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Abstract

The incompatibility between the Pareto indifference criterion and a concern for

greater equality in living standards of heterogenous populations (see, amongst oth-

ers, Ebert, 1995, 1997, Ebert and Moyes, 2003 and Shorrocks, 1995) might come as

a surprise, since both principles are reconcilable when people differ only in income

(homogenous population). We present two families of welfare rankings –(i) single

parameter extensions of the generalized Lorenz dominance rule and (ii) a subset of

Weymark’s (1981) generalized Ginis– and show how and why these rules resolve the

paradox.

JEL classification: D31, D63, I31.
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1 Motivation

In the literature on heterogenous welfare comparisons, there seems to be a conflict be-

tween welfarism and a concern for greater equality in living standards (see amongst others
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Ebert, 1995, 1997, Ebert and Moyes, 2003 and Shorrocks, 1995). Living standards are

indices which convert the income of people of different type, say hearing blind versus see-

ing deaf, into welfare measures, assumed to be comparable across individuals. The cited

contributions claim that the welfarist Pareto indifference principle –which requires social

indifference between two situations in which all individuals reach the same living standard–

is incompatible with the between type Pigou-Dalton (btpd) transfer principle –preferring

mean-preserving income transfers which equalize living standards.

Following Shorrocks (1995), we will discuss the issue, in this note, in its simplest and most

pure setting: ranking income distributions amongst individuals, when those individuals

might differ not only with respect to the income they obtain, but in other aspects too. The

essentials of the problem of making welfare comparisons among heterogenous populations

are safeguarded in the individual setting, without having to treat simultaneously the prob-

lem of converting distributions among households into distributions among individuals.

Moreover, the solutions we will propose can be adapted to tackle the household-individual

conversion problem too, as we will argue in section 3.

To motivate this point of view, we provide two examples which illustrate, for the generalized

Lorenz dominance (gld) ranking (Shorrocks, 1983) and in a purely individual framework,

the stated incompatibility between Pareto indifference and the between type Pigou-Dalton

principle, which underlies the difficulty of making welfare comparisons among heterogenous

populations.1 In those examples we consider the case of Eve and Mary; Eve has a weaker

metabolism than Mary and therefore she needs more food (and thus more income) to reach

the same level of calorie intake as Mary. We use ratio scale equivalent income functions to

convert monetary incomes into comparable welfare measures. More precisely, Eve obtains

only two third’s of Mary’s welfare level for the same amount of income.

In our first example, we consider the case where Eve has not only a weaker metabolism,

but also earns less income than Mary. Their nominal incomes are (6, 18). Because of Eve’s

defective metabolism, she will reach a welfare level of only 4 units, whereas Mary’s income

is identical to her welfare and thus equals 18. Consider now a transfer of 6 income units

from Mary to Eve. After the transfer, nominal incomes are equal: (12, 12). The transfer

also results in a more equal distribution of living standards (welfare levels): (8, 12). The

situation is summarized in table 1 below. Notice that we designed the transfer such that,

ex post, Eve is still worse off in terms of equivalent income (welfare).

Nevertheless, according to the gld ranking, applied to equivalent incomes, both distribu-

1 The same problem occurs for other sum-type welfarist rankings (see Ebert, 1997).
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tions cannot be compared, the reason being, that despite the more equal distribution of

living standards after transfer, the mean living standard, which was equal to 11 before

the transfer, has decreased to 10, while mean nominal income, per definition, remained

constant and equals 12. More equality in living standards with a heterogenous popula-

tion might imply giving up efficiency: weak persons are defined to be non-efficient welfare

producers.

Example 1: a between type Pigou-Dalton transfer

Situation before

type weak metabolism strong metabolism

income 6 18

equivalence scale 1.5 1

equivalent income 4 18
y

income transfer from welfare rich to welfare poor

which preserves rankings of equivalent incomes

Situation after

type weak metabolism strong metabolism

income 12 12

equivalence scale 1.5 1

equivalent income 8 12

Ebert (1997) suggests solving the problem by applying the gld criterion (or other welfarist

alternatives) to the equivalent income vector weighted by the equivalence scales. In the

present context, the weighted mean of equivalent incomes in both cases equals 48
5

and the

after transfer distribution (always) dominates the original one according to the weighted

gld-criterion.

In our second example, we consider the case where a surgery can cure Eve’s defective

metabolism. However, the surgery costs 6 income units. After the surgery, Eve and Mary

both have an equally strong metabolism: they can attain the same level of welfare with

equal incomes. The situation is summarized in table 2 below.

The essential point now is that equivalent incomes before and after the surgery are the

same. Pareto indifference requires that the social welfare ordering is indifferent between

both situations in such a case. Ebert’s weighted gld criterion runs into problems now.

Indeed, average income, and thus weighted average welfare (or living standard) before the
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surgery is higher: the cost of the surgery was too high to warrant the cure of the defect.

Weighted gld prefers, in this case, a society with unequal type and income distributions,

over a more equal, but less affluent, type and income distribution, even if the welfare levels

did not change at all. The standard (un-weighted) gld-criterion applied to equivalent

incomes, is indifferent between both situations, as the Pareto indifference criterion requires.

Example 2: changing types by means of a surgery

Situation before

type strong metabolism weak metabolism

income 6 18

equivalence scale 1 1.5

equivalent income 6 12
y

by a surgery which costs

6 income units

Situation after

type strong metabolism strong metabolism

income 6 12

equivalence scale 1 1

equivalent income 6 12

Since Pareto indifference in homogenous societies (when people all are of the same type, and

welfare levels are in accordance with income) is compatible with any degree of inequality

aversion, the suggested conflict might come as a surprise. In this note, we will show how

this apparent conflict can be overcome. In the next section (section 2) we present two sets

of continuous welfare rankings: the r-extended gld rankings and families of what we will

call r-generalized Ginis. Both sets are defined with the aid of a parameter r ∈ R+. The

r-extended gld rankings are defined exclusively by this parameter (there is one ranking for

each choice of r). There exists, on the other hand, for each r, a family of r-generalized Ginis,

and each such family forms a subset of Weymark’s (1981) generalized Ginis. Both sets of

rules are linked: for any given r, the r-extended gld ranking is equivalent with unanimity

among the members of the associated family of r-generalized Ginis. In a companion paper

(Capéau and Ooghe, 2004), we characterize these rankings.

