM and SNP auxiliary model
estimation approach (see Gallant and Tauchen, 1992).



g1 (t,71) y(t)
: a B m(t)

Im () | =1 0 || € p(t) |+es, (13)
y(t) 0 €) y*(t)
7 (t) ™ (t)

where €; is a (n x 1) column vector of zeros with a one on the ith row, &; is an (m+2) x 1

vector of measurement errors and

a= (a (Tl) /Tl, ey @ (Tm) /Tm)/

b (1) /11 (14)
B = :

b (1n) /Tm

We can rewrite the measurement equation more concisely as:

z(t)=c, +Hf(t) +e(t)

where z (t) denotes the LHS of (13).

3.1.2 Transition equation

It is standard in the term structure literature to transform the state space such that the
K matrix in (5) becomes diagonal. This procedure yields well-known closed form solutions
for the conditional expectations and conditional covariance matrix of the transformed factors
(de Jong (2000)). Implicit in this approach is the assumption that the eigenvalues of K are
all real. Denoting the transformed state factor fp (¢) = Vf (¢), where V is the matrix of
eigenvectors of K: K = V7LV, the state space dynamics (5) can be restated as:

dfr () = L (g — fr (£)) dt + VSAW (1) , (16)

where ¢ denotes V.

By taking this as the initial starting point, the term structure literature basically esti-
mates the eigenvalues L and eigenvectors V of the system. This effectively implies that all
eigenvalues (and accompanying eigenvectors) are by construction real. While this may be
a reasonable assumption in the case of latent factors, it is no longer once macroeconomic
aggregates are to be included in the state space. The latter variables possess some dynamic
properties that cannot be ignored in the estimation (imaginary eigenvalues). As such, trans-
forming the state space is no longer innocuous and can, therefore, not be done without possible

major implications for the dynamics of the system.

10



The conditional expectation of the level and the conditional covariance matrix of the
factors are not easily obtained and require solving a matrix exponential. In Appendix A, it

is shown that this can be done by solving the following equation:

dg(t+h)
dh

where h denotes the prediction horizon (one quarter in our case) and g (¢ + k) an ¢ x 1 vector

= O+Qg (t+ h) (17)

of all possible first and second (raw) time ¢ conditional moments that can be constructed from
the state vector f(¢). The ¢ x 1 vector © and the ¢ x ¢ matrix  are defined in Appendix
A. One can rely on numerical procedures to solve the resulting ODEs, which in turn can be
used to construct the conditional expectation and covariance matrix of the state vector.

We thus refrain from transforming the system in terms of eigenvalues and eigenvectors,
implying that the closed form solution for expectations and covariance matrices that have
been derived under this transformation are no longer available. The above argument thus
basically restricts the space of state vectors to the one that contains the non-transformed
macro-aggregates. Once the state vector is identified, the corresponding transition equation

in the Kalman filter procedure for the time interval h = At is also fixed to:

f(t4+ At) =c+ @ (At) (f(t) — ) + Viyas
(18)
E (Vt+AtVf:+At) = Q(At).
While in principle the Kalman filter could be applied now, this is in practice infeasible since
equation (18), computing the conditional expectation and covariance matrix, depends on the
state vector through the initial value condition for the ODEs from (17). This dependence of
the initial conditions on the state vector obliges us to solve for each time period the system of
ODEs and renders estimation on reasonable sample sizes infeasible. In order to make the filter
operationally efficient we impose stationarity on the state space dynamics which allows us to
characterize the solution of (17) over any discrete time interval At as a first order Markov

process on the state space generated by the vector g :

g(t+ At) = —Q-10+T (At) (g () + Q-10) (19)

Making x (t) = g (t) + 2-10, we get

x (t + At) = T (At x (£) . (20)

The ¢ x ¢ matrix I' (At) can be recovered by:

T(A)=X({t+A) X () (X @) X)L, (21)

11



where X () denotes an ¢ x ¢ matrix stacking ¢ linearly independent starting vectors x (0)’
and X (t + At) contains the stacked vectors of conditional expectations at t +At (x (t + At))
corresponding to each of the ¢ initial condition vectors. Omne can easily reconstruct the
matrices ® (At) and Q (At) from the I" (At) matrix. Note that this matrix is no longer time
dependent but only depends on the parameters. This thus requires only a single computation
of the T (At) matrix per function evaluation and, therefore, speeds up the estimation process

considerably.

3.2 The Kalman filter algorithm
3.2.1 Prediction equations

From the transition equation above, we can see that f (¢ + At) is a linear combination of
two random variables f(¢) and v(¢ + At), both (multivariate) normally distributed. Hence,

f (t + At) is itself (multivariate) normal with mean and covariance matrix :

f‘t+At|t = C+¢'<ft|t—c)
(22)
Piage = P, @ +Q(A1)

3.2.2 Updating equations

The next step is to improve the precision of our estimator by taking into account the additional
information in the update step. By applying a simple lemma (for a proof see Harvey (1989),
pp. 165-166), we can show that the updated state vector (conditional on the ¢+ At observation
of the data) is again multivariate normally distributed with mean and covariance matrix equal

to:

. . . . -1 .
firac)irar = fipac)e + PopasJH (HPt+At | H + R) (Z (t+At) —c; — Hf a¢ t)

. N N . -1
Priariiear = Priart = Proar H (HPy o H +R) T HP, 0y
(23)
Note that this brings us to the second issue of correctly updating the state vector f, which
can be shown to be accomplished by assuming no measurement errors in the output and

inflation series: i.e.: emq1t = €my2t = 0.

3.2.3 Prediction error decomposition and ML estimation

Finally, the optimal filtering procedure is obtained by maximizing the loglikelihood with

respect to the parameters describing the state space dynamics and the prices of factor risk,

12



nd

(218 =Y ~3in|[HP, 5 H +R|
=1
nd — ~
-3 (Z (t+At) —c, — HftJrAt\t)/ (HthrAt\tH/ T R) 1 (Z (t+At) —c. — HfHAt“) :
=1

(24)

where nd stands for the number of observations in the data set.

4 Estimation results
4.1 Data

We base our analysis on spliced data from McCulloch and Kwon (1993) and Bliss (1997)
provided by Duffee (2001). This data set consists of month-end yields on zero-coupon U.S.
Treasury bonds with maturities of 3 and 6 months and 1, 2, 5, and 10 years. We use a
quarterly frequency in the construction of the time series in order to incorporate the output
gap and inflation series. Our data set consists, therefore, of 164 data points (1958:Q1 to
1998:QQ4) for each of the series. A proxy for the output gap is obtained by using a Hodrick-
Prescott (HP) filter on the GDP series over the sample period.” Inflation was constructed
by taking the yearly percentage change in the CPI index, that is m; = InCPI; — InCPI;_4.

