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Abstract

We derive closed-form expressions for the optimal weighting matrix
for GMM estimation of the stochastic volatility model with AR(1) log-
volatility, and for the asymptotic covariance matrix of the resulting esti-
mator. The moment conditions considered are generated by the absolute
observations (which is the standard approach in this literature) or by the
log-squared observations. We use the expressions to compare the perfor-
mances of GMM and other estimators that have been proposed, and to
optimally select small sets of moment conditions from very large sets.
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1 Introduction

Over the last two decades there has been an increasing interest in stochastic

volatility (SV), which was introduced by Clark (1973) and extended by Tauchen

and Pitts (1983), as a framework for the analysis of time-varying volatility in

financial markets. This interest is partly due to an important contribution by

Hull and White (1987), where SV models arise as discrete time approximations

to continuous time volatility diffusions used in option pricing. More generally, it

is recognized that SV models constitute a valuable alternative to GARCH-type

models for analysing financial time series (Ghysels, Harvey, and Renault (1996),

Shephard (1996)).

Due to the fact that in SV models the mean and the volatility are driven

by separate stochastic processes (implying that volatility is unobservable), SV

models are much harder to estimate than GARCH models. This paper presents

analytical results that may be used to improve and assess the quality of GMM-

based estimation of SV models. GMM, while not asymptotically efficient, is

still the simplest estimation method for SV models currently available. It has

been proposed by Taylor (1986) and Melino and Turnbull (1990), and its prop-

erties have been studied using Monte Carlo methods by Jacquier, Polson, and

Rossi (1994), Andersen and Sørensen (1996, 1997), and Andersen, Chung, and

Sørensen (1999). Other available estimation methods for SV models include

quasi-maximum likelihood (Nelson (1988), Harvey, Ruiz, and Shephard (1994),

Ruiz (1994)), simulated maximum likelihood (Danielsson and Richard (1993),

Danielsson (1994)), simulation-based GMM (Duffie and Singleton (1993)), indi-

rect inference (Gouriéroux, Monfort, and Renault (1993), Monfardini (1998)),

Markov chain Monte Carlo methods (Jacquier, Polson, and Rossi (1994), Kim,

Shephard, and Chib (1998), Chib, Nardari, and Shephard (2002)), efficient

method of moments (Gallant, Hsieh, and Tauchen (1997), Andersen, Chung, and
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Sørensen (1999)), Monte Carlo maximum likelihood (Sandmann and Koopman

(1998)), and (approximate) maximum likelihood (Fridman and Harris (1998)).

Apart from quasi-maximum likelihood, all of these methods are computationally

more demanding, as they rely — often quite heavily — on numerical simulation

and/or integration techniques both for obtaining point estimates and for as-

sessing the accuracy of the latter. In view of its simplicity, we consider GMM

estimation as a useful alternative to the more elaborate methods.

In this paper we derive closed-form expressions for the optimal weighting

matrix for GMM estimation of the basic SV model, and for the asymptotic

covariance matrix of the optimal GMM estimator, for a large class of moment

conditions. To date, applications of GMM in this context have typically relied

on a nonparametrically estimated weighting matrix, because an expression for

the optimal weighting matrix (as a function of the parameters) was not available.

The moment conditions that we consider fall into two categories. The first

set of conditions is obtained by considering the first two moments and the auto-

covariances of any order of the log-squared observations. These conditions have

recently been considered by Wright (1999), in connection with the fractionally

integrated SV model. The second set of moment conditions are derived from

the absolute observations and are more standard in this literature. We study

moment conditions that involve the product of any number of absolute observa-

tions, each one raised to any positive integer power and lagged any number of

periods. This set considerably extends the set of moment conditions that have

been employed so far. The results that we present pertain to any selection of

moment conditions from these two sets.

In Section 2, we present the basic SV model and the moment conditions.

Expressions for the optimal weighting matrix and the asymptotic covariance

matrix of the GMM estimator are derived in Section 3. Section 4 presents

some comparative evidence on the relative efficiencies of the GMM and other
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estimators (partly compiled from the literature). We also show how the ana-

lytical results of this paper provide a fast and accurate tool to select a small

set of highly informative moment conditions from very large sets of moment

conditions. Section 5 concludes. Proofs are given in the Appendix.

2 Moment conditions for the SV model

The basic SV model is given by

yt = exp (ht/2)ut, (1)

ht+1 = µ+ φ(ht − µ) + σ
p
1− φ2vt, (2)

where yt is observable, ht is latent log-volatility, (ut, vt) is i.i.d. N(0, I), and θ =

(µ, φ, σ)0 is a vector of parameters. The restriction |φ| < 1 is imposed, ensuring
that yt is stationary and ergodic. While it is more common to parameterise the

model in terms of λ = (α, φ, ω)0, with α = µ(1 − φ) and ω = σ
p
1− φ2, we

prefer the parameterisation in terms of θ for algebraic reasons and because of an

invariance with respect to µ given below. For comparison with earlier studies,

however, numerical standard errors will be presented in terms of λ.

