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Abstract

Empirical applications of poverty measurement often have to deal
with a stochastic weighting variable such as household size. Within the
framework of a bivariate distribution function defined over income and
weight, I derive the limiting distributions of the decomposable poverty
measures and of the ordinates of stochastic dominance curves. The
poverty line is allowed to depend on the income distribution. It is shown
how the results can be used to test hypotheses concerning changes in
poverty. The inference procedures are briefly illustrated using Belgian

data.
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1 Introduction

In recent years, important contributions to the econometric literature on poverty

measurement have been made (e.g. Davidson and Duclos, 2000; Zheng, 2001b).
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By now, the sampling distributions of most commonly used indices have been
derived and many testing procedures for stochastic dominance have been pro-
posed. The empirical application of the statistical results, however, lags behind.
This may be due to the fact that the application of the theoretical results to
the problem at hand is not always straightforward. A frequently encountered
problem is the presence of a stochastic weighting variable. This situation oc-
curs naturally when income is weighted by the number of household members.
The randomness of the weighting variable affects the sampling distribution of
the estimators and has to be accounted for.

Cowell (1989) addresses the problem of stochastic weighting variables. He
derives the limiting distributions of the generalized entropy indices and of the
Gini coefficient estimated from a sample drawn from a bivariate distribution of
income and weight. This paper extends Cowell’s analysis to the measurement
of poverty. Davidson and Duclos (2000) derive the limiting distribution of
the ordinates of stochastic dominance curves and Zheng (2001b) derives the
limiting distribution of the decomposable poverty measures with a random
poverty line. These authors, however, do not consider stochastic weighting
variables. I extend the results of Davidson and Duclos (2000) and Zheng
(2001b) so that they can be used in a situation where a stochastic weighting
variable is present.

Section 2 presents the indices and dominance results for which inference
procedures are developed. Section 3 discusses estimation and hypothesis test-
ing. In section 4, the inference procedures are briefly illustrated with an ap-

plication to Belgian data.

2 Poverty measurement

Most often, the interest of the empirical researcher is in comparing poverty

between regions or over time. Two approaches can be taken. The first is based



on the use of indices. Here the researcher selects one of the many indices that
have been proposed in the literature and compares the values the index takes
for the different distributions. An important class of poverty measures is the
class of decomposable poverty measures. Let z denote the poverty line. A

decomposable, additively separable poverty measure has the form

Po(z) = /0 (., 2)dF (2), (1)

where F(x) is an income distribution function with support on the positive
half-line and m(z, z) is a function evaluating the contribution of the income
receiver with income x to total poverty in the population. Throughout, w(z, 2)
is assumed to be differentiable in = and z for x, z € (0, 00). It is also assumed
that dOm(x, z)/0z > 0.

Many commonly used indices are decomposable. For the FGT measures
(Foster et al., 1984), w(z,z) = (1 — x/2)*, where a is a natural number. If
7(x, z) = log(z/x), the resulting poverty measure is the Watts measure (Watts,
1986). If w(x,2) = b~1[1 — (2/2)"], a monotonic transformation of the second
measure proposed by Clark et al. (1981) is obtained.

Since each index establishes a particular ordering over income distributions,
the ordering of a given set of distributions may depend on the choice of the
index. The use of poverty dominance criteria — the second approach — allows
the researcher to make poverty comparisons in a more robust way. Dominance
ensures that all indices of some well-defined class unanimously prefer one dis-
tribution to another. A major drawback, however, is the incompleteness of the
ordering associated with each dominance criterion. If dominance curves cross,
the criterion is inconclusive.

In the literature, a primal and a dual approach to stochastic dominance
have been developed. Primal stochastic dominance functions are defined over

income. Let DL(x) = F(x) be the first order dominance function of the



distribution F' and define, for any integer s > 2, the s-th order dominance

function as
Dia) = [ D5 )y
0

It is well-known in the stochastic dominance literature (e.g. Fishburn, 1976)

that D3.(x) can be expressed as

Di(a) = o= | (=9 ) 2)

F is said to dominate G up to z* at order s if and only if D (x) > Dj.(x) for
all z € [0, z*].

Poverty dominance criteria relate stochastic dominance of some order to
classes of poverty measures. For the sake of brevity, the discussion here is re-
stricted to first and second order dominance. For higher order results, the
reader is referred to Davidson and Duclos (2000), Zheng (2000) and Duclos
and Makdissi (2004). Let IT' denote the class of decomposable poverty mea-
sures satisfying On(x,z)/0x < 0 for x € (0, z). This monotonicity condition
requires that a poverty measure increases if a poor person’s income decreases.
Let II? denote the subclass of II' containing the poverty measures satisfying
0?m(z,2)/0z* > 0 for x € (0, ). This convexity condition imposes the transfer
principle, requiring an income transfer from a poor person to someone richer
to increase poverty. Applying Atkinson’s results (1987) to the decomposable

poverty measures yields the following proposition.

Proposition 1 For s = 1, 2 : Di(Az) = D5(A\z) for all X € [0,1] <~
Ps(Az) = Pp(\z2) for all P € II* and for all X € [0, 1].

