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Abstract

We adapt Brandt’s (1999) nonparametric approach to determine the optimal portfolio
choice of a risk averse foreign exchange investor who uses moving average trading signals
as the information instrument for investment opportunities. Additionally, we assess the
economic value of the estimated optimal trading rules based on the investor’s preferences.
The approach consists of a conditional generalized method of moments (GMM) applied to
the conditional Fuler optimality conditions. The method presents two main advantages:
(i) it avoids ad hoc specifications of statistical models used to explain return predictability;
and (ii) it implicitly incorporates all return moments in the investor’s expected utility
maximization problem. We apply the procedure to different moving average trading rules
for the German mark-U.S. dollar exchange rate for the period 1973-2001. We find that
technical trading rules are partially recovered and that the estimated optimal trading
rules represent a significant economic value for the investor.
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1 Introduction

Economic theory has been unable to explain in a satisfactory way the apparent success of
even the most simple technical trading rules. In general, there seems to be no clear academic
consensus regarding neither the profitability nor the source of predictability of these rules.
One of the reasons for this relies on the methodology used in this area of research which is still
frequently questioned. This methodology can be divided in two steps. The first step involves
the determination of a statistical or economic model relating asset returns to a forecasting
variable or chartist signal. The second step consists of a statistical analysis of the expected
asset return conditional on this signal.

While there is by now some accumulating evidence concerning the profitability of these
rules in the foreign exchange market, there is still hardly any consensus regarding the type of
statistical or economic structure underlying the observed predictability of such rules. Some
studies, for example, argue that this predictability stems from the linear moving average
trends in the exchange rates (e.g. Taylor (1980) and LeBaron (1992)). Others claim that
nonlinearities are, in fact, the most important source of predictability of chartist rules (e.g.
Gengay (1999)).1 Given the lack of concensus on the statistical structure, statistical misspec-
ification will obviuously be a major issue in analyzing the results obtained from any specific
parametric model for the return generating process.

One possible method to circumvent parametric specifications of the return generating
process is to turn to nonparametric alternatives. Brandt (1999) proposes a nonparametric
approach that is robust to such model misspecifications. The method adopts a expected
utility framework and consists of solving sample analogues of the conditional Euler equations
that characterize the portfolio choice of a representative investor. In this paper, we apply
Brandt’s approach to the foreign exchange market using a simple technical trading signal as
the forecasting variable for investment opportunities. We concentrate on this market due to
the apparent profitability of chartist rules in this market. Empirical evidence for this can be
found in LeBaron (1992, 1999), Gengay (1999), Dewachter (2001) and Taylor (1980), among
others.?

The use of Brandt’s method to analyze technical trading rules provides a number of ad-
vantages over the traditional approach mentioned above. First, it answers the main criticism
against the standard literature since it avoids ad hoc specifications of statistical or economic
models to explain return predictability. The method determines directly the dependence of
the optimal portfolio choice on the forecasting variable. In this way, it allows for the most
flexible statistical model for the asset return process. Second, the methodology allows the
analysis of trading strategies under a consistent economic framework based on the investor’s
expected utility. In other words, it enables us to give recommendations for an investor with

'Dewachter (2001) shows that within the framework of a Markov switching model both linear and nonlinear
components contribute to the predictability of moving average trading rules. The linear part, however, explains
most of the predictability.

?LeBaron (2000), however, suggests that previous claims regarding a high performance of technical tranding
rules during the 1990’s were somewhat exaggerated.



a specific utility function and level of risk aversion. Third, the use of the expected utility
framework combined with the nonparametric estimation technique implicitly allows for the
dependence of all return moments on the chartist signal. While some studies have, for in-
stance, looked at the Sharpe ratio of trading rules, they are still restrictive since they do not
allow for the possible dependence of higher moments (e.g. skewness or kurtosis) on the signal.
Fourth, it enables us to give practical portfolio advice based on the investor’s optimal trad-
ing rule. More specifically, this rule establishes the proportion of an investor’s total wealth
that should be invested in a certain risky asset according to certain risk preferences. This
is in contrast to the simple chartist buy-or-sell recommendation which leaves undetermined
the optimal portfolio composition. Chartist rules also make no distinction among different
types of investors and their risk preferences. Finally, this method allows us to compute the
economic value for the investor of using the estimated optimal trading rule. Only with this
final step the investor is able to decide which chartist signal should be used as the forecasting
variable for future investment opportunities. In short, in applying Brandt’s technique one
can provide answers to the question of who and how one should trade upon a given chartist
signal. Additionally, it also allows the determination of the economic value of the resulting
optimal trading rule. This is achieved without arbitrary model specifications and taking into
consideration all possible dependencies of the return moments on the chartist signal.

In the empirical section of the paper we use German mark-U.S. dollar exchange rates for
the period 1973-2001. Among the vast number of possible types of technical trading rules, we
decide to focus on the moving average type for its simplicity and widespread use. We investi-
gate the case of investors with constant relative risk aversion (CRRA) preferences for different
levels of risk aversion. The analysis shows that technical trading rules are partially recov-
ered and, most importantly, that the estimated optimal trading rules represent a significant
economic value for investors with reasonable levels of risk aversion.

The procedure presented in this paper can be extended to a multivariate setting with
respect to both the number of risky assets composing the portfolio and the number of different
signals used as forecasting variables. One can still go one step further. Following A1t-Sahalia
and Brandt’s (2001) extension of this methodology, one could aggregate these different signals
into a single index making use of optimal weighting functions. This would allow investors to
determine the most important variables to be tracked and the best way to combine them.

