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ABSTRACT: Allaz and Vila (1993) show that the existence of futures markets increases the efficiency of 
markets in a Cournot setting. This paper looks at the efficiency effect of financial options in a similar 
framework. It shows that also the existence of financial options makes markets more efficient; though to a 
smaller extent than futures. This is particularly relevant for markets with market power and costly storage, 
like the electricity market. 
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Introduction 
Several countries recently decided to liberalize their electricity markets and to organize competition in 
electricity generation. They assumed that economies of scale and entry barriers in the generation sector were 
sufficiently small to make competition viable. 

In practice, the generation market is not always very competitive. Generators often succeed in driving up prices 
significantly above competitive levels. This also happens in markets with low levels of market concentration. 

The two main reasons for market power in the electricity sector are the non-storability of electrical energy and 
the low demand elasticity1. Both market characteristics make that unilateral withholding of production output 
can be highly profitable for firms. Especially in periods of peak demand, generators are often producing close to 
the technical maximum output of their generation plants, which inevitably leads to steep supply functions. The 
residual demand functions faced by the generators are therefore often steep as well.  

Generation market power becomes even more pronounced because technical constraints in the transmission 
network do not allow generators to effectively compete with each other. Furthermore, generation plants are 
capital intensive, and investments require a long lead time.  

Prices above marginal production costs have been shown to exist in several markets. Borenstein et al. (2002) 
find a significant departure from competitive pricing during high demand summer months in the Californian 
electricity market. Also Joskow and Kahn (2002) show that high prices in summer 2000 reflected, in part, the 
exercise of market power by suppliers. Wolak and Patrick (2001) argue that the two largest generators in the 
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1 This effect is even worse because changes in the real-time wholesales price are not passed through to 
consumers. Instead consumers pay a flat rate which is changed only infrequently, and does not reflect the 
scarcity of electricity in certain periods. Hence, consumers do not have the right incentives to reduce their 
demand when the market is tight.  
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early England and Wales market were able to obtain prices for their output substantially above their marginal 
cost of generation. Wolfram (1999) shows that the British electricity prices were above the perfectly competitive 
prices. 

Comparing different electricity markets in the US, Bushnell et al. (2004) show that California had a relatively 
unconcentrated generation market2 but that the lack of long term contracts led to high price-cost margins in the 
summer of 2000. With long term contracts generators sell part of their electricity ex-ante, at a locked-in price. 
As a result, generators will behave more competitively in the spot market.3  

The intuition is that of the durable goods’ monopolist in Coase’s conjecture.4 See Figure 1. Graph A shows the 
profit maximizing price  for a monopolist who sells only in the spot market, has production costs C q  and 
faces an inverse demand function . The monopolist will set a price such that his marginal revenue is equal 

to his marginal costs. Graph B shows the same situation for a monopolist who signed long term contracts for k  
units of electricity. In the spot market (the second stage) k  units will therefore disappear both at the demand 
and the supply side. The profit maximizing price is equal to  and is lower than . In the first stage, the 
contracting stage, consumers will take into account that the price in the spot market will be equal to . They 
will only buy long run contracts for electricity at the price , as they would lose money otherwise. Hence, the 
monopolist will receive the price p  in the production as wells as in the contracting stage. The fact that the 

price should be the same in the contracting and the production stage is called the perfect arbitrage condition. 
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Figure 1 Effect of an ex ante contract on the behavior of a monopolist. 

The study of Bushnell et al. highlights the importance of long term contracts in electricity markets. There is 
however no consensus on the role of long term contracts in electricity markets.  

Historically, policy makers have been opposed to long term contracting in electricity markets. They feared that 
long term contracts between incumbent generators and retailers might slow down entry in the generation market. 
They also assumed that long term contracting would decrease the transparency and the liquidity of the spot 
markets.5 Illiquid spot markets would lead to inefficient real time production decisions, and would also make 

                                                           
2 The Herfindahl-Hirschman Index (HHI) for California, New England and PJM (Pennsylvania, New 

Jersey, and Maryland) were 620, 850 and 1400.  
3 The most extreme form of long term contracting between a retailer and a generation firm is of course a merger. 
4 See Coase (1972). 
5 There is no theoretical evidence that forbidding long-term contracting will increase liquidity on spot markets. 
With liquid long term contracts, information becomes public sooner than with spot markets. This might increase 
liquidity. Long term contracts make spot markets also more competitive; prices will therefore be closer to 
competitive levels, and less prone to manipulation. 
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entry more difficult. A small entrant will have to rely on the spot market to balance the difference between the 
energy sold and the energy produced.  

Currently, policy makers are changing their mind, and are becoming more favorable towards long term 
contracts. They hope that long term contracts will ease entry in the generation market by reducing the risk for 
entrants and will reduce market power in the spot market. Long term contracts will also help retailers who sell 
electricity at fixed regulated prices to hedge their price risks.  

Nowadays there is a debate whether they should impose the usage of long term contracts or whether generators 
and retailers will sign the right amount of long term contracts on their own. See for example Creti and Fabra 
(2004). If they decide to intervene they need to make several choices.  

A first choice is on whom to impose the obligations: on the generators or on the retailers? Generators can be 
obliged to sell a part of their production capacity, and retailers can be obliged to contract a fraction of their 
estimated demand ex-ante. An obligation to retailers might help entry in generation (long run efficiency), but 
could place retailers in a bad bargaining position in the contract market when there is no entry in the short run.  

A second choice is how the quantities of the contract should be specified. Contracts could specify a constant 
quantity over time, a predetermined load-shape6, a specific fraction of system demand, or a quantity which 
depends on the spot price. Two standard contracts which we consider in this paper are the futures contract and 
the call option contract. In a futures contract the quantity which needs to be delivered is fixed. In a call option 
this quantity depends on the spot price: it increases with the spot price.  

Options might have some advantages compared with futures.  

• Options allow generators and retailers to hedge quantity risks, while futures can only be used to hedge 
price risks.7 Given that electricity cannot be stored very easily, quantity risks are very important in the 
electricity market, and options play therefore an important role.  

• Market power is most pronounced during periods of peak demand and is characterized by high spot 
prices. Retailers might sign option contracts to counter the market power of generators during these 
periods8.  

• The electricity sector is characterized by a lot of missing markets. Often options are used to correct 
these problems.  

A third choice is whether these obligations should take the form of financial contracts, where the seller and the 
buyer transfer a sum of money at the end of the contract, or of physical contracts, where a specific generation 
plant is associated with a specific contract. Appendix II comes back to the difference between financial and 
physical options.  