Note that this result requires the maximum poverty line to be the same for
both distributions. In practice, however, many circumstances may motivate
the use of different maximum poverty lines for F' and G. By restricting the set

of poverty indices to the indices for which 7 (x, z) is homogeneous of degree zero
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in x and z, Proposition 1 can be reformulated so that it holds for the case of
distribution-specific maximum poverty lines as well. If 7(x, z) is homogeneous
of degree zero, the resulting poverty measures are invariant under rescaling
the poverty line and all incomes and may therefore be called relative poverty
measures. Let U and U2 denote the set of relative poverty measures contained
in IT' and II2, respectively, and let zr and zg be the maximum poverty lines
censoring the distributions F' and G. It is not difficult to see that the following
proposition holds (e.g. Davidson and Duclos, 2000).

Proposition 2 For s = 1, 2 : [[)S;Cff:i?) > l?i(}’:zj) for all X € [0,1] <~

Po(Azg) = Pr(Azp) for all P € W and for all X € [0, 1].

Whereas primal dominance functions are defined over income, dual dom-
inance functions are defined over population shares. Dominance is checked
by comparison of the functions at all population shares p € [0,1]. The dual
approach is therefore also referred to as the p-approach or the quantile ap-
proach. In a series of papers, Jenkins and Lambert (1997; 1998a; 1998b) have
developed a quantile approach to second order poverty dominance. Following
Spencer and Fisher (1992), Jenkins and Lambert suggest the use of the cu-
mulative poverty gap curve which they termed the three I's of poverty or TIP

curve. The TIP curve is defined as
Qr(p)
TIPr(p,z) = / (z —x)(z < 2)dF(z) with p € [0, 1].
0

Jenkins and Lambert noticed that the incidence, intensity and inequality of
poverty can be read from the curve. The point on the horizontal axis where the
curve becomes flat is the headcount ratio. The TIP ordinate of the headcount
ratio is the average poverty gap and the curvature of the TIP curve reflects
the inequality of income distribution among the poor.

The TIP curve is interesting not only because it provides a complete graphic
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poverty profile, but also because it comes equipped with a dominance criterion.
Jenkins and Lambert (1998b) show that TIP dominance is equivalent to second

order poverty dominance.

Proposition 3 TIP;(p,z) > TIPr(p,z) for all p € [0,1] <= Pg(\z) >
Pr(\2) for all P € TI? and for all X € [0,1].

The dual statement of Proposition 2 for s = 2 makes use of the normalized

TIP curve defined as
1
TIP:(p,z) = =TIPp(p,z)  with p € [0,1].
z

The result is as follows (Jenkins and Lambert, 1998b).

Proposition 4 TIPL(p, zc) = TIP}(p, zr) for all p € [0,1] <= Pg(Azg) >
Pr(Azr) for all P € 92 and for all X € [0, 1].

3 Inference

In recent years, considerable research has gone into the development of proce-
dures for the statistical testing of changes in poverty. Applying the statistical
results that can be found in the literature to the problem at hand is not al-
ways straightforward. A frequently encountered problem is that the data set
contains observations on households, whereas the interest of the researcher is
mostly in the distribution of income among individuals. The common prac-
tice in empirical work is to make household incomes comparable by the use
of some equivalence scale. Equivalent incomes are then weighted by the num-
ber of household members or some function thereof. This practice creates a
statistical difficulty. Since household size is stochastic, the joint distribution
of income and household size has to be considered in deriving asymptotic dis-

tributions. A second problem arises if the samples from the distributions that
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are to be compared are — fully or partially — dependent. This situation is not
uncommon when studying the evolution of poverty over time. Sample depen-
dency causes the covariance of the estimates to be non-zero and has to be
accounted for in the estimation procedure.

As in Cowell (1989), the randomness of the weighting variable is dealt with
by considering a joint distribution function F'(z,w) of income x and weight w,
where it is assumed that both  and w are positive. Within this framework, I
will first derive the limiting distributions of the estimators of the decomposable
poverty measures and of the ordinates of stochastic dominance curves. The
results are then extended to the dependent sample case. After having discussed
estimation of the covariance structure of the estimates, the second subsection
focuses on procedures for hypothesis testing.

It is convenient at this stage to introduce some notation. Let

MlOI//wdF(wi)u
uu://wxdF(fcaw),

and let myo and my; denote the corresponding sample analogues. Note that

Z—i; is the mean individual income derived from the distribution F'(z,w). Also

define
1 y
Jr(y) = —/ /wdF(:c,w).
H10 Jo

The function Jr may be thought of as the distribution function of the individ-
ual incomes. Throughout, it is assumed that Jp is differentiable and has finite

population moments up to the required order.

3.1 Estimation

The poverty line



The limiting distributions of the decomposable poverty indices and of the ordi-
nates of primal and dual dominance curves depend on whether the poverty line
is deterministic or estimated from the data. I focus on the latter case, which
is the more complex one. Suppose that an IID sample of size N is available
from F(x,w). Let Zr denote a consistent estimator of the poverty line zp. I
shall suppose that the estimator Zr can be expressed asymptotically as

~

ZF

LS wn (i) + 0p(NH2) (3)

’I’)’LloN —

with (» : R — R. Frequent choices for the poverty line are fractions of the
mean income or (fractions of) quantiles of the distribution. In what follows,
I show that the estimators of the mean- and quantile-based poverty lines can

be written as in (3).

1. If the poverty line zp is set to a fraction k& of mean income, zr equals k’z—ié

and is consistently estimated by

~ mi1
Zr = k——.
mio

The estimator can be expressed as in (3) by letting

The limiting distribution of Zr is obtained by a straightforward application of

the delta method.