Figure (1) depicts the series for the output gap, inflation and the term structure.

Insert Figure 1

In Table 1 we give some descriptive statistics of the sample series. The average term struc-
ture series display an increasing yield curve and the observed variance of the term structure
tends to decrease in the maturity. There is strong evidence against normality in most series
in terms of skewness and excess kurtosis (both decreasing with maturity) and in terms of a
summary Jarque-Bera statistic (p-values are reported in the table). Also, strong autocorre-
lation is observed in all series over the sample period. Most interestingly, however, is the
correlation matrix showing extreme correlation among the various bonds and significant but
more moderate correlations between bonds on the one side and output gap or inflation on the
other side. The strong correlation between bonds (decreasing with the maturity difference)
suggests the presence of a few important factors driving the yield curve. While these factors
may also be part of the set of driving processes in the output gap and in inflation, the lower

degree of correlation suggests that the links between these macro-aggregates and the yield

"We use a standard ”lambda” in the filtering procedure equal to 1600.
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curve is significantly smaller. The output gap and inflation are positively correlated with each

other.

Table 1: Summary statistics for the data used (1964:Q2-1997:Q4)

yield;, yieldy, yield;,, yieldy,, yields, yieldig,, y T
Mean (%) 5.975 6.230 6.450 6.689 7.010 7.210 -0.006 4.286
Std. (%) 2.779 2.811 2.785 2.712 2.602 2.543 1.633 2.894
Min (%) 0.739 0.915 1.303 1.903 2.554 2.916 -4.689 0.473
Max (%) 15.241 15.924 15.911 16.107 15.696 15.065 3.879 13.502
Auto 0.987 0.987 0.990 0.992 0.996 0.998 0.861 0.992
Skew 1.147 1.142 1.030 0.985 0.911 0.752 -0.204 1.231
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.287) (0.000)
Kurt 4.509 4.531 4.143 3.975 3.691 3.276 3.230 3.977
(0.000)  (0.000)  (0.003)  (0.011)  (0.071)  (0.470)  (0.548) (0.011)
JB 51.525 51.672 37.923 33.021 25.925 15.972 1.496 47.934
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.473) (0.000)

correlations

yieldy, 1.000
yieldg, 0.996  1.000
yvieldy, 0986  0.995 1.000

yieldoy, 0.968 0.978 0.992 1.000
yieldsy, 0.923 0.934 0.957 0.984 1.000
yieldioyr 0.887 0.896 0.923 0.960 0.993 1.000
y 0.199 0.193 0.168 0.105 0.020 -0.021 1.000
s 0.728 0.729 0.714 0.682 0.640 0.623 0.083 1.000

The bond yield data are based on spliced data from McCulloch and Kwon (1993) and Bliss (1997) provided
by Duffee (2001) and concern U.S. Treasury bonds with maturities of 3 and 6 months and 1, 2, 5, and 10
years. Output gap (y) and inflation () data are constructed as mentioned in the text. The data series
cover the period from 1958:Q1 until 1998:Q4, totalling 164 quarterly time series observations. Mean denotes
the sample arithmetic average, expressed as p.a. percentage, Std standard deviation, Min minimum, Max
maximum, Auto the first order quarterly autocorrelation, Skew and Kurt stand for skewness and kurtosis,
respectively, while underneath these statistics are the significance levels at which the null of no skewness
and the null of no excess kurtosis may be rejected. JB stands for the Jarque-Bera normality test statistic
with the significance level at which the null of normality may be rejected underneath it.

4.2 The failure of standard Taylor rules

The correlations in Table 1 suggest that the modeling of the joint behavior of the yield curve
and the output gap and inflation is relevant. Given the strong focus on Taylor rules in the
current literature, these rules form a natural starting point in modeling the interrelations
between the yield curve and the macroeconomy. Obviously, Taylor rules are only designed
to fit the short-term policy rate and not (necessarily) the entire term structure. However,
by consequence of the expectation hypothesis, if Taylor rules do determine the dynamics of

the policy rate, yields of any maturity will to a large extent be determined by the dynamics
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imposed by the rule as well.%

Insert Figure 2

To analyze the performance of Taylor rules in fitting the entire yield curve, we estimate
the short-term Taylor rule on the U.S. data described above and then project the rule to
the longer maturities (a formal treatment can be found in Ang and Piazzesi (2000)). The
fit of the Taylor rule across maturities can be found in Figure 2. Inspecting this figure, it
is clear that the Taylor rule is not performing well in describing the whole term structure.
The rule fits relatively well the short end of the yield curve, say up to one-year interest
rates. However, going beyond this maturity one clearly observes a significant deterioration
in the fit of the yields. Similar results have been reported by Kozicki and Tinsley (2001).
The failure of standard Taylor rules in fitting yields with maturities beyond one year can be
attributed either to time-varying risk premia or to the fact that some factors, exerting most
of their influence in the long run, have been excluded from the rule. In the next subsection
we estimate the model proposed in Section 2, containing both additional factors in the Taylor
rule (in the form of central tendencies) as well as time-varying risk premia. The addition of

these two factors proves to be crucial for the fitting of the long-term interest rate.

4.3 Estimates and discussion

In this subsection, we turn to the estimation results of the model. The full model was
estimated in a single step procedure. Optimization was performed using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm with a convergence tolerance for the gradient of the
estimated coefficients equal to 0.0001. We checked the robustness of the 'optimum’ reported
by checking convergence from an array of starting points.” The estimation results can be
found in Table 2.

The model was also estimated for the subperiods 1958:Q1 to 1979:Q2 (pre-Volcker) and
1982:Q1 to 1998:QQ4. The results can be found in Appendix B. Although the estimates for
these subperiods are somewhat different from the ones obtained for the whole sample period,

the main qualitative results do not depend on the subperiod.

%Tn theory, risk premia will also play their role which becomes increasingly important the longer the maturity.
However, it has been argued forcefully in the literature that expectations and not risk premia dominate the
yield curve and, as such, one should not overestimate the role of these risk premia.