From the point of view of inference, the fundamental problem with the SV

model is the latent character of ht, which makes it difficult to compute the values

of the likelihood function and hence to estimate θ by maximum likelihood. It is

easy, however, to derive moment conditions implied by the SV model and then

to apply the Generalized Method of Moments (Hansen, 1982). The moment

conditions considered in this paper relate either to the log-squared observa-

tions, log y2t , or to the absolute observations, |yt|. The latter class of moment
conditions constitutes the standard approach to GMM estimation of SV models

(Taylor (1986), Melino and Turnbull (1990), Jacquier, Polson, and Rossi (1994),

Andersen and Sørensen (1996, 1997), Andersen, Chung, and Sørensen (1999)).

The former class of moment conditions is suggested in passing by Jacquier,
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Polson, and Rossi (1994), and is effectively employed by Wright (1999) in the

context of the fractionally integrated SV model.

Moment conditions related to log y2t are easily obtained. It follows from (1)

that log y2t = ht + log u
2
t . The mean and variance of log u

2
t are known to be

c1 = − log 2− γ = −1. 270 4 and c2 =
1
2π

2 = 4. 934 8, respectively, where γ = 0.

577 2 is Euler’s constant. Let

zt = log y
2
t − µ− c1

= ht − µ+ log u2t − c1.

Since ht ∼ N(µ, σ2), Cov(ht, ht−i) = φ|i|σ2, and ut is i.i.d. and independent of

ht, it follows that

E [zt] = 0, (3)

E [ztzt−i] = φiσ2 + I(i=0)c2, i ≥ 0, (4)

where I(·) is the indicator function. It can be shown that none of these conditions

is redundant in the sense of Breusch et al. (1999).

We now derive the class of moment conditions generated by the expectation

of |yi1t1 ...y
ip
tp |, where i1, ..., ip are positive integers and t1 > ... > tp. Let νi be the

i-th absolute moment of a standard normal random variate, i.e.

νi = E|ut|i = 2i/2√
π
Γ

µ
i+ 1

2

¶
=


q

2i

π

¡
i−1
2

¢
! for i odd,

i!
(i/2)!2i/2

for i even,

where Γ(z) is the gamma function. Then, because t1 > ... > tp,

E

pY
j=1

¯̄̄
ν−1ij u

ij
tj

¯̄̄
= 1.

Furthermore,
Pp

j=1 ijhtj is normally distributed with mean µ
Pp

j=1 ij and vari-

ance σ2
Pp

j,j0=1 ijij0φ
|tj−tj0 |. So, by property that E exp(X) = exp(a + 1

2b
2)
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when X ∼ N(a, b2), we have

E exp

1
2

pX
j=1

ijhtj

 = exp
³
δ
i1,...,ip
t1,...,tp

´
,

where

δ
i1,...,ip
t1,...,tp =

µ

2

pX
j=1

ij +
σ2

8

pX
j,j0=1

ijij0φ
|tj−tj0 |.

Hence, defining

Y
i1,...,ip
t1,...,tp = exp

³
−δi1,...,ipt1,...,tp

´ pY
j=1

¯̄̄
ν−1ij y

ij
tj

¯̄̄

= exp
³
−δi1,...,ipt1,...,tp

´
exp

1
2

pX
j=1

ijhtj

 pY
j=1

¯̄̄
ν−1ij u

ij
tj

¯̄̄
,

it follows that

E
h
Y
i1,...,ip
t1,...,tp

i
= 1, i1, ..., ip ≥ 1; t1 > ... > tp. (5)

It is obvious that adding the same integer to t1, ..., tp yields the same moment

condition. As far as we know, within the class of moment conditions defined by

(5), only moment conditions where p = 1 or where p = 2 and i1 = i2 ∈ {1, 2}
have so far been considered in the literature.

3 Optimal GMM

Let E(ft) = f be a finite selection of the set of moment conditions given by

(3)—(5) that identifies θ. Let gt = ft − f . By assumption, the observations

on yt permit us to calculate g1, ..., gT as functions of θ. The optimal GMM

estimator (Hansen (1982)) of θ based on this selection is θ̂ = argminθ ḡ0V̂ −1ḡ,

where ḡ = T−1
PT

t=1 gt and V̂ consistently estimates V , where

V =
∞X

l=−∞
E(gtg

0
t−l) =

∞X
l=−∞

Cov(ft, f
0
t−l).
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The asymptotic covariance matrix of
√
T (θ̂ − θ) is (D0V −1D)−1, where D =

E(∂gt∂θ0 ). Expressions for D and V , for an arbitrary selection of moment con-

ditions, are presented below. These expressions make it possible to compute the

optimal weighting matrix V −1 and the asymptotic covariance matrix (D0V −1D)−1

of the GMM estimator as functions of the parameter values. Substituting es-

timates for these parameter values yields estimates of V −1 and (D0V −1D)−1,

which will generally be more precise than the nonparametric estimator based on

Bartlett weights that is routinely used in a GMM context. The Monte Carlo re-

sults of Andersen and Sørensen (1996) show that the latter estimator of V may

be imprecise even in samples of size 50, 000. Using the expressions presented

here avoids such problems. Furthermore, the expression for V makes it also

possible to estimate θ by the continuous-updating GMM estimator of Hansen,

Heaton, and Yaron (1996), that is, by solving minθ ḡ0V −1ḡ.

