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THE CORE CAN BE ACCESSED
IN A BOUNDED NUMBER OF STEPS

LÁSZLÓ Á.KÓCZY

Abstract. This paper strengthens the result of Sengupta and Sengupta (1996). We
show that for the class of TU games with non-empty cores the core can be reached via
a bounded number of proposals and counterproposals. Our result is more general than
this: the boundedness holds for any two imputations with an indirect dominance relation
between them.

1. Introduction

The core (Kannai 1992) is the collection of agreements that once proposed are never
abandoned. While this made the core popular enough it is not an irrelevant question to
ask whether the core can actually be reached via a sequence of blockings. This question is
answered affirmatively by Sengupta and Sengupta (1996), where they introduce a recursive
algorithm that generates a sequence of imputations. This algorithm terminates with a core-
imputations. They do not, however make any claims about the number of steps required
to reach the core. The aim of this paper is to show that the number of steps required
is bounded. We do not make use of the algorithm proposed by Sengupta and Sengupta
(1996), but prove the existence of a sequence of bounded length.

Consider a 3-player gamewhere the grand coalition gets 3, pairs get 2, singletons get 0.
The core of this game consists of a single payoff-vector (1, 1, 1). Now consider an initial
allocation

(
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)
and the following –rather inefficient– process:
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)
→ (1, 1, 1)
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where the penultimate allocation depends on the parity of m. This process terminates in
the core in exactly m steps. As m can be chosen arbitrarily the number of steps required
has no upper bound. In this paper we show that given the result of Sengupta and Sengupta
(1996) the core can be reached in a bounded number of steps, moreover, our proof points
out where do such inefficient processes make unnecessary detours.

The result we prove is not specific to the core. We show that if an imputation a can
be reached from another imputation b via a dominating sequence of imputations, then the
length of this sequence is bounded. Here we will only consider paths via imputations, that
is via efficient and individually rational allocations. If this is not required, as in (Sengupta
and Sengupta 1994) our proof can be simplified significantly.

Regarding the process of deviations and counter-deviations as an algorithm our result
shows that reaching the core is a primitive recursive algorithm; it can be programmed with
“for” loops only (Weisstein 2002), and the running time of such a program can be set in
advance. See Péter (1981) and Péter (1967) for more on primitive recursive algorithms.

The structure of the paper is as follows: First we introduce our notation and some
terminology. In Section 3 we state our results. The main part of this paper is the proof of
our key lemma which is presented in Section 4.

2. Preliminaries

Let (N, v) be a TU-game with player set N , and characteristic function v. Subsets of
N are coalitions and v(S) is the payoff for coalition S. An imputation x is a payoff-vector
in RN that is individually rational and efficient, that is, xi ≥ v({i}) for all players i in N
and x(N) = v(N), where x(S) =

∑
i∈S xi. Let A(N, v) denote the set of imputations. The

projection of x onto S is denoted by xS; we write xS > ys if xi ≥ yi for each i ∈ S, but
xS 6= yS.

The imputation x directly dominates y via coalition S, or x ÂS
D y if xS > yS, x(S) = v(S)

and x ∈ A(N, v). We say that x indirectly dominates y and we write x ÂI y if there
exists a finite sequence of imputations

{
y0, . . . , yλ(η)

}
and a finite collection of coalitions{

Y1, . . . , Yλ(η)

}
, such that x = yλ(η), y = y0, and yj ÂYj

D yj−1.

Definition 1 (Path). The sequence {(yj, Yj)}λ(η)
j=1 is a (dominance) path from y to x if

• yλ(η) = x,

• yj ÂYj

D yj−1 for j > 1, and

• y1 ÂY1
D y,

and we denote it by η.

Paths will be denoted by Greek letters: ξ, η, ζ with the corresponding small (x, y, z), and
capital letters (X,Y, Z) denoting the respective imputations and blocking coalitions. The
length of a path η is denoted by λ(η). Finally, an index 0 refers to the imputation that the
path originates from, so in this case y0 = y.
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Definition 2 (Concatenation of paths). Pats ξ and η can be concatenated if ξ is a con-
tinuation of η, formally if x1 ÂX1

D yλ(η), and we write this as ζ = ξ ∧ η to mean that

λ(ζ) = λ(ξ) + λ(η),

Zj =

{
Xj if j ≤ λ (ξ)

Yj otherwise,

zj =

{
xj if j ≤ λ (ξ)

yj otherwise.

Note that in general ξ + η 6= η + ξ, in fact, they may or may not be defined.