"Note that, given the large amount of parameters to be estimated, identification and checking of the
optimum’ is a painstaking operation. During our experiments, we found this ’optimum’ to be rather stable.
However, due to the intrinsic nonlinearities in the optimisation problem, there is no guarantee that the values
reported actually correspond to a global maximum.
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Table 2: Maximum likelihood estimates (1958:Q1-1998:Q4)

* *

y ™ P y ™
Ky. 0.9984 0.3313 -0.1677
(0.1318)  (0.1483)  (0.1251)
Kp.  -0.9231 0.3898 0.2454
(0.1114)  (0.1584)  (0.1442)
K,.  -0.0078 3.3615 3.5793
(0.1318)  (1.3385)  (1.0488)
Kyr . 0.4305
(0.0508)
K. 0.0082
(0.0026)
0. -0.00006  0.14398
(0.00065)  (0.06249)
Yo 0.00005
(0.00074)
7. -0.0395 0.0698 -0.1691 0.0395
(0.1678)  (0.1528) (2.6139)  (0.1460)
A -23.6286  -8.7690  -17.3618
(62.2786)  (255.0090)  (85.0428)
=, -6.3176 124734 142254 240.4993  -20.6599

(1.7927)  (3.7758)  (3.8115)  (255.2660)  (6.1457)
o? 0000352  0.000111  0.003182  0.000003  0.000057
(0.000048)  (0.000017)  (0.001315) (0.000006)  (0.000012)
Ry,  11.9558
Ro,  10.6958 9.9042

Riyr 3.7498 4.0094 24713

Royr 0.0564 0.0002 0.0001 0.0441

Rsyr 0.2861 0.5109 0.0001 0.6240 2.2596

Rioyr 0.0963 0.0763 0.0071 0.1527 0.7036 0.0007

ML estimates with robust standard errors underneath. Only the lower diagonal of the
measurement error covariance matrix is given. These values are multiplied by 10%. To-
tal loglikelihood amounts to 6994.8216 or 42.6513 on average (excluding constant in the

loglikelihood).
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4.3.1 Dynamics and interpretation of the factors

First we turn to the modeling of the macroeconomic variables. Figure 3 presents the filtered
time series for the five factors involved: three observable ones (output gap, y; inflation,
m; and real interest rate, p) and two non-observable ones (output gap and inflation central
tendencies, y* and 7, respectively). The time series ”STrule” also presented in this figure
is discussed below. Visual inspection shows that even though the central tendencies are
basically latent factors, they capture rather well the long-run behavior of the observable
series. Statistical analysis confirms the attracting properties of the central tendencies for the
three observable factors (see Table 2 where the first three diagonal elements of the matrix K
are significantly different from zero). Most of the estimated interaction terms (off-diagonal
elements in K) are statistically significant at a 10% level. The estimation results indicate
that output responds negatively to a temporary excess inflation (i.e. inflation in excess of the
steady state equilibrium inflation rate, 7* — 7 < 0) while it responds positively to a temporary
excess real interest rate (although this result is not statistically significant). Inflation responses
are more in line with economic intuition. First, a temporary demand shock (i.e. output in
excess of the equilibrium capacity, y* —y < 0) tends to induce additional inflationary pressure
while an excessively high real interest rate tends to reduce the inflationary pressure. Finally,
the real interest rate tends to react primarily to inflation. More specifically, expectations of
increasing inflation (i.e. 7 — 7 > 0) tend to result in quite substantial increases in the real

interest rate.
Insert Figure 3

The resulting fit of the three macroeconomic series is presented in Figure 4. The ’data’
for the real interest rate was computed based on the three-month yield and is, therefore, an
approximation of the instantaneous real interest rate. We consider the fit of these series as

satisfactory.

Insert Figure 4

Table 3 presents some diagnostic statistics. We find that the state space dynamics are stable,
i.e. real parts of the eigenvalues of the matrix K are positive. Moreover, note that K
has imaginary eigenvalues, indicating an oscillating impulse response for the output gap and
inflation. These series present a halving time of 1.25 years, possibly linked to the business
cycle frequency. The instantaneous real interest rate presents a much lower halving time
of about 2 months. The central tendency of output gap has a halving time of 1.6 years in
contrast to the central tendency of inflation which presents a halving time of about 84 years,

indicating that this type of shock is very inert.
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Table 3: Diagnostic statistics of the estimated model

Eigenvalue | Half time (yr) | Mean (%) | rp (%)
real | imag. data | emp. emp.
Y 0.555 | 0.511 1.25 -0.06 | -0.02 0.83
™ 0.555 | -0.511 1.25 4.28 | 4.36 0.10
p 3.833 0.18 1.69 | 1.78
v | 0430 1.61 0.01
* 0.008 84.28 4.28
yieldiq 5.97 | 6.13 1.82
yieldgg 6.23 | 6.39 1.92
yieldy, 6.45 | 6.61 2.05
yielday, 6.69 | 6.85 2.18
yieldsy, 7.00 | 7.16 2.18
yield yr 721 | 735 | 214

Eigenvalues denote the eigenvalues of the K matrix, half time is computed based
on the real part of each eigenvalue, emp denotes the result where the filtered
factor means are used, rp stands for risk premium on an annual basis.

Table 3 also presents some additional statistics concerning the yield curve fit. The average
yield curve based on the fitted factors presents a good fit to the empirical average yield curve.
The implied risk premia take somewhat higher values than recorded in the latent factor
literature. We find risk premia of about two percent, increasing in the maturity and with a
slight decrease at the long end of the term structure.

Based on the above results we can discuss the role and interpretation of the latent factors
in the model. As mentioned before, given the significant positive coefficients ky,, Krr and
Kpp, latent factors serve as an attractor to the observable macroeconomic series (i.e. output
gap and inflation). As such, the latent factors can be seen as some kind of long-run forecast
for the observable series. The eigenvalues presented in Table 3 for y, m and p may be used
to obtain a more precise idea about the long-run forecasts. These eigenvalues indicate the
speed of convergence of the observable macroeconomic variables to their central tendencies.
Based on these numbers we find that for the output gap and inflation we have after five years
approximately 93% and after ten years more than 99% of the deviation from their respective
central tendencies have been undone. As such, we can safely regard the central tendencies of
the output gap and inflation as long-run forecasts, where long run now can be interpreted as

a forecast horizon of between five and ten years.® The real interest rate has a much higher

#Note that the inclusion of the latent factors thus allows us to incorporate some measure of long-run output
gap and inflation forecasts into the analysis. As argued by Kozicki and Tinsley (2001), includinig time-varying
long-run forecasts (endpoints) is crucial to fitting the longer end of the yield curve. Interestingly, although we
used a markedly different methodology, we obtain remarkably similar long-run inflation forecasts to the ones of
Kozicki and Tinsley (2001), compare our Figure 3 with their Figure 6, panel B, p. 643. Also, we find that the
Hoey survey long-run inflation expectations (collected from market participants) are remarkably close to our
estimated long-run inflation expectation which corroborates even more our interpretation of central tendencies
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convergence speed. Around 95% of the deviation from its central tendency is undone after
about nine months and more than 99% after one year and a half.