When r equals zero, we obtain either the “standard” gld quasi-ordering or the complete

set of generalized Ginis; when r approaches infinity, we can come, in both cases, arbitrarily
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close to the leximin rule, which is known to overcome the conflict between Pareto and

inequality aversion, but binds in on continuity (cf. Ebert and Moyes, 2003). Suitably

adapting the r-parameter provides continuous welfare rankings which satisfy both Pareto

indifference and the between type Pigou-Dalton transfer principle. The conflict is due

to other, background properties which the cited contributions impose silently on welfare

rankings.

In section 3 we return to examples 1 and 2 and illustrate how the rules can be applied to

the problems advanced in those examples. We show how and why these rules solve the

paradoxical incompatibility between welfarism and a concern for greater equality. Finally,

we indicate how the rules can cope with differences in household composition as a source

of heterogeneity. However, the conflict between a concern for greater equality and effi-

ciency seems to reappear when we want to be able to compare heterogenous populations

of different size. We show in section 4 that none of the rules we proposed can combine a

concern for efficiency and inequality aversion with satisfying replication invariance. But

the assumption that replicating a society does not affect overall welfare, despite its com-

mon acceptance in the literature on welfare measurement, presupposes an answer to some

deep and fundamental questions in population ethics: is a society with more people of the

same type as those already existing really to be considered equally good as the present one,

or is it better or worse? And these questions are, we feel, even more difficult to answer,

when people are heterogenous. We therefore consider the reconcilability of efficiency and

inequality aversion with less demanding, and in our view, less controversial, aggregation

axioms, and get some positive results. Section 5 concludes.

2 Two families of welfare rankings

In the present section, we introduce a set of rankings2 of distributions of outcomes, without

specifying a priori which is the outcome of interest we will look at: in the terminology of the

preceding section, it could be income, equivalent income or any other well-being measure.

As such, our rules might therefore be applicable to classical welfare problems, trying to rank

income distributions among homogenous populations. Such a distribution of interest will

be denoted by a vector u = (u1, . . . , un) ∈ Rn. So, depending on the context, ui might be

2 A ranking, say R, is a reflexive and transitive binary relation on a set X, and will also be called a
quasi-ordering. Reflexivity means: ∀ x ∈ X : xRx. Transitivity holds when ∀x, y, z ∈ X : if xRy and yRz

then xRz. If the ranking is moreover complete (∀ x, y ∈ X : either xRy or yRx), we say it is an ordering.
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the income or the living standard (equivalent income) of an individual i ∈ N = {1, . . . , n}.
Since ui does not exclusively mean income, but can also refer to welfare, we allow for

negative entries in u. In the present text, the welfare level attained by a person’s income,

given her type, is used as a synonym for equivalent income or living standard. Therefore,

if u denotes living standards, the welfare ranking is said to be welfarist. We consider

a population of individuals with fixed size n. Ranking heterogenous populations with

different size and welfare, will be discussed in section 4.

For any u,v ∈ Rn, the notation uRv means that distribution u is weakly preferred to

distribution v according to the ranking R. Associated with a weak preference relation R,

there is:

the strict preference relation, denoted by uPv, and defined as: uRv and not vRu;

the indifference relation, denoted by uIv, defined as: uRv and vRu.

All the rankings presented here satisfy anonymity : any permutation of a distribution u is

considered to be equally good as that distribution. Anonymity allows to focus attention

on the domain of ordered distributions, denoted by the set D ≡ {u ∈ Rn |u1 ≤ . . . ≤ un},
in the sequel.

Definition 1 Given any r ∈ R+, the r-extended gld quasi-ordering R (r) is defined as:

uR (r)v ⇔
k∑

i=1

(1 + r)k−i (ui − vi) ≥ 0 for all k ∈ N,

for all u,v ∈ D.

Increasing r, increases the discriminatory power of this rule, i.e. the rule is able to rank

more distributions. Formally, this statement means:

Proposition 1 For all q, r ∈ R+ such that q ≥ r:

(a) I(r) ⊆ I(q)

(b) P (r) ⊆ P (q).

Proof: see appendix.

In order to define the second collection of rankings, we introduce a set of positive, non-

decreasing, and normalized weight vectors W ≡ {w ∈ Rn |w1 ≥ . . . ≥ wn = 1}.
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Definition 2 Given any r ∈ R+ and a weight vector w ∈W, an r-generalized Gini order-

ing, R (r,w) is defined as:

uR (r,w)v ⇔
n∑

i=1

(1 + r)n−i wi (ui − yi) ≥ 0,

for all u,v ∈ D.

We will denote the family of r-generalized Ginis by G (r) ≡ {R(r,w) |w ∈W}. It is

the subset of all generalized Ginis for which the relative weight of two consecutive rank

positions is at least 1 + r.

Increasing r decreases the size of the family of r-generalized Ginis. More precisely:

Proposition 2 For all q, r ∈ R+, such that q ≥ r: G (q) ⊆ G (r).

Proof: see appendix.

When r = 0, the r-extended gld quasi-ordering corresponds with the standard gld quasi-

ordering, while the r generalized Ginis then correspond with the whole set of Weymark’s (1981)

generalized Ginis. When r approaches ∞, we can obtain in both cases the leximin order-

ing.3

The next proposition provides a link between both sets of rankings: it shows that the

r-extended gld quasi-ordering is equivalent with unanimity among the members of the

family of the corresponding r-generalized Gini orderings. Formally:

Proposition 3 For all r ∈ R+: R (r) =
⋂

w∈W
R (r,w) .

Proof: see appendix.

All the rankings, presented here, satisfy the following properties.

Continuity.

For any sequence of distributions (um)m∈N0
, if there exists an M ∈ N0 such that for

some v ∈ Rn: umRv for all m ≥ M then lim
m→∞

um ≡ u∗Rv; or, alternatively, if vRum

for all m ≥ M then vRu∗.

Strong Pareto (sp).

For all u,v ∈ Rn: if u ≥ v, then uRv; if, in addition, u 6= v, then uPv.

3As there are different possibilities to take the limit of a sequence of rankings, other limiting cases
might be obtained, such as the maximin rule (see Hammond, 1975).
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We introduce a set of new equality preference axioms, one for each scalar r ≥ 0.

r-extended Pigou-Dalton transfer principle (pd (r)).

For all u,v ∈ Rn, such that for some i, j ∈ N , (i) uk = vk, for all k 6= i, j, (ii) vi <

ui ≤ uj < vj, and (iii)
vj−uj

ui−vi
= 1 + r, it follows that uRv.

For any r ≥ 0, the r-gld ranking and all members of the r-Gini family G(r), satisfy the

corresponding pd(r)-principle.