2. When the poverty line zp is set to a fraction k of the p-quantile of the

individual income distribution Jp, things are somewhat less obvious. The



p-quantile of Jp is defined as

Qr(p) = inf{s[Jp(s) = p}

and is estimated by

N
~ 1
= inf I (x; < s) = ph
Qolp) = nt(s s D il o <) 2 1)

where I(+) is the indicator function. For univariate distributions, the Bahadur
representation (Bahadur, 1966) allows the quantile estimator to be expressed
as a sample average of IID variables. Ghosh (1971) provides a relatively simple
proof. Along the lines of Ghosh, an asymptotic approximation can be derived

for the quantile estimator @F(p)

Lemma 1 Assume that a random sample of size N is available from F(x,w).

If Jo(Qr(p)) > 0 and sup;(wi/ S | w;) = 0,(N~V/?), then

Qr(p) — Qr(p) =

t10J QF Z wilp = I(z:i < Qr(p))} + 0, (N7112).

Proof. See Appendix A. m

Note that @F(p) — Qr(p) is expressed in Lemma 1 as a sample average of
IID variables. Asymptotic normality of N1/ 2(@ r(p) — Qr(p)) follows from the

Lindeberg-Lévy central limit theorem and the asymptotic variance of N/ 2(@ r(p)—

Qr(p)) is
1

[NloJ}?(QF(p))]z

To estimate the variance of Qp(p), an estimate of J4(Qp(p)) is needed. Note

varjw(p — I(z < Qr(p)))]-

that




where f, denotes the marginal density function of income x derived from
F(z,w). A consistent distribution-free estimate of J(Qr(p)) can be obtained
using kernel estimation methods.

The quantile-based poverty line zp = kQr(p) is consistently estimated by
ZF = k@F(p) By Lemma 1 and because myo = 139+ 0,(1) and Zfil wi{p—
I(z; < Qr(p))} = Op(N~V/3),

~ 1 ZW‘k{p - I(il?z < QF(p))} + 010(]\/'—1/2)7

A T N T (Qr(p))

which allows us to express zp as in (3) by letting

k{p—1(z; <Qr(p))}
Jr(Qr(p)) '

Cp(wi) = 2r +

Decomposable poverty measures

Let us now turn to the decomposable poverty measures. For the bivariate

distribution F'(x,w), expression (1) becomes

Poer) = — [ [wn(e, 20)dF(w,w).
A

Suppose that an I[ID sample of size N is available from the distribution F'(z, w)
and suppose that the poverty line is estimated from the sample and admits an
asymptotic representation as in (3). The natural estimator of Pr(zp) is

N

. 1 N .

Pr(Zp) = N E wim(x;, Zp) I (x; < ZF). (5)
i=1

my

Deriving the limiting distribution of ﬁF(EF) is nontrivial. The difficulty is that
the summation in the numerator of (5) is truncated at a random income level.

Zheng (2001b) derives the sampling distribution of the additive and separable
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poverty measures with a random poverty line. Weighting variables are not

considered by Zheng, but his results can be adapted to our needs.

Theorem 1 Assume that a random sample of size N is available from F(z,w).
Suppose that the poverty line is estimated from the sample and can be repre-

sented as in (3). Then

1 Zwi<5F,i - PF(ZF)) + Op(Nfl/g)

Pr(Zp) — Pp(zp) =
paolV i—1

with
afﬁ(ZF)

0pi = (@i, 2p)(zi < 2F) + (Cp(T:) — 2F) 9o

Proof. See Appendix B. m

Since ﬁp(gp’) — Pr(zF) is expressed in Theorem 1 as a sample average of 11D
variables, it is immediately clear that N'/2(Pp(Zp) — Pr(zr)) is asymptotically

normal with mean zero and with asymptotic variance

1
m varfw(0p — Pp(zp))]

with
8Iﬁ{zp)

op = m(z,2p)l(x < 2r) + (Cp(x) — 2F) Oz

Note that

OPp(zr) L/ZF/waﬂ(x,z)
0zp 1o Jo 0z

All components of the variance can be consistently estimated, either by the

dF (x,w) + 7(zp, 2rp) Jp(2F).

ZF

sample analogue or by kernel estimation methods. Therefore, by Slutsky’s
theorem, the variance itself can be consistently estimated. Also note that

the joint limiting distribution of & decomposable poverty measures is k-variate
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normal. The k x k asymptotic variance matrix is easily derived from the sample
average representation in Theorem 1. Finally, if the poverty line is nonrandom,

Cp(z;) — zrp = 0. In this case, the formulas simplify considerably.

Ordinates of dominance curves

I now turn to the estimation of the ordinates of stochastic dominance curves
and their covariance structure. Primal and dual dominance curves are consid-
ered in turn.

Given the results obtained above, deriving the limiting distribution of the
ordinates of primal dominance curves is straightforward. For the bivariate

distribution F'(x,w), expression (2) can be used to write

1 Azp
Dyp(Azp) = = Dljig / /W(AZF —x)*"'dF (z,w),

s s5—1 Az o s—1
e e [ [ (AZF x) AF (i, ).
[2F] (s = Dlpg Azp

Note that the ordinates D3 (Azr) and —%Fl) are now expressed as decompos-

able poverty measures. So, the results obtained for the decomposable poverty
measures can be used to estimate the ordinates and their covariance structure.

