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Abstract 

Composite indicators are regularly used for benchmarking countries’ performance, but 
equally often stir controversies about the unavoidable subjectivity that is connected with 
their construction.  Data Envelopment Analysis helps to overcome some key limitations, 
viz., the undesirable dependence of final results from the preliminary normalization of sub-
indicators, and, more cogently, from the subjective nature of the weights used for 
aggregating.  Still, subjective decisions remain, and such modelling uncertainty propagates 
onto countries’ composite indicator values and relative rankings. Uncertainty and 
sensitivity analysis are therefore needed to assess robustness of final results and to analyze 
how much each individual source of uncertainty contributes to the output variance.  The 
current paper reports on these issues, using the Technology Achievement Index as an 
illustration.  

 
1. Introduction 
Organisations such as the United Nations, the European Commission, and others have 
developed and used “composite indicators” in which single indicators are aggregated into one 
index.  These composite indicators provide comparisons of countries in complex and 
sometimes elusive policy issues.  These measures are increasingly recognised as a tool for 
policy making and, especially, public communications on countries’ relative performance in 
wide ranging fields such as the environment, the economy, or technological development.1  

Composite indicators (CIs) are much like mathematical or computational models.  Just as 
for models, the justification for a CI lays in its fitness to the intended purpose and peer 
acceptance. Also, their construction owes more to craftsmanship than to universally accepted 
scientific rules for encoding. The construction of CIs involves stages where subjective 
judgement has to be made: the selection of indicators, the treatment of missing values, the 
choice of aggregation model, the weights of the indicators, and so on.  These choices can even 
be used to manipulate the results. It is, thus, important to identify the sources of subjective 
assessment and data errors and use uncertainty and sensitivity analysis to gain useful insights 
during the process of CI building, including an appraisal of the reliability of countries’ 
ranking.  These considerations are a central theme of the current paper. 

                                                 
* This paper is an offshoot of the KEI-project (contract n° 502529) that is part of priority 8 of the policy 
orientated research under the European Commission’s Sixth Framework Programme (see 
http://kei.publicstatistics.net/). Laurens Cherchye thanks the Fund for Scientific Research-Flanders (FWO-
Vlaanderen) for his postdoctoral fellowship. 
1 For an overview, see the JRC information server on composite indicators: http://farmweb.jrc.cec.eu.int/ci/. 
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The construction methodology that is used in the present paper is rooted in Data 
Envelopment Analysis (DEA).  The original question in the DEA-literature is how one could 
measure each decision making unit’s (e.g., a firm’s) relative efficiency, given observations on 
input and output quantities in a sample of peers and, often, no reliable information on prices 
(e.g., Charnes and Cooper, 1985).  One immediately appreciates the conceptual similarity 
between that original problem and the one of constructing CIs.  In the latter case, quantitative 
sub-indicators for overall benchmarking are available, but as a rule there is only disparate 
expert opinion available about the appropriate weights to be used in an aggregator function.  
Yet there are differences between the two settings as well, the most notable one perhaps being 
that CIs typically look at ‘achievements’ without taking into account the input-side. Though 
there are some interesting exceptions (see the work of the European Commission on the 
Summary Innovation Index in 2005) 

A known remarkable feature of the DEA-methodology is that it looks for endogenous 
(possibly constrained) weights/shadow prices, yielding an overall score that depicts the 
analyzed decision making unit in its best possible light relative to the other observations.  This 
quality explains a major part of the appeal of DEA-based CIs in real settings.  For example, 
several European policy issues entail an intricate balancing act between supra-national 
concerns of the centre and the country-specific policy priorities of member states.  If one opts 
to compare composite performance of member states by subjecting them to a similar 
weighting scheme, this may prevent acceptance of the entire exercise.  To take an example: 
with reference to European social inclusion policy, Atkinson et al. (2002) remark that “in the 
context of the EU, there are evident difficulties in reaching agreement on such weights, given 
that each member state has its own national specificity.”  As the essence of DEA is that it 
yields most favourable, country-specific weights, it may help to counteract such problems.  
However, the typical DEA set-up, which only requires the endogenous weights to be non-
negative, is insufficient to guarantee peer acceptance.  Usually some expert information about 
the most appropriate weights to be used for aggregating the individual sub-indicators is 
available, and such opinions should ideally be incorporated to make the weights acceptable.  
We will provide a typical example below.   