The remainder of the paper is organized as follows. In Section 2, we define the chartist
signal used as the forecasting variable, derive the conditional Euler equation applied to the
problem, and translate the optimal portfolio choices into certainty equivalent units. Section 3
presents the nonparametric method used to estimate the optimal portfolio composition using
standard generalized method of moments (GMM). The result is a simple and easy-to-use
estimation technique for optimal ” charts-based” trading rules. It also addresses some practical
issues related to the implementation of the method. The empirical results are presented in
Section 4. Section 5 concludes the paper.



2 Optimal Portfolio Choice

In this section, we start by defining the signal used by the investor as the forecasting variable
for investment opportunities. We then derive the first-order condition of the investor’s ex-
pected utility maximization problem. We end the section with the derivation of the certainty
equivalent related to the estimated optimal trading rule.

2.1 Moving average chartist signal

Technical, or chartist, analysis tries to identify general patterns in past asset prices without
making use of any underlying economic or ”fundamental” analysis. The analysis is based on
an array of quantitative indicators, or signals, used to derive a variety of different technical
trading rules. Despite the diversity of these rules, empirical evidence has shown that even
simple rules are able to predict movements in foreign exchange prices, creating successful
dynamic trading strategies. The moving average type of rule is one of the most used among
these rules and is the one that seems to be robust also in out of sample analysis (see, for
instance, Neely et al. (1997)). We use the signal derived from these rules as the forecasting
variable observed by the investor. This signal is defined as:

1 S—1 1 L-1
Zt = g Z Aet,j — z Z Aet,]’, (1)
j=0 j=0

where e; denotes the natural logarithm of the asset price at time ¢, and S (L) denotes the
number of observations included in the short (long) window of the moving average signal.
Ae; = ey — e;_1 expresses the asset return at time ¢t. This trading signal is supposed to
capture the instantaneous momentum in market prices by comparing the average growth rate
in the past over a short period with that over a longer period. One usual technical trading
rule based on this signal implies a long position in the asset whenever the signal is positive
and a short position whenever it is negative.

Irrespective of the statistical quality of the signal z;, the chartist trading rule is certainly
not designed optimally.? Optimal trading rules use conditional information in order to maxi-
mize a certain objective function, which is exactly what is typically missing in chartist trading
rules. In the following, we show how this trading signal can be used to derive an optimal
trading rule based on the investor’s specific utility function.

2.2 Expected utility framework

We consider a representative investor with CRRA preferences who allocates a fraction « of
wealth W in the risky asset, investing the remaining in a riskless security with return ry.
The risky asset yields a return of Aet_t'_l above the risk-free rate. Investment opportunities
are time-varying and correlated with the observable forecasting variable z;. The investor

3For instance, it will not be an optimal trading rule whenever agents are risk averse or face constraints on
the investment size.



maximizes the one-period ahead expected utility and obtain the following optimal trading
rule conditional on the signal observed at time ¢:

Qopt (2¢) = argmax (E U (W) | 24]) (2)

with the utility function defined as:

fory>0and y# 1

In(W;) fory=1

where

West = Wi (1477 + arBerss ) (4)
and where 7y represents the investor’s risk aversion. The optimal trading strategy can then
be identified as the portfolio weight oy that solves the following conditional Euler equation:

E [% | zt] ~0, (5)

where the derivative is evaluated at aop(2¢). This equation maps the state of nature at each
point in time, described by the signal z;, into the optimal portfolio choice of the investor.

From the optimality condition in (5), it is easy to show that the design of trading strategies
should involve not only the predictability of a chartist signal with respect to the expected
asset return but also with respect to the higher moments. For this, we expand the first-order
condition in (5) around the expected return:

=0 (6)

ou (W, 1 ~ ~ k
E [% | Zt:l = IZ%EUO(LIC)E |:<A€t+1 —F <A€t+1 | Zt)) | Zt

where U(gk) denotes the k-th derivative of QU (Wy1) /Oa with respect to Aeyt1, evaluated in
the z;-conditional expected wealth. Equation (6) tells us that, unless the agent is risk neutral,
the optimal trading rule involves also the predictability of the signal with respect to higher
return moments (e.g. conditional variance, skewness or kurtosis). This fact is generally not
considered in the standard literature. More importantly, the possibility that all moments
enter into the construction of optimal portfolios causes an identification problem in terms of
the returns moments to be matched. As a consequence, any statistical model for the return
dynamics is forced to incorporate some a priori restrictions on the signal-moment relation. For
example, a generalized autoregressive conditional heteroskedasticity (GARCH) type of model
would allow for predictability of the signal with respect to the first two return moments but
would restrict the higher conditional moments to be constant. For this reason, as suggested
by Brandt (1999), in the construction of optimal portfolios, it seems more appropriate to
eliminate the intermediate step of positing a statistical model for some of the conditional

moments and, instead, use equation (5) directly to derive the optimal portfolio composition.



2.3 Certainty equivalent

The solution of equation (5) characterizes the optimal portfolio choice as a function of the
chartist signal. We would also like, however, to determine the economic value for the investor
of following this trading strategy. For this, we translate the decision rule expressed by gy into
a zi-conditional certainty equivalent. In other words, we compute the z;-conditional certain
return r¢ that gives the investor the same level of utility as the expected utility derived from
a risky investment made according to the optimal trading rule, or:

UWee) =E[UWii1 | 2e = 2)]. (7)

where W, = Wy (1 4 r.). Taking a second-order expansion around the initial wealth, W,

we have that:

~ 1U"W, ~ 2
ree(zt =2)=ry+FE (aoptAeHl | 2 = 2) + > 'E <<aoptAet+1) | 2 = Z) (8)

where the derivatives are evaluated at W;. Substituting the derivatives of the utility function

gives:

. 1 - 2
Tee (2t =2) =1y + E (aoptAet+1 | 2t = 2) — §ny <(aoptAet+1) | 2t = Z) , 9)

Note that, by construction, this certainty equivalent is downward biased and, therefore, pro-
vides a lower bound for the estimated monetary value of the trading rule in consideration. In
the following, we show how to use a nonparametric approach to compute this expression.