In order to corroborate the interpretation of the latent factors as long-run forecasts, we
compare our results with the inflation forecasts from the Survey of Professional Forecasters
provided by the Federal Reserve Bank of Philadelphia. Figure 5 shows the one-year ahead
inflation forecast from this survey compared with the ones computed from our model. Figure 6
presents the comparison of the forecasts for the average rate of inflation for the next 10 years.
Our estimates seem to track significantly well the patterns presented in the survey forecasts.
The correlation between our model forecast and the survey forecast is equal to 0.94 and 0.92
for the one-year and ten-year forecast, respectively. More details regarding the computation
of the inflation forecasts based on our model and the results from an ordinary least squares

(OLS) regression of the survey forecast on our forecasts can be found in Appendix C.

Insert Figures 5 and 6

4.3.2 Interpretation of standard ”level” and ”slope” effects

Next, we turn to the interpretation of the factors in terms of their relation to the factors
filtered from a completely latent setting. We follow Ang and Piazzesi (2000) in trying to
interpret the factors of a fully latent three-factor Vasicek model (VM) in terms of the factors
obtained in our model. The three factors in the VM can be labeled as one level effect and two
slope effects. We did not find a curvature factor in this setting. We project the three Vasicek
factors on our five factors. Regression results can be found in Table 4. Each of the VM latent
factors can be reasonably explained in terms of the factors of our model, as indicated by the
high R? statistics.

For the two VM slope factors, there is no clear interpretation in terms of a limited number
of our factors. All five factors enter significantly in the slope regressions indicating that the
VM slope factors are in fact a linear combination of our factors. Surprisingly, we do find a
relatively straightforward interpretation of the VM level factor. In Figure 7, we present the
contribution of the central tendency of inflation (7*) and the VM level factor subtracting
the estimated constant to this factor. As can be seen, the correspondence between the VM
level factor and our central tendency of inflation is extremely high. Although most of the
other factors are statistically significant they add marginally to the explanation of the level
factor. So, in contradiction to other papers, we do explain the level effect in terms of an affine

transformation of a sensible macroeconomic variable: the central tendency of inflation.

Insert Figure 7

as long-run market forecasts.
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Table 4: Interpretation of latent Vasicek factors: OLS-based decomposition into
factors

Level factor Slope factor 1 Slope factor 2
cte | -0.181 (0.001) 0.002 (0.001) 0.006 (0.002)
y | -0.094 (0.024) 0.255 (0.046) 0.117 (0.054)
T | 0.267 (0.036) 0.826 (0.068) -0.523 (0.081)
p | 0217 (0.036) 0.560 (0.069) -0.281 (0.081)
y* | 2.989 (0.306) -3.178 (0.580)  -10.810 (0.686)
™ | 1.193 (0.043) -0.931 (0.082) 0.470 (0.097)
R 0.985 0.754 0.621

The three latent factors are regressed upon the filtered factors of the
model presented above. Standard errors between brackets.

4.3.3 The real interest rate rule

Another observation to be made from Table 2 is that the standard Taylor rule in terms of
observable variables does not hold for the real interest rate process. In fact, all the coefficients
in the long-run real interest rate rule are not statistically significant. In order to gain some
intuition into the implicit short-term rule for the real interest rate we re-arrange equation (3)

as follows:

Eidp (t) = Kpp (p5 — p(t)) dt

Py =0+ (vy—%)y(tH (%—%)W(Wr (vyﬂr%)y*(tH (vw*Jr%)W*(t)-

op op op op

central bank short-term target
Within this framework, we can interpret p: as the time-variable short-term target level for

the real interest rate of the central banker. Based on the estimates reported in Table 2, we

have that rule is equal to (see also Figure 3):

p* = 0.00005 — 0.037y (t) — 0.8697 (£) — 0.171y* (£) + 0.979 * ()

The above rule shows the importance of both the observed level of inflation and of the devia-
tion from its central tendency. This rule can also be interpreted in terms of the responsiveness
to deviations of actual output gap and inflation from its central tendencies and to the central

tendencies themselves. As such, the implied target becomes:
ps = 0.00005 + 0.037 (y* (t) —y () + 0.869 (7* (t) — 7 (t)) — 0.209y™ (t) + 0.109 7* (¢)

The real interest rate target increases as the central tendency of inflation goes up. Somewhat
less conventional is the finding that the inflation deviation (7* — 7) also enters with a positive

sign. As such, higher (observed) inflation will ceteris paribus decrease the level of the real
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interest rate. Although at first sight this sign seems to be difficult to reconcile with intuition,
it may be argued that it represents a term signaling the expected change in inflation. If the
central tendency exceeds the current inflation rate, ceteris paribus, inflation will be expected to
increase triggering a strong upward increase of the real interest rate, while if observed inflation
exceeds its central tendency, ceteris paribus, inflation is expected to decrease (eventually)
leading the central banker to loosen the contractionary policy stance. The real interest rate
target seems much less responsive to the output variables. In this case, we find that a positive
deviation, a shortfall of actual output to its central tendency, would tend to be associated
with an increase in the real interest rate target. This result could be explained as a procyclical
response of the central bank to expected increases in economic activity. We should, however,
point out that both v, and k,, are not statistically significant.

Finally, there is the third feature of the real interest rate rule, which is related to the
interest rate smoothing, i.e. to the mean reversion properties of the real interest rate to its
target. We find, surprisingly, a very strong mean reversion for the real interest rate, i.e. a high
value for ,,. The halving time of the deviation is less than three months.” The extremely
low halving time suggests that this policy reaction factor exerts more influence on the short
end of the term structure than on the long end. In other words, the policy reaction factor
represents a slope factor and not a level factor for the term structure. This is in line with the
conjecture of Knez et al. (1994), Evans and Marshall (1998) and Wu (2000) that this policy

reaction factor is intimately related to the slope of the yield curve.