Some straightforward calculus shows that the rows of D are to be selected

(according to the selection of moments) from
−1 0 0

0 −iφi−1σ2 −2φiσ

−∇µδ
i1,...,ip
t1,...,tp −∇φδ

i1,...,ip
t1,...,tp −∇σδ

i1,...,ip
t1,...,tp

 i ≥ 0;

i1, ..., ip ≥ 1; t1 > ... > tp;

where

∇µδ
i1,...,ip
t1,...,tp =

1

2

pX
j=1

ij ,

∇φδ
i1,...,ip
t1,...,tp =

σ2

8

pX
j,j0=1

ijij0 |tj − tj0 |φ|tj−tj0 |−1,

∇σδ
i1,...,ip
t1,...,tp =

σ

4

pX
j,j0=1

ijij0φ
|tj−tj0 |.

The main result of this paper is an expression for the elements of V , given in

Theorem 1 below. Let ci = E(log u2t −c1)i, i = 3, 4. It is shown in the Appendix
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that

c3 = −14ζ (3) = −16. 829,

c4 =
7
4π

4 = 170. 47,

where ζ (z) is the Riemann zeta function. For i ≥ 1, let

κi = log 2 + ψ

µ
i+ 1

2

¶
− c1,

ξi = κ2i + ψ0
µ
i+ 1

2

¶
− c2,

where ψ(z) = d
dz logΓ(z), the digamma function, and ψ0(z) = d

dzψ(z), the

trigamma function.

Theorem 1 For any at and bt, let V (at, bt) =
P∞

l=−∞Cov(at, bt−l). Let i, j ≥
0. Then

V (zt, zt) =
1 + φ

1− φ
σ2 + c2, (6)

V (zt, ztzt−j) = I(j=0)c3, (7)

V (ztzt−i, ztzt−j) = A1σ
4 +A2c2σ

2 + I(i=j 6=0)c22 + I(i=j=0)(c4 − c22), (8)

where

A1 = |i− j|φ|i−j| + |i+ j|φ|i+j| +
³
φ|i−j| + φ|i+j|

´ 1 + φ2

1− φ2
,

A2 = 2
³
φ|i−j| + φ|i+j|

´
.

Let i1, ..., ip+q ≥ 1; t1 > ... > tp; tp+1 > ... > tp+q; and let

L = {l| {t1, ..., tp} ∩ {tp+1 − l, ..., tp+q − l} 6= ∅} .

Then

V
³
Y
i1,...,ip
t1,...,tp , Y

ip+1,...,ip+q
tp+1,...,tp+q

´
= B +

X
l∈L
(Bl + 1)Cl, (9)
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where

B =
∞X

l=−∞
Bl, Bl = exp

σ2

4

pX
j=1

p+qX
j0=p+1

ijij0φ
|tj−tj0+l|

− 1,
Cl =

p+qY
j=1

ν−1ij

E

 pY
j=1

¯̄̄
u
ij
tj

¯̄̄ p+qY
j=p+1

¯̄̄
u
ij
tj−l

¯̄̄− 1,
and

V
³
zt, Y

i1,...,ip
t1,...,tp

´
= D1σ

2 +D2, (10)

V
³
ztzt−i, Y

i1,...,ip
t1,...,tp

´
= D0

1σ
4 +D0

2σ
2 +D0

3, (11)

where

D1 =
1

2

µ
1 + φ

1− φ

¶ pX
j=1

ij , D2 =

pX
j=1

κij ,

D0
1 =

1

4

pX
j,j0=1

ijij0φ
|tj−tj0+i| µ|tj − tj0 + i|+ 1 + φ2

1− φ2

¶
,

D0
2 =

1

2

pX
j,j0=1

ijκij0

³
φ|tj−tj0+i| + φ|tj−tj0−i|

´
,

D0
3 = I(i=0)

pX
j=1

ξij +

pX
j,j0=1

I(i=tj−tj0 6=0)κijκij0 .

We see that, not unexpectedly, the optimal weighting matrix, V −1, and

the GMM asymptotic covariance matrix, (D0V −1D)−1, do not depend on µ.

From a computational point of view, notice that L has at most pq elements, so

computing
P

l∈L(Bl + 1)Cl requires a finite number of steps. Furthermore, B

can be approximated by B(I) =
PI

l=−I Bl, where I is a positive integer. As

the following lemma shows, the error of approximation |B − B(I)| is bounded
by an exponentially decaying function in I, and this bound can be inverted to

determine I as a function of the desired accuracy of the approximation.
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Lemma 1 Let i1, ..., ip+q ≥ 1; t1 > ... > tp; tp+1 > ... > tp+q; and let I be a

positive integer. Then

|B −B(I)| ≤ 2exp(a|φ|
I)− 1

1− |φ| ,

where

a =
σ2

4

pX
j=1

p+qX
j0=p+1

ijij0 |φ|−|tj−tj0 | .

If one is interested in λ rather than θ, one may apply the transformation

θ 7−→ λ(θ) to yield λ̂ = λ(θ̂), the optimal GMM estimator of λ, which has

asymptotic covariance matrix ( ∂λ∂θ0 )(D
0V −1D)−1( ∂λ∂θ0 )

0, with

∂λ

∂θ0
=

 1− φ −µ 0
0 1 0
0 −σφ(1− φ2)−1/2 (1− φ2)1/2

 .