The pd(r)-principles are modifications of the standard Pigou-Dalton transfer principle.

They state that an equalizing transfer between two individuals –which does not change

their relative positions– does not lower social welfare, whenever the loss to the donor

(vj −uj) is exactly equal to 1+ r times the gains of the receiver (ui− vi). For later use, we

call a transfer which satisfies conditions (i)-(iii) in the definition of the r-extended Pigou

Dalton transfer principle a pd(r)-transfer. Under the domain restriction D, associated with

anonymity, it might occur that the after transfer vector u does not belong any more to D.

By a slight abuse of notation, and without loss of generality, we will always read u to be

the after transfer rank-reordered vector belonging to D.

Choosing r = 0, leads to the standard Pigou-Dalton transfer principle. Furthermore, if R

satisfies the strong Pareto principle, then increasing r increases the strength of the transfer

principle, i.e., pd(r) ⇒ pd(q), for all q in [0, r]. This can be seen as follows: assume

that we impose pd(r), and assume that u is obtained from v via a pd(q)-transfer of size

δ > 0, for q ≤ r such that u = (v1, . . . , vi−1, vi + δ, vi+1, . . . , vj−1, vj − (1 + q)δ, vj+1, . . . , vn)

. Then construct u′ from v, by means of a pd(r)-transfer of size ε = δ 1+q
1+r

≤ δ. Then

u′j = vj − (1 + r)δ 1+q
1+r

= uj and u′i = vi + δ 1+q
1+r

≤ ui = vi + δ. Hence, by sp, uRu′ and by

pd(r), u′Rv. So, by transitivity of R, we obtain uRv.

Thus, under the strong Pareto principle, pd(r) is a strengthening of the standard Pigou-

Dalton transfer principle. Then, we can adopt the convention that pd(∞) means that pd(r)

holds for all r ≥ 0. If so, we obtain (a slightly stronger version of) the Hammond equity

principle.4

3 Inequality aversion and efficiency reconciled again

The r-extended Pigou-Dalton transfer principle is at the heart of our new rules. It is also

easy to understand why it allows welfarist rules to satisfy the btpd transfer principle (a

4Hammond’s (1976) equity principle states that uRv if ∃ i, j ∈ N such that (i) uk = vk, for all k 6= i, j,
(ii) vi < ui < uj < vj . Contrary to Hammond’s equity principle, our principle also applies when ui = uj .
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formal definition of that principle is provided below). Recall example 1: as Mary is a more

efficient equivalent income generator than Eve, any income transfer from Mary to Eve

leads to a loss in total equivalent income. Indeed, as we go from a(n individual equivalent

income) distribution (4, 18) to (8, 12), 2 equivalent income units are lost. But such a leak

during the transfer is precisely what is allowed for by the r-extended Pigou-Dalton transfer

principle: it suffices to choose r = 1
2

(or larger), to see that (8, 12) can be derived from

(4, 18) via a pd
(

1
2

)
-transfer. We will clarify below how to choose r in order to guarantee

satisfaction of the btpd-transfer principle.

We turn now to the application of the rules presented in the previous section to the prob-

lem of welfare comparisons among heterogenous populations as defined in section 1. In-

dividuals in such a setting do not only differ with respect to the level of income they

obtain, say yi, but also with respect to other characteristics. People who are identical in

all (relevant) aspects, except possibly for the level of income they obtain, are said to be

of the same type, say θi = θj, where θi, θj ∈ Θ, the set of all possible types. Welfare

economics for homogenous populations is concerned with ranking income vectors: in the

terminology of the previous section this means u = (y1, . . . , yi, . . . , yn). Comparing het-

erogenous populations amounts to looking for suitable rankings of the vectors (y,θ) ≡
((y1, θ1), . . . , (yi, θi), . . . , (yn, θn)). We limit ourselves to a setting where this problem can

be converted into one of ranking equivalent incomes or welfare levels. More specifically,

we define equivalent incomes by means of ratio equivalence scales: the equivalent income

vector is then e(y,θ) ≡ (e1(y, θ), . . . ei(y, θ), . . . , en(y,θ)) ≡
(

y1

m(θ1)
, . . . , yi

m(θi)
, . . . , yn

m(θn)

)
,

where m(θi) is type θi’s equivalence scale. In the language of the previous section, the

vectors we now rank are those equivalent income vectors: u = e(y, θ). It is therefore

natural to limit the domain of the vectors u to the non-negative part of the n-dimensional

real vector space, Rn
+, as we will do from now on.

In this context, the between type Pigou-Dalton principle and Pareto indifference are prop-

erties of a ranking, say R, defined on income and type distributions belonging to Rn
+×Θn.

Pareto indifference (pi).

For all (y,θ), (x, ζ) ∈ Rn
+ ×Θn: if e(y,θ) = e(x, ζ) then (y,θ)I(x, ζ).

Between type Pigou-Dalton principle (btpd).

For all x,y ∈ Rn
+ and any θ ∈ Θn: if (i) xk = yk, for all k 6= i, j, (ii) ei(y,θ) <

ei(x,θ) ≤ ej(x,θ) < ej(y,θ), and (iii) xi − yi = yj − xj, then (x,θ)R(y,θ).

We show first how it is possible to reconcile the Pareto indifference principle and the
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btpd transfer principle by means of the rules introduced in the previous section. Let

us return to the motivating examples introduced in section 1. If we choose r sufficiently

high, for example r ≥ 1/2, and apply the r-extended gld quasi-ordering to the individual

equivalent income vectors of example 1 and 2, then both the btpd transfer principle

(example 1) as well as the Pareto indifference principle (example 2) are satisfied.

Proposition 4 The r-extended gld quasi-ordering (resp. any member of the r-generalized

Gini orderings) applied to individual equivalent income distributions, allows to reconcile the

btpd transfer principle and the Pareto indifference principle, if and only if

r ≥
max
θ∈Θ

{m (θ)}
min
θ∈Θ

{m (θ)} − 1.

Proof: see appendix.

Why then is it possible to reconcile both principles, despite the claim in the literature that

these principles are incompatible? The weights in the proposed rankings are power terms

of 1 + r, where the power depends on the (individual) equivalent income position (rank).

Rank order weights are however excluded in (i) Ebert (1997), who imposes separability,

(ii) Ebert and Moyes (2003), where the weights can only depend on the reference type

and the own type, and (iii) Shorrocks (1995), who imposes differentiability of the welfare

ranking. It is fair to mention that Shorrocks actually describes a two-person r-generalized

Gini ordering as a possible solution (when relaxing differentiability), but he discards this

possibility for practical purposes, without further explanation.