3 Nonparametric Approach: Brandt (1999)

In order to estimate optimal trading rules, Brandt (1999) proposes the use of standard GMM
techniques applied to conditional expectations obtained with a nonparametric approach. The
method avoids the inconvenient intermediate step of having to specify a statistical model for
the asset return. In the following, we present this approach applied to the estimation of the
optimality condition in (5). Adapting the method to the above set up, the optimal trading
rule ap (2¢ = Z) can be estimated using the method of moments:

Qopt (2t = Z) = arg nc1¥1tn (9Qd) (10)
with () an appropriate weighting matrix and
oUu (W,
g = Eemp (a—atJrl) | 2t =Z (11)

where ey, represents the nonparametric conditional expectation operator defined on a sam-
ple of T observations. The idea is to compute sample analogues to the conditional expectation
of OU (Wiy1) /Oc. For this, we define the above operator as:



Eemp [Xt+1 | 2t = 2] = (12)

where K (u) denotes a kernel function in uj, u; = (2; —2) /h, and where h is the window width
or bandwidth of the kernel. This operator gives a weighted average of the observed variable
X¢, where the weight depends on how far each observation is from the reference signal z.

Results in the literature (see, for instance, Brandt (1999)) show that any reasonable kernel
yields asymptotically consistent estimates. Since our problem contains an univariate signal,
we are able to adopt a simple normal kernel function, which attributes a greater weight to
data points closer to the estimation point:

K (u)) = L (), (13)

The choice of the bandwidth is a more crucial element to the estimation. This parameter
scales the difference between the observed z; and the reference signal z. A large h decreases
the variance of the estimator since it increases the number of data points with a higher weight.
As a consequence, it increases the potential bias of the estimate since it averages across points
that are less similar to the reference point. A smaller i has the opposite effect, it increases the
variance and decreases the potential bias. According to standard results in the literature, the
bandwidth that guarantees asymptotic consistency? and minimizes the mean squared errors
(MSE) of the estimates, balancing the variance against the potential bias, is given by:

h = Ao (z)T~ 1/ (k+4)) (14)

where 0(z) is the standard deviation of the variable z and k represents the dimensionality
of the signal, equal to one in our case. The proportionality constant A is chosen based on
the leave-one-out cross validation technique, which is a data-driven approach, minimizing the
MSE in out-of-sample prediction (see Silverman (1986)).

Using the kernel function in (13), the CRRA utility function and the optimal bandwidth
selection procedure, Brandt (1999) shows the following asymptotic result for the estimator of
the optimal trading rule a:

VTh(a—a) — N (0,02), (15)

with

«

s _DEVEDE T [
o2 = " /RK( 12 du, (16)

where f(z) denotes the nonparametric unconditional density of z,

1 Asymptotic consistency requires that A — 0 fast enough as T — oo.



and

oa

The method of Brandt (1999) thus allows for a direct estimation of the optimal port-
folio composition, i.e. the weight aop (2; = Z) conditional on the observation of a certain

V (2) = Eomp [(M)Q | ztl . (18)

market signal z;. This optimal portfolio composition implicitly defines the optimal (signal-
conditioned) trading rule. That is, the trading rule implicit in this procedure is given by the
mapping from the range of possible values of the signal to the optimal trading action «. Using
this procedure on the chartist (moving average) information variable z; thus results in the
optimal ”chart-based” trading rule. This optimal rule can then be used to (i) analyze the
information value of the moving average signal by testing whether a rational investor would
use this signal in his optimal portfolio decisions, and (ii) to analyze the optimality of the
standard trading practices based on the moving average signal, i.e. go long when z > 0 and
short whenever z < 0 with trading positions that are invariant to the size of the signal. The
first issue can be easily tested by looking for s statistically different from zero, while for
the second one should look for constant optimal trading positions across the negative and
positive support of z. These empirical issues are analyzed in the next section.

4 Empirical results

We use daily German mark-U.S. dollar (DM-USS$) spot exchange rates obtained from Datas-
tream for the sample period January 2, 1973 to November 6, 2001, a total of 7526 observations.
In the analysis, we disregard the interest rate differential between the countries.” Besides the
fact that these data are not readily available, LeBaron (1999) shows that the exclusion of the
interest rate differential is unimportant for trading rule results. We also adopt an arbitrary
value for the risk free interest rate equal to zero.

We consider the case of a CRRA German investor who uses a daily unidimensional signal
z¢ as the forecasting variable for possible investments in dollars, the only available risky asset,
of a fraction « of his total wealth. The analysis is made for three types of signals depending
on the number of days incorporated in the short (S) and the long (L) window of the moving
average rule in (1). The following signals are used. Signal 1: S; = 10 and Ly = 50; Signal
2: S4 = 20 and Ly = 100; and Signal 3: S; = 40 and Lg = 200, where the subscript d
indicates the investor’s investment horizon (days). The optimal trading rules are derived for
three levels of relative risk aversion (y = 5, 10, and 20). The constant A in (14) is chosen,

’The expression Ae;y1 = Aery1 + r} — ry, where 7} represents the risk-free return in the foreign country,

~

can then be simplified to get_,_l = Aeryr-



for each type of rule, through a MSE minimizing grid search using the leave-one-out cross
validation technique.®

In the following, we first present some summary statistics relating the signal z to the
moments of the exchange rate returns. We then use the nonparametric approach to compute
the expected returns and squared returns as a function of the signal. Up to this point, the
analysis is simply a statistical one and intends to investigate the informative content of the
signal with respect to the return moments. Subsequently, we use the information contained
in the signal to determine the optimal portfolio choice of an investor with a specific utility
function and level of risk aversion. We also test for the optimality of a chartist type of trading
rule based on the estimated optimal trading rule. We end the empirical analysis for daily
returns with the computation of the certainty equivalent for each type of signal and level of
risk aversion.