Definition 3 (Class). Imputations x and y belong to the same class of imputations if

(1) x(S) ≥ v(S) iff y(S) ≥ v(S) for all coalitions S and
(2) x(R) +

∑
i∈S\R v({i}) ≥ v(S) iff y(R) +

∑
i∈S\R v({i}) ≥ v(S) for all S ⊆ N and

R ⊆ S and
(3) for all pairs S and C of coalitions such that C ∩S 6= ∅ while C ∪S = N and for all

partitions R of all coalitions R ⊂ C ∩ S we have that

v(S) > v(N)− v(C) +
∑
T∈R

v(T ) + x(C ∩ S \R)(2.1)

iff v(S) > v(N)− v(C) +
∑
T∈R

v(T ) + y(C ∩ S \R).

Members of a class are safe against the same blockings (Condition 1), even after certain
modifications (Conditions 2 & 3), where the initial differences are limited to a subset of
the players. The finiteness of the number of classes is a trivial, but crucial property.

Definition 4 (Set of Winners). Given a dominance path η the set of winners, Wj(η) is
the set of players who profit from each subsequent deviation, that is

Wj(η) =

λ(η)⋂
i=j+1

Yi.

Definition 5 (Composite Player). A composite player is a set of players, a blocking coali-
tion that stays together and forms part of blocking coalitions until examined, but may
break up in subsequent blockings. Formally S is a composite player in path η at time j if
S = Yh for some h ≤ j and S ⊆ Yi for all h < i ≤ j. Should the composite player contain
smaller composite players, the term will refer to the largest one.

3. Results

Lemma 6. Let (N, v) be a game. Then there exists an integer M , such that for all a, b
pairs in A(N, v) such that a ÂI b there exist a dominance path π from b to a such that
λ(π) < M .

We give the proof of this result in the next section.
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Lemma 7 (Sengupta and Sengupta (1996)). Let (N, V ) be a game with a non-empty
core C(N, V ). Let a be an imputation outside C(N, V ). Then there exists an imputation
c ∈ C(N, V ) such that c ÂI a.

This lemma, combined with Lemma 6 gives the following theorem:

Theorem 8. Let (N, V ) be a game with a non-empty core that we denote C(N, V ). Then
there exists an integer M such that for all imputations a ∈ A(N, V ) there exists an impu-
tation c ∈ C(N, V ) and a path π from a to c such that λ(π) < M .

4. Proof of Lemma 6

4.1. Outline. We prove the result by contradiction.
We assume that there exists a game (N, v), such that for all M ′ > M there exists a

pair a and b in A(N, v), such that a ÂI b but the shortest path from b to a has length
λ > M ′. We show that for M ′ sufficiently large there exists a shorter path, giving the
required contradiction. In our argument we find two sufficiently similar imputations in the
path. These two imputations divide the path into three parts. We show that the middle
part can be removed, and with some modifications the end part can be reattached.

r
p0

-P1 r
p1

-P2 r
p2

r
pk

︸ ︷︷ ︸
ξ

r
pK

︸ ︷︷ ︸
η

r
pλ(π)−1

-Pλ(π)r
pλ(π)

︸ ︷︷ ︸
ζ

? ?

r
x0

-X1 r
x1

-X2 r
x2

r

︸ ︷︷ ︸
ξ

xλ(ξ) = z′0
r

z′λ(ζ)−1

-Zλ(ζ)r
z′λ(ζ)︸ ︷︷ ︸

ζ′︸ ︷︷ ︸
π′

Figure 1. Sematic picture of the proof.

Formally the outline of the proof is as follows: Given a dominance path π there exists a
break-up of the path into 3 sections, π = ξ∧η∧ζ, such that there exists a modification of ζ

denoted by ζ̂ such that the path π̂ = ξ∧ζ̂ leads from b to a as well. Moreover ζ̂ has the same

same blocking coalitions, and hence the same length as ζ. Clearly λ (ξ ∧ η ∧ ζ) > λ(ξ ∧ ζ̂),

which gives the required contradiction. Observe that ζ is a path from yλ(η) to a, while ζ̂ is

from xλ(ξ) to a. Therefore in order to be able to define ζ̂, the imputations yλ(η) and xλ(ξ)

must be sufficiently similar. What remains is to define “similar” for the two imputations,
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define ζ̂ and show that the coalitions
{

Ẑj

}λ(bζ)

j=1
= {Zj}λ(bζ)

j=1

are indeed blocking.

4.2. Existence of two similar imputations. Let k and K be such that the correspond-
ing imputations pk and pK

(1) belong to the same class, and
(2) satisfy that Wk(π) = WK(π).

The number of classes is finite, and there are also a finite number of possible winner sets.
Thus for sufficiently high M ′, that is, in a sufficiently long path π the existence of such two
imputations is guaranteed. Setting xλ(ξ) = pk, and yλ(η) = pK we get a suitable division.
Outcomes pk and pK break the path into 3 sections as follows:

pj =⇒





xj if j ≤ k

yj−k if k < j ≤ K

zj−K if K < j.