Equivalence scales are mostly applied when individuals differ (only) with respect to the

size of the household to which they belong. For practical applications, this context may

raise some complications if only household incomes are observed or if only transfers be-

tween household incomes are available to the government. Indeed, in that case we are

asked to judge, for example transfers from households with few happy members to large

scale families, populated however by non-efficient welfare producers. These problems are

reminiscent of the deep ethical problems when judging populations of variable size, to

which we return in the next section. For a fixed size population, many of the prob-

lems can however be circumvented by introducing the concept of a per capita equivalence

scale. Given a set of individuals, N , the set of partitions of N (a partition of N is a

set of nonempty and non-overlapping subsets of N , the union of which equals N), de-

noted by H(N), constitutes the set of possible household constellations for this society. A

household constellation is a description of the way individuals decide to join together in
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households; these are, basically, income pooling units. For a given household constellation,

say h ∈ H(N), let H(h) = {1, 2, . . . , h, . . .} be the index set for the households in that

constellation to which individuals belong. Individuals can then be indexed by the corre-

spondence i : H(h) → N , such that i ∈ i(h) means that individual i belongs to household

h. Equivalence scales are now associated with a household h and provide a measure to

convert household income, into the nominal income level needed by a reference household

(usually a single) to obtain the same welfare level as the members of that household. All

non-income information concerning the household can be recollected into the household

type, which will be denoted by ϕh ∈ Φ, where Φ is the set of all possible household types.

The equivalence scale is henceforth dependent on the household’s type information (and

the reference type): m(ϕh).
5 The size of a household equals the number of its members:

s(ϕh) = |i(h)|. The per capita equivalence scale equals: m(ϕh)
s(ϕh)

. It gives a measure of the

extent to which there are (dis)economies of scale of living in larger units. An (income,type)-

distribution is then a vector (y,ϕ) ∈ ∆ ≡
{

(x,ψ) ∈ ⋃
1≤m≤n

Rm
+ × Φm

∣∣∣∣
m∑

h=1

s(ψh) = n

}
. We

follow the standard assumption, in this literature, that individual welfare or living stan-

dards within a household are equally distributed: ei(y,ϕ) = yh

m(ϕh)
for all i ∈ i(h).6 A

reformulation of the Pareto indifference criterion and the between type Pigou-Dalton prin-

ciple in this context is straightforward. Notice, however, that the between type Pigou

Dalton principle considers a monetary transfer between households, such that the living

standard of all its members is affected. This is embodied in the notation: (i) xg = yg,

for all g ∈ H(h) : g 6= h, h′, (ii) ei(y, ϕ) < ei(x,ϕ) ≤ ej(x,ϕ) < ej(y, ϕ) for all

i ∈ i(h), j ∈ i(h′), and (iii) xh − yh = yh′ − xh′ . We get the following, slightly weaker,

adjoint result to proposition 4:

Corollary to proposition 4 The r-extended gld quasi-ordering (resp. any member of the

r-generalized Gini orderings) applied to individual equivalent income distributions, allows

to reconcile the btpd transfer principle and the Pareto indifference principle, if

r ≥
max
ϕ∈Φ

{m (ϕ) /s (ϕ)}
min
ϕ∈Φ

{m (ϕ) /s (ϕ)} − 1.

Proof: see appendix.

5By a slight abuse of notation, we continue to denote equivalence scale functions by m.
6Alternatively, it could be assumed that nominal household income is equally distributed and equiv-

alence scale depend solely on individual type information, converting per capita incomes into individual
living standards (as f.e. in Shorrocks, 1995).
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4 Variable population size

Finally, we turn to applications of the presented rules to the comparison of heterogenous

populations of variable size. We therefore have to extend the domain of the rules to

the set R ≡ ⋃
n∈N0

Rn. The r-generalized Ginis are readily extended to this domain by

selecting for each population size n ∈ N0, a weight vector of length n, say wn ∈Wn where

Wn ≡ {wn ∈ Rn |w1,n ≥ . . . ≥ wi,n ≥ . . . ≥ wn,n = 1}.
For making comparisons of vectors of different size, we will use replications of a vector u.

Given a natural number, say m ∈ N0, a m-replication of a n-vector u, denoted by λm(u),

is defined as:

λm (u) ≡

u1, . . . , u1︸ ︷︷ ︸

m times

, . . . , un, . . . , un︸ ︷︷ ︸
m times


 .

The variable population size equivalent of the r-extended gld ranking is defined as follows:

∀u ∈ Dn,v ∈ Dm :

uR(r)v ⇔
k∑

i=1

(1 + r)(m·n−i)

(1 + r)m·n − 1
(λm (u)i − λn (v)i) ≥ 0 for all k ≤ m · n,

where Dn, with n ∈ N0, is the set of rank re-ordered real vectors of length n.

A problem occurs if we require the ranking to be replication invariant, which means that

social welfare must not change when replicating the distribution a number of times.

Replication invariance (ri)

For all n ∈ N0, for all u ∈ Rn, for all m ∈ N0: uIλm (u).

The next proposition states that replication invariance reinforces the r-extended Pigou-

Dalton transfer principle:

Proposition 5 For all r > 0, sp, pd(r) and ri imply pd(q) for all q ∈ R+.

Proof: see appendix.

Recall that pd(r) for all r ∈ R+ corresponds with Hammond equity. As a consequence of

the last proposition, given r > 0, there is only one ordering satisfying sp, pd(r) and ri: it

is the leximin rule applied to (possibly replicated) distributions of equal length. Requiring

in addition continuity, would lead to an impossibility result.
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This result must not come as a surprise. The combination of the Pareto criterion with the

pd(r)-principle leads to a specific trade-off between mean equivalent income and a more

equal distribution of living standards: the amount of mean equivalent income one wants to

give up increases with the number of people in society, even if inequality does not change.

Replication invariance goes against this principle, but is not uncontroversial per se: it

takes a specific stance in the discussion between average and total sum utilitarians (opting

resolutely for the former).

Admittedly, it is even impossible for an anonymous, complete and continuous welfare

ranking which satisfies the pd(r) principle and the strong Pareto criterion, to satisfy si-

multaneously the weaker population principle:

Population principle (pp)

For all n ∈ N0, for all u,v ∈ Rn, for all m ∈ N0: uIv if and only if λm (u) Iλm (v).