Besides the primal approach, there is the dual approach to stochastic dom-
inance. The TIP curve cumulates poverty gaps. With a size variable, the

definition becomes

Qr(p
T1Pe(pr) = o / / w(zr — ) (z < 2p)dF(z, W),
10

Suppose again that we have N drawings from F(x,w). Let the poverty line be

estimated from the sample and assume that the estimate allows for a repre-
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sentation as in (3). The natural estimator of T/ Pr(p, zr) is

1

TIPp(p,zr) = —

The difficulty in deriving the limiting distribution of TIP r(p, Zr) is again the
random truncation of the summation in the numerator of (6). Davidson and
Duclos (2000) derive the covariance structure of TIP ordinates. They do not
consider stochastic weighting variables, but their result can be easily extended.

I use (@) to denote max(0,a).

Theorem 2 Assume that a random sample of size N is available from F(x,w).
Suppose that the poverty line is estimated from the sample and admits a rep-

resentation as in (3). Then

N
—_ ~ 1 —
TIPp(p,zr) — T1Pp(p,zr) = N > wi(vp; — TIPp(p, 2r)) + 0p(N7'/?)
1027 =1
with
Yri = plzr—Qr(p))+

+I(2; < Qr(p)[(zr — i)y — (2r — Qr(p))+]

+ (Cp(zi) — 2p) min(Jr(2r), p).

Proof. See Appendix C. m

By the same arguments as before, the joint limiting distribution of £ TIP
ordinates is k-variate normal. The k£ x k asymptotic variance matrix is easily
derived from the sample average representation in Theorem 2 and can be
consistently estimated.

The normalized TIP curve TIPJ(p, zr) is obtained by dividing the TIP
curve by the poverty line. A simple adaptation of the proof in Appendix C
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results in

TIPi(p,2r) — TIPMp, 2p) = wi(vps — Cplx)TIPM(p, 2
+ (D, ZF) # (D, 2F) MmZ’FNZ (Vi (@) (p,2r))

+o0,(N7V/2).

The joint limiting distribution of k£ normalized TIP ordinates is k-variate nor-

mal and the asymptotic variance matrix can be consistently estimated.

Sample dependency

Researchers are usually interested in comparing poverty between distributions,
say F'(z,w) and G(y,v). Suppose that a sample of size M is available from
F(z,w) and a sample of size N from G(y,v). Let the statistics s and ¢ be
functions of the first and the second sample, respectively, and assume that the

statistics can be written asymptotically as sample averages,

M
1 -
=7 S ow) + o, (N,
1 N
b=+ Zg(yn v;) + 0p(N~H2),

where f : R?> — R and ¢ : R? — R are square integrable with respect to
I and G, respectively. For our purposes, this assumption is not restrictive,
since the poverty indices and ordinates of the dominance curves all have such
asymptotic representations. The joint limiting behavior of s and ¢ depends on
whether the samples are independent, fully dependent or partially dependent.
Independent samples arise in the case of repeated cross-sectional sampling and
imply, trivially, independence of s and . On the other side of the spectrum,
balanced panel data are fully dependent and are conceived as M = N quadru-

ples (z;, w;, y;, v;) drawn from the joint distribution H(x,w,y, v) of income and
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household size at different times. It is assumed that H(z,w,y, v) has marginals
F(z,w) and G(y,v). In this case, the covariance between s and ¢ follows im-
mediately from the joint asymptotic sample average representations.

In many household panels, however, households rotate so that the samples
of different years are partially dependent. Zheng (2001a) proposes a correction
method for partial sample dependency. Zheng applies it to inequality measures,
but the method is more generally applicable. Suppose that the first () observa-
tions in the samples are matched. That is, (1, w1, y1,v1), ..., (g, wWQ, Yo, VQ)
are independently drawn from H(x,w,y,v). Further suppose that the re-
maining observations are independently drawn from the marginal distribu-
tions F(z,w) and G(y,v). That is, (xg41, wg+1), -, (Tar, war) is independent
of (y;,v;) and (Yg+1,vg+1)s -5 (YUn, vnv) is independent of (x;, w;). It is also as-
sumed that (zg+1, wg+1), ..., (Tar, war) is independent of (x1,w), ..., (zg, wg)
and that (yg+1,v9+1); - (yn, vn) is independent of (y1,v1), ..., (Yo, vq)-

Denote o, = & S°% | f(zi,wi), B, = & Zf‘iQH flaiwi), oy = 230 g(yi,vi)
and 8, = + ZZ]\;Q +19(s, vi). The covariance between s and ¢ can then be writ-

ten as

cov(s,t) =cov(a, + B,,a, + 3,)

cov(ay, ay)
Q

7 N V(@ w), gy, ).

Let [S,T) = E([s,t]') and let N, M — oo along any expansion path. Assume
that Q/(MN)Y/? — ¢ with 0 < ¢ < 1. Then, [MY%(s — S), NY2(t — T)]" is

asymptotically normal with mean zero and asymptotic variance matrix

var(f(z,w))  qcov(f(z,w),g(y,v))
qcov(f(z,w),g(y,v)) var(g(y,v))
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3.2 Hypothesis testing

The normality of the limiting distribution of the decomposable poverty indices
implies that standard inference procedures can be used to test whether a given
poverty index is higher in F' than in G.