In the last sub-section, we report the results for investment horizons of one week and one
month. The weekly and monthly returns are computed as the sum of the previous 5 and 20
daily returns, respectively. We also adopt the same set of signals described above. For the
weekly returns, for example, Signal 1 incorporates the previous 2 weeks in its short moving
average window and 10 weeks in its long window (S, = 2 and L,, = 10).

4.1 Summary statistics for moving average trading signals

Panel A of Table 1 shows the informative content of the daily signal with respect to the sign of
the exchange rate return in the following period. In other words, it shows how often an investor
would benefit from using a simple chartist rule (buy if z; > 0 and sell if z; < 0) to direct
his investment in dollars. We see that, in our sample, the signals used have no informative
content with respect to the direction of daily exchange rate changes. This is in contrast to
the results presented in the literature which show for weekly data success rates marginally
above 50 percent (e.g. Dewachter (2001)). However, as is shown in the appendix, this lack of
predictive ability for changes in exchange rates pertains only to the daily investment horizon.
For weekly and monthly investment horizons, we do find the predictive ability of the moving
average signal for the direction of exchange rate movements to be significant.

Despite the failure in outperforming the random walk in predicting the direction of ex-
change rate changes, we show in Panel B of Table 1 that investing according to the chartist
rule still results in a significant mean excess return. Irrespective of the rule chosen, invest-
ing according to the moving average trading rule implies significant returns of about 3 to 5
percent p.a. upon a positive (long position) signal and of about 4 to 7 percent p.a. upon a
negative (short position) signal.

This apparent conflict between sign prediction and mean trading profit returns suggests a
dependence of the conditional return moments on the signal. In order to make this link more
explicit, we estimate the following regressions, which recover a third-order expansion of the

5The values used for A for a daily investment horizon are the following. Signal 1: 5.8164; Signal 2: 3.1609;
and Signal 3: 4.5439.



Table 1: Informative content of chartist signal. Daily investment horizon.

Type of signal

Signal 1 Signal 2 Signal 3
Sa=10, Ly =50 S3=20,Ls =100 Sg=40, Lg =200

Summary statistics

Panel A: Fraction of correctly predicted signs in exchange rate changes

z <0 0.487 0.488 0.491
2z >0 0.497 0.498 0.500
2t 0.487 0.497 0.492
Panel B: Trading profits p.a. terms
E(Aeti152: <0) 0.068 (0.028) 0.064 (0.028) 0.041 (0.029)
E(Aeit1;2 > 0) 0.051 (0.028) 0.046 (0.028) 0.030 (0.027)
E(Aety1;2t) 0.059 (0.019) 0.055 (0.019) 0.035 (0.019)

Regression results

Panel C: Returns
Aepyq = c+ Byzt + Bozf + B32p + e

¢ (x 100) -0.005 (0.009) 0.002 (0.009) -0.007 (0.009)
3, 0.198 (0.055) 0.283 (0.083) 0.327 (0.113)
By 5.353 (11.659) -30.106 (23.615) A7.204 (47.941)
Bs -0.709 (0.250) -2.316 (0.867) -6.180 (2.410)
F-test (p-value) 0.004 0.004 0.025

Panel D: Squared returns
(A€t+1)2 =d+ 512,5 + (522’? + (532’? + Vt+1

d (x 1000) 0.037 (0.001) 0.036 (0.001) 0.035 (0.001)

61(x 10) 0.002 (0.008) 0.004 (0.012) -0.014 (0.016)

82 1.725 (0.168) 3.768 (0.340) 7.041 (0.689)

85 -0.001 (0.004) -0.010 (0.012) -0.015 (0.035)
F-test (p-value) 0.000 0.000 0.000

Note: Standard errors are in brackets.

conditional return-signal and squared return-signal relation:

Aepy1 =c+ Bz + 52,2? + 532'? + &1

(Aepy1)? = d+ 612 + 6222 + 8323 + viga.
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(19)

(20)

The results of these regressions are presented in Panels C and D of Table 1 and in the
bottom panels of Figures 1 to 3 (dashed lines). For both regressions, the results point to a
statistically significant nonlinear relation between the signal and the returns. For the return
regression in (19), one can see in Panel C of Table 1 that for the three types of signal used
both the linear and the cubic terms in the signal are statistically significant. This is reflected
in a p-value for the F-test of about 0.003. The resulting regression lines can be seen in the



bottom-left panels of Figures 1 to 3 (dashed line). The regression results for the squared
returns (eq. 20) are presented in Panel D of Table 1. In this case, we see, as expected, the
importance of the squared signal in explaining the squared returns. This gives rise to an
approximate symmetric relation between the signal and the squared returns. We find then a
significant statistical relation between the chartist moving average signal and the volatility of
subsequent exchange rate returns. As far as we know, this aspect of the chartist signal has
not been analyzed in the literature.

We conclude from this that the moving average signals used in the analysis contain a sig-
nificant informational content with respect to both the returns and, surprisingly, the variance
of returns in the subsequent period.

4.2 Nonparametric return moments

The use of nonparametric techniques allows us to obtain a more flexible representation of
the signal-return relationship. Figures 1 to 3 plot the expected return and squared return in
function of the chartist signal. The upper panels in these figures show this relation together
with the confidence bounds generated using the Kiinsch (1989) bootstrap method. The lower
panels relate the nonparametric mapping to the respective regression lines from (19) and (20).
We analyze the results for the return and squared return in turn.