In the rest of the proof we attach the ζ path to the ξ path, cut η, thereby shortening
the path. However, since xλ(ξ), and yλ(η) are not identical the path ζ has to be adjusted.
We keep the deviating coalitions, but define a new path.

4.3. The new path.

4.3.1. Creating the new imputations. Let ẑ0 = xλ(ξ) and ẑλ(ζ) = a. Given the imputations
up to ẑj−1, where 0 < j < λ(ζ) we define ẑj. In the definition we have to take care about
the following:

• Blockings are profitable, so blocking players cannot be worse off than prior to the
blocking.

• Players who are blocking in the next round must have a sufficiently low payoff so
that the blocking, which is fixed in advance gives them an improvement.

• Winners increase their payoffs monotonically, so it cannot exceed the end-payoff.
• Efficiency for N and for the blocking coalition and individual rationality for all

players must hold.

The imputations we propose satisfy these conditions. Note that non-blocking players’
payoffs have their effects only later, so they can be chosen with little restriction.

(1) If Zj ∪ Zj+1 = N all players have blocked or will block next.
(a) If Zj ∩ Zj+1 = ∅ then none of the blocking players block in the next round,

thus their payoffs can be set freely. We select the payoffs for the others (who
are all blocking in the next round) so that their blocking is profitable.

ẑi
j+1 =

{
ẑi

j + δi if i ∈ Zj

zi
j+1 otherwise.
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where δ ∈ RZj is the profit-division vector such that δi > 0 for all i ∈ Zj and
δ(Zj) = v(Zj)− ẑj(Zj).

(b) otherwise (Zj ∩Zj+1 6= ∅) we make sure that the blocking players who are also
blocking in the next round get the minimum possible: the surplus is divided
among the rest of the players1.

ẑi
j+1 =





ẑi
j if i ∈ Zj ∩ Zj+1

ẑi
j + δi if i ∈ Zj \ Zj+1

zi
j+1 otherwise.

where δ ∈ RZj\Zj−1 is the profit-division vector such that δi > 0 for all i ∈
Zj \ Zj−1 and δ(Zj \ Zj+1) = v(Zj)− ẑj(Zj).

(2) Otherwise (if Zj ∪ Zj+1 6= N) there exist players outside Zj who do not block
in the next round either, so we can give the soon-blocking outsiders a minimum
(individually rational) payoff and the rest can share the remaining payoff. Note that
in zj+1, which is an imputation, they share no less, so there exists a distribution
where each get at least its individually rational payoff.
(a) If all blocking players are winners we have to take special care of their payoffs:

ẑi
j+1 =





ẑi
j + δi if i ∈ Zj

v({i}) if i ∈ (N \ Zj) ∩ Zj+1

v({i}) + γi otherwise.

where δ ∈ RZj\Z∗ is the profit-division vector such that 0 < δi < zi
j+1 − ẑi

j

for all i ∈ Zj and δ(Zj) = v(Zj) − ẑj(Zj). Moreover γ ∈ RN\(Zj∪Zj+1) is
a vector to divide the left-over such that γi > 0 for all i /∈ Zj ∪ Zj+1 and
γ(N \ (Zj ∪ Zj+1)) = v(N)− vZj −

∑
i/∈Zj

v({i}).
(b) Otherwise at some point some of the blocking players will not block. It is

particularly interesting if the coalition breaks up. If this happens then we
want the blocking players to have the minimal (non-increasing) payoff and the
rest having the whole profit. Let Z∗ = Zh where h is the smallest integer such
that h > j, and Zj * Zh. Z∗ is well-defined.

ẑi
j+1 =





ẑi
j if i ∈ Zj ∩ Z∗

ẑi
j + δi if i ∈ Zj \ Z∗

v({i}) if i ∈ (N \ Zj) ∩ Zj+1

v({i}) + γi otherwise.

where δ ∈ RZj\Z∗ is the profit-division vector such that δi > 0 for all i ∈ Zj

and δ(Zj \ Z∗) = v(Zj) − ẑj(Zj) and γ ∈ RN\(Zj∪Zj+1) is a vector to divide
the left-over such that γi > 0 for all i /∈ Zj ∪ Zj+1 and γ(N \ (Zj ∪ Zj+1)) =
v(N)− vZj −

∑
i/∈Zj

v({i}).
1Such “rest” will always exist as the grand coalition cannot be blocking.
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4.3.2. Profitability of deviations. It remains to prove that the blocking coalitions Zj (which
we have fixed in advance) are indeed blocking, that is, none of their members lose in the
blocking and at least one of them gets better off. Before starting our proof we give a simple
definition and state some simple properties.