Testing for stochastic dominance is a more complicated matter. Many test-
ing procedures have been proposed (see Davidson and Duclos, 2000 and Barrett
and Donald, 2003 for an overview). Some check dominance by comparing the
curves at a finite number of points. Others are based on the supremum or in-
fimum of some statistic over the entire domain. The procedures I will discuss
make use of a predetermined grid. The advantage of these testing procedures
is their flexibility. Primal and dual stochastic dominance can be tested and the
procedures can deal with dependent samples and a stochastic size variable.

Suppose the researcher wants to test whether the dominance curve associ-
ated with F'is above the curve associated with G. Suppose that an IID sample
of size M is available from F' and an IID sample of size N from G and that
N/M converges to a positive constant as N — oo. Assume that the researcher
decides to compare the stochastic dominance curves at k£ grid points. Let m
denote an estimate of u, the k-dimensional vector of differences between the
dominance curves. From the previous subsection, we know that N'/2(m — p)
tends to a k-variate normal distribution. This is true irrespective of whether
the samples are fully dependent, partially dependent or independent. Let S
denote a consistent estimate of 3, the asymptotic variance matrix of m. The
vector m and the variance matrix S can be obtained by the estimation methods
described in the previous subsection.

Various hypotheses could serve as the null or the alternative in a stochastic
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dominance test setting. Consider the hypotheses

Hy:p=0
Hi:p>20
Hy:p e R
Hjz:min(p) <0

Hy:min(p) >0

Hy corresponds to the hypothesis that both dominance curves are identical,
H; to (weak) dominance and Hy to strict dominance.

Beach and Richmond (1985) and Bishop, Formby and Thistle (1992) have
proposed a test procedure that has gained some popularity in the stochas-
tic dominance literature. Their procedure constitutes a multiple comparison
test. The k subhypotheses Hy; : p; = 0 are tested against Hy,; : p; # 0
(1t = 1,2,...,k). The overall null, Hy, is the intersection of the k£ hypothe-
ses Hy;. If one of the null hypotheses is rejected, the overall null is rejected.
The procedure is to compute the ¢-statistics for each of the k hypotheses Hy ;.
Critical values are taken from the studentized maximum modulus (SMM) dis-
tribution. SMM(k, df) is the distribution of the maximum of the absolute value
of k independent t-variates with df degrees of freedom. Critical values can be
simulated or found in the tables provided by Stoline and Ury (1979). For a
test with & = 10 and df = oo, for example, the 5% critical value is 2.80.

Actually, the test based on the SMM distribution is a two-sided test of Hy
against Hy. When the null is rejected, however, Bishop, Formby and Thistle
(1992) use the test statistics to draw further conclusions. If there is at least
one significantly positive t-statistic and no significantly negative t-statistics,
the conclusion is that the dominance curve associated with F'is above the curve

associated with G. If there is at least one significantly negative ¢-statistic and
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no significantly positive ¢-statistics, the conclusion is that the latter curve is
above the former. Finally, if there are significantly positive and significantly
negative t-statistics, it is concluded that the dominance curves cross.

The Bishop-Formby-Thistle (BFT) test procedure is easy to implement and
attractive because of the encompassing decision rule. The procedure, however,
does not exploit all the information available in the variance matrix. The
elements of the vector m are treated as if they were independent. Yet, in
general, the k t-statistics are highly correlated. The BFT test may therefore
be expected to be undersized and to have low power.

In the statistical literature (e.g. Perlman, 1969), Wald tests based on dis-
tance statistics have been proposed that do make full use of the information
in the variance matrix S. Gouriéroux, Holly and Monfort (1982), Kodde and
Palm (1986) and Wolak (1989) introduced these test procedures in the econo-
metrics literature. The initial application was to regression coefficients. Re-
cently (Dardanoni and Forcina, 1999; Davidson and Duclos, 2000; Barrett and
Donald, 2003), the tests have also been applied to stochastic dominance anal-
ysis. The results needed in this paper are contained in Wolak (1989). Wolak
provides results that permit testing of Hy against H; and of H; against Hs.

The critical step in the procedure is to solve the quadratic programming

problem (QP):

ming (m —m)' S~ (m — m)

subject to m > 0.

Let m™* represent the solution to this problem. We can then compute the

distance statistics

dor = N[m'S™'m — (m —m*)'S~ (m — m*)],

dia = N(m —m*)' S~ (m — m”").
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dpy is the Wald statistic for the test of Hy against H; and d;5 for the test of H;
against Hs. The asymptotic null distributions of these statistics turn out to
be mixtures of chi-squared distributions. The following results (Wolak, 1989)

permit calculation of the p-values for the test statistics dg; and dy».

Wald test of H, against H;
The asymptotic null distribution of dyq is such that

limp oo Pr(dor = ¢) = E?:0 PT(XJQ' > c)w;(X).

Wald test of H; against H,
The asymptotic null distribution of d5 is such that

M y o0 SUP,,20 Pr(diz > ¢) = BF_ Pr(x3 > c)wi—;(X).

The weight w;(X) is the probability that the solution to the quadratic program-
ming problem QP for a N (0, ) variable m has exactly j positive elements. It
is convenient to estimate the weights by the use of a Monte Carlo technique.
One then draws from N (0, S) and solves, for each of these draws, the quadratic
programming problem QP. The weight w;(X) is estimated as the proportion
of solutions to QP that have exactly j positive elements.