4 Comparison of GMM and other estimators

In this section we first compare the relative efficiencies of GMM and other

estimators, for two sets of values of λ, namely (α, φ, ω) = (−0.736, 0.90, 0.363)
and (α, φ, ω) = (−0.1472, 0.98, 0.1657). These parameter values have been used
in earlier Monte Carlo studies (Jacquier, Polson, and Rossi (1994), Andersen and

Sørensen (1996), Fridman and Harris (1998), Sandmann and Koopman (1998),

Andersen, Chung, and Sørensen (1999)). Tables 1 and 2 present the results. The

asymptotic standard errors of the GMM estimators were computed using the

expressions derived above. The moment conditions were selected from the set

related to the log-squared observations, or from the set related to the absolute

observations, or from both. For comparability with other studies, from (5)

we only selected moment conditions for which p = 1 or for which p = 2 and

i1 = i2 ∈ {1, 2}. The (finite sample) standard errors of the other estimators were
taken from the aforementioned Monte Carlo studies and multiplied by

√
T . The

relative asymptotic efficiency of the GMM estimators is seen to increase rapidly
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with the number of moments, at least when this number is small. Using a large

number of moment conditions yields asymptotic standard errors slightly above

those of the MCMC method, which is known to be asymptotically efficient. In

this respect, it appears that some of the published standard errors regarding

ML and Monte Carlo ML are not in line with those of the MCMC method.

In Monte Carlo studies it is often found that the small sample bias of the

GMM estimator grows with the number of moment conditions. Newey and

Smith (2000, 2001) show that the number of terms of the second-order bias

increases linearly with the number of moment conditions. Thus, rather than

using a large number of moment conditions (relative to the sample size), it is in

terms of bias often safer to select only a small number of them. It is important,

then, to choose the moments judiciously, in the sense that they contain as much

information as possible for the estimand. Several authors have addressed the

question of how to select the moment conditions to estimate the SV model,

essentially by resorting to Monte Carlo simulation of the accuracy of the GMM

estimator for any given choice of moments. The results of the previous section

provide a more precise and much faster tool to guide the choice of moments. To

illustrate this point, consider the sets ML and MA of log-moment and absolute

moment conditions, respectively, defined as

ML : (3)—(4) with i ≤ 50,

MA : (5) with max
j,j0

|tj − tj0 | ≤ 15 and
Pp

j=1ij ≤
 20 for p = 1,

4 for p = 2, 3, 4.

The setsML andMA comprise 52 and 985 moment conditions, respectively. We

performed a search for the set of k moment conditions, selected from eitherML,

MA, orML∪MA, that yield the smallest asymptotic standard error of φ̂. Global

optimisation, by enumeration, was performed over ML for k = 3, 4, 5, and over

MA and ML ∪MA for k = 3. Global optimisation over MA and ML ∪MA for

k = 4 and k = 5 turned out to be infeasible in terms of computation time, and
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Table 1: Standard errors of
√
T λ̂

T # Moments Method of estimation Standard Error of√
T α̂

√
T φ̂

√
T ω̂

∞ 3 GMM (log-moments)a 127.52 17.31 32.66
∞ 12 GMM (log-moments)a 12.04 1.63 3.80
∞ 27 GMM (log-moments)a 10.06 1.36 3.22
∞ 102 GMM (log-moments)a 10.04 1.36 3.22
∞ 3 GMM (absolute moments)b 178.46 24.18 46.78
∞ 15 GMM (absolute moments)b 11.34 1.53 2.96
∞ 30 GMM (absolute moments)b 8.14 1.10 2.18
∞ 75 GMM (absolute moments)b 7.55 1.02 2.03
∞ 14 GMM (joint moments)c 16.92 2.29 4.27
∞ 22 GMM (joint moments)c 11.30 1.53 2.92
∞ 42 GMM (joint moments)c 8.12 1.10 2.14
∞ 102 GMM (joint moments)c 7.53 1.02 1.99
10000 14 Infeasible GMMd (true weight) 11.4 1.6 3.1
4000 14 Infeasible GMMd (true weight) 10.6 1.5 3.1
4000 4 EMM: GARCH(1,1)e 9.51 1.2 3.1
4000 6 EMM: GARCH(1,1) - Kz(2)e 9.68 1.3 3.2
4000 8 EMM: GARCH(1,1) - Kz(4)e 8.28 1.1 2.1
2000 24 GMMf 18 3 3.8
2000 - Quasi-MLf 20 3 4.8
2000 - MCMCf 6.6 1 1.5
500 - MLg 9.1 1 2
500 - Monte Carlo MLh 0.5 2.2 2

Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363).
GMM conditions are selected from Eqs. (3)—(5), as indicated below. Most
footnotes refer to multiple lines in the Table.
a. Eqs. (3)—(4) with i running from 0 to 1, 10, 25, and 100, respectively.
b. Eqs. (5) with p = 1, i1 running from 1 to 1, 5, 10, and 25 respectively; and
Eq. (5) with p = 2, i1 = i2 ∈ {1, 2}, t1 − t2 running from 1 to 1, 5, 10, and 25
respectively.
c. Eqs. (3)—(4) with i running from 0 to 3, 5, 10, and 25, respectively; Eq. (5)
with p = 1, i1 running from 1 to 3, 5, 10, and 25, respectively; and Eq. (5) with
p = 2, i1 = i2 ∈ {1, 2}, t1 − t2 running from 1 to 3, 5, 10, and 25, respectively.
d. Andersen and Sørensen (1996), Table 3: Eq. (5) with p = 1, i1 running
from 1 to 4; Eq. (5) with p = 2, i1 = i2 = 1, t1 − t2 ∈ {6, 8, 10, 12, 14}; and
Eq. (5) with p = 2, i1 = i2 = 2, t1− t2 ∈ {15, 17, 19, 21, 23}. ‘Infeasible GMM’
uses a nonparametric estimate of the weighting matrix based on a large sample
of simulated data using true parameter values.
e. Andersen, Chung, and Sørensen (1999), Table 3.
f . Jacquier, Polson, and Rossi (1994), Tables 5—7. For GMM: Eq. (5) with
p = 1, i1 running from 1 to 4; and Eq. (5) with p = 2, i1 = i2 ∈ {1, 2}, t1 − t2
running from 1 to 10.
g. Fridman and Harris (1998), Table 1.
h. Sandmann and Koopman (1998), Table 2.
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Table 2: Standard errors of
√
T λ̂

T # Moments Method of estimation Standard Error of√
T α̂

√
T φ̂

√
T ω̂

∞ 3 GMM (log-moments)a 136.37 18.53 77.30
∞ 12 GMM (log-moments)a 6.67 0.90 4.00
∞ 27 GMM (log-moments)a 2.96 0.40 1.71
∞ 52 GMM (log-moments)a 2.51 0.34 1.39
∞ 102 GMM (log-moments)a 2.49 0.34 1.37
∞ 3 GMM (absolute moments)b 264.71 35.95 150.79
∞ 15 GMM (absolute moments)b 8.49 1.15 4.79
∞ 30 GMM (absolute moments)b 4.15 0.56 2.28
∞ 75 GMM (absolute moments)b 2.48 0.34 1.23
∞ 14 GMM (joint moments)c 14.95 2.03 8.43
∞ 22 GMM (joint moments)c 8.45 1.15 4.76
∞ 42 GMM (joint moments)c 4.12 0.56 2.26
∞ 102 GMM (joint moments)c 2.44 0.33 1.20
4000 4 EMM: GARCH(1,1)d 2.8 0.37 1.3
4000 4 EMM: GARCH(1,1) - Kz(2)d 2.9 0.39 1.8
4000 6 EMM: GARCH(1,1) - Kz(4)d 2.7 0.36 1.0
500 24 GMMe 5.8 0.80 2
500 - Quasi-MLe 12 2 3.1
500 - MCMCe 2.7 0.4 1
500 - MLf 0.4 0.30 0.8
500 - Monte Carlo MLg 0.2 2 1

Parameter values: (α, φ, ω) = (−0.1472, 0.98, 0.1657).
GMM conditions are selected from Eqs. (3)—(5), as indicated below. Most
footnotes refer to multiple lines in the Table.
a. Eqs. (3)—(4) with i running from 0 to 1, 10, 25, 50, and 100, respectively.
b. Eq. (5) with p = 1, i1 running from 1 to 1, 5, 10, and 25 respectively; and
Eq. (5) with p = 2, i1 = i2 ∈ {1, 2}, t1 − t2 running from 1 to 1, 5, 10, and 25
respectively.
c. Eqs. (3)—(4) with i running from 0 to 3, 5, 10, and 25, respectively; Eq. (5)
with p = 1, i1 running from 1 to 3, 5, 10, and 25, respectively; and Eq. (5) with
p = 2, i1 = i2 ∈ {1, 2}, t1 − t2 running from 1 to 3, 5, 10, and 25, respectively.
d. Andersen, Chung, and Sørensen (1999), Table 3.
e. Jacquier, Polson, and Rossi (1994), Tables 5—7. For GMM: Eq. (5) with
p = 1, i1 running from 1 to 4; and Eq. (5) with p = 2, i1 = i2 ∈ {1, 2}, t1 − t2
running from 1 to 10.
f . Fridman and Harris (1998), Table 1.
g. Sandmann and Koopman (1998), Table 2.
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Table 3: Asymptotic standard errors of
√
T φ̂ for parsimoniously se-

lected moments

Moment set k Selected moments Standard Error of√
T α̂

√
T φ̂

√
T ω̂

ML 3 zt; ztzt−1; ztzt−11 18.31 2.49 5.41

MA 3 Y 2
t ;Y

1,2
t,t−7;Y

1,1,1
t,t−5,t−14 10.59 1.44 4.72

ML∪MA 3 ztzt−10;Y 2
t ;Y

1,1,1
t,t−7,t−15 10.08 1.37 4.07

ML 4 zt; ztzt−1; ztzt−10; ztzt−12 14.78 2.01 4.62

MA 4 Y 1
t ;Y

2
t ;Y

1,1
t,t−10;Y

1,1,1
t,t−8,t−15 9.65 1.31 2.55

ML∪MA 4 ztzt−10;Y 2
t ;Y

1,1,1
t,t−5,t−14;Y

1,1,1
t,t−7,t−13 9.46 1.28 4.16

ML 5 zt; ztzt−1; ztzt−9; ztzt−11; ztzt−14 13.37 1.82 4.31

MA 5 Y 1
t ;Y

2
t ;Y

1,1
t,t−7;Y

1,1
t,t−9,t−13 9.07 1.23 2.47

ML∪MA 5 Y 1
t ;Y

2
t ;Y

1,1
t,t−7;Y

1,1
t,t−9,t−13 9.07 1.23 2.47

Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363).