                                                           
6 A load-shape specifies a certain level of demand as a function of time. As a lot of retail consumers do not have 
real-time meters, these load-shapes are often used for accounting purposes.  
7 To illustrate this, consider a retailer who has the obligation to serve a number of customers at a fixed retail 
price. Without a long term contract, the retailer buys his electricity on the wholesales spot market and faces two 
types of risks. He faces a price risk, because he does not know which price he will pay on the wholesales spot 
market, and a quantity risk, because he does not know how much he will need to buy, as demand depends on for 
example weather factors. Without quantity risk, the retailer would be able to hedge his entire risk by signing 
futures contracts for the quantity he is expected to deliver. With quantity risk, the retailer needs also to buy some 
call options which he will use when demand is higher than expected. 
8 Also the regulator can use options to aim its regulation more precisely at periods of high demand, minimizing 
its intervention in the market. 
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This paper 

In this paper we will look at the strategic effects of financial call options in a Cournot game. We assume that 
there are only two markets: a financial call option market with an exogenously determined strike price and a 
spot market. In our set-up, firms decide themselves how many options they sell. In the model there is no 
uncertainty, so hedging is not an issue. The number of generators is assumed to be fixed. Hence, we do not look 
at the entry decision of new generation firms.  

The paper is an extension of Allaz and Vila (1993). They showed that in a Cournot game, firms have a strategic 
reason to sell futures contracts, because futures contracts serve as a commitment device for the firms to obtain a 
larger market share in the spot market. Selling futures leads to a prisoners’ dilemma type of problem. All firms 
sell futures, and as a result the spot price will decrease. We will use a similar framework as Allaz and Vila to 
analyze financial call options instead of futures contracts.  

Several papers have criticized the assumptions of the Allaz and Vila paper. As we make the same assumptions, 
these criticisms are also applicable to the current paper. 

Allaz and Vila assume Cournot competition in the spot market. The actions of the players are strategic 
substitutes. Mahenc and Salanie (2004) show that in a Bertrand game, players will take opposite positions in the 
spot market: they buy their own output instead of selling it.  

The result of Allaz and Vila depends also on the assumption that the number of futures contracts a firm signs is 
observable by all firms. Hughes and Kao (1997) show that if the contract position is not observed by other 
players then firms have no longer an incentive to sell futures contracts. 9 

A third key assumption in the model is perfect arbitrage between the contracting stage and the spot market. In 
practice, arbitrage in the electricity market is, however, far from perfect. The precise reason for imperfect 
arbitrage and how one should model its effects, remains for further investigation.10  

Le Coq (2003) looks whether long term contracts make tacit collusion between the generators more likely. As 
generators interact which each other on an hourly basis, tacit collusion is certainly an issue that has to be 
addressed. She shows that some long term contracts might stimulate tacit collusion leading to higher prices.  

Finally Thille (2003) showed that the results of Allaz and Vila are weakened when storage is possible. However, 
if there would exist storage in the electricity market, market power would be less of an issue in the first place. 

Relation with Chao and Wilson 

The paper is closely related to recent work of Chao and Wilson (2004). They argued that generators should be 
obliged to sell physical call options to retailers. They see several reasons for this: In the long run electricity 
markets are contestable and thus more competitive. Physical call options might have better strategic effects than 
futures contracts.11 The regulation of market power might be easier with physical call options than with futures. 
And physical delivery makes sure that generation is effectively built.  

                                                           
9 They show, however, that under uncertainty and risk aversion, there are again strategic reasons to buy or sell 
futures contracts. The behavior of the firms will depend on the type of uncertainty that the firms face. If demand 
levels are uncertain, generators will sell futures contracts. If cost levels are uncertain, generators will buy futures 
contracts. 
10 Arbitrage might be hindered by lack of information, perceived or real regulatory restrictions on arbitrage, and 
entry barriers in the arbitrage market.  
11 See also Appendix II. 
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Chao and Wilson discuss several interesting ideas, but make several modeling assumptions which make a 
straightforward comparison of futures and call options difficult.  

They assume perfect regulation of the number of options that generators have to sell and free entry in the 
contracting stage. However, with these two assumptions a lot of contract types will give the perfect competitive 
outcome. A comparison of futures contracts and call options is not possible. In our paper we assume a fixed 
number of firms, and that generators decide themselves about the number of options they sell.  

A second ‘problem’ with their paper is that it makes non-standard assumptions on the type of options and on the 
type of competition, which makes a comparison with the Allaz and Vila model very hard.  

Chao and Wilson assume that generators bid linear supply functions in the production stage, and sell bundles of 
physical options contracts in the contracting stage. Each bundle consists of one option contract of each possible 
strike price. Given these assumptions, the intuition of the Allaz and Vila model does no longer have to be 
valid.12 

We assume Cournot competition in the contracting stage, and generators will sell financial call options with 
only one exogenously determined strike price. We think that a single option is more realistic than a linear bundle 
of options. It is consistent with what we see in some electricity markets where only a small number of call 
options is actively traded. The reason why we do not observe a larger number of option contracts is that these 
markets would not be liquid enough, and that transaction costs would be too high.13 

Cournot game with futures contracts 
This section explains the standard Cournot game and the Cournot game with futures contracts (i.e. the Allaz and 
Vila model). It presents the set up of the model, and the definition of the main variables. The next section then 
continues with the Cournot game with financial options.  
Our paper considers an oligopoly with two firms i j . Firm i  produces q  units at a production cost 

 with C C . Total production of both firms is equal to q , and the spot price 

.  

, {1,2∈ }

2

                                                          

i

1( )i iC q

P p=

' ''0, 0i i≥ ≥

1 2( )q+

q+

q

Standard Cournot game 

We start with the standard Cournot game without futures contracts, for which we will use the superscript ‘C’.  

The profit of a firm i  is equal to its revenue minus production costs: 
  (1) ( ; ) ( )C

i i j i i iq q P q C qπ = ⋅ −

 
12 An example: In the Allaz and Villa model generators play Cournot in the second stage. Their actions are 
therefore strategic substitutes. In the Chao and Wilson model they use linear supply functions. Depending on the 
slope of the supply functions and the demand function, their actions might be strategic substitutes or 
complements. 
13 With risk-averse market participants and no transaction costs, one would expect a complete set of markets. 
This would mean that there is a market for each possible contingency. Hence, we would see an option market 
for each possible strike price, i.e. a continuum of options markets. With transaction costs, market participants 
trade off the gains of trade and the transaction costs they would incur. If two financial contracts are relatively 
good substitutes, then often only one will be traded, as most gains of trade can be made in that way, while a 
second market would greatly increase transaction costs. See Suenaga and Williams (2004). 
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In a Cournot game, firm i maximizes its profit, by setting its production quantity q , taking into account that the 
price depends on the joint production of the firms. P p . All firms set their production level 

simultaneously.  

i

1 2(q q= + )

iq

The Nash equilibrium of this game is the intersection of the reaction functions ( )i
C

jq q  of the players 

  (2) ( ) argmax ( , )
i

C
i j i i j

q
q q q qπ= C

For later reference the equilibrium production quantities and spot price will be denoted by q  and 

.  