If one is not prepared to conclude that dominance holds unless there is
strong evidence in favor of dominance, one may resort to a test developed by
Sasabuchi (1980); see also Dardanoni and Forcina (1999). Sasabuchi’s proce-
dure tests the hypothesis H3 that min(u) < 0 against the alternative Hy that
min(u) > 0. Denote by m; the i-th element of m, by s;; the (i,7)-th element of
S and by z, the (1 — ) quantile of the standard normal distribution. Under
Hs, lim y_ o Pr[inf(m) > z,) is less than or equal to «, while this limit is

VSii
one under Hy. That is, the test that rejects Hz against Hy if

\/]_sz'

Sii

> 2, foralli=1,.. k
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has an upper bound « on its asymptotic size and is consistent. Not unexpect-
edly, the test has very low power if all the elements of 1 are only slightly bigger
than zero (Berger, 1989). But if the test rejects Hj, this may be considered as

strong evidence in favor of Hy.

4 Empirical illustration

In this section, the inference methods are briefly applied to Belgian data.
Some FGT poverty measures are computed and normalized TIP dominance is
analyzed. The data set is the Belgian Socio-Economic Panel (SEP). The Centre
for Social Policy of the University of Antwerp is responsible for collecting and
processing the data. SEP contains data for the years 1985, 1988, 1992 and 1997.
An independent data set with observations for 1976 was also made available
by the Centre for Social Policy.

All data are monthly household income data. The 1976 data set contains
5098 income observations. For 1985, there are 6471 observations. Of these
households, 3779 are also in the 1988 sample and 2900 are in the 1992 sample.
In 1992, the sample was extended with the addition of 921 new households. In
1997, 4632 households were interviewed, 2375 of which were new households.
The definition of disposable income that was used includes labor income, all
social transfers and rental income and is comparable over the different waves.
The 1976 data set contains no data on rental income. Official consumer price
indices! were used to convert incomes to real 1996 euros.

A simple procedure is followed to reconstruct the individual income distri-
bution. First, household income is adjusted by the EU equivalence scale. This
scale gives the first adult (a person older than 18) a weight of 1, each subse-
quent adult 0.5 and each child 0.3. The equivalence scale adjusted household

income is then weighted by the (non-weighted) number of household members.

! Available at http://mineco.fgov.be/homepull_en.htm.
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76 ’85 88 ’92 97 ’76-"85 ’88-"85 ’92-’88 ’97-792 ’97-’85

P 0.0786 0.0505 0.0515 0.0606 0.0729 0.0282 0.0010 0.0091 0.0124 0.0225

s.e. 0.0035 0.0028 0.0042 0.0047 0.0044 0.0045 0.0047 0.0056 0.0064 0.0053

P 0.0157 0.0087 0.0076 0.0125 0.0117 0.0070 -0.0011 0.0049 -0.0008 0.0030

s.e. 0.0009 0.0007 0.0008 0.0018 0.0009 0.0011 0.0010 0.0019 0.0020 0.0012

P 0.0054 0.0029 0.0019 0.0062 0.0034 0.0026 -0.0009 0.0043 -0.0028 0.0006

s.e. 0.0005 0.0003 0.0003 0.0016 0.0005 0.0006 0.0004 0.0016 0.0017 0.0006

Table 1: FGT measures and standard errors with poverty line set to one-half
of contemporary mean income.

The sample of 1976 should be self-weighting. The panels of 1985, 1988, 1992
and 1997 contain sample weights that account for the sampling framework
and correct for panel attrition and non-response. Both the sampling weight
and household size are random weighting variables. In my computations, the
product of these variables was treated as a single stochastic weighting variable.
Since the data set did not contain the necessary information on stratification
and clustering, complex sample issues were neglected. 1 corrected for partial
sample dependency. Throughout, the significance level of the statistical tests
is 5%. The p-values of the Wald statistics were computed by running 1000
replications.

Identifying the poor amounts to the choice of a poverty line. Throughout,
the poverty line is set to one-half of contemporary mean income. This choice
gives the following chronological sequence of poverty lines for the different
years: 494.91, 494.94, 516. 88, 562. 89 and 589. 34. Table 1 gives the estimates
and standard errors of the FGT measures for the parameter a = 0, 1 and 2.
‘A— B’ means that the difference between the poverty index for year A and year
B was computed. The headcount ratio P° declined from almost 8% in 1976 to
about 5% in 1985. From 1985 on, the headcount started rising again to reach
more than 7% in 1997. Notice that the difference in the value of the headcount

is highly significant for the comparison between 1976 and 1985 and for that
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between 1985 and 1997. By and large, the poverty gap ratio P! displays a
similar evolution. Again, there is a significant decline in moving from 1976 to
1985. The 1988 poverty gap ratio is lower than in 1985, but the difference is
not significant at the 5% level. From 1988 onward, the poverty gap increases
again. The increase from 1985 to 1997 is significant. The distribution-sensitive
measure P? suggests a somewhat different evolution. From 1976 to 1988, there
is a significant decline. The P? measure jumps upwards in moving from 1988
to 1992 and declines again afterwards. The difference between 1985 and 1997
is not significantly different from zero.