DEA-based CIs have inter alia been used to assess European labour market policy (Storrie 
and Bjurek, 2000), European social inclusion policy (Cherchye, Moesen and Van 
Puyenbroeck, 2004), and internal market policy (Cherchye, Lovell, Moesen and Van 
Puyenbroeck, 2005).  A similar model has been tested to assess progress towards achieving 
the so-called Lisbon objectives (European Commission, 2004, p. 376-378).  Similarly, some 
authors have proposed a DEA-approach for the well-known Human Development Index 
(Mahlberg and Obersteiner, 2001; Despotis, 2005).  In this paper, we will use the Technology 
Achievement Index (TAI) to illustrate our approach.  Together with the Human Development 
Index, the TAI is developed by the United Nations for the Human Development Reports. The 
main reason for using it here as an illustrative example is that it figures likewise, and in an 
extensive fashion, in the JRC-OECD Handbook on Constructing Composite Indicators (see 
Nardo et al., 2005a; 2005b).2 We will complement the handbook’s results by providing a 
more in-depth analysis of the DEA approach.   

We will start in section 2 by briefly discussing the TAI as well as the available 
information on possible weighting schemes, obtained by a panel of experts. Section 3 presents 
the basic model and indicates its relationship with more conventional DEA-models.  We then 

                                                 
2 Regarding possible methodologies for composite indicator construction, both references have a considerably 
broader scope than the current paper, which only focuses on DEA-based indices.   For instance, the interested 
reader may find there sensitivity and uncertainty analyses, using the TAI-data, that compare DEA-based results 
with those stemming from otherwise obtained  indices (e.g. via exogenous weighting, or via a non-compensatory 
multicriteria approach).  
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address uncertainty and sensitivity analysis in section 4. The current mainstream literature on 
sensitivity analysis for DEA-models is primarily concerned with the sensitivity of 
(in)efficiency scores following data perturbations in a given set of inputs and outputs (see e.g. 
Cooper et al., 2004).  In the case of CI’s, however, one is typically also concerned with the 
robustness of results if performance dimensions are added or deleted, if the expert information 
would have been different, and so on.  Such choice-of-model concerns have been addressed 
rather infrequently in the DEA-literature (e.g. Valdmanis, 1992; Wilson, 1995; Banker et al., 
1996; Simar and Wilson, 1998; Simar, 2003). Even here the parallel between composite 
indicators and mathematical models is useful. In mathematical models of natural or man-made 
systems uncertainty and sensitivity analysis relative to modelling assumptions or scenarios 
has been studied (see Saltelli et al., 2004, for a review). The methodology that we present in 
section 4 may therefore be valuable for a broader DEA-audience as well.  Section 5 concludes 
and offers some final remarks.   
 
 
2. The Technology Achievement Index and expert opinions 
The United Nations introduced the TAI to capture how well a country is creating and 
diffusing new as well as existent technologies and building a human skill base for technology 
creation, with the intention of helping policy-makers to define technology strategies (UN, 
2001).  As explained by Desai et al. (2002), these dimensions are captured by eight 
achievement indicators:  (I) the number of  patents granted per 1,000,000 people, (II) the 
receipt of royalties (in US$, per 1000 inhabitants), (III) the number of Internet hosts per 1,000 
people, (IV) exports of high and medium technology products (as a share of total goods 
exports), (V) the number of telephone lines per 1,000 people (in logs), (VI) Electricity 
consumption per capita (in logged kWh), (VII) the mean years of schooling, and (VIII) the 
gross enrollment ratio of tertiary students in science, mathematics and engineering. We refer 
to the actual figures, used in the current paper, and extensive explanations of each sub-
indicator in Desai et al. (2002).  This list exhibits a typical feature of most CIs, i.e. that the 
sub-indicators are displayed in quite diverse measurement units. According to current 
practice, the TAI’s authors deal with this problem by normalising the original data, a feature 
to which we will comment further on.3  