Proposition 9. In the path constructed gains from a blocking are temporary, that is,
ẑi

j+1 ≯ ẑi
j−1 except for two cases:

(1) If player i belongs to the just-created composite player Yj.
(2) If ẑi

j−1 = v({i}) and ẑi
j+1 = zi

j+1.

Proof. By construction the profit is shared among those players who leave the coalition
next. In the next step, however, these players get either an individually rational payoff
or their payoff in the ζ path, so they loose the surplus. The only exception is when the
coalition stays together and keeps on blocking: if it is a composite player. ¤
Corollary 10. The pre-blocking payoff of a blocking player i is either

• its starting payoff in the ζ̂-path, ẑi
0, or

• its individually rational payoff v({i}), or
• its payoff in the ζ-path, zi

j or
• player i belongs to a composite player.

Corollary 11. The pre-blocking payoff of a player (composite or individual) is less in the
new path than in the original, ẑi

h > zi
h unless zi

h = zi
0.

In the following part the four types of blockings are reexamined from the point of view
of profitability. This part of the proof is by induction.
Step 1. First blocking. The blocking by PK+1 is profitable in the path π, so v(PK+1) ≥
pK(PK+1). We have assumed that Z1 = PK+1. The imputations pk = z0 and pK are in the
same class, so by Cond. (1) in Defn. 3 v(Z1) ≥ z0(Z1) and the first blocking is profitable.
Step 2. Inductive assumption. We assume that the imputation ẑj−1 has been reached via
successive profitable blockings.
Step 3. The blocking by Zj. We discuss four cases depending on the blocking by Zj−1.

1(a): By construction ẑ
Zj

j−1 = z
Zj

j−1, so v(Zj) > zj−1(Zj) implies v(Zj) > ẑj−1(Zj).
1(b): We look at the players in Zj ∩ Zj−1. By Corollary 10

(4.1) ẑj−1(Zj) = v(N)− v(Zj−1) +
∑
Z∈R

v(Z) + ẑ0(Zj ∩ Zj−1 \R),

where R is the set of players in Zj−1 who do not have their original payoffs, and
R is a partition of this set into composite players including singleton “composite”
players, that is, players who have their individually rational payoffs. Corollary 11
combined this with the profitability of the blocking Zj gives

(4.2) v(Zj) > zj(Zj) > v(N)− v(Zj−1) +
∑
Z∈R

v(Z) + z0(Zj ∩ Zj−1 \R).

Since z0 = pK and ẑ0 = pk are in the same class, by 2.1 we have v(Zj) > ẑj(Zj).



8 LÁSZLÓ Á.KÓCZY

2(a): By Corollary 11 we focus on the set R of players with their initial payoffs. Such

a player i ∈ R had a “winning streak”, that is i ∈ ⋂j−1
h=1 Zh. Since in this case

we assume that Wj−1(ζ) = Zj, the player i belongs to W0(ζ) as well. Going back
to π this means that i ∈ WK(π). By assumption then i ∈ Wk(π). Due to the
monotonicity of the payoffs of winning players pi

k ≤ pi
K , and this argument holds

for all i ∈ R. Then by the profitability of the blocking Zj in path ζ we have

v(Zj) > v(N)− v(Zj−1) +
∑
Z∈R

v(Z) + z0(Zj ∩ Zj−1 \R),

where R is a partition of this set into composite players including singletons, that
is, players with their individually rational payoffs. Our argument combined with
Corollary 11 and the fact that z0 and ẑ0 belong to the same class gives

v(N)− v(Zj−1) +
∑
Z∈R

v(Z) + z0(Zj ∩ Zj−1 \R)

> v(N)− v(Zj−1) +
∑
Z∈R

v(Z) + ẑ0(Zj ∩ Zj−1 \R).

But we have

(4.3) v(N)− v(Zj−1) +
∑
Z∈R

v(Z) + ẑ0(Zj ∩ Zj−1 \R) = ẑj−1(Zj),

hence we can conclude v(Zj) > ẑj−1(Zj).
2(b): This case combines the previous ones, so we will not repeat our arguments. By

Corollary 11 troubles are only caused by players having a too high initial payoff.
By the fact that z0 and ẑ0 belong to the same class Condition (3) of Definition 3
proves the profitability of Zj.

4.3.3. The final touch. The only part that remains perhaps unclear is that ẑλ(bζ) = a.

Observe however, that the last blocking is of type 2(a) from the point of view of the
blocking, since all the blocking players are winners. Indeed, our condition on δ ensures
that all blocking players get the right payoff provided their payoffs are not too high. Our
argument as in 2(a) shows that this condition holds. Since a is itself an imputation the

payoffs for the non-blocking players can be chosen so that ẑ
N\Zλ

λ = aN\Zλ .
This completes our proof.
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