The P? measure suggests that the income distribution among the poor
was very unequal in 1992. This is confirmed by Figure 1. Figure 1 plots the
normalized TIP curves for the different years. The 1992 TIP curve is indeed

very concave. To test whether the TIP curves dominate each other, the test

0.016

UANL S S P 1985

0mM2r | — 1997

0ot -

;
D008 - I A et

TIP ordinate

0005 '
-
oot/ -

4"
0002

o
1] 0.01 0.0z 003 0.04 0.05 0.06 0.07 0.08
population share

Figure 1: Normalized TIP curves with poverty line set to one-half of contem-
porary mean income.

procedures described above can be used. I choose to compute the difference

between the TIP curves at fractions 0.1, 0.2, ..., 1 of the maximal headcount
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t-statistics

grid points "76>’85 | '85>’88 | '92>88 | '92>’97 | '97>’85
0.1 2.58 1.92 3.20 2.27 0.18
0.2 3.03 2.38 3.07 2.04 -0.07
0.3 3.89 2.26 2.85 1.74 0.27
0.4 4.61 2.07 2.72 1.49 0.74
0.5 5.31 1.87 2.65 1.24 1.23
0.6 5.79 1.69 2.60 0.94 1.82
0.7 6.34 1.49 2.54 0.71 2.22
0.8 6.49 1.33 2.55 0.56 2.59
0.9 6.47 1.22 2.63 0.42 2.65
1 6.30 1.13 2.60 0.38 2.60

p-values in %

Hp-Hp (Wald test) | 0.00 5.62 0.01 0.19
Hi-Hg (Wald test) 61.6
H3-Hy4 (Sasabuchi) | 0.49 12.92 0.55 35.19 52.79

Table 2: t-statistics and test results for TIP dominance.

ratio of the two distributions that are to be compared. The test results are
in Table 2. ‘A > B’ means that the testing procedures check whether A TIP
dominates B. The t-statistics are the test statistics for the hypothesis that the
difference between the normalized TIP curves at the grid point equals zero. If
all t-statistics are found to be positive, the p-value of the test of H; against Hy
is a priori known to be 1. In these cases, the p-value of the test of H, against
H; is reported instead.

Sasabuchi’s testing procedure rejects non-dominance in favor of strict dom-
inance for the comparison between the 1976 and the 1985 curves and for the
comparison between the 1992 and the 1988 curves. The Wald test of H, against
H, does not reject the equality of the 1985 and 1988 curves, but rejects the
equality of the 1992 and 1997 curves in favor of TIP dominance of 1992 over
1997. The TIP curves of 1985 and 1997 cross. The crossing, however, does not
lead the Wald test to reject the hypothesis that the 1997 TIP curve dominates
the 1985 TIP curve.
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The general pattern displayed by the poverty indices is thus confirmed
by the TIP dominance analysis. Relative poverty decreased from 1976 to the
mid-eighties and increased again thereafter. The TIP dominance analysis also
indicates that poverty was higher in 1992 than in 1997 according to all relative

poverty measures satisfying the transfer principle.

5 Conclusion

Inference for poverty measurement often involves a stochastic weighting vari-
able. This situation occurs naturally when the observations on income are at
the household level and when the researcher’s interest is in the distribution
of income among individuals. In empirical work, household incomes are typi-
cally rescaled using an equivalence scale and are then weighted by the number
of household members. The consideration of a bivariate distribution defined
over income and weight allowed us to take the randomness of the weighting
variable into account. The limiting distributions of the decomposable poverty
measures and of the ordinates of poverty dominance curves were derived within
the bivariate framework. The poverty line was allowed to depend on the in-
come distribution, with special attention to mean- and quantile-based poverty
lines. It was then shown how the results on the limiting distributions of the
estimators can be used to test changes in the value of a poverty index and
to test poverty dominance. Belgian data were used to illustrate the inference
procedures.

The results in this paper can be extended along several lines. First, results
were derived only for poverty dominance curves. It is not difficult to derive
similar results for welfare and inequality dominance curves such as (general-
ized) Lorenz curves. The same procedures can then be applied to test welfare
and inequality dominance. Second, this paper does not touch upon complex

sample issues like stratification and clustering. Extending the results to the
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complex sample case first requires that an appropriate asymptotic framework
be specified. The limiting distributions of the estimators then have to be de-
rived within the chosen framework. Under the assumption that the number
of clusters tends to infinity, the usual complex sample variance formulas can
be used for the estimators considered in this paper (see e.g. Zheng, 2001b;
Zheng, 2002). Third, I have focused on test procedures for stochastic dom-
inance that make use of a predetermined grid. The arbitrariness involved in
the grid specification is not desirable from an inference perspective and con-
stitutes an important drawback of these procedures. Recently, Barrett and
Donald (2003) have proposed a Kolmogorov-Smirnov type test for stochas-
tic dominance which effectively considers the entire domain of the dominance
curves. The test requires the samples to be randomly drawn from univariate
income distributions. It would be of relevance to extend the testing framework
so that stochastic weights and complex sample design can be dealt with. This

is an issue for future research.
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Appendices
Appendiz A: Proof of Lemma 1

The proof parallels that of Ghosh (1971, p. 1958-1959). Define

120) == [* [ wiraw)

| X
L (2 < ).
mm]\,;w (zi <y)

and

jF(y) =

Let
tx = NY2(Qr(p) — Qr(p)).

We then have for any c

tn S c<<= upn

N

CN

where

uy = N2{Jp(Qr(p) + N V%) = To(Qr(p) + cN V2V HIn(Qr(p))) ™,
ey =NV Tp(Qr(p) + eNT2) — Te(Qr(p) M Jp(Qr(p))) .