Starting with the mapping for the return, we find evidence of weak predictability of
the signal across rules, especially for moderate absolute values of the signal. Furthermore,
the mappings implicit in the nonparametric method (solid line, bottom-left panel) differ
considerably from the regression line (dashed line), suggesting a strongly nonlinear relation
between the signal and the expected return.” This relation also points to some critical values
for the signal z beyond which a mean reversion to the long-term trend is predicted, as opposed
to a further extrapolation of the short-term trend. This is the case, for instance, of the Signal 1
(Sg = 10; Ly = 50) in Figure 1 for values of the chartist signal z larger than 0.8% in absolute
terms. This characteristic is less evident for the Signal 3 (S; = 40; Ly = 200) presented
in Figure 3. In all cases, however, the typical trend extrapolation behavior is observed for
intermediate values of z (e.g. between 0 and 0.6% in absolute terms for the Signal 1, Figure
1). Finally, also observe that a value of z = 0 closely corresponds to the no-change prediction
made by practitioners. In general terms, we thus find that the typical trend extrapolation
feature of chartist rules is corroborated by the nonparametric regressions as long as we do
not observe extreme signals. For the latter sizes, we find a reversal of the short-run trend
towards the long-run trend, in contradiction to standard chartist believes.

For the squared returns, we find that the chartist signal also has some potential to explain
the heteroskedasticity present in exchange rate returns. More in particular, we find that larger

"These differences should not come as a surprise. Regression techniques are typically global techniques in
that they consider the whole data set in the optimization of the parameters, hence giving a relatively low
weight to the tails of the support and simply extending the statistical relations holding for the more dense part
of the support. The nonparametric techniques are typically local procedures taking only into account nearby
observations.

11



absolute values of the chartist signal predict an above average expected volatility. Based on
the Kiinsch standard errors, this relation seems to be highly significant. Furthermore, observe
that the more inert the rule becomes the less pronounced this relation becomes. Unlike the
strong differences between the nonparametric and parametric mappings for the mean, we find
similar relations as far as the squared return mapping is concerned.

The above results suggest that the chartist signal z has some predictive content for both
the expected return and squared return. In the next section, we show how these mappings
enter into the construction of the optimal portfolio composition.

Insert Figures 1 to 3

4.3 Optimal trading rules

Optimal portfolio compositions are obtained directly from equation (5) using Brandt’s (1999)
nonparametric approach presented in Section 3. We consider investors with three different
levels of relative risk aversion parameter (v = 5,10 and 20). Although there is no consensus
on the most appropriate value for this parameter, we believe the ones used cover the range
of values reported in the empirical literature. Furthermore, these values are only used to
characterize the aggressiveness of the investor, reflected in the estimated optimal trading
rule.

Figures 4 to 6 show the optimal trading strategy expressed as the fraction of total wealth
invested in U.S. dollars for the different levels of risk aversion. The confidence bounds are
computed based on equation (16). A number of observations can be made from these figures.
First, the portfolio weights are significantly different from zero for most of the signal values
and across the different types of signals, suggesting that trading based on chartist signals
may, in fact, improve the investor’s expected utility.

Insert Figures 4 to 6

Second, higher return moments seem to play an important role in the determination of the
investment sizes. Comparing Figures 1 to 3 with Figures 4 to 6 one observes that although
the direction of investment (going short or long) is mainly determined by the expected return
the size of the portfolio also depends on higher moments. More in particular, it can be shown
that for larger absolute values of the signals the expected higher variance effectively lowers
the absolute size of the investment positions taken. In order to ease visualization, we present
a summary of all the portfolio rules in Figure Al in the appendix.

Third, as expected, the aggressiveness of the trading rule decreases sharply with the
increase in the investor’s relative risk aversion. In other words, more risk averse agents invest
a lower fraction of their wealth in the risky asset (U.S. dollars).

In order to check for the robustness of the optimal trading rules, we also perform the
estimation for three sub-periods® within the total sample period. The results are presented

®The sub-periods chosen are the following. Sub-period 1: from 02/01/1973 to 31/12/1979 (1825 observa-
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in appendix B (Figures Bl to B3), which also include the nonparametric results for the
expected returns and squared returns. Each row of graphs in these figures correspond to one
of the sub-periods in consideration. We compare, for instance, the optimal rules for the entire
sample presented in Figure 4 with the ones shown in the three graphs at the right column of
Figure B1. Although we observe approximately the same general pattern for the rules in the
sub-periods, the optimal trading rules seem, in fact, not to be robust across sub-periods.

4.4 Trading rule optimality test

Although Figures 4 to 6 show a clear dependence of the optimal portfolio choice on the signal,
the hypothesis of an optimal weight dependent only on the sign and not on the absolute value
of the signal should be formally tested. A portfolio choice of the latter kind is similar to the
standard chartist rule, although still more sophisticated since it specifies the fraction to be
invested in the risky asset depending on the sign of the signal. We refer to it as ayecn- The
test can be easily done using the GMM techniques presented above. For this, we compute
the following test statistics:

1 _ 1
In = (E > V(zt)zt> 51 <T—N > V(zt)zt> (21)
and
1 _ 1
Jp = (Tp Zzt>0 V(zt)zt> Ch (fn Zzt>0 V(Zt)zt> (22)
where
V() = St - (M=) (23)

and where S denotes the variance covariance matrix of V(z;)z; and Ty and Tp denote the
number of negative and positive signals z;, respectively. Under the null hypothesis of opti-
mality of the chartist type of rule, the statistics in equations (21) and (22) are asymptotically
distributed as a x? (1) random variable. Figures 4 to 6 show the values for the computed
Qiecp, denominated as ”chartist”. The results of the test are presented in Table 2. As can
be inferred from this table, we find strong evidence against the null of an uniform optimal
portfolio share, indicating a statistical rejection of the chartist type of moving average rule.