The latter criterion does not impose a specific choice between average and total sum utili-

tarianism, but poses the questions involved in comparing societies with different population

size in those terms.

Corollary to proposition 5 For any r > 0, there is no member of the r-generalized

Ginis, G(r), which satisfies pp.

Proof: see appendix.

There are other consistency requirements between rankings of distributions among popu-

lations of different size, such as the restricted aggregation principles (see Ebert, 1988). Let

uk be a distribution in a population of size k: uk ∈ Rk. For any k ∈ N0 : k ≥ 2, and any

vector uk ∈ Rk, define the equally distributed equivalent ξ (uk) to be the outcome which,

if it were obtained by all individuals in society, would yield the same welfare as the stated

distribution uk: λk (ξ (uk)) Iuk.

Restricted aggregation from above (raa)

For all n ∈ N0 : n ≥ 3, for all u ∈ Rn, for all k : 0 ≤ k ≤ n:

uI (u1, . . . , uk, λn−k (ξ (uk+1, . . . , un))) .

The latter vector should be read as λn (ξ (u)) if k = 0.

Restricted aggregation from below (rab)

For all n ∈ N0 : n ≥ 3, for all u ∈ Rn, for all k : 1 ≤ k ≤ n:

uI (λk (ξ (u1, u2, . . . , uk)) , uk+1, . . . , un) .
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The latter vector should be read as λn (ξ (u)) if k = n.

The following result is obtained:

Proposition 6 For any r > 0, the r-generalized Ginis such that, for each n ∈ N0 : n ≥ 3,

wn = (w1,n, . . . , wi,n, . . . , wn,n) ∈ Wn satisfies: wi,n = bn−i for some scalar b ≥ 1, satisfy

raa and rab.

Proof: see appendix.

5 Conclusion

In this note we showed how it is possible to circumvent the claimed incompatibility be-

tween efficiency (Pareto indifference) and inequality aversion (between type Pigou-Dalton

transfer principle) when comparing heterogenous individuals. The intuition for our result

is straightforward: the proposed r-extended gld quasi-ordering can be interpreted as an

extension of the standard gld quasi-ordering. While the latter can only approve classi-

cal Pigou-Dalton transfers, the former also approves some transfers which might cause a

decrease in average equivalent income. In this sense, we say that the r-extended gld quasi-

ordering is more inequality averse than its ordinary counterpart. Similarly, for each member

of the class of r-generalized Ginis, the rate of substitution between two consecutive equiv-

alent income positions is at least 1 + r. By using rank dependent weights, we are able

to define the minimal amount of inequality aversion a welfare ranking should exhibit in

order to meet the between type Pigou-Dalton criterion, independent of the given equivalent

income distribution and the size of transfer, while at the same retaining the anonymity

criterion (abandoned by Ebert, 1997). In this way, we could determine a set of sufficiently

inequality averse welfare rankings, without having to violate the Pareto criterion.
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Appendix

Proof of proposition 1

(a) follows from the fact that for all r ∈ R+ and all u,v ∈ D: uI(r)v if and only if u = v

(indifference sets associated with R(r) defined on D, are singletons).

To prove (b), suppose uP (r)v holds, for some r ∈ R+ and for some u,v ∈ D. Abbreviate

∆i = ui − vi for all i ∈ N ; we will prove, for all q ≥ r, that

k∑

i=1

(1 + q)k−i ∆i ≥
k∑

i=1

(1 + r)k−i ∆i, for all k ∈ N, (1)

which indeed leads to uP (q)v, because uP (r)v implies that the right hand-side summation is

non-negative for all k (and positive for at least one k).

Proof by induction. First, (1) is obvious for k = 1. Secondly, suppose (1) holds for some 1 ≤ k < n

(induction hypothesis), then it also holds for k + 1. We rewrite

k+1∑

i=1

(1 + q)(k+1)−i ∆i = (1 + q)︸ ︷︷ ︸
A1

B1︷ ︸︸ ︷
k∑

i=1

(1 + q)k−i ∆i + ∆k+1.

Given (α) q ≥ r ≥ 0, (β) the induction hypothesis, and (γ) uP (r)v we have

A1 = 1 + q
(α)

≥ 1 + r︸ ︷︷ ︸
A2

(α)
> 0 and B1 =

k∑

i=1

(1 + q)k−i ∆i

(β)

≥
k∑

i=1

(1 + r)k−i ∆i

︸ ︷︷ ︸
B2

(γ)

≥ 0.

The desired result follows, because

A1B1 + ∆k+1 ≥ A2B2 + ∆k+1 ⇒
k+1∑

i=1

(1 + q)(k+1)−i ∆i ≥
k+1∑

i=1

(1 + r)(k+1)−i ∆i.

Proof of proposition 2

Consider r, q ∈ R+ with q ≥ r. We show that for each rule R (q,w) in G (q) there exists a weight

vector w′ ∈ W such that R (q,w) = R (r,w′) ∈ G (r). Abbreviate ∆i = ui − vi for all i ∈ N ;

R (q,w) is defined as follows:

for all distributions u,v ∈ D,

uR (q,w)v ⇔
n∑

i=1

(1 + q)n−i wi∆i ≥ 0.

Define a weight vector w′ =
(

(1+q)n−i

(1+r)n−i wi; i ∈ N
)
, which belongs to W; this leads to the desired

result.
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Proof of proposition 3

Actually, the proposition says:

∀ r ∈ R+, ∀ u,v ∈ D :

uR(r)v ⇔ uR(r,w)v ∀ w ∈W.

We show first that all orderings in G (r) are consistent with the r-extended gld quasi-ordering

(sufficiency): for all r ∈ R+ and for all u,v ∈ D: uR (r)v implies uR (r,w)v for all w ∈W. Let

∆i ≡ ui − vi for all i ∈ N . uR (r)v implies (start with k = n)
n∑

i=1

(1 + r)n−i ∆i ≥ 0

(1 + r)︸ ︷︷ ︸
>0

non-negative via k=n−1︷ ︸︸ ︷
n−1∑

i=1

(1 + r)n−1−i ∆i +αn∆n ≥ 0, with αn = 1

(1 + r) αn−1

n−1∑

i=1

(1 + r)n−1−i ∆i + αn∆n ≥ 0, ∀αn−1 ≥ αn

(1 + r)2 αn−1︸ ︷︷ ︸
>0

non-negative via k=n−2︷ ︸︸ ︷
n−2∑

i=1

(1 + r)n−2−i ∆i +
n∑

i=n−1

(1 + r)n−i

(
n∏

k=i

αk

)
∆i ≥ 0, ∀αn−1 ≥ αn

(1 + r)2 αn−2αn−1

n−2∑

i=1

(1 + r)n−2−i ∆i +
n∑

i=n−1

(1 + r)n−i

(
n∏

k=i

αk

)
∆i ≥ 0, ∀αn−2, αn−1 ≥ αn

(1 + r)3 αn−2αn−1︸ ︷︷ ︸
...