4.3.4 Term structure

Finally, we can analyze the performance of the model in fitting the term structure of interest
rates (Figure 8). The yield curve is affine in the state space vector. The loadings for the
various maturities with respect to the factors are depicted in Figures 9 to 11. In contrast
with the multi-factor latent factors literature, we do not find evidence in favor of the standard
level effect. Instead we find a clear division between observable and non-observable (latent)
factors. While observable factors almost exclusively exert their effects on the short end of the
yield curve (Figure 10), latent factors affect the whole term structure significantly (except,
by construction, for the very short run, see Figure 11). According to the factor loading
estimates, yields with maturities over six months seem to be mainly responsive to changes
in the central tendencies of inflation and output (note that observable inflation and output
themselves only play a marginal role here). Since these central tendencies correspond to the
long-run expectations (by construction), we can conclude from this that the longer end of

the yield curve is mainly sensitive to long-run inflation and output forecasts. Inflation and

A visual representation of the convergence speed is found in the next section where the impulse response
functions are depicted and discussed.
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output forecasts, however, have different effects on the yield curve. Inflation forecast have
almost identical effects across the yield curve, i.e. they constitute more of a level factor, while
output forecasts exhibit a strong hump-shaped effect, affecting most strongly the intermediate
maturities (from 6 months to about 2 to 3 years). For short-term maturities, and by definition,
observable inflation and the real interest rate latent factor take over. The sensitivities of these
variables decay quite fast with the time to maturity of the bond such that these factors can
clearly be linked to the slope (spread) of the yield curve. While the estimated parameters
turn out to be different over different subsamples (i.e. with a break point during the Volker
period), the qualitative features of the factors remain the same, as can be inferred from the

figures presented in Appendix B).

Insert Figures 9, 10 and 11

While observable macroeconomic variables do not constitute the major source in the
dynamics of the yield curve itself, as can be inferred from the factor loadings, they still count
as an important source of variation in the risk premia. As can be checked from Figure 12,
risk premia for all maturities are volatile. Almost all time-varying risk premia parameters
(2) are individually statistically significant. As such, time variability of risk premia adds
statistically in modeling the term structure. Decomposing the risk premia into its different
components, i.e. the risk premia related to the output gap, inflation, etc., shows that only
the central tendency of output gap plays a minor role as a source of variation in the risk
premia. Note that while each single component is in itself large, they often counterbalance

each other, resulting in quite reasonable global (aggregate) risk premia.

Insert Figure 12

4.4 Variance decomposition and impulse response analysis

By construction, the Wiener shocks dWj; (t), ¢ = 1,...,n represent structural shocks related
to each one of the variables (factors) in the model. Therefore, we can perform a meaningful
variance decomposition and impulse response analysis on these shocks. The variance decom-
position serves the purpose of finding out what type of shock is most important in moving the
yield curve, while the impulse response analysis gives a detailed account of the cross-sectional
and time series implications of each type of shock.

A general variance decomposition of yield curve changes over a horizon h can be performed
by decomposing the variance-covariance matrix into the responses to each of the different
shocks. Defining a yield curve shock by A"y ()= § (t + h) —§ (), it is easily shown that the

variance-covariance matrix of these shocks takes the form:
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B (a5 (0~ B (a9 1)) (At (1) - B (a5 ) ) =

h
B / exp(K (s — h))E, (SS') exp(K (s — b)) ds| B’
0

(25)
The volatility over a given discrete time window of length A of a specific yield curve maturity
can be decomposed into the contributions of each of the orthogonal shocks. More specifically,
the contribution of shocks of type j in the variance of maturity ¢ over a time interval A is

given by:

h o 2
7 [ (z By, (1) (exp (K (5 - h>>>k,j) ds. (26)
0 \k=1

Table 5 presents the steady state variance decomposition for different horizons of the yield
curve in terms of the five possible structural shocks. The estimates suggest that the variability
across the yield curve is basically explained by three types of shocks: shocks to the real interest
rate and to the central tendencies of output gap and inflation. Actual output gap and observed
inflation series explain at most 6% of the variability of yield curve movements. Also, we find
a strong distinction between the types of shocks affecting the short end and the longer end
of the yield curve. The shorter end (say maturities up to two years) is dominated by both
the central tendency of output and real interest rate shocks, with a strong emphasis on the
former type of shock. The variability in the longer end of the yield curve, in contrast, is

mainly determined by the long-run inflation tendency.

Impulse response analysis provides a complementary tool to gauge the importance of the
various types of shocks for the macroeconomy and the yield curve. This tool analyses the
predictable responses to the various shocks. We follow the standard literature by analyzing
the effects of a one standard deviation shock in each of these sources of uncertainty. All
figures are presented as deviations from the base line case.

Figures 13 to 17 present the standard impulse response functions (IRFs) for output gap,
inflation, the real interest rate and the central tendencies of output gap and inflation. A
positive output gap shock (Figure 13) generates a cyclical response to most of the variables
involved with and initial increase in inflation. The yield curve response to this type of shock
is represented by an initial upward tilting of the short end of the curve (see also Figure 18).
A temporary inflation shock (Figure 14) generates a negative but marginal output effect.
Again, because of the temporary nature of the shock, the yield curve response is limited to
an upward tilting of the shorter end of the curve. A positive real interest rate shock (Figure

15) generates marginal effects on both the output gap and on inflation. A shock in the
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Table 5: Yield curve variance decomposition at different horizons in the steady
state

*

in % y Ly P y T total

time horizon: h = dt
yield1g 5.270 1.764 28.413 52.454 12.100 100.00
yieldaqg 6.265 0.702 8.081 67.300 17.652 100.00
yieldiyr 5.383 0.213 2.308 69.013 23.082 100.00
yieldzyy 3.274 0.018 0.762 63.514 32.432 100.00
yieldsyy 0.663 0.016 0.211 42.511 56.599 100.00
yieldjgyr 0.189 0.007 0.077 19.898 79.828 100.00

time horizon: h =1 year
yieldi g 5.872 1.209 18.024 57.719 17.177 100.00
yieldag 6.031 0.438 4.830 67.431 21.270 100.00
yieldyyr 4876 0.117 1.426 67.392 26.189 100.00
yieldayy 2.805 0.005 0.505 61.162 35.524 100.00
yieldsyy 0.506 0.027 0.146 39.903 59.418 100.00
yieldigyr 0.139 0.011  0.051 18.252 81.547 100.00

central tendency of output (Figure 16) triggers a positive output gap and a negative inflation
response accompanied by a significant downward tilting of the yield curve. Finally, a shock
to the long-run tendency of inflation (Figure 17) generates a positive output and inflation
responses and generates a level shift of the entire yield curve, in contrast to the other shocks.

In this case, the high effect of the shock is due to its high degree of inertia.