The suboptimality of standard technical trading rules is illustrated in Figures 4 to 6.
Figures 4 to 6 show the values for the computed ayeq, denominated as ”chartist” and represent
the optimal portfolio composition conditional on the sign of the moving average signal z, as
typical chartist trading rules stipulate. As can be seen, the optimal chartist position is the
(frequency weighted) average of the optimal trading positions. Although the chartist position
tracks the average optimal position (over the negative and positive part of the support of z),
it fails in accounting for the size-dependence of the optimal trading position.

tions); sub-period 2: from 01/01/1980 to 29/12/1989 (2609 observations); and sub-period 3: from 01/01/1990
to 06/11/2001 (3092 observations).
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Table 2: Trading rule optimality test (test statistic)

Risk aversion ()

Type of signal ) 10 20
Signal 1: § = 10; L = 50
2z <0 37.826 38.370 38.735
X (0.000000)  (0.000000)  (0.000000)
z >0 22.572 22.840 22.637

(0.000002)  (0.000001)  (0.000001)
Signal 2: S = 20; L = 100

2 <0 14.503 14.590 11.690
(0.000140)  (0.000137)  (0.000628)
2 >0 200.083  300.482  306.281

(0.000000)  (0.000000)  (0.000000)
Signal 3: S = 40; L = 200

2 <0 51.289 51.545 51.605
(0.000000)  (0.000000)  (0.000000)
2 >0 316.432  333.904  353.110

(0.000000)  (0.000000)  (0.000000)

Note: p-values are in brackets.

4.5 Economic value of trading rules

To offer the investor a better way of comparison among the optimal trading rules based on
different types of signals, we compute the certainty equivalent of each of these rules for the
different levels of relative risk aversion. The certainty equivalents translate in economic terms
the value for the investor of using these rules.” For the computations, we apply the nonpara-
metric conditional operator defined in (12) to the expression for the certainty equivalent in
(9). Results are depicted in Figure 7. Certainty equivalents are stated in per annum terms
and are typically of varying size, between 0% and more than 10%. One can infer easily that
for certain ranges of the signal the estimated optimal trading rules, based on chartist signals,
produce economically significant gains to standard CRRA utility type of agents. Comparing
the certainty equivalents across signals, we see that the Signal 2, (Sg = 20; Lg = 100), seems
to generate on average the larger certainty equivalents.

Insert Figure 7

4.6 Investment horizon and transaction costs

So far we have analyzed optimal trading rules assuming a daily marking to market by fixing
the investment horizon to one day. While this analysis showed to result in significant trading
positions conditional on the moving average signal, it neglects completely the presence of

9Obviously, these certainty equivalents are conditional on a certain signal z; and, therefore, do not constitute
a proper measure for the certainty equivalent of using the trading rule continuously.

14



transaction costs and the consequences of opening and closing on a daily basis the speculative
positions. It is quite likely that, in practice, the existence of (small) transaction costs decrease
or annihilate the profitability of these optimal trading positions.!” In order to deal with
these issues, we also analyze the optimal trading rules for longer investment horizons, weekly
and monthly, effectively reducing the number of market transactions by five and twenty,
respectively, and possibly increasing the expected returns over the total investment horizon.
We do keep, however, the daily frequency of data thus looking at the optimal portfolio (with
investment horizon of one week or one month) that could be formed each day.

In order to save on space, we refer the tables and figures related to the statistical analysis
of the signal-return relation to the appendix and only comment on the main issues here.
Tables C1 and C3 in the appendix present the summary statistics for each trading signal for
investment horizons of one week and one month, respectively. Panel A in both tables show that
for weekly and monthly investment horizons, as opposed to daily investment horizon (Table
1), all the signals have some informative content with respect to the direction of exchange
rate changes. Panel B shows that investing according to the chartist rules result in significant
mean excess returns of about 3 to 6 percent p.a. for a weekly investment horizon and about
2 to 3 percent p.a. for a monthly investment horizon. The nonlinear relation between the
signal and the return moments is also present for longer investment horizons (Panels C and
D). As for the weekly investment horizon, in most cases both the linear and the cubic terms
in the signal are statistically significant. For two of the signals in the monthly horizon, the
quadratic term in the signal is also significant in explaining the mean excess return. Regarding
the regression for the squared returns, we also observe the expected importance of the squared
signal in explaining the squared returns. For the monthly horizon, both the linear and the
cubic terms are also statistically significant.

The crucial aspect about changing the investment horizon is that the signal-return relation
may change drastically and hence also the relation between the signal and the optimal trading
rule. In order to assess the implications of the change of horizon, we analyze the nonparametric
results for each of the signals and holding periods. These results are summarized in Figures 8
and 9 while a more detailed analysis is presented in the Appendix C. Figures 8 and 9 depict the
relation between the daily and respectively weekly and monthly expected return and variance
for each of the signals. The scatter plots are constructed such that daily returns (variances)
are plotted against their weekly or monthly equivalents (conditional on an identical value of
the signal z;). A remarkable feature of these figures is that, in general, the expected returns
(variances) tend to be roughly extended linearly over the weekly and monthly investment