, ,
1 2,
C eq C eqq

, ,, ( )C eq C eqC eq
i jP p q q= +

To illustrate our paper, we will use a numerical example in which the two firms have quadratic cost functions 
 and C q , and the inverse demand function is equal to P q .  

presents the Cournot equilibrium of this game graphically. It shows the strategy space of the generators. The 
curved lines represent the iso-profit lines of each firm. 

2
1 1 1( ) .1C q q= 2

2 2 2( ) .2 q= ( ) 1 q= − Figure 2

Figure 2 Standard Cournot equilibrium 

  (3) 1 2( , ) (1 ) ( )i i j i i iq q q q q C q cteπ = − − − =

They are the indifference curves of each firm. The dashed lines are the contour lines for firm 2 and the solid 
lines for firm 1.  

The reaction functions of firm 1 and 2 cross their iso-profit lines where they are horizontal and vertical 
respectively. The Nash equilibrium is the intersection of the two reactions functions. To simplify the notation 
we use vector notation: q q1 2( , )q= .  
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Cournot game with futures contracts 

If there are futures contracts, then we need to model the game with two stages: a contracting stage and a 
production stage.  shows the timing of the game. Figure 3

Figure 3 Timing of the Cournot game with futures 
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In the first stage, the contracting stage, generators sell futures contracts to retailers. The generators sell the 
contracts in a Cournot fashion: i.e. they decide simultaneously about the number of contracts k  they sell, taking 

the number of contracts of the competitor as given.  
i

Each futures contract is a two-sided insurance contract which insures the price of one unit of electricity. If the 
spot price  is above the futures price F , then the generator will refund the retailer the difference of the spot 
price  and the futures price F . If the spot price is below the futures price, then the retailer will pay the 
generator the difference between the futures price and the spot price. The total payment of generator i  is thus 

.

P

P

−( )ik P F 14  

After the first stage and before the second stage, each firm learns the contract position of the other firms. In 
 this happens at time = 1.5. There is therefore perfect information at the beginning of the second stage.  Figure 3

In the second stage, the production stage, the firms simultaneously set their production level q  in a Cournot 

fashion. Each firm will take its own and its competitor’s contracting position as given. 
i

Firm ’s profit is equal to revenue in the spot market, minus production costs and payments related to the 
futures contracts. The superscript ‘F’ denotes the game with futures contracts. 

i

  (4) 
( ; , ) ( ) ( )

( )

F
i i j i i i i i

i j

q q k P q C q k P F

P P q q

π = ⋅ − − −

= +

We will solve the game by backward induction and derive first the Nash Equilibrium in the second stage of the 
game as a function of the number of futures sold in the first stage q , ( )F eq k . This is schematically presented in 

. After deriving the second stage equilibrium, we will derive the reduced profit function of the first 
stage and solve the equilibrium of the first stage k ,F eq .  
Figure 4

Figure 4 Cournot game with futures contracts and backward induction 
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Second Stage 
Firm  maximizes its profit by setting its production q  taking into account the number of futures contracts 

which itself and its competitor own. The best response functions of the second stage are  

i i

  (5) ( , ) argmax ( , , )
i

F F
i j i i i j i

q
q q k q q kπ=

Note that firm i ’s second stage reaction function does not depend on the number of futures that firm  owns, as 

also its profit function (4) does not depend on it.  

j

                                                           

)i

14 This discussion explains the futures contract as a financial insurance contract. An alternative explanation 
considers the futures contract as a physical contract where the generator sells k  units in the first stage at a price 

,  units in the second stage at a price P , and produces q . Generator i’s profit becomes 
, which is equivalent with equation (4). It can be shown that financial and 

physical futures are equivalent, but that this is not the case for financial and physical options.  

i

iF iq k−
P⋅ +
i

( ) (i i iF k q k C q⋅ − −



 8

The fact that firm i  owns futures contracts, changes its incentives to produce in the second stage. Firm  needs 
to refund buyers of the futures contract for high strike prices. It has therefore less interest in high spot prices, 
and produces more in the second stage of the game.  

i

 
( , )

0
F
i j i

i

q q k
k

∂
≥

∂
 (6) 

Hence, owning futures contracts makes a firm more aggressive in the second stage, i.e. it produces more, and its 
reaction function moves outwards. This effect is based on exactly the same intuition as Coase’s conjecture as 
explained in Fi .  gure 1

Figure 5

Figure 5 Second stage equilibrium in the Cournot game with futures contracts 

Figure 5

 shows this effect in the numerical example. The solid and the dashed curved lines are the iso-profit 
lines of firm 1 when k  units were sold in the contracting stage. ( ) and when no 
futures were sold ( ) respectively. The best reaction function of firm 1 q q  

crosses its iso-profit lines where they are horizontal. It shifts to the right when more futures contracts are sold.  
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The second stage Nash equilibrium is defined by the intersection of the best response functions. Given that 
 futures contracts are sold in the first stage, the equilibrium quantities are q k , and the 

equilibrium price is .  

,i jk k , ( , )F eq
i ji k

, ( , )F eq
i jp k k

 shows further how the reactions functions of both firms shift out with larger numbers of forwards. The 
intersection of the reaction functions is the second Nash equilibrium. Note that the equilibrium quantity that is 
produced by firm  depends on the number of forwards sold by both firms. i

First Stage 

In the first stage the firms maximize their profit (4)  
  (7) ( ) ( )i i i iP q C q k P F⋅ − − −

taking into account that q  is determined by the second stage behavior of the firms, q q  and that 
the price is determined by the demand function P p .  

i
, ( , )F eq

i ii k k= j

1 2( )q q= +

We now need to define how the futures price F k( )  depends on the number of futures sold by the generators, i.e. 

the inverse demand function for futures in the contracting stage. 