in these cases we experimented with the Point Exchange algorithm (Fedorov

(1972)). This algorithm does not necessarily yield the global optimum, and its

output depends on the starting selection of moment conditions as input. By

picking the starting selection at random and repeating this a couple of times,

the algorithm was able to reproduce the global optimum in all cases where

enumeration was possible. We therefore applied it in those cases where global

optimisation was not feasible, without the guarantee of having found the glob-

ally optimal selection of moments from the specified sets. The parameter values

were fixed at (α, φ, ω) = (−0.736, 0.90, 0.363), as in Table 1. Table 3 reports
the selected moments and the asymptotic standard errors of the corresponding

GMM estimators. Comparing Table 3 with Table 1 yields the following conclu-

sions: (i) there is a dramatic increase in efficiency by selecting the moments in an
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optimal way; (ii) given that the efficiency bound for the asymptotic standard er-

ror of
√
T φ̂ (which is asymptotically attained by the MCMC estimator) appears

to be around 1, the efficiency loss of the GMM estimator with optimal moment

selection from ML ∪MA is not excessively large, even in the just-identified case

(k = 3); (iii) while MA contains a richer (also a much larger) set of moment

conditions than ML — as is reflected by the smaller asymptotic standard errors

— the combination of MA and ML may yield an improvement upon MA, as is

the case here for k = 3 and k = 4. Finally, we remark that the optimal selection

of moment conditions from any given set generally depends on the parameter

values.

5 Conclusion

The standard approach in the literature on GMM estimation of SV models has

been to derive closed-form moment conditions from the expectations of |yit|,
|yt1yt2 | and |y2t1y2t2 | for any i, t1, and t2. We have extended this class of condi-

tions to include the expectation of |yi1t1 ...y
ip
tp | for arbitrary i1, ..., ip and t1, ..., tp,

and, following Wright (1999), the first two moments and the autocovariances

of log y2t . A closed-form expression for the optimal weighting matrix for any

subset of those conditions has been derived and, as a by-product, an expression

for the GMM asymptotic covariance matrix. These expressions can be used for

improved GMM estimation of the SV model with AR(1) log-volatility and to

compute GMM standard errors more accurately. It is also of interest to note

that, upon redefining ci, νi, κi, and ξi appropriately, all expressions are gener-

alised to SV models where the multiplicative shocks in the mean equation (1)

are non-normal.
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Appendix

Calculation of c3 and c4. For any positive integer n, upon substituting

t = x2/2,Z ∞
−∞

³
log x2

2

´n ³
1√
2π

´
e−x

2/2dx = 2

Z ∞
0

³
log x2

2

´n ³
1√
2π

´
e−x

2/2dx

= 1√
π

Z ∞
0

(log t)
n
t−1/2e−tdt

=
Γ(n)

¡
1
2

¢
Γ
¡
1
2

¢ ,

where Γ(n)(z) is the n-th derivative of Γ(z). See Abramowitz and Stegun (1970)

for properties and values of the gamma and related functions that are used

below. Now, c1 = − log 2−γ = ψ
¡
1
2

¢
+log 2, where ψ(z) = d

dz logΓ(z) =
Γ(1)(z)
Γ(z) .

Hence, for n = 3, 4,

cn =

Z ∞
−∞
(log x2 − c1)

n
³

1√
2π

´
e−x

2/2dx

=

Z ∞
−∞

³
log x2

2 − ψ
¡
1
2

¢´n ³
1√
2π

´
e−x

2/2dx

= gn
¡
1
2

¢
,

where

gn (z) =
nX
i=0

µ
n

i

¶
Γ(i) (z)

Γ (z)
(−ψ (z))n−i . (12)

Taking successive derivatives of Γ(1) (z) = Γ (z)ψ (z) gives, upon rewriting,

Γ(2) (z) = Γ (z)
n
ψ0 (z) + [ψ (z)]2

o
,

Γ(3) (z) = Γ (z)
n
ψ00 (z) + 3ψ0 (z)ψ (z) + [ψ (z)]3

o
,

Γ(4) (z) = Γ (z)
n
ψ000 (z) + 4ψ00 (z) + 3ψ0 (z)

h
ψ0 (z) + 2 [ψ (z)]2

i
+ [ψ (z)]3

o
,

where primes denote derivatives. Substituting these expressions into (12) yields

g3 (z) = ψ00 (z)

and

g4 (z) = ψ000 (z) + 3 [ψ0 (z)]2 .
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Now, ψ0
¡
1
2

¢
= π2

2 , ψ
00 ¡1

2

¢
= −14ζ(3), and ψ000

¡
1
2

¢
= π4, where ζ(3) = 1.202.