...︷ ︸︸ ︷
n−3∑

i=1

(1 + r)n−3−i ∆i +
n∑

i=n−2

(1 + r)n−i

(
n∏

k=i

αk

)
∆i ≥ 0, ∀αn−2, αn−1 ≥ αn

. . .

n∑

i=1

(1 + r)n−i

(
n∏

k=i

αk

)
∆i ≥ 0, for all α1, . . . , αn−1 ≥ αn = 1. Hence,

n∑

i=1

(1 + r)n−i wi∆i ≥ 0, for all w ∈W, as required.

Conversely, for all r ∈ R+ and for all u,v ∈ D: uR (r,w)v for all w ∈ W implies uR (r)v. We

prove this statement by contradiction. Suppose thus that there exists an r ∈ R+ and u,v ∈ D
such that uR (r,w)v for all w ∈ W, but not uR (r)v, i.e., there must exist a k ∈ N such that∑k

i=1 (1 + r)k−i ∆i < 0. Choose a family of weight vectors

W (k) = {w ∈W |w1 = . . . = wk ≥ wk+1 = . . . = wn = 1} .
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Notice that W (k) ⊂W. Therefore, we must have

n∑

i=1

(1 + r)n−i wi∆i ≥ 0, for all w ∈W (k)

k∑

i=1

(1 + r)n−i w1∆i +
n∑

i=k+1

(1 + r)n−i ∆i ≥ 0, for all w1 ≥ 1

w1 (1 + r)n−k

︸ ︷︷ ︸
>0

<0︷ ︸︸ ︷
k∑

i=1

(1 + r)k−i ∆i +
n∑

i=k+1

(1 + r)n−i ∆i ≥ 0, for all w1 ≥ 1,

which is false (as w1 can be chosen arbitrarily high to make the expression strictly negative).

Proof of proposition 4

Notice that Pareto indifference is satisfied, since the proposed quasi-orderings are defined on

the domain of distributions of equivalent incomes. We show that the btpd transfer principle

is satisfied by an r-generalized Gini ordering, if and only if we choose r sufficiently large, more

precisely:

r ≥
max
θ∈Θ

{m (θ)}
min
θ∈Θ

{m (θ)} − 1.

Due to proposition 3, the result then also holds for the r-extended gld quasi-ordering.

First, consider a “worst” case scenario (“worst” in terms of a decrease in total equivalent income)

of transferring money between two persons: the decrease in total equivalent income is largest, if

we transfer an amount of income ε > 0 from a household with the minimal per-capita equivalence

scale, denoted type θ = arg min
θ∈Θ

{m (θ)} to a household with the maximal per-capita equivalence

scale (and a lower equivalent income), denoted type θ = arg max
θ∈Θ

{m (θ)}. Assume that both

persons occupy adjacent rank positions. According to an r-generalized Gini-ordering, such a

transfer will not be welfare decreasing if

(1 + r)
(
m

(
θ
))−1 ≥ (m (θ))−1 . (2)

Secondly, any other transfer might, in general, change the equivalent income positions of indi-

viduals. But it suffices to notice that (i) each transfer can be decomposed into a finite number

of welfare improving transfers between two persons, which do not change the equivalent income

positions in the distribution, and (ii) whenever two persons have the same equivalent income,

(equivalent income) positions can be attributed arbitrarily (without changing total welfare). This

completes the proof.
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Proof of the corollary to proposition 4

The same logic as for the previous proof is followed. So, Pareto indifference is satisfied, since

the proposed quasi-orderings are defined on the domain of distributions of individual equivalent

incomes. We show that the btpd transfer principle is satisfied by an r-generalized Gini ordering,

if we choose r sufficiently large, more precisely:

r ≥
max
ϕ∈Φ

{m (ϕ) /s (ϕ)}
min
ϕ∈Φ

{m (ϕ) /s (ϕ)} − 1.

Due to proposition 3, the result then also holds for the r-extended gld quasi-ordering.

First, consider the “worst” (“worst” in terms of a decrease in total equivalent income) possible

transfer of money between two households, such that the number of households with an equivalent

income strictly in between both households remains fixed, say a ≥ 0. The decrease in total

equivalent income is largest, if we transfer an amount of income ε > 0 from a household with the

minimal per-capita equivalence scale, denoted type ϕ = arg min
ϕ∈Φ

{m (ϕ) /s (ϕ)} to a household

with the maximal per-capita equivalence scale (and a lower equivalent income), denoted type

ϕ = arg max
ϕ∈Φ

{m (ϕ) /s (ϕ)}. According to an r-generalized Gini-ordering, such a transfer will not

be welfare decreasing if

(1 + r)a

∑s(ϕ)
i=1 (1 + r)s(ϕ)+s(ϕ)−i

m (ϕ)
≥

∑s(ϕ)+s(ϕ)

i=s(ϕ)+1 (1 + r)s(ϕ)+s(ϕ)−i

m
(
ϕ
) . (3)

Because

(1 + r)a
s(ϕ)∑

i=1

(1 + r)s(ϕ)+s(ϕ)−i ≥ s (ϕ) (1 + r)s(ϕ) ;
s(ϕ)+s(ϕ)∑

i=s(ϕ)+1

(1 + r)s(ϕ)+s(ϕ)−i ≤ s
(
ϕ
)
(1 + r)s(ϕ)−1 ,

equation (3) will be true if

s (ϕ) (1 + r)s(ϕ)

m (ϕ)
≥ s

(
ϕ
)
(1 + r)s(ϕ)−1

m
(
ϕ
) .

Rearranging terms leads to the desired result.

Secondly, for transfers that change the equivalent income positions of households, similar remarks

apply as for the proof of proposition 4.

Proof of proposition 5

We first prove the following lemma:
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Lemma 1 For any n ∈ N0, with n ≥ 2, for any r ∈ R++, for any a ∈ R and for all ε > 0, consider

the following sequence of pd(r)-transfers, starting from a vector v1 =


a− (1 + r) ε, a, . . . , a︸ ︷︷ ︸

n−1 times


:

1. Construct v2 from v1 by means of a pd(r)-transfer from individual (at position) 2 to 1, such

that the incomes of 1 and 2 are equal.