Allaz and Vila, assume perfect arbitrage between the contracting and the production stage. This means that there 
is no profit to be made by arbitraging between the spot market and the futures market, i.e.  
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  (8) ,
1 2 1 2( , ) ( , )F eqF k k p k k=

Arbitrageurs are not modeled in the Allaz and Vila paper, and they will not be modeled in this paper either. 
Future work could look at alternative assumptions for the demand function for futures. Note that (8) implies that 
arbitrageurs correctly anticipate the strategic effects of the futures contracts on the spot price P . 
Define the first stage reduced pay-off function of generator i as . This is the profit firm i  will obtain 

when the players sell k

( , )i
F
i jk kΠ

 futures contracts in the first stage, and play Cournot in the second stage:  
  (9) ( , ) ( ) ( )i

F
i j i i i ik k P q C q k P FΠ = ⋅ − − −

where , qP  and F  are determined by the following equations: 

  (10) 

, ( , )

( , )

F eq
i ii

i j

q q k k

P p q q

F P

=

=

=

j

The first equation of (10) is the second stage equilibrium condition, the second equation is the inverse demand 
function for electricity in the spot market, and the third equation is the arbitrage condition. Note that given 
perfect arbitrage, a firm has no pecuniary reason to buy or sell futures contracts. There is only a strategic reason 
to sell futures. This can easily be shown by substituting the perfect arbitrage condition in the objective function 
of the firm. The objective function of the firm depends only indirectly on the number of futures sold.  

By selling more futures in the first stage, a generator can change the second stage equilibrium.  shows 
this for firm 1. In A, firm 1 does not sell futures; while in B it sells k  futures. By selling 

futures, total production in the second stage is increased, leading to a lower price. This influences firm 1’s profit 
negatively. However, selling futures increases the market share of firm 1, which increases profit.  

1

Figure 6
Figure 6 Figure 6

Figure 6 Impact of selling more futures by firm 1, on the second stage equilibrium.  
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At the optimal number of futures k k  both effects are balanced. This trade-off defines the first stage reaction 

functions of both firms ( ). 
1 2( )
F

Figure 7
  (11)  ( ) argmax ( , )

i

F
i j i i j

k
k k k k= ΠF

The equilibrium in the first stage is determined by the intersection of the first stage reaction functions. The 
equilibrium number of futures contracts are k  and ,F eq

i
,F eq
jk .  
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Figure 7 Equilibrium in the first stage of the Cournot game with futures contracts 

Figure 8

Figure 8 Allaz and Vila equilibrium  

 shows the second stage equilibrium when the generators sell the equilibrium futures quantities 
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1 2( ,F eq F eqF eqk k k= ) . In the equilibrium point both reaction functions are tangent to the iso-profit lines of their 

competitor. For further reference we define the Allaz and Vila spot price as: 

  (12) , ,, ( ,F eq F eqAV F eq
i jP p k k= )
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Cournot game with options 
This section discusses the Cournot game with financial options. We will use the superscript ‘O’ to denote this 
game. As already mentioned above, we assume that only financial call options with an exogenously fixed strike 
price  are traded. The call option is a one-sided insurance contract which insures retailers against price 
increases above the strike price . If the spot price is above the strike price, then the generator will refund the 
retailer the difference between the spot price and the strike price:P . When the spot price is below strike 
price, then there is no payment. In short, the generator pays the retailer the amount V P  with  

S

S

S−
( )

  (13) ( ) max{ , 0}V P P S= −

The Cournot game with financial options will be modeled similarly to the Cournot game with Futures contracts. 
In the first stage, the contracting stage, firms sell financial call options in a Cournot fashion: Firm i sells k  

options at a price F . After the first stage each firm learns about the contract position of the other firms. In the 
second stage, the production stage, the firms simultaneously decide about their production level in the spot 
market.  

i
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Second Stage : reaction functions 

Firm ’s profit is equal to the sum of its profit in the physical market (revenue in the spot market minus 
production costs) and its profit in the financial market:  

i

  (14) with

( ; , ) ( ) ( ( ))

( )

O
i i j i i i i i

i j

q q k P q C q k F V P

P P q q

π = ⋅ − + ⋅ −

= +

The best response function of firm i  maximizes profit (14).  
  (15) ( ; ) argmax ( , , )

i

O O
i j i i i j i

q
q q k q q kπ=

Figure 9

Figure 9

Figure 9

Figure 9 Reaction function of the standard Cournot game, the Cournot game with futures, and the Cournot game with option 

contracts. 

Figure 9

 shows the reaction functions of the standard Cournot game (graph A), the second stage of the Cournot 
game with futures (graph B), and the second stage of the Cournot game with options contracts (graph C). The -
45 degrees downward sloping line in graph C is the set of production quantities at which the spot price is equal 
to the strike price ( ). For production quantities above this line, the spot price is below the strike 
price . For production quantities below this line, the spot price is above the strike price 

. We will now describe the best response functions of the generators.  

1 2( )p q q S+ =
) S<1 2(p q q+

1 2( )q S+ >p q

If the spot price is above the strike price, in which case the option is said to be “in-the-money”, the option 
behaves as a standard Allaz and Vila futures contract. The best response function of the firm is the best response 
function of a firm who sold k  futures contracts q q . This is the South-West corner in C 
( ). 

i ( ; )F
i j ik

1 2( )p q q S+ >

If the spot price is below the strike price, in which case the option is said to be “out-the-money”, the option has 
no strategic effect. The decision of firm i  is not influenced by the number of options that it sold. Its best 
response function is equal to q q , the standard Cournot reaction function. This is the north-east corner in 

C ( p q ). 
( )C
i j

1 2( )q S+ <

If the spot price is equal to the strike price, a generator will sell a quantity between the optimal quantity with 
futures and the standard Cournot quantity.  

1 2( )P q q S+ =

( , )O
i j iq q k( , )F

i j iq q k
( )C
i jq q

1k 1k

1 2( )P q q S+ <

1 2( )P q q S+ >

Cournot Futures Option

1q

2q

1q

2q

1q

2q
a b c

 

Formally, the best response function for a firm that sold k  option contracts is described by  i

  (16) 

IF

IF

otherwise

( ) ( )

( , ) ( , ) ( , )

C C
i j i j j

O F F
i j i i j i i j i j

S
j

q q q q q q

q q k q q k q q k q q

q q

 + >=  −

S

S+ <

where  is the demand level at which the spot price is equal to the strike price. Equation (16) 

describes the three parts of the reaction function in C. 

1( )Sq p S−=
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Second stage: Nash Equilibrium 

The Nash equilibrium in the second stage of the game is defined by the intersection of the reaction functions.  
If the strike price is higher than the Cournot price , then, independently of the number of options 

sold in the first stage, the second stage equilibrium is the standard Cournot equilibrium.  

,C eqp < S

, , ( , )O eq C eq
i jq k k q=  (17) 

The options are out–the–money and have no strategic effect. This is shown graphically in , which 
shows that the number of options sold by firm 1 has no effect on the second stage equilibrium.  

Figure 10

Figure 10 Impact of options sold by firm 1 on the second stage equilibrium, High Strike price. 

a b c
2q

1q

,C eqq

1 2( )p q q S+ =

2q

1q

,C eqq

1 2( )p q q S+ =

2q

1q

,C eqq

1 2( )p q q S+ =

1k

2k

2q

1q

,C eqq

1 2( )p q q S+ =

1k

2k 2k 2k

1k 1k

 

If the strike price is below the Cournot price , then the second stage equilibrium q,C eqp > S , ( )O eq k  depends on 

the number of options sold in the first stage.  shows the impact of the number of options sold by 
generator 1 on the second stage equilibrium.  