10T he level of transaction costs could be measured indirectly using deviations from either the covered interest
rate parity or triangular arbitrage conditions, as proposed by Frenkel and Levich (1977). Obviously, such
transaction costs are measured per round trip and probably will only apply to major financial players in these
markets. Estimates on the round trip costs tend to decrease with the increase in market volumes and liquidity
over time. Dooley and Shafer (1986) use a value of about 0.1%. More recent estimates reduce thes costs to
about 0.05% per round trip, e.g. Osler and Chang (1995), Neely et al. (1997). More recent estimates by
Al-Awad and Grennes (2002) corroborate the above estimates. Inspection of Figures 1 to 3 clearly show that
even small transaction costs as reported above can be an issue when using a daily investment horizon, i.e.
expected excess returns often are lower than this 0.05% benchmark.
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' This can be seen clearly by inspecting the dispersion around the straight line,

horizons.
extending linearly the expected return and variance of daily investment horizons. These
extensions thus suggest that the moving average signal is capturing some persistent trend in
the exchange rate return and variance, making, for instance, the expected return and variance
for the weekly investment horizon around five times as large as the ones for the daily holding

period.

Insert Figures 8 and 9 (24)

One important implication of the linear extension of mean and variances to longer holding
period returns is that the mean-variance relation is constant across investment horizons. To
the extent that these moments and, more in particular, their ratio determines the optimal
trading position, we do not expect to find substantial differences in the optimal portfolio
composition across investment horizons. The optimal portfolio positions for daily and weekly
(monthly) holding periods are related in Figure 10 (11). As can be observed, the global picture
shows that the optimal portfolio position is relatively independent of the holding period.
Figure 10, relating the optimal portfolio positions for daily holding returns to the optimal
portfolio positions for weekly holding returns, clearly illustrates the clustering around the 45
degree line for most of the signals. For monthly returns, Figure 11 corroborates this finding,
although the observed dispersion is significantly larger in this case. The evidence that the
optimal portfolio decomposition is relatively robust with respect to a shift in the investment
horizon implies that chartist rules can be used beyond the daily investment period, which in its
turn generates less transaction costs as the rebalancing of portfolios is strongly reduced. This
reduction in transaction costs possibly allows the application of the above optimal trading
rules in practice. More in particular, we find that the certainty equivalents, reported in Figure
7 (for the daily investment horizon), do roughly carry over to the weekly investment horizon
(and to a much lesser extent to the monthly holding period). The important difference being
that the certainty equivalent for the monthly holding period can be obtained with a much
reduced number of trades, decreasing substantially the importance of transaction costs. A
detailed analysis along the lines of the one done for the daily investment horizon can be found
in Appendix C.

Insert Figures 10 and 11 (25)

5 Conclusion

In this paper, we use a nonparametric approach to estimate optimal trading rules and to
determine their economic value conditioning on a chartist moving average trading signal and

11Signal 1, i.e the signal with the shortest windows (Sq = 10 and Lq = 50) is the exception to this linear
extension. This is due to the fact that in the extremes of the signal the linear relation breaks down completely.
For more moderate values of the signal, however, the linear relation between daily and weekly (monthly)
returns is recovered.
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within a standard expected utility framework. The method consists of a GMM approach
applied to the first-order condition of the investor’s expected utility maximization problem.
This approach avoids ad hoc specifications of statistical or economic models to explain return
predictability and implicitly incorporates all the return moments in the determination of the
optimal portfolio choice.

We apply the methodology to the German mark-U.S. dollar exchange rate for the period
from 1973 to 2001. We use different types of moving average trading signals and consider
investors with different levels of relative risk aversion. In order to better understand the
characteristics of the resulting optimal trading rules, we first analyze the informational content
of the selected chartist signals. From nonparametric regressions, we observe clearly evidence
of some informational content of the moving average signal. Most interestingly, not only the
mean but also the variance of future returns seem to depend on the moving average signal,
clearly indicating that the informational content of the chartist signals are not restricted to
the expected return.

We subsequently estimate the optimal trading rules conditioning on the chartist signals
for CRRA investors with different levels of risk aversion. The optimal trading rules display
size dependence and also have a nonlinear relation with respect to the moving average signal.
These rules, however, differ significantly from the chartist rules used by practitioners, which
stipulate a short (long) position depending on the sign of the signal but independent of its
absolute level. We also perform statistical tests for the optimality of a chartist type of rule
in which the optimal weight depends only on the sign of the signal. The tests show clearly
that this type of rule is sub-optimal for CRRA-type of investors, since they fail to incorporate
the observed nonlinear relation between the moving average signal and the first and second
return moments. Although we reject the optimality of chartist type of rules, this does not
imply that chartist techniques are redundant. On the contrary, we show that using chartist
signals to construct optimal trading strategies (as opposed to following chartist trading rules)
produces both statistically and economically significant improvements for a representative
CRRA investor. Conditional certainty equivalents often surpass the ten percent per annum
level.

Finally, we find that the results of the optimal trading rule for a daily investment horizon
can in general be extended to longer investment horizons. This finding suggests that the
chartist signals pick up some inert stochastic trend in returns (both means and variances).
So, even if the daily investment strategy may be practically infeasible due to transaction
costs, investing on a weekly horizon effectively reduces these transaction costs without any
substantial loss in economic value (certainty equivalent) of the trading rule.

The approach used in this paper can be extended along the lines of Ait-Sahalia and
Brandt (2001) to evaluate different types of utility functions, e.g. loss aversion functions, to
incorporate multidimensional signals, higher dimensional portfolios or intertemporal optimal
trading. These extensions, which are under investigation, were not incorporated in this paper
since we intended to focus on the fact that even the simplest chartists signals do present a
significant economic value for the investor.
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Figure 2:
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Figure 10: Daily vs. weekly portfolio position in US dollars.
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Figure 11: Daily vs. monthly portfolio position in US dollars.
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Appendix

Appendix A: Summary of portfolio rules for daily investment horizon
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Fig A1l: Summary of portfolio rules for daily investment horizon.