2. Construct v3 from y2 by means of pd(r)-transfers from 3 to 2 and from 3 to 1, such that the

incomes of 1,2, and 3 are equal.

. . .

n− 1. Construct vn from vn−1 by means of pd(r)-transfers from n to all other individuals n−
1, . . . , 1, such that all incomes are equal.

Following this procedure, we will end up with a distribution vn =


b, . . . , b︸ ︷︷ ︸

n times


 with

b = a− (1 + r) ε
n−1∏
i=1

(1+r)i
1+(1+r)i .

Obviously, vnRv1 holds for any (quasi-)ordering satisfying pd(r).

Proof by induction. For n = 2 this result is obvious. Starting from v1 = (a− (1 + r) ε, a) the

pd(r)-transfer δ which equalizes incomes is the one which satisfies

a− (1 + r) ε + δ = a− (1 + r) δ,

and thus δ = (1+r)ε
1+(1+r) . We end up with v2 = (b, b) with

b = a− (1 + r) ε + δ = a− (1 + r) ε +
(1 + r) ε

1 + (1 + r)

= a− (1 + r) ε

(
1 + r

1 + (1 + r)

)
.

Suppose it holds for n (induction hypothesis); we show that it also holds for n + 1. Start with

a vector v1 =


a− (1 + r) ε, a, . . . , a︸ ︷︷ ︸

n times


. As it holds for n, we obtain after n − 1 steps a vector

vn =


c, . . . , c︸ ︷︷ ︸

n times

, a


 with

c = a− (1 + r) ε

n−1∏

i=1

(1 + r) i

1 + (1 + r) i
.
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In the final step we perform pd(r)-transfers from n+1 to all other individuals such that incomes

become equal. This transfer δ can be calculated as:

c + δ = a− (1 + r) nδ,

and thus

δ =
a− c

(1 + (1 + r) n)
=

(1 + r) ε
n−1∏
i=1

(1+r)i
1+(1+r)i

(1 + (1 + r) n)
.

We end up with vn+1 =


 b, . . . , b︸ ︷︷ ︸

n+1 times


 and

b = c + δ = a− (1 + r) ε
n−1∏

i=1

(1 + r) i

1 + (1 + r) i
+

(1 + r) ε
n−1∏
i=1

(1+r)i
1+(1+r)i

(1 + (1 + r) n)

= a− (1 + r) ε
n−1∏

i=1

(1 + r) i

1 + (1 + r) i

(
1− 1

1 + (1 + r)n

)

= a− (1 + r) ε
n∏

i=1

(1 + r) i

1 + (1 + r) i
, as required.

¥

We prove now that pd(r) and ri imply pd(t (m)), for all m ∈ N0 with m ≥ 2, and

t (m) = −1 + (1 + r) m

m−1∏

i=1

(1 + r) i

1 + (1 + r) i
= −1 +

m∏

i=1

(1 + r) i

1 + (1 + r) (i− 1)
,

and that lim
m→∞ t (m) = ∞ whenever r > 0. This will complete our proof for the following reason.

Recall that, when sp holds, pd(t) ⇒ pd(q), for all q in [0, t]. As m can be chosen arbitrarily large

and given that lim
m→∞ t (m) = ∞, we obtain the desired result, i.e., pd(q) must hold for all q ∈ R+.

First, we show that the limit lim
m→∞ t (m) diverges. Notice that the sequence with elements

1 + t (m) =
m∏

i=1

(
(1 + r) i

1 + (1 + r) (i− 1)

)
(4)

diverges if the series

ln (1 + t (m)) =
m∑

i=1

ln
(

(1 + r) i

1 + (1 + r) (i− 1)

)
=

m∑

i=1

ln
(

1 +
r

1 + (1 + r) (i− 1)

)
, (5)
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diverges. We prove that the series composed by the sequence {ai}∞i=1, with ai = ln
(
1 + r

1+(1+r)(i−1)

)
,

diverges for r > 0. As all ai > 0, for r > 0, it then must march off to infinity. As ln (1 + x) ≥ x− x2

2

for all x ∈ R+, it suffices to prove that the series {a∗i }∞n=1, with

a∗i =
r

1 + (1 + r) (i− 1)
−

(
r

1+(1+r)(i−1)

)2

2
=

2r (1 + (1 + r) (i− 1))− r2

2 (1 + (1 + r) (i− 1))2

diverges for r > 0. We use the de Morgan and Bertrand test. Define ρi (implicitly) by

a∗i
a∗i+1

=
2r (1 + (1 + r) (i− 1))− r2

2 (1 + (1 + r) (i− 1))2
2 (1 + (1 + r) i)2

2r (1 + (1 + r) i)− r2
= 1 +

1
i

+
ρi

i ln i
,

and thus
(

2r (1 + (1 + r) (i− 1))− r2

2 (1 + (1 + r) (i− 1))2
2 (1 + (1 + r) i)2

2r (1 + (1 + r) i)− r2
− 1− 1

i

)
i ln i = ρi.

The de Morgan and Bertrand test tells us that the series diverges, whenever lim
i→∞

ρi < 1. We have

lim
i→∞

ρi = lim
i→∞

((
2r (1 + (1 + r) (i− 1))− r2

2 (1 + (1 + r) (i− 1))2
2 (1 + (1 + r) i)2

2r (1 + (1 + r) i)− r2
− 1− 1

i

)
i ln i

)

= lim
i→∞

((
r
−2r + r2 + i + 2ri2 + i2 − 2ri + r2i2 − 3r2i

i (i + ri− r)2 (2 + 2i + 2ri− r)

)
i ln i

)

= lim
i→∞

(
ri

(−2r + r2 + i + 2ri2 + i2 − 2ri + r2i2 − 3r2i
)

(i + ri− r)2 (2 + 2i + 2ri− r)

)

︸ ︷︷ ︸
r

2(r+1)

lim
i→∞

(
ln i

i

)

︸ ︷︷ ︸
0

= 0 (for r > 0).