Figure 11

Figure 11 Impact of options sold by firm 2 on the second stage equilibrium, Low Strike price. 

Figure 11

2q

1q

,C eqq

1 2( )p q q S+ =

2q

1q

,C eqq

1 2( )p q q S+ =

2q

1q

,C eqq

1 2( )p q q S+ =

2k 2k 2k

1k 1k 1k
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( , )A S k
( , )A S k

 

If a small number of options is sold (P k ), then the options will be in-the-money in the second 

stage, and have the same strategic effect as futures contracts. See A. The second stage equilibrium 
with options is the same as with futures contracts:  

, ( , )F eq
i jk > S

 , ,( ) ( )O eq F eqq k q k=  (18) 

If a large number of options is sold in the first stage (P k ), then generators will increase their 

output in the spot market, until the price drops to the strike price of the option. None of the firms will increase 
their output further, as the option is out-the-money. There is a set of equilibriums 

, ( , )F eq
i jk < S

( , )A S k  in the second stage of 

the game  

 , ( ) ( , )O eqq k A S k∈  (19) 

each with a spot price , and where the output of both firms is in between the reaction function of the 
standard Cournot game and the Cournot game with futures. Formally, 

P S=

( , )A S k  is described as follows:  
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1 2

1 2 1 1 2 1

2 1 2 2 1 2

( )

( , ) ( ) ( , )

( ) ( , )

C F

C F

P q q S

A S k q q q q q q k

q q q q q k

  + =  = ≤ ≤  ≤ ≤   


 (20) 

If a lot of options are sold, we will say that the option market is ‘flooded’. See B and C.  Figure 11 Figure 11

Figure 12
Figure 12

Figure 12

Figure 12 Equilibriums in the second stage as a function of the number of options sold in the first stage k  and the spot 

price S . 

Figure 12

 shows the second stage equilibrium as a function of the number of options sold by both firms and of 
the strike price. In A the strike price is high, and the generators play the standard Cournot equilibrium. 
In B, the strike price is low, and the equilibrium type depends on the number of options sold in the first 
stage.  

1k

2k

NO FLOODING

FLOODING

1k

2k
,C eqS p> ,C eqS p<

, ,( )O eq C eqq k q=

, ( ) ( , )O eqq k A S k∈

, ,( ) ( )O eq F eqq k q k=

, ( )F eqp k S=

a b

 

First Stage : Profit 

As before we assume that there is perfect arbitrage between the contracting stage and the production stage; the 
price of the option F  is therefore equal to the pay-out of the option: 
  (21) ( )F V P=

Given arbitrage, the reduced first-stage profit function of the firm simplifies to  

  (22) with

( , ) ( )

( )

O
i i j i i i

i j

k k P q C q

P p q q

Π = ⋅ −

= +

where the quantities are determined by the second stage Nash equilibrium. The profit of a firm depends only 
indirectly on the number of options it sells, through the dependencies of q  and i jq  on the number of option 

contracts sold.  

First Stage: Equilibrium 

The fact that there are several Nash equilibriums in the second stage if a lot of options are sold and the strike 
price is low (See B), complicates the solution of the first stage. As there is no obvious focal point in 
the second stage, it is hard to predict how the second stage behavior of the players depends on their first stage 
commitments. In particular, firms can use one second stage equilibrium as a ‘punishment equilibrium’, for 
‘misbehavior’ of a firm in the first stage, and play another equilibrium when both firms behave. ‘Punishment’ 
strategies are credible as they are Nash equilibriums in the second stage of the game.15  

In order to narrow down the number of equilibriums, we assume that generators co-ordinate on the equilibrium 
with the highest price. We think this is a valid assumption because of the following reasons:  

                                                           
15 Appendix III shows the large set of equilibriums of the game. 



 14

First, the low price equilibriums rely on the fact that both generators extensively flood the market in the first 
stage of the game, i.e. the number of options they sell by far exceeds their actual production in the second stage. 
This type of behavior is very risky. It is however a Nash Equilibrium because the generators perfectly co-
ordinate their production in the second stage on one of the infinite number of equilibriums and make sure that 
the spot price is exactly equal to the strike price. If the generators do not succeed in co-ordinating on a Nash 
Equilibrium in the second stage, they might end up losing a lot of money. Furthermore, if we add some 
uncertainty to the model, this extensive flooding becomes even more risky.  

Second, as generators play the game regularly, it is likely that generators will learn how to play the equilibrium 
with the highest price and a lower risk.  

Before we derive and prove the equilibrium of the game, we first discuss the results.  shows the 
equilibrium spot price as function of the strike price of the financial option.  

Figure 13

Figure 13

Figure 13

Figure 13

Figure 13 Price in the equilibrium as a function of the strike price. 

Figure 13

Figure 13

• If the strike price is above the Cournot price, then options are never in-the-money, and they have no 
strategic effect. We obtain the Cournot outcome. (Segment A in ) 

• If the strike price is below the price of the equilibrium that would prevail with futures (cfr. Allaz and 
Vila), then the generators co-ordinate on the Allaz and Vila equilibrium. The options are in-the-money, 
and have the same strategic effect as futures. (Segment B in ) 

• If the strike price is between the Allaz and Vila and the standard Cournot price, then the firms will 
make sure that the spot price is equal to the strike price. (Segment C in ) 

,CeqP

S

AVP

P

45

,CeqP

AVP

A

C

B

 

 clearly shows that the price with futures is (weakly) lower than with options. Options have the same 
effect as futures when their strike price is low.  

In the appendix we will prove that  represents indeed the equilibriums of the game. The proof consists 
of the following four theorems: 
Theorem 1: If the strike price is above the standard Cournot price (S p ), then the Cournot equilibrium is 

the equilibrium of the game.  

,C eq>

Theorem 2: If there exists an equilibrium with a spot price above the strike price, then it has to be the Allaz and 
Vila equilibrium.  

Theorem 3: If the strike price is below the Allaz and Vila price P , then the Allaz and Vila equilibrium is an 
equilibrium.  

AV

Theorem 4: If the strike price is between the Allaz and Vila price and the standard Cournot price, then flooding 
is an equilibrium. The spot price becomes equal to the strike price.  
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Theorem 1 defines the equilibrium price when the strike price is above the Cournot price.  