Insert Figures 13 to 17

We focus now on the effects of the different shocks on the evolution of the term structure
of interest rates (Figure 18). It is easily seen that the term structure variability is primarily
determined by the central tendencies of output gap and inflation shocks. However, both the
dynamic effects as well as the effect across maturities are different between these shocks.
For the shocks to the central tendency of output, i.e. shocks to the output capacity, we
find a gradual decrease of the impact of the shock through time. Simulation suggests that
the maximal effect is reached at about two quarters, whereafter the term structure starts
converging back towards the benchmark. Note that because of the relatively strong mean
reversion of interest rates, the effects of this type of shock will be most pronounced at the
shorter end of the term structure. As such, this type of shock essentially represents a yield
curve tilting shock.

Shocks to the central tendency of inflation differ drastically in their effect from output gap
shocks. Due to the extremely low mean reversion in the central tendency of inflation, such a

shock will be effective over a much longer time period. Hence, this type of shock affects the
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entire term structure and causes a shift over the entire maturity spectrum. Moreover, this
type of shock has long lasting effects on the term structure as can be observed from the last
panel of Figure 18. Even five years after the shock, no noticeable convergence towards the
benchmark can be detected.

Finally, we also find some effects of output gap and real interest rate shocks on the short
end of the term structure. However, the size of these shocks is markedly different from the

shocks to the central tendencies.

Insert Figure 18

4.5 Forecast evaluation

Next to the cross-sectional issues relating the macroeconomy to the term structure and vice-
versa we analyze the fit of the time series dimension of the model in more detail. We analyze
specifically two issues: the forecasting performance of the structural model at various horizons
and the quality of the forecasts, i.e. an analysis of the biases in these forecasts.

Starting with the forecasting performance, we compare the forecasting behavior of the
model against three alternatives: the random walk model, an AR(1) model and a VAR(1)
representation (in output gap, inflation and the three-month interest rate). First, we test the
forecasting performance for both output and inflation. Taking the root mean square error
(RMSE) as the measure we depict the forecasting performance in Figure 19.

This figure sets out the ratio between the RMSE of the model and each of the three
alternatives against the prediction horizon. The prediction horizon is stated in quarters. We
thus analyze forecasting performance for horizons from one quarter up to five years. The first
panel of the figure shows the predictive performance for the output gap and the second panel
for inflation. The results indicate that the model has a certain predictive performance. That
is, the alternative of no predictive power, the random walk model, is clearly outperformed
by our model with reductions in the RMSE up to almost 50% for output and about 10 to
15% for inflation. Also, as long as the forecasting horizons stay within a reasonable range,
the model performs better than standard AR(1) representations for both the output gap and
inflation. The third alternative (VAR), however, shows that the model is not superior on
both accounts. The model does consistently worse than the VAR representation for inflation,

while it does marginally better in predicting output for the forecasting horizon above 1 year.

Insert Figure 19

We also analyze the forecast performance for future yield curve evolutions. Here we take
as a relevant benchmark the random walk model as it has been shown in the literature that
this alternative typically outperforms the predictions based on (latent) multi-factor models.

Figure 19 (lower-left panel) sets out the RMSE ratio of the model relative to the random
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walk predictions. As can be seen from this figure, we find that for short-term predictions
we face the same difficulties in beating the random walk model as the standard multi-factor
models. Note, however, that alternative representations including macro variables (as in Ang
and Piazzesi, 2000) also report this prediction failure at short horizons. Nevertheless, at
longer prediction horizons, depending as well on the maturity being predicted, the model
starts to outperform the random walk model. Typically, the superior performance starts for
prediction horizons exceeding one to two years. Finally, if we take the forecast performance of
the latent three factor Vasicek model as a benchmark one can see that our model outperforms

this benchmark especially between the prediction horizon of 2 quaters to 3 years (Figure 20).

Insert Figure 20

A second issue concerns the quality of the forecasts. We test for the unbiasedness of the
forecasts through regressions of the actual values (data) on a constant and forecasted values.
Unbiasedness of the forecasts would imply a zero constant and a regression coefficient on the
forecasted values equal to one. Table 6 presents the results of this regression for the output
gap, inflation and yield curve predictors. As can be inferred from this table, we cannot reject
the hypothesis that the model generates unbiased predictors for output and inflation in the
short-run (up to 2 quarters for output and 4 quarters for inflation). However, extending the
prediction horizon beyond 2 quarters, the quality of the predictors deteriorates. For all series
considered, we detect significant biases in the predictions. Note, however, that this bias is
not only present in the model’s predictions but also in each of the alternatives to the model
considered. Another remark to be made in this respect is that the forecasts, although biased,
still detect some significant pattern. All of the listed coefficients are significantly different
from zero, indicating at least a positive covariation between the actual and the forecasted
series. The bottom line thus seems to be that although the model yields statistically relevant
forecasts, in terms of RMSE reductions, the model does not pass the test of generating
optimal, in the sense of unbiased, predictors. Finding better predictors, generated by better

models, remains one of the possible routes for future research.
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Table 6: Regressions to test for unbiasedness of forecasts

series Model 2q 4q 6q 8q 12q
Macro 1.13  0.70*  0.53** 0.71 0.92
y AR(1) 0.90  0.45%*  -0.24%*% -0.94%F -2.26%*

VAR(1) 092 0.61% 033 038 0.61*

Macro  0.98 0.2  0.81%  0.61%*F (.19%*
n AR(1) 097 0.87% 0.73%F  (058%F 0.42%*
VAR(1) 099 0095  0.88%  0.74%F 0.34%*

yieldiq  Macro 0.91*%* 0.80** 0.66**  0.55%*  0.39**
R.W. 0.87*% 0.79** 0.69** 0.56** (.38**

yieldzq Macro  0.90** 0.79*%* 0.65**  0.54**  0.39%*
R.W.  0.87*% 0.80** 0.69** 0.57*% 0.40**

yieldiyr  Macro 0.90*% 0.80** 0.67** 0.57*F  (0.42%*
R.W. 0.89** (0.81** 0.71** 0.61** 0.46**

yielday, Macro  0.92** 0.82%*F 0.71%F  0.63**  (0.49**
R.W. 0.90** 0.83** 0.74**  0.67**  0.55**

yieldsy,  Macro 0.93** 0.85%* 0.76** 0.70**  (0.58**
R.W.  0.93%*% 0.86%* 0.79** 0.74%%  0.66**

yieldigyy Macro 0.94** 0.86** 0.79**  0.73**  0.63**
R.W. 0.94** 0.89** 0.83*F  0.80** 0.73**

Macro in the above table refers to the macroeconomic model as set out in Section
2. * Significantly different from 1 at 10% level. ** Significantly different from 1 at
5% level.
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5 Conclusions

In this paper we have presented a methodology to estimate a continuous time model of the
term structure incorporating both observable as well as latent factors in the state vector.
The framework is flexible enough so that the state space can be increased to include other
observable or non-observable factors and to encompass a wide variety of interest rate rules in
both these factors. As such, it is well suited to tackle questions related to the interrelations
between financial markets and the macroeconomy.