The normalised sub-indicators are next weighted and added.  Specifically, the UN uses 
equal weights for each of the components.  We will now depart from that approach.  One 
reason for doing so has already been mentioned in the introduction: applying “benefit-of-the-
doubt” weights may help to foster acceptance of the eventual results by the national 
stakeholders considered.4  A second one is that we have information on the subject, stemming 
from an internal JRC survey conducted on 21 individuals, on the set of weights which each 
individual would consider as appropriate.  These weights were obtained using ‘Budget 
Allocation’, a participatory method in which experts are given a budget of N points, to be 
distributed over a number of sub-indicators. In budget allocation each expert can “pay” more 

                                                 
3 The transformation method used for the TAI re-expresses the original value for each sub-indicator on a (unit 
free) scale from 0 to 1, using the formula (original value – observed minimum value) / (observed maximum value 
- observed minimum value). For the telephone and electricity sub-indicators, logarithms rather than original 
values are taken.  
4  A large majority of composite indicators are of the equal weighting type.  We here instead allow for 
(constrained) country-specific weights, which may be justified by considerations such as those figuring in the 
introduction, but also on pure modelling grounds: forcing weights to be equal neglects the reality that there are, 
often, a compilation of possibly conflicting opinions available.  Hence, equal weighting is in general not even an 
adequate description of a core issue in composite indicator construction.  Finally, “simple” equal weighting 
implies fixed weighting, which in turn implies that country rankings may change merely because another 
normalisation method has been used (see further). 
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for those indicators whose importance he/she want to stress.  Summary information about the 
distributions of the points so-obtained, as applied in the TAI setting, is provided in Table 1. 
 
 

Table 1: summary statistics on TAI-weights, retrieved from expert panel 
Weights Patents Royalties Internet Exports Telephone Electricity Schooling Enrollment 
Mode 0,10 0,05 0,10 0,20 0,10 0,05 0,20 0,20 
Average  0,11 0,11 0,11 0,18 0,10 0,06 0,15 0,18 
St. dev. 0,05 0,07 0,05 0,07 0,05 0,04 0,06 0,08 
Min 0,05 0,00 0,02 0,09 0,00 0,00 0,05 0,00 
10th percentile 0,05 0,05 0,05 0,10 0,05 0,00 0,05 0,10 
90th percentile 0,20 0,20 0,20 0,30 0,15 0,12 0,20 0,30 
Max 0,20 0,30 0,20 0,33 0,20 0,15 0,25 0,30 
# ranked (*)         
 - on top 2 2 1 8 0 0 5 9 
 - at bottom 4 8 6 1 5 15 3 3 
(*): entries provide the number of times a sub-indicator figures on top (resp. at the bottom) of experts’ 
rankings.  The horizontal sum exceeds the number of experts, which is due to tied rankings for first (resp. 
last) places.     
 

 
As one notices, there are considerable inter-individual differences in the proposed 

weighting schemes, with not a single pair of experts sharing a similar proposal.  This holds for 
the magnitudes as well as for the relative importance of the different sub-indicators. One can 
infer from Table 1 that a limited consensus emerges from the panel on the relative importance 
of the variables, and that unanimity is only achieved in judging that the telephone and 
electricity indicators are less important than all other indicators. No additional consensus 
about the dimensions’ ranking emerges from the panel. Also, although equal weights (of 1/8) 
fall within the upper and lower bounds over the sample of experts, nobody in the panel 
proposed to weigh all sub-indicators equally, in contrast with the actual TAI. This clearly 
illustrates one stage in the TAI’s construction where subjective judgement has been made.  
For example, if alternatively a dimension-wise plurality vote (among this particular expert-
panel) had been used, the eventual weighting scheme would have been the one figuring in the 
first line of Table 1. The questions to be taken up in the following sections are how such 
information can be incorporated when calculating an overall index, and to what extent 
perturbations in this setting have an impact on eventual country rankings. 