Theorem 2 and 3 can be used to show that for a strike price below the Allaz and Vila price, the Allaz and Vila 
equilibrium is an equilibrium (Theorem 3) and that there are no other equilibriums which would give a higher 
spot price. (Theorem 2) 

Theorem 2 and 4 can be used to show that for intermediate prices, the generators will flood the market, and set 
the spot price equal to the strike price (Theorem 4) and that there are no other equilibriums which would give a 
higher spot price. (Theorem 2)  

Conclusion 
This paper discusses the efficiency effects of options in a Cournot oligopoly, extending the work of Allaz and 
Vila. Instead of looking at futures contracts, it looks at financial call options. It is assumed that only options 
with one specific strike price are traded. This strike price is exogenous in the model. 

Options might be better than futures because they allow the players to hedge quantity risk, they allow more 
precise regulation of market power, and they solve some of the problems which are associated with the missing 
markets in the electricity market. This paper does not look at these effects and concentrates on the strategic 
effects of options when generators decide endogenously on the number of options.  

We show that options make markets more competitive but to a smaller extent than futures. The precise effects 
depend on the strike price of the options. If the strike price is high, financial options have no effect on the 
efficiency of markets because they are out–the–money. If the strike price is intermediate, firms will sell a lot of 
options in the first stage, and flood the market. The equilibrium price is equal to the strike price. For low strike 
prices, options have the same strategic effect as futures, firms will sell the same number of futures as in the 
Allaz and Vila model.  

In order to restrict the number of equilibriums in the game, we assumed that generators will co-ordinate on the 
equilibriums which lead to the highest price in the first stage of the game. In theory they could also co-ordinate 
on other equilibriums, but we think these equilibriums are less likely to occur in practice.  
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Appendix I : Proofs 

Theorem 1  
If the strike price is above the standard Cournot price (S p ), then the Cournot equilibrium is the 

equilibrium of the game. 

,C eq>

The second stage equilibrium is equal to the standard Cournot equilibrium independent of the number of options 
sold, 
 , ( , )O eq C eq

i jq k k q= ,  (23) 

This is therefore also the equilibrium of the two-stage game. This result is trivial. 

Theorem 2 

 If there exists an equilibrium with a spot price above the strike price, then it has to be the Allaz and Vila 
equilibrium 

Any equilibrium of the two-stage game has to be an equilibrium in the second stage of the game. The spot price 
can therefore only be above the strike price if the players do not flood the market, and sell a small number of 
options. See . Figure 12

Assume there exists an equilibrium of the first stage of the game k̂ , such that the players do not flood the 
market in the second stage(P k ). We have to prove that this equilibrium is the Allaz and Vila 

equilibrium k k

,
1 2( , )F eq k > S

,ˆ F eq= .  

Given that k̂  is an equilibrium of the game,  is locally optimal for firm i, with other words îk
, ˆ( )

0
O eq
i

i

k
k

∂Π
=

∂
. 

As only a small number of options are sold, the profit of firm i is the same as when the firm would sell futures 
instead of options:  

 , ,ˆ ˆ( ) ( )O eq F eq
i ik kΠ = Π  

Hence, k  is also the local optimum of î
, ˆ( )F eq
i kΠ : 

 
, ˆ( )

0
F eq
i

i

k
k

∂Π
=

∂
 (24) 

If the function  is concave in , it follows that k  is also a global optimum of , ( , )F eq
i ji k kΠ ik î

, ( )F eq
i kΠ . Hence, 

k̂  is the Nash Equilibrium of the Cournot game with futures contracts: k k ,ˆ F eq= .  

Theorem 3 
If the strike price is below the Allaz and Vila price , then the Allaz and Vila equilibrium is an 
equilibrium.  

AVS P<

We will prove that playing k k ,F eq=  is an equilibrium of the first stage of the game, when the players play a 

punishment equilibrium in the second stage of the game. The punishment equilibrium ensures that unilateral 
flooding of the market is not optimal. We will now explain the punishment equilibrium, and then we show that it 
is an equilibrium in the first stage.  

Figure 14 shows the strategy space of second stage of the game. In the first graph, both firms sell the 
equilibrium quantities k . In the second graph, firm 1 deviates from the first stage equilibrium and floods the ,F eq

i
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market. If the market is flooded, there are an infinite number of equilibriums. In the punishment equilibrium, the 
firms co-ordinate on that equilibrium which gives the deviator the smallest market share. Note that once firm 1 
has flooded the market, selling even more options has no effect on the second stage equilibrium.  

Equilibrium 

, ,( , )F eq F eq
i jq k k

1q

2q

1Pθ
,C eqq

Unilateral Deviation

, ,( , )F eq F eq
i jq k k

1q

2q

,C eqq

,( , , )dev F eq
i jA S k k

a b

 

Figure 14 Deviation of k ,F eq  by firm 1 

Formally, if firm i  unilaterally floods the market, the firms will co-ordinate on the punishment equilibrium 
( )iPq k in the second stage, where q ( )iP k  is defined by the following two equations 

 
,

( )

( , )

i i

i i

P P
i j

P P F eqF
jj i j

p q q S

q q q k

+ =

=
 (25) 

We will now verify that k ,F eq  is an equilibrium in the first stage, given the punishment equilibrium q ( )iP k  in 

the second stage.  shows the first stage strategy space. We need to prove that when player 2 plays 
, it is optimal for player 1 to play k .  ,

2
F eqk ,

1
F eq

Figure 15

If firm 1 does not flood the market, i.e. it sells fewer options than in the point B, then its profit  is 

the same as with future contracts. 

,
1 2( , )F eqO k kΠ

  (26) ,
1 12( , ) ( , )F eq F eqO Fk k k kΠ = Π ,

2

,
2

If firm 1 floods the market by selling more options than in point B, then it will obtain the same profit as in point 
B; its profit  becomes: ,

1 2( , )F eqO k kΠ

  (27) ,
1 12( , ) ( , )F eq F eqO F Bk k k kΠ = Π

This is a direct consequence of the fact that once the market is flooded, selling more options has no effect on the 
second stage equilibrium, and hence the profit level of firm 1.  

As k  maximizes , first stage deviation is not profitable for firm 1.  ,
1
F eq ,

1 2( , )F eqF k kΠ
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Figure 15 Deviation from first type of equilibrium 

Theorem 4 
If the strike price is between the Allaz and Vila price and the standard Cournot price , 
than flooding is an equilibrium.  

,C eq AVP S P< <

We will prove that any * ( )S∈ ∩q A B  is a second stage equilibrium outcome, where ( )A S  and B  are defined 

as 

 

1 2

1 2 1

2 1 2

( )

( ) ( )

( )

C

C

P q q S

A S q q q q

q q q

  + =   = ≤  ≤   


 (28) 

and  

 
'
1 1 1 2

'
2 2 1 2

( ) ( )

( ) ( )

C q P q q
B q

C q P q q

 ≤ + =  ≤ +   


 (29) 

( )A S  is the set of production quantities where each player produces more than his Cournot best response 

function, and where the spot price is equal to the strike price.  is the set of production quantities where for 
each generator the spot price is higher than his marginal cost. For all production quantities in  each generator 
would like to obtain a larger market share given constant prices. 