We used the methodology to estimate a feedback rule on the entire term structure of inter-
est rates. The model estimated in this paper is akin to the standard view in the monetary lit-
erature on Taylor rules. More specifically, we used the standard aggregate demand-aggregate
supply literature to identify the macroeconomic dynamics and imposed the feedback rule as a
long-run attractor for the real interest rate. Estimating the model, we find that the standard
feedback rule in observed inflation and output is not retained as a valid description of the
bond markets. Observed inflation and output typically do not have the dynamic properties
required to fit cross-sectionally the term structure of interest rates. Instead, we find evidence
in favor of a different type of short-term real interest rate rule where the central banker reacts
both to a (latent) central tendency of inflation and to the gap between observed inflation and
this central tendency. In particular, movements of interest rates are basically one-to-one with
the central tendency of inflation, which in its turn can be interpreted as a long-run inflation
forecast.

Obviously, a number of caveats needs to be taken into account. First, our model represents
an economy with perfect financial markets. That is, we have assumed from the start the
absence of market segmentation. Moreover, we have assumed that the prices of risk are
captured within the framework of essentially affine models. Both these assumptions may be
a serious oversimplification of reality and may affect the estimated Taylor-type rule. They
obviously also set out a research agenda. For instance, an interesting extension of this model
is to consider a broader class of models (for instance, the class of quadratic term structure
models, QTSMs, see Ahn et al. (2000)), or to consider more complex dynamic structures for
the macroeconomy. Alternatively, we could start to explicitly estimate general equilibrium
models incorporating both the macroeconomy and the bond markets within the framework
of affine continuous time models, along the lines of Berardi (2001) and Wu (2000). These

possible extensions are left for future research.
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Appendix A: Computing the exponential of a matrix

In this appendix, we present the procedure used in this paper to generate the conditional
expectations and variance covariance matrix for the levels of the factors. In essence, the
proposed procedure solves the problem of the computation of an exponential of a matrix (see
Moler and Van Loan (1978)). The procedure we follow is to compute the variance-covariance

matrix from the raw first and second moments:

cov (fi(s), fj (s)) = E(fi(s) fi (s) [ £(t)) = E(fi(s) [ £()) E(fj () [£(2)) (27)

with s = t 4+ h. We, therefore, need to compute the conditional expectations for the factors
and all of its cross-products for the time horizon & (equal to one quarter in our case) over any
desired time interval ¢. For this purpose, we first construct the ¢ x 1 vector g containing the

expectations of the factors, its squares and all possible cross-products:

g(S) = EtP(fl (S) yoees J5 (S) 7f12 (S) 7"'7f§ (S) il (S) f2 (S) yees 1 (S) I5 (S) >
s S2(8) f5.(5), f3.(5) fa(s) , f3 (s) [ (5) ; fa(s) f5 (s) |f(2(?))'

The dynamics for this state vector can be constructed by means of Ito’s lemma. First, for
the first four rows, i.e. the factors themselves, we have the assumed dynamics
df (s) =K (¢p — f (s))ds + SAW (s) . (29)

which, taking expectations, gives:

EF [df; (s)] = Ef Lé Kij (j1—fi1(s))ds + S; jdW;a (S)] (30)
B W ()] =3 Kig (Vaa—=BF (£a(5))) s (31)

for i = 1,...,n. Using the fact that Ef [dfi (s)] = d (EtP [fi (5)]) and the definitions in Eq.(28)

we obtain the first n elements of the vector dg;:

dgi (s) Zé Kij (j1—g;(s)) ds (32)

For the following n elements of the vector g which contain the square of the factors, we

have (applying Ito’s Lemma):
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EF [df? (s)] = EF [2fi (s) dfi (s) + df? (s)] ,
EF [df? ()] = EF |2fi(s) (i 3 (1= fi1(s)) ds + Si jdW; (5)) + (il SijdWi1 (5)) }

(33)
for i = 1,...,n. Since S is a diagonal matrix and applying the same reasoning as before we

get the following:
n n
g () = {291- (5) 3 Kig¥yn =2 (,21 K0y B [fz-(S)fj(S)]) + Efsf,z} ds
Jj= Jj=
for i« = 1,...,n. We construct the following auxiliary matrix to help identify the appropriate

elements of the vector g:

n+1 n+6 n+7 n+8 n+9
n+6 n+2 n+10 n+11 n+12
m=| n+7 n+8 n+3 n+13 n+14
n+9 n+10 n+11 n+4 n+15
n+12 n4+13 n+14 n4+15 n+5

and obtain:

dgm, ; (8) = dgn+i (s) = {291' (s) Zl K V1 —2 (Zl Kz‘,jgmi,j> + 5222} ds
J= J=

for ¢ = 1,...,n. For the final elements of g containing the cross-terms of the factors, we have
that:

B [d(fi (s) £ ()] = B [f; (s)dfi (s) + fi (s) df; (s) + dfi (s) df; ()] -

Assuming that EF [dW; (s)dW; (s)] =0 for 4,5 = 1,...,n and i # j, we obtain:

Fld(fi(s) fi(s)] = EF [f (s )(Z K (g 1—fra(s))ds + S xdWy 1 (8)>

k=1

£:06) (5 Ko (Vs Fua (60 ds + S5 ()|

And making use again of the auxiliary matrix m gives:

dgm, ; (s) = [gj () i Kig (Uk1=0,,,,(5)) + i (s Z Kjn (¥n1=0,.,, (s ))1 ds

k=1

Note that the dynamics can be restated in terms of the vector g :

dg (s) = (6+Qg(s))ds. (34)

Since the conditional expectations contained in the vector g are computed for each point in

time ¢, we have that ds = dh which gives the following solution:
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g(t+h)=—-Q10+e (g(t) + Q10) (35)

Making T (h) = " gives

g(t+h)=-Q 10+ (h) (g(t) +Q210O) (36)

The above equation shows that in order to compute the conditional expectations and the

variance covariance matrix of the factors, we basically need to compute the matrix I' (k).
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Appendix B: Estimation results for the subperiods 1958-1979
and 1982-1998