Secondly, pd(r) and ri imply pd(t (m)), for all m ∈ N0 with m ≥ 2. To prove this result, consider

u,v ∈ D, m ∈ N0, with m ≥ 2, and i, j ∈ N with (i) uk = vk, for all k 6= i, j, (ii) vi < ui ≤ uj < vj ,

and (iii) vj−uj

ui−vi
= (1 + r) m

m−1∏
i=1

(1+r)i
1+(1+r)i . Using pd(r) and ri, we prove that uRv holds. Define

v0 = λm (v) =


u1, . . . , u1︸ ︷︷ ︸

v0
1 to v0

m

, . . . , vi, . . . , vi︸ ︷︷ ︸
v0

m(i−1)+1
to v0

mi

, . . . , vj , . . . , vj︸ ︷︷ ︸
v0

m(j−1)+1
to v0

mj

, . . . , un, . . . , un︸ ︷︷ ︸
v0

m(n−1)+1
to v0

mn


 .

Let ε = ui − vi > 0. Consider the following sequence of pd(r) transfers starting from v0:

1. Choose v1
k = v0

k, for all k 6= m (i− 1) + 1,m (j − 1) + 1, v1
m(i−1)+1 = v0

m(i−1)+1 + ε = ui and

v1
m(j−1)+1 = v0

m(j−1)+1 − (1 + r) ε. Via pd(r), we have v1Rv0.
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2. Choose v2
k = v1

k for all k 6= m (j − 1) + 1, . . . , mj, and noticing that the sub-vector

(
v1
m(j−1)+1, . . . , v

1
mj

)
=


vj − (1 + r) ε, vj , . . . , vj︸ ︷︷ ︸

m−1 times


 ,

we can apply a sequence of transfers described in lemma 1 to obtain
(
v2
m(j−1)+1, . . . , v

2
mj

)
=

b1, . . . , b1︸ ︷︷ ︸
m times


 with

b1 = vj − (1 + r) ε

m−1∏

i=1

(1 + r) i

1 + (1 + r) i
,

and v2Rv1.

3. Choose v3
k = v2

k, for all k 6= m (i− 1) + 2,m (j − 1) + 1, v3
m(i−1)+2 = v2

m(i−1)+2 + ε = ui and

v3
m(j−1)+1 = v2

m(j−1)+1 − (1 + r) ε. Via pd(r), we have v3Rv2.

4. Choose v4
k = v3

k for all k 6= m (j − 1) + 1, . . . , mj, and noticing that the sub-vector

(
v1
m(j−1)+1, . . . , v

1
mj

)
=


b1 − (1 + r) ε, b1, . . . , b1︸ ︷︷ ︸

m−1 times


 ,

we can apply a sequence of transfers described in lemma 1 to obtain
(
v4
m(j−1)+1, . . . , v

4
mj

)
=

b2, . . . , b2︸ ︷︷ ︸
m times


 with

b2 = b1 − (1 + r) ε
m−1∏

i=1

(1 + r) i

1 + (1 + r) i
= vj − 2 (1 + r) ε

m−1∏

i=1

(1 + r) i

1 + (1 + r) i
,

and v4Rv3.

5. Proceeding this way, we end up with

v2m =


u1, . . . , u1︸ ︷︷ ︸

m times

, . . . , vi + ε, . . . , vi + ε︸ ︷︷ ︸
m times

, . . . , bm, . . . , bm︸ ︷︷ ︸
m times

, . . . , un, . . . , un︸ ︷︷ ︸
m times


 ,

and v2mRy0. Applying ri to both sides gives:

(u1, . . . , ui−1, vi + ε, ui+1, . . . , uj−1, bm, uj+1, . . . , un) Rv.
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Since

ε = ui − vi and bm = vj −m (1 + r) ε
m−1∏

i=1

(1 + r) i

1 + (1 + r) i
︸ ︷︷ ︸

=vj−uj via (iii)

,

we obtain uRv, as required.

Proof of the corollary to proposition 5

For any r > 0, for any n ∈ N0 and any distribution u ∈ Dn, the equally distributed equivalent of

u, say ξ(u) for the ordering R(r,wn), with wn =


1, . . . , 1︸ ︷︷ ︸

n times


 ≡ 1n, is defined as:

ξ(u) = r
n∑

i=1

(1 + r)(n−i)

(1 + r)n − 1
ui.

Similarly, for an m-replication of u, we obtain:

ξ(λm(u)) = r

m·n∑

j=1

(1 + r)(m.n−j)

(1 + r)m·n − 1
(λm(u))j =

n∑

i=1

(1 + r)m·n−(i−1)m − (1 + r)m·(n−i)

(1 + r)m·n − 1
ui,

the equally distributed equivalent for the ordering R(r,1m·n).

For a general weighting vector, wn ∈Wn, the equally distributed equivalent of u with respect to

R(r,wn) is:

ξwn(u) =
n∑

i=1

(1 + r)(n−i)wi,n
n∑

j=1
(1 + r)(n−j)wj,n

ui.

Notice that ξwn(u) ≥ ξ(u) for all u ∈ Dn.

pp implies that for some wn ∈Wn, it holds that:

uI(r,wn)λn (ξwn(u)) ⇐⇒ λm(u)I(r,wm·n)λm.n(ξwn(u)) for some wm·n ∈Wm·n.

Consequently,

ξwn(u) = ξwm·n(λm(u)).

Consequently,
n∑

i=1

(1 + r)(n−i)wi,n
n∑

j=1
(1 + r)(n−j)wj,n

ui ≥
n∑

i=1

(1 + r)m·n−(i−1)m − (1 + r)m·(n−i)

(1 + r)m·n − 1
ui,

and this should hold for all u ∈ Dn.

The limit of the rhs of this expression for m →∞ converges to u1. Consequently, it is impossible

to find a weight vector in the domain Wn which could guarantee the last inequality.
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Proof of proposition 6

Ebert (1988) showed that for the whole class of welfare orderings R which could be represented

by functionals of the form:

Wn(un) =
n∑

i=1
αi,nν(ui) with αi,n ≥ αi+1,n > 0, ∀i ∈ N0 : i < n,

∑n
i=1 αi,n = 1,

ν an increasing concave transformation, n ∈ N : n ≥ 3.

satisfying raa and rab simultaneously, requires that there exists a scalar c ≥ 1 such that αi,n =
c(n−i)

n∑
j=1

cn−j
.

For any r > 0, G(r) belongs to the class considered by Ebert (1988). Indeed, let ν be the identity

function, and αi,n = (1+r)(n−i)wi,n
n∑

j=1
(1+r)(n−j)wj,n

. Choosing the weighting vectors so that for wi,n = bn−i, for

some b ≥ 1, and all n ∈ N : n ≥ 3, yields the result (with c = (1 + r)b).
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