Before doing so, one more remark is in order.  It is well-known that weights in a linear 
aggregate iij wyΣ  have the meaning of trade-offs. Hence, what matters in the linear composite 
are the relative weights (which directly refer to the substitutability of the different dimensions) 
rather than the absolute weights.  It has however been observed (e.g. by Munda and Nardo, 
2003), that experts usually interpret weights, such as those stemming from a Budget 
Allocation method, as ‘importance coefficients’ (cf. Freudenberg, 2003, p. 10: “Greater 
weight should be given to components which are considered to be more significant in the 
context of the particular composite indicator”).  In fact, the 21 experts were literally asked to 
assign more points to a sub-indicator “the more important this indicator is”.  We will 
consequently adhere to such an interpretation of the above weights in what follows.5  

                                                 
5 In fact, in the aforementioned handbook one finds that two types of weighting information were gathered 

from this panel.  That is, weights were also obtained using the Analytical Hierarchy Process (see Nardo et al. 
(2005a,b) for results based on the AHP-information), and such weights typically have a relative interpretation.  
Due to space limits, we focus on the budget allocation results. However, as demonstrated in Cooper, Seiford and 
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3. A basic DEA-model  
To introduce DEA as a tool for constructing “benefit-of-the-doubt” CIs, we consider a cross-
section of m sub-indicators and n countries, with yij the value of sub-indicator i in country j. In 
the following, and in line with the more common DEA terminology, we will often refer to 
sub-indicators as “outputs”. In the TAI case, each sub-indicator/output i has the following 
interpretation: if >ij iky y  then country j performs better than country k. 

Our objective is to merge these individual sub-indicators/outputs into a single-valued 
composite indicator, defined as the weighted average of the m sub-indicators; we use wi to 
represent the weight of the i-th sub-indicator. As discussed above, the available expert 
information does not allow us to specify a priori a unique vector of generally acceptable 
weights. Therefore, we endogenously select those weights that maximize the CI value for the 
country under consideration. This gives the following linear programming problem for each 
country j: 

 jCI =
1

max
m

ij iwi
i

y w
=
�  

Subject to 

1

1
m

ik i
i

y w
=

≤�   1,...,k n∀ =   (normalisation constraint) 

0iw ≥    1,...,i m∀ =   (non-negativity constraint) 
 
The objective function reveals the benefit-of-the-doubt interpretation of the methodology: 

the problem chooses those weights wi that maximize the resulting indicator value CIj. As a 
result, the highest relative weights are accorded to those dimensions for which the country j 
achieves the best performance (in relative terms) when compared to the other countries in the 
sample. The weights are not fixed a priori; the only restriction in the formulation above is that 
they should be non-negative, which implies that the CI is a non-decreasing function of the 
sub-indicators (see the non-negativity constraint; we discuss the inclusion of additional 
weight restrictions below). To guarantee an intuitive interpretation of the CI, we impose that 
no country in the sample can achieve a value that is greater than unity under these weights 
(see the normalisation constraint).  We obtain 0 1jCI≤ ≤  for each country j, with higher 
values indicating a better relative performance.  

As pointed out by Despotis (2005), this model is formally equivalent to the original input 
oriented, constant-returns-to-scale DEA model presented by Charnes et al. (1978), when 
using the sub-indicators to represent the different outputs and allocating a single ‘dummy 
input’ with value unity to each country. In that interpretation, the dummy input for each 
country may be interpreted in terms of a ‘helmsman’ that pursues several policy objectives 
corresponding to the different sub-indicators; see e.g. Lovell et al. (1995). Still, it should be 
clear from our above discussion that an intuitive interpretation may also be obtained by 
simply regarding the model as a tool for aggregating several sub-indicators of performance, 
without explicit reference to the inputs that are used for achieving such performance.6 

                                                                                                                                                         
Tone (2000, p. 169-174), AHP-based information can also be appended to DEA-based indicators by creating 
assurance regions for the weights (rather than by constraining the virtual outputs, as we do).       
6 Conceptually, the dummy input/helmsman approach may be difficult to reconcile with the fact that one is 
actually using an input-oriented DEA model (which looks for feasible downward adjustments of inputs, holding 
outputs fixed).  Moreover, the argument that an input- and an output-orientation are fully equivalent for the class 
of DEA-models introduced by Charnes et al. (1978), only holds for models without (or with specific kinds of) 
weight restrictions.  Therefore we prefer to think of the problem as one in a “pure output setting” (a term coined 
by Cook, 2004), in which the normalization constraint is interpreted as a scaling or bounding condition (see also 
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Interestingly, the CI values are independent of the units in which the constituent sub-
indicators are measured, i.e. the CI meets the important property of ‘units invariance’. Indeed, 
units invariance is a well-known property of the original DEA model introduced by Charnes 
et al. (1978). At this point, it is worth stressing that the composite indicators that use the most 
common practice of fixed weighting (with equal weighting as a special case) do not meet the 
units invariance property. In fact, this units invariance property of the ‘benefit-of-the-doubt’ 
alternative makes the normalisation stage (see section 2) redundant. This is particularly 
convenient from a practical point of view; see, e.g., the discussion in Freudenberg (2003) on 
the sensitivity of CI results with respect to the specific normalisation scheme that is used. 