Table B1: Maximum likelihood estimates (1958:QQ1-1979:Q2)

y ™ P vy T
Ky . 1.2902 0.1926 -0.2255
(0.2196) (0.4196) (0.1863)
K. -0.5941 -1.3577 -0.8329
(0.1796) (1.0978) (0.2193)
Kp. -0.0074 2.1638 1.0920
(0.0201) (0.9941) (0.3557)
Ky . 0.3643
(0.0507)
Kox 0.0012
(0.0010)
0. -0.00005  0.028524
(0.00007)  (0.02835)
o 0.00006
(0.00018)
~. -0.2148 0.9595 -0.0943 -1.3507
(0.1896) (1.1066) (0.2010)  (1.0346)
by 58.4377 -3.4210 -9.2260
(19.8123)  (343.5178) (1579.0654)
=, -5.4505 14.9656 17.6682 485.0702  -21.8112

(1.5992)  (2.6784)  (2.8740)  (445.6150)  (4.4287)
2 0.000467  0.000048  0.000086  0.0000004  0.000026
(5.918679) (5.451926)  (0.786101)  (0.60301)  (4.679106)

Ry,  15.1138
Ry,  10.6568 9.4902

Riyr 3.7122 4.1557 2.7524

Royr 0.0593 0.0002 -0.0001 0.0000

Rsyr -0.01182 -0.4215 -0.0001 0.5717 1.9994

Rioyr 0.0972 -0.0727 -0.0071 0.1158 0.6143 0.0007

ML estimates with standard errors underneath. Omnly the lower diagonal of the mea-
surement error covariance matrix is given. These values are multiplied by 105. Total

loglikelihood amounts to 3766.3171 or 43.7944 on average (excluding constant in the log-
likelihood).
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Table B2: Maximum likelihood estimates (1982:QQ1-1998:Q4)

y ™ 4 vy L
Ky. 0.4768 0.0338 -0.5039
(0.2577) (0.2448) (0.3507)
K. -0.2561 -0.3999 -1.2006
(0.2990) (0.5240) (0.2936)
Kp. -0.0074 0.6071 1.3389
(0.0436) (0.6594) (1.3134)
Ky 0.6956
(0.1265)
Ko . 0.0083
(0.0022)
0. -0.00006 0.07962
(0.00055)  (0.01325)
o 0.00006
(0.00075)
~. 0.0370 0.5501 -0.0348 0.0954
(0.2599) (0.4203) (0.1950) (0.5362)
A 46.8373 -3.8778 -9.2563

(194.3650)  (92.5728)  (4498.3324)
-5.6896 17.6764 32.7754 498.0588  -94.5289
(7.3782)  (5.2057) (7.5508)  (1446.1787)  (30.4351)
o2 0.000112  0.000090  0.000223  0.000001  0.000010
(0.000019)  (0.000022)  (0.000280)  (0.000004)  (0.000004)

Ry,  16.3199
Ry, 10.6688 8.6115

Riyr 3.7621 4.1420 3.0511

Rayr 0.0593 0.0002 -0.0001 0.0000

Ry, -0.1167 -0.4236 -0.0001 0.5708 1.9034

Rioyr 0.0972 -0.0727 -0.0071 0.1173 0.6155 0.0007

ML estimates with standard errors underneath. Omnly the lower diagonal of the mea-
surement error covariance matrix is given. These values are multiplied by 10°. Total
loglikelihood amounts to 2828.8282 or 44.2004 on average (excluding constant in the log-

likelihood).
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Figure B1: Estimated factor loadings- Factors 1 to 3 (1958-1979).

36

10



-22 —-18 —-14 -10

—26

Factor loadings b(7)/T

\, |
! |
| _
i - |
| - i

\ ~
i P |
,\ ~ i

~
o - |
~
(‘) /O/ e'—y*
. |
[ b0 = "]
| | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

Maturity 7 (year)

Figure B2: Estimated factor loadings - Factors 4 and 5 (1958-1979).
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38

10



-22 —-18 —-14 -10

—26

Factor loadings b(7)/T

m

Maturity 7 (year)

Figure B4: Estimated factor loadings - Factors 4 and 5 (1982-1998).

39



Appendix C: Inflation forecasting

In this appendix, we briefly describe the computation of the inflation forecasts based on the
model described in Section 2. For the one-year ahead inflation forecast, we use the following

equation, with h = 1 year:
1 * Lxh *
T =7 + ellmh) (r — %)

where L, denotes the real part of the eigenvalue relative to inflation based on the K matrix
(see also Section 3.1.2 and Table 3). For the computation of the forecasts for the average rate

of inflation for the next ten years we have that:

10

7}07’ = 1—10 > [W* + elEmh) (r W*)]
h=1

The results from an OLS regression of the inflation forecasts provided by the Survey of
Professional Forecasters on the forecasts based on our model and a constant are reported in
Table C1.

Table C1: Inflation forecast regressions

1 year ahead average next 10 years

constant 0.0004 0.0029
(0.0015) (0.0023)
coefficient 0.8898 0.8018
(0.0289) (0.0474)
i 0.89 0.84
no.obs. 116 55
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Figure 5: Comparison of average 1-year inflation forecast - Model vs. Survey of Professional Forecasters.
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Figure 9: Estimated constant factor loading (1958-1998)
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Figure 10: Estimated factor loadings - Factors 1 to 3 (1958-1998).
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Figure 11: Estimated factor loadings - Factors 4 and 5 (1958-1998).
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response analysis of shocks to the central tendency of output.
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Figure 17: Impulse response analysis of shocks in the central tendency of inflation.
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Figure 18: Time evolution of yield curve after a structural shock.

58



OUTPUT PREDICTIONS vs. ALTERNATIVE INFLATION PREDICTIONS vs. ALTERNATIVE

m‘ T T T T T T T T T m T T T T T T T T T
ol | — RW i

- AR(1)

ob| — — VAR(1) ]

Ratio (RMSE—model/RMSE—alternative)
Ratio (RMSE-model/RMSE—alternative)

| i
(=1
o m
S
il A A A A A A A A A 0 A A A A A A A A A
) 2 4 6 8 10 12 14 16 18 20 ) 2 4 6 8 10 12 14 16 18 20
Time (quarter) Time (quarter)

TERM STRUCTURE PREDICTIONS (Model vs. RW)

1.04 1.08 1.12

1.00

98

0.

Ratio (RMSE—model/RMSE—RW)
0.92

0.88

0.84

o) 2 4 B 8 10 12 14 16 18 20

Time (quarter)

Figure 19: Forecasting performance of the model relative to the random walk, AR(1) and VAR(1).
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Figure 20: Forecasting performance of the model relative to the latent factor model.
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