Now, a Taylor expansion gives
Je(Qr(p) + eN7Y2) = p+ eNTV2TL(Qr(p) + o(NTV2). (7)

Under the condition that sup;(w;/ SN, w;) = 0,(N~1/2), we also have

~ o~

Jr(Qr(p)) = p + 0p(N~2). (8)

From (7) and (8),

CN —p C.
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Let
oy = N2 {Te(Qr(p) — Tr(Qr(p)}(Jr(Qr(p) ™

Then

uy — vy =N {Jp(Qr(p) + cNV2) — Jp(Qr(p))
—Jr(Qr(p) + N7V + Te(Qr(p)} (J(Qr(p))) .

Because cN 2 = o(1) and Jr(y) — Jp(y) = O,(N~Y/2) for any y,

Te(Qr(p)+eN Y2 = Jp(Qr(p) —Tr(Qr(p)+eN"2)+ Tp(Qr (p)) = 0,(N71/?)

so that

UnN —UN —p 0.

Because ¢y —, ¢ and uy — vy —, 0, we have for every ¢ > 0

lim Pr(ty <c,oy =2 c+¢e)= lim Pr(uy <cy,oy Zc+¢)=0,

—00 N—oo

lim Pr(ty > c+e,oy <c¢)= lim Pr(uy > ey + 6,08 <c¢) =0.

N—oo N—oo

This establishes the second condition of Lemma 1 of Ghosh (1971). The first
condition, that vy is bounded in probability, is also satisfied. By Lemma 1 of

Ghosh, ty —vny = 0,(1). So,

N
Py > wil(z; < Qr(p))

Qr(p) — Qr(p) = ACED) +0,(N7V?)
bRl <o)y
ST @y e
where f1,, could be substituted for mj, because mig = py9 + 0,(1) and
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LN wdp— (i < Qr(p))} = O)(N12),

Appendiz B: Proof of Theorem 1

The proof parallels that of Zheng (2001b, p. 341-342). Write ﬁp(%}:) as L&

mio

with

say, where J/f(x, w) is the empirical distribution function. After a Taylor ex-

pansion of 7(z,Zr), the first integral becomes

/OZF/wﬂ(x,zF)dﬁ(x,w)
T (- 2p) /O N / $2ri2)

/ZF/wﬂ(x,zF)dﬁ(x,w)

(5 — 2 / / 87r (z,z)

because Zr — zp and F — F are O,(N~Y/2). For the same reason,

(44) / /ww z,2p)dF (z,w) + O, (N7
(Zr — 2p)7(2F, 2r) fo(2p) E(w|2F)
dF (z,w) + 0,(N~?)

N on(x, zp)
NSy g
o 0z r

= (Zp — zp)7(2p, 2F) fo(zr) E(w|2F) + 0,(N

dF (z,w) + 0,(N~/?)

ZF

dF(x,w) + op(N’I/Q),

z

—1/2)

after a Taylor expansion and neglecting terms that are o,(N ~1/2). Combining
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these results, we get

L
= NZ (2, 2p) (25 < 2F)

+(3F—ZF){/O /www

o, (N2). (10)

dF(z,w) + 7(zp, ZF)fx(zF)E(w|zF)}

From (3), we have that

N
~ 1 _
FTARE N ;:1 wi(Cp(w:) = 2p) + 0p(N71/2).

N
Since mig —p fiyo and % Y- wi(Cp(x:) — 2p) = O (N7Y2),
i=1

/Z\F_zF:

= S wi(Cale) = 26) + 0N (1)

Substituting this result into (10), it follows that

Z wi{m(x;, zp)(x; < zp)

Pr(Zp) — Pp(zp) = —
=1

(o) = ) 2EEE Py} + 0, (N,

By a similar argument as above, j1;, may now be substituted for myq.

Appendiz C: Proof of Theorem 2

The proof parallels that of Davidson and Duclos (2000, p. 1461). Write
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I{I\Pp(p, ZF) as ni—i) with

/ [ wer — )1 < Qelo)Ie < 2P,
(Zr — zF //w] < Zp)dF(z,w)

= (1) + (), (12)

say. Using the same techniques as above, it can be shown that

/ / w(zp — 2)(z < Qr(p)(z < zp)dF(z,w)
+(Qr(p) = Qr(p)(2r — Qr(P)I(Qr(p) < 2r)E(w|Qr(p)) f(Qr(p))
+ Op(N_l/Z)

= %Zwi(z;r —x)I(z; < Qr(p))I(z; < 2r)

>l — 1o < Qelp) ek — Qel)I(Qe(r) < )

+0,(N7V2),

after substitution of the Bahadur representation into the second term.

The second term in (12) is

(i1) = (Zr — 2F mm(/ /wdF:cw /QF(p/wdew>+O( 1

= to(2F — zr) min(Jr(2r),p) + Op(
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Substituting these results and (11) into (12), it follows upon rearranging that

TIPr(p,%r) — TIPr(p, zr) =
1 Zwi{p(zF — Qr(p))+ + I(z; < Qr(p))

mmN
X [(zp — i)y — (2r — Qr(D))+]

+ (Cp(w:) — 2p) min(Jp(2r), p) — TIPp(p, 2p)} + 0,(N71/2).

where (a); denotes max(0,a). Again, mo can be replaced by (g -
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