Appendix B: Selected results for different sub-periods

EXPECTED RETURN (1873-1979) EXPECTED SQUARED RETURN (1873-1979) PORTFOLIO (1973-1979)

3 2 .
I | — g 5
H ] 8a
iz EH ]
g M 5
g7 ~ iz

i g 7

FErre T TR TR O TR T e oV O T T

sgnat sgnat signad
EXPECTED RETURN (1680-1989) EXPECTED SQUARED RETURN (1980-1089) PORTFOLIO (1980-1989)

: : !

: E nd USSR <
£o i 8 N
28 o Ee
s H F
3s ] 25
g5 3z cs
g 83 35

g g o

3 87

e o ek oem  eww el © ool mwe  Tom s wew  amo T e eem  owm  we wewr oo

signat sanal stgnet
EXPECTED RETURN (1880-2001) EXPECTED SQUARED RETURN (1990-2001) PORTFOLIO (1890-2001)

: ; i
£ I B3
28 58 R
§8 s P
< H .

28 g g
as HE :

H &= f]

e L R T

signat signal signet

Figure B1: Robustness test. Selected results for Signal 1. Daily investment horizon.
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Figure B2: Robustness test. Selected results for Signal 2. Daily investment horizon.
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Figure B3: Robustness test. Selected results for Signal 3. Daily investment horizon.
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Appendix C: Selected results for weekly and monthly investment horizons
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Figure C1: Selected results for weekly investment horizon. Signal 1.
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Figure C2: Selected results for weekly investment horizon. Signal 2.
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Figure C3: Selected results for weekly investment horizon. Signal 3.
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Figure C4: Selected results for monthly investment horizon. Signal 1.
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Figure C5: Selected results for monthly investment horizon. Signal 2.
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Figure C6: Selected results for monthly investment horizon. Signal 3.
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Table C1: Informative content of chartist signal. Weekly investment horizon.

Type of signal

Signal 1 Signal 2 Signal 3
Sw=2,Ly =10 Sy =4, Ly, =20 Sy, =8, Ly, =40

Summary statistics

Panel A: Fraction of correctly predicted signs in exchange rate changes

2z <0 0.532 0.538 0.527
2z >0 0.528 0.533 0.525
2 0.530 0.536 0.526

Panel B: Trading profits p.a. terms

E(A€t+1; z < O)
E(Aeprl; zZr > 0)
E(A€t+1§ Zt)

0.057 (0.013)
0.039 (0.013)
0.048 (0.009)

0.067 (0.013)
0.049 (0.013)
0.058 (0.009)

0.040 (0.013)
0.029 (0.012)
0.034 (0.008)

Regression results

Panel C: Returns

Aery1 = c+ Bz + Bo22 + 328 + e

F-test (p-value)

-0.148 (0.020)

0.158 (0.025)
-0.226 (1.059

)
-0.021 (0.005)

0.000

0.007 (0.020)
0.271 (0.037)
-5.146 (2.134)
-0.085 (0.016)
0.000

-0.025 (0.020)
0.284 (0.051)
6.401 (4.288)
-0.196 (0.043)
0.000

Panel D: Squared returns

(A€t+1)2 =d+ 612z + (522’? + 63Zt3 + Uiyl

d (x 1000)
01(x 10)
02
03 (x 1000)
F-test (p-value)

0.193 (0.006)
0.004 (0.007)
0.316 (0.031)
0.033 (0.132)
0.000

0.184 (0.006)
-0.020 (0.011)
0.772 (0.062)
0.564 (0.456)
0.000

0.180 (0.006)
-0.002 (0.015)
1.394 (0.122)
-1.845 (1.236)
0.000

Note: Standard errors in brackets.



Table C2: Informative content of chartist signal. Monthly investment horizon.

Type of signal

Signal 1 Signal 2 Signal 3
Sm=05Lp=25 Sn=1,Lp,=5 Sp=2,L,=10

Summary statistics

Panel A: Fraction of correctly predicted signs in exchange rate changes

z <0 0.536 0.549 0.532
2z >0 0.531 0.544 0.529
2t 0.533 0.546 0.531
Panel B: Trading profits p.a. terms
E(Aeii1;2: <0) 0.032 (0.007) 0.042 (0.007) 0.036 (0.007)
E(Aeii152 > 0) 0.014 (0.007) 0.027 (0.007) 0.025 (0.006)
E(Aeiqq1;2t) 0.023 (0.005) 0.034 (0.005) 0.030 (0.005)

Regression results

Panel C: Returns
Aep1 = c+ B2 + Boz? + B3z} + eia

¢ (x 100) -0.042 (0.042) 0.020 (0.042) -0.095 (0.042)

3, 0.082 (0.013) 0.155 (0.020) 0.121 (0.027)

3, -0.194 (0.140) -1.028 (0.281) 1.570 (0.561)

B3 (x 100) -0.057 (0.0150) -0.337 (0.0517) -0.320 (0.142)
F-test (p-value) 0.000 0.000 0.000

Panel D: Squared returns
(A€t+1)2 =d+ 512,5 + (522’? + (532’? + Vt+1

d (x 1000) 0.926 (0.021) 0.948 (0.021) 0.929 (0.020)
81(x 10) -0.015 (0.007) -0.031 (0.010) -0.025 (0.013)
b9 0.048 (0.007) 0.051 (0.014) 0.043 (0.027)

83 (x 1000) 0.019 (0.007) 0.098 (0.026) 0.232 (0.068)

F-test (p-value) 0.000 0.000 0.000

Note: Standard errors in brackets.
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