B

B

We will assume for now that both firms sell a very large number of option contracts k , in such way that 

when one firm unilaterally decides to sell fewer contracts, the remaining number of contracts still floods the 
market.

i → ∞

16 If a lot of options are sold in the first stage, then the set of equilibriums in the second stage 
( , )A S k becomes equal to ( )A S  

 lim ( , ) ( )
ik
A S k A S

→∞
=  (30) 

Any element * ( )A S∈q  is thus a second stage equilibrium of the game.  

We will now prove that extensively flooding of the market (k ) is a first stage equilibrium. Therefore we 

need to make an assumption on the equilibrium the generators will co-ordinate on in the second stage of the 
game; also off-the-equilibrium path. We assume that the players co-ordinate on q

i → ∞

* , as long as it is a second 
stage equilibrium, and co-ordinate on any other second stage equilibrium when q *  is not an equilibrium in the 

second stage.  

                                                           
S16 Analytically this means that P k .  and , ,(0, ) ( , 0)F eq F eq

j iS P k< <
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Figure 16

Figure 16

Figure 16

Figure 16 Unilateral deviation by firm 1. 

A shows the strategy space of the second stage when the players both extensively flood the market. 
We will now prove that it is not profitable for firm 1 to deviate from this equilibrium. For small deviations in the 
first stage, the firms will still play the equilibrium q q* *

1 2( , )q= *  in the second stage, as shown in B. 

Firm 1 will thus not increase its profit. For larger deviations, the set of second stage equilibriums becomes 
smaller ( , ) ( )A S k A S⊂ . As a result the equilibrium q *  is no longer possible. In any of the second stage 

equilibriums, firm 1’s market share decreases while firm 2’s market share increases. This has a negative impact 
on firm 1’s profit as we assumed that q * ∈ B . Also, large deviations are thus not profitable. See C. 
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To conclude the proof, we need to show that the set ( )A S B∩  is not empty for . Take 

production quantities q q

,AV C eqP S P< <
* *

1 2( , )q= *  such that each firm produces more than the Cournot quantity and less than 

Allaz and Vila quantity 

 , * ( )C eq F eq
ii iq q q≤ ≤ , k  (31) 

and such that the spot price equal is equal to the strike price  

  (32) * *
1 2 Sq q q+ =

with P q .  ( )S S=

Given that the strike price is between the Allaz and Vila price and the Cournot price ( ) it 
follows that  

,AV C eqP S P< <

  (33) 
, ,
1 2

, ,, ,
1 2( ) ( )

C eq C eqS

F eq F eqS F eq

q q q

q q k q k

≥ +

≤ + F eq

Hence a q *  which satisfies (31) and (32) certainly exists. We now will prove that * ( )S∈ ∩q A B  
*q is an element of ( )A S  when q q . This is the case given the following derivation: *( )C

i j q≤ *
j

*≤  (34) , ,*

(2)(1)
( ) ( )C eq C eqC C
i j i jj iq q q q q q≤ =

The first step is valid because the reaction function is downward sloping and the second step is valid because 
,C eqq  is the Cournot equilibrium.  
*q  is an element of  when the spot price is larger than the marginal cost. This is the case given the following 

derivation: 

B

  (35) ,' * '

(1) (2)
( ) ( )F eq AV
i i i iC q C q P S≤ ≤ ≤
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The first step is valid because the marginal cost function is upward sloping and the second step is valid because 
generators will choose in the Cournot game with futures an allocation where the price is above the marginal 
costs. This proves the existence of the equilibriums. 

Appendix II : Difference of Financial and Physical Call Options 
As mentioned before we will now discuss the difference of financial and physical contracts on market power. 
Most authors implicitly assume that both contracts are equivalent. This is true for futures contracts, but it is not 
the case for option contracts as we will show now.  

Above we discussed financial option contracts; we will now discuss physical option contracts and show the 
difference with financial options.  

The main difference is that a physical option is associated with a specific generation plant. If a retailer buys a 
physical option in the contracting stage, he takes an option on one MW of production capacity of a specific 
plant, i.e. he reserves the generation capacity. In the production stage, the retailer can decide to run ‘his’ plant 
and produce electricity. For this electricity he will pay the strike price of the option . The generators can only 
use the generation plants which are not reserved by retailers to sell electricity in the spot market. They are thus 
not allowed to use the generation plants that were already committed in the physical call options. 

S

As a result of selling physical options, a generator does no longer decide on the production level of all his 
plants. He sold the “right to set the production level“ of the reserved generation plants to the retailers. Retailers 
will turn on these generation plants when the spot price  increases above the strike price S .  P

The advantage of physical options is that because specific production plants are assigned to the contracts, the 
probability that electricity is physically delivered increases.  

Physical option contracts can be modeled in a two-stage game as we did with financial options. In the first stage, 
generators sell physical call options and assign some production capacity to their commitment. In the second 
stage retailers decide about the production level of the plants they reserved, and generators decide about the 
production level of the plants which were not reserved. Market clearing will determine the spot price for 
electricity.  

Because retailers turn on plants when the spot price is above the strike price, the production level of a generator 
increases with the spot price. Hence, a generator will produce more, when the sales of the other generators in the 
market decrease.  

When generators decide about the production level of the unreserved plants in the spot market they will take 
into account that the total production level of the other generators is not constant. The residual demand function 
that a generator faces, becomes flatter when other generators sell physical call options.17 This leads to a more 
competitive behavior by the players in the second stage. The best response function of a generator i  is a 
function of the options sold by the firm itself and by competitors. Note that this is different with financial 
options. There, the best response function depends only on the number of options sold by the firm itself. 