Hence c3 = −14ζ (3) = −16.83 and c4 =
7
4π

4 = 170.5.

The proof of Theorem 1 makes use of the following lemmas.

Lemma 2 Let X ∼ N(0, 1) and let a be a positive integer. Then

Cov(logX2, |Xa|) = νaκa (13)

and

Cov((logX2 − c1)
2, |Xa|) = νaξa. (14)

Proof . Upon substituting z = x2/2,

Cov(logX2, |Xa|) = 2
Z ∞
0

¡
log x2 − c1

¢
xa
³

1√
2π

´
e−x

2/2dx

=
2a/2√
π

Z ∞
0

(log z + log 2− c1) z
(a−1)/2e−zdz

=
2a/2√
π
Γ

µ
a+ 1

2

¶µ
ψ

µ
a+ 1

2

¶
+ log 2− c1

¶
= νaκa,

and, using Γ
00(z)
Γ(z) = ψ0(z) + (ψ(z))2 (with primes denoting derivatives),

Cov((logX2 − c1)
2, |Xa|) = 2

Z ∞
0

h¡
log x2 − c1

¢2 − c2

i
xa
³

1√
2π

´
e−x

2/2dx

=
2a/2√
π

Z ∞
0

h
(log z + log 2− c1)

2 − c2

i
z(a−1)/2e−zdz

=
2a/2√
π
Γ

µ
a+ 1

2

¶Ã
Γ00
¡
a+1
2

¢
Γ
¡
a+1
2

¢ + (log 2− c1)
2 − c2

+2(log 2− c1)ψ

µ
a+ 1

2

¶¶
= νaξa.

Lemma 3 Let X1, X2, and X3 be jointly normal with µi = EXi and σij =

Cov(Xi,Xj). Then

Cov(X1, expX3) = σ13 exp
¡
µ3 +

1
2σ33

¢
(15)
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and

Cov(X1X2, expX3) = (σ13σ23 + µ1σ23 + µ2σ13) exp
¡
µ3 +

1
2σ33

¢
. (16)

Proof . Assume first that µi = 0 and σii > 0 for all i. Let µi|j = σijσ
−1
jj Xj

be the conditional mean of Xi, given Xj , and σij|k = σij − σikσjkσ
−1
kk the

conditional covariance between Xi and Xj , given Xk. Then,

Cov(X1, expX3) = Cov(E(X1|X3), expX3)

= σ13σ
−1
33 Cov(X3, expX3)

= σ13 exp
¡
1
2σ33

¢
,

Cov(X1X2, expX3) = Cov(E(X1X2|X3), expX3)

= Cov(µ1|3µ2|3 + σ12|3, expX3)

= σ13σ23σ
−2
33 Cov(X

2
3 , expX3)

= σ13σ23 exp
¡
1
2σ33

¢
,

using the fact that, for a standard normal variate X,

Cov(X, exp(bX)) =

Z ∞
−∞

xebx
³

1√
2π

´
e−x

2/2dx

=

Z ∞
−∞

x
³

1√
2π

´
e−(x−b)

2/2+b2/2dx

= b exp
¡
1
2b
2
¢

and

Cov(X2, exp(bX)) =

Z ∞
−∞
(x2 − 1)ebx

³
1√
2π

´
e−x

2/2dx

=

Z ∞
−∞
(x2 − 1)

³
1√
2π

´
e−(x−b)

2/2+b2/2dx

= b2 exp
¡
1
2b
2
¢
.

The extension to the case where µi 6= 0 for some i is straightforward, and any
degenerate case follows upon taking the appropriate limit in the non-degenerate

case.
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Proof of Theorem 1. Write zt = kt + wt, where kt = ht − µ and wt =

log u2t − c1. Then, wt and kt have zero mean and are independent, and, for

any integers i, j, l, we have Cov(kt, kt−i) = φ|i|σ2, Cov(ktkt−i, kt−j) = 0, and

Cov(ktkt−i, kt−jkt−l) = (φ|j|+|i−l| + φ|l|+|i−j|)σ4. Using these properties and

the equalities

∞X
l=−∞

φ|l| =
1 + φ

1− φ
,

∞X
l=−∞

φ|i+l|+|j+l| = φ|i−j|
µ
|i− j|+ 1 + φ2

1− φ2

¶
,

we obtain, for i, j ≥ 0,

V (zt, zt) =
∞X

l=−∞
[Cov(kt, kt−l) + Cov(wt, wt−l)]

=
∞X

l=−∞

³
φ|l|σ2 + I(l=0)c2

´
=
1 + φ

1− φ
σ2 + c2,

V (zt, ztzt−j) =
∞X

l=−∞
Cov(wt, wt−lwt−j−l)

=
∞X

l=−∞
I(l=j=0)c3

= I(j=0)c3,
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and

V (ztzt−i, ztzt−j) =
∞X

l=−∞
[Cov(ktkt−i, kt−lkt−j−l) + Cov(wtkt−i, kt−lwt−j−l)

+ Cov(wtkt−i, wt−lkt−j−l) + Cov(ktwt−i, kt−lwt−j−l)

+Cov(ktwt−i, wt−lkt−j−l) + Cov(wtwt−i, wt−lwt−j−l)]

=
∞X

l=−∞

h³
φ|l|+|j−i+l| + φ|j+l|+|l−i|

´
σ4 + I(l=−j)φ|i+j|c2σ2

+ I(l=0)φ
|i−j|c2σ2 + I(l=i−j)φ|i−j|c2σ2 + I(l=i)φ

|i+j|c2σ2

+I(i=j 6=0)I(l=0)c22 + I(i=j=0)I(l=0)
¡
c4 − c22

¢¤
=

µ
|i− j|φ|i−j| + |i+ j|φ|i+j| +

³
φ|i−j| + φ|i+j|

´ 1 + φ2

1− φ2

¶
σ4

+ 2
³
φ|i−j| + φ|i+j|

´
c2σ

2 + I(i=j 6=0)c22 + I(i=j=0)(c4 − c22),

giving (6)—(8). To establish (9), recall the definition of Y i1,...,ip
t1,...,tp , from which

Cov
³
Y
i1,...,ip
t1,...,tp , Y

ip+1,...,ip+q
tp+1−l,...,tp+q−l

´
= E

³
Y
i1,...,ip
t1,...,tp Y

ip+1,...,ip+q
tp+1−l,...,tp+q−l

´
− 1

= E exp

−δi1,...,ipt1,...,tp − δ
ip+1,...,ip+q
tp+1,...,tp+q +

1

2

pX
j=1

ijhtj +
1

2

p+qX
j=p+1

ijhtj−l


×E

 pY
j=1

¯̄̄
ν−1ij

u
ij
tj

¯̄̄ p+qY
j=p+1

¯̄̄
ν−1ij u

ij
tj−l

¯̄̄− 1.
Now,

E exp

1
2

pX
j=1

ijhtj +
1

2

p+qX
j=p+1

ijhtj−l


= exp

δ
i1,...,ip
t1,...,tp + δ

ip+1,...,ip+q
tp+1,...,tp+q +

σ2

4

pX
j=1

p+qX
j0=p+1

ijij0φ
|tj−tj0+l|

 ,

so

Cov
³
Y
i1,...,ip
t1,...,tp , Y

ip+1,...,ip+q
tp+1−l,...,tp+q−l

´
= (Bl + 1)(Cl + 1)− 1

= Bl + (Bl + 1)Cl.
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Summing over l gives (9), because Cl = 0 whenever l /∈ L. Furthermore, by (13)

and (15),

Cov
³
zt, Y

i1,...,ip
t1−l,...,tp−l

´
= E

kt exp

−δi1,...,ipt1,...,tp +
1

2

pX
j=1

ijhtj−l


+

E exp

−δi1,...,ipt1,...,tp +
1

2

pX
j=1

ijhtj−l

E

wt

pY
j=1

¯̄̄
ν−1ij u

ij
tj−l

¯̄̄
=

σ2

2

pX
j=1

ijφ
|t−tj+l| +

pX
j=1

I(t=tj−l)κij ,

which, upon summing over l, gives (10). Finally,

Cov
³
ztzt−i, Y

i1,...,ip
t1−l,...,tp−l

´
= Cov

ktkt−i + ktwt−i + wtkt−i + wtwt−i,

exp

−δi1,...,ipt1,...,tp +
1

2

pX
j=1

ijhtj−l

 pY
j=1

¯̄̄
ν−1ij u

ij
tj−l

¯̄̄
= T1 + T2 + T3 + T4,

say, with, using Lemma 2 and Lemma 3,

T1 =

σ2

2

pX
j=1

ijφ
|t−tj+l|

σ2

2

pX
j=1

ijφ
|t−i−tj+l|

 ,

T2 =

σ2

2

pX
j=1

ijφ
|t−tj+l|

 pX
j=1

I(t−i=tj−l)κij ,

T3 =

σ2

2

pX
j=1

ijφ
|t−i−tj+l|

 pX
j=1

I(t=tj−l)κij ,

T4 = I(i=0)

pX
j=1

I(t=tj−l)ξij + I(i6=0)
pX

j,j0=1

I(t=tj−l)I(t−i=tj0−l)κijκij0 .

Summing over l gives (11), which concludes the proof.

21



Proof of Lemma 1. Since |φ||tj−tj0+l| ≤ |φ|−|tj−tj0 |+|l|,

Bl ≤ exp
σ2

4

pX
j=1

p+qX
j0=p+1

ijij0 |φ||tj−tj0+l|
− 1 ≤ exp(a|φ||l|)− 1.

By an argument of symmetry,

exp(−a|φ||l|)− 1 ≤ Bl ≤ exp(a|φ||l|)− 1

and so, because exp(z)− 1 ≥ 1− exp(−z) for any z,

|Bl| ≤ exp(a|φ||l|)− 1.

Therefore,

|B −B(I)| ≤
∞X

l=I+1

(|B−l|+ |Bl|) ≤ 2
∞X
l=I

¡
exp

¡
a|φ|l¢− 1¢

= 2
∞X
l=I

∞X
k=1

ak|φ|kl
k!

= 2
∞X
k=1

µ
ak

k!

¶µ |φ|kI
1− |φ|k

¶

<
2

1− |φ|
∞X
k=1

¡
a|φ|I¢k
k!

= 2
exp(a|φ|I)− 1

1− |φ| .
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