The price of physical options is determined by arbitrage. The value of a reservation of one MW of production 
capacity is equal to the spot price minus the strike price when the option is in–the–market, and zero when it is 
out-the-market.18  
  max{ ,0}F P S= −

                                                           
17 See also Chao and Wilson (2004). 
18 Because physical call options can only be offered when they are backed by generation capacity, arbitrageurs 
cannot sell physical call options in the contracting stage, as they do not own production capacity. Retailers 
themselves will therefore need to arbitrage between the two markets. 
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When there is perfect arbitrage, then the direct (i.e. the monetary) value of a financial option is zero for a firm. 
With physical options, this is no longer the case. By selling an option a generator receives the amount  in the 
contracting stage. In the production stage he receives the strike price  and incurs a cost C q  if the option is 

in-the-money. If the option is out-the-money, he does not receive a payment, but also does not incur production 
costs. The monetary value of a physical option for generator i  is  

F
S ' ( )i i

  '
{ }1 ( (P S i iF S C−− ⋅ − ))q

1

)}

e

)

with  the indicator function. When x  is positive, then 1 , otherwise it is zero. Given perfect 

arbitrage, we can rewrite the monetary value of the option as the price-cost margin if the option is in-the-money 
and zero otherwise 

{ }1 x { }x =

  '
{ }1 { (P S i iP C q− −

We did not succeed in finding an equilibrium of the Cournot game with physical options and a fixed strike price. 
The second stage profit functions of the players are more intertwined than with financial options, and there is the 
extra monetary reason to sell options in the first stage.  

In a working paper19, I compare bundles of physical and financial call options of the Chao and Wilson type. 
Generators sell bundles of options, where each bundle consists of one option of each possible strike price. I 
show that with this type of contracts, financial options are better than futures and physical options are worse.  

Appendix III : Numerical example 
This section uses the numerical example to illustrate the wide range of equilibriums in the game when no 
assumption is made on the co-ordination of the generators.  

Figure 17 presents the equilibriums of the game graphically. It shows the strategy space of the second stage of 
the game. The curved lines represent the iso-profit lines of each firm. 
  (36) 1 2(1 ) ( )i i iq q q C q ct− − − =

They are the indifference curves of each firm. The dashed lines are the contour lines for firm 2 and the solid 
lines for firm 1.  

Under perfect competition, the firms maximize their profit, assuming that the price level is fixed. The firms 
assume that if they change their output they will have no effect on the price. In the strategy space, a line with a 
fixed price level is a straight line with a downward slope of -45 degrees. At the optimal production level for firm 
i the price is equal to its marginal cost.  
  (37) '

1 2( ) (i ip q q C q+ =

Solving equation (37) for q  gives the prefect competitive supply function asq , it specifies the 
production level of the competitive firm i, when firm j produces 

i ( )PC
i jq

jq  units. The competitive supply function 

crosses the indifference lines of firm i when they have a -45 degree slope. The intersection of both competitive 
supply functions is the perfect competitive equilibrium. (the point PC in the graph) In the equilibrium, the profit 
contours of both firms are tangent and have a slope of -45 degrees. 

In the standard Cournot game, each firm will maximize its profit assuming the output of the other player fixed. 
The best response function of firm 1, q q , crosses its profit indifference curve in the region where it is 
horizontal. The best response function of firm 2, q q , crosses its profit indifference curve in the region where 

it is vertical. The intersection of both best response functions is the Cournot equilibrium, which is represented 
by the letter C in the model. 

1 2( )
C

2 1( )
C

                                                           
19 Unpublished, contact the author for a copy. 
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In the Cournot game with futures contracts, a firm can shift the equilibrium in the second stage, by selling 
futures in the futures market. If firm 1 sells future contracts in the first stage, then its best response function 
shifts outwards. The best response function of firm 2 will not change. By selling futures contracts, firm 1 will 
shift down the equilibrium over the reaction function of firm 2. At the optimal level of futures contracts, the best 
response function of firm 2 is tangent to the profit indifference lines of firm 1. The intersection of both reaction 
functions gives the Allaz and Vila equilibrium F.  

In the Cournot game with financial call options, the equilibrium depends upon the strike price.  

If the strike price is above the Cournot price, then the only possible equilibrium is the Cournot equilibrium 
(point C). If the strike price is below the Allaz and Vila price, then one of the Nash equilibriums is the Allaz and 
Vila equilibrium. (point F in the figure) 
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Figure 17 Second stage strategy space 

We will now look for the equilibriums where generators flood the market.  

In theorem 4 we proved that flooding is an equilibrium in the set ( )A S B∩ . This is the dark shaded area in the 

figure. The equilibriums in this set rely on extensive flooding in the first stage of the game but do not require a 
punishment strategy in the second stage. Note that any price between the perfect competitive price and the 
Cournot price can be obtained as an equilibrium. 

Other flooding equilibriums than the dark shaded area exist when we allow firms to use punishment strategies in 
the second stage of the game. We will now look at some of these equilibriums. As before, we assume that the 
players sell a large number of options in the first stage of the game. In the second stage they use a punishment 
strategy . More in particular, we assume that the firms will co-ordinate on the equilibrium that gives the 
smallest market share to the deviator.  shows the strategy space in the second stage of the game when 
firm 1 deviates in the first stage. We will check when it is profitable for firm 1 to deviate and sell fewer options 
in the first stage of the game.  

Pθ
Figure 18
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Figure 18 Second stage punishment strategy 1Pθ , if firm 1 deviates in the first stage of the game.  

Selling a large number of options is optimal for firm 1, if its profit in equilibrium q *  is higher than in the 

punishment strategy 1Pθ . In the equilibrium q *  as well as in the punishment equilibrium 1Pθ  the spot price is 

equal to the strike price S . Production quantities are, however, different.  

Figure 19

Figure 19 Firm 1 prefers the equilibrium q * , as the punishment equilibrium θ 1P  gives it a lower profit. 

 shows graphically the effect of a deviation on firm 1’s profit. In equilibrium q * , firm 1’s profit is 

equal to area abc minus area B. In the punishment equilibrium, firm 1’s market share is smaller, and its profit is 
equal to the area aedc. Firm 1 prefers equilibrium q *  to θ 1P , when area A  is larger than area B . Note that 
even if the strike price S  is below marginal costs in equilibrium q * , it still might be an equilibrium, when 

infra-marginal profits are sufficiently large (area A).  
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Flooding the market in stage 1 and playing q *  in stage 2 is an equilibrium when  

 1*
1 1( ) ( )Pqπ π θ>  (38) 

where iPθ  is defined by the following two equations:  

  (39) 
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( )

i i

i i

P P
i j

P PC
ii j

p S

q

θ θ

θ θ

+ =

=

Equations (38) and (39) define a set of equilibriums of the two-stage game, which allows for punishment 
strategies in the second stage: 
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In Figure 17 this set is the union of the light shaded area and the dark shaded area. 

Overview 

Table 1

Table 1 Solution of the game 

 shows the equilibrium quantities and the equilibrium price in the Competitive equilibrium, the Cournot 
equilibrium, the Cournot equilibrium with futures contracts, and the two-stage equilibrium with the lowest price. 
The price is low under competitive equilibrium, and high in the standard Cournot game.  

 1q  2q  P  
Cournot .327 .280 .393 
Futures .383 .317 .300 
Competitive .588 .294 .118 
Lowest possible price .634 .297 .069 