The above model implies a most generous CI; the only restriction on the weights is that 
they should be non-negative. Somewhat inconveniently, this does not exclude extreme 
scenarios. For example, all the relative weight can be assigned to a single sub-indicator, which 
would then completely determine the overall CI performance; the other sub-indicators would 
‘not matter’ as their relative weight would equal zero. Moreover, we do have expert opinion, 
and to neglect their contribution means running the risk that the eventual composite indicator 
is rejected. This indicates a need for further restricting the endogenously selected CI weights.  

In fact, the issue of imposing additional a priori weights has attracted considerable 
attention in the DEA literature; see, e.g., Thanassoulis et al. (2004) for a survey. In the present 
context, restrictions regarding the so-called ‘virtual outputs’ are particularly interesting as 
these (i) do not depend on measurement units and (ii) directly reveal how the respective 
outputs contribute to a composite indicator value. In DEA terminology, virtual outputs refer to 
the product of each separate sub-indicator/output and the associated weight: formally, the l-th 
virtual output for country j is given as the product lj ly w . Clearly, these virtual outputs may 

also be interpreted as the ‘pie shares’ that together constitute the CIj (= 1

m

ij ii
y w

=� ): the i-th 

virtual output represents the (volume of the) pie share of the i-th sub-indicator, thus revealing 
the importance of that sub-indicator in the computation of CIj. As explained in greater detail 
above, the available (budget allocation) expert information in the specific TAI case is 
consistent with formulating upper and lower bounds regarding the virtual outputs. Specifically, 
we will be concerned with a type of constraints known in the DEA-literature as ‘proportional 
virtual weight restrictions’ (Wong and Beasley, 1990), which for the reasons just indicated 
can alternatively be labelled pie share constraints for each sub-indicator/output l :  

 

1

lj l
l lm

ij i
i

y w
L U

y w
=

≤ ≤
�

     (pie share constraint) 

 
with Ll and Ul the respective (pre-specified) lower and upper bounds. Such a restriction is 
equivalently expressed as  

 

1 1

m m

l ij i lj l l ij i
i i

L y w y w U y w
= =

� � � �≤ ≤� � � �
� � � �
� �  

 

                                                                                                                                                         
Cook and Kress, 1994).  See Cherchye et al. (2004) for the ‘pure output’ fractional program formulation of the 
linear program stated in the main text.      
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Obviously, in this presentation the pie share constraints do not interfere with the linear 
nature of the programming problem. In fact, and importantly, the resulting construction of CIj 
remains invariant to the units of measurement.7 

One can interpret the CIj (possibly calculated under pie share constraints) from a 
benchmarking perspective. In that respect, a value below unity means that there is some other 
country in the sample that demonstrably outperforms the evaluated country even when using 
the latter’s most favourable weighting scheme. If this is the case, such an outperforming 
country may be conceived as a suitable benchmark for the evaluated country. More generally, 
the value of CIj reveals the degree of superior performance. This interpretation is intuitive and 
straightforward to convey to the target audience: “Combine the sub-indicator values of 
another country with your most favourable, possibly constrained, weights; this weighted sum 
may in fact be higher than the one based on your own sub-indicator values.  Look specifically 
for the country that maximizes this similarly weighted average; the ratio of ‘your’ weighted 
sum and the similarly weighted sum of this benchmark country yields your CI-value.” 

We end this section by presenting results for the TAI as obtained by the above 
methodology.  In this baseline scenario, 23 countries and all 8 sub-indicators are included.  
Contrary to the original TAI, the benefit-of-the-doubt aggregation is performed on the 
original rather than on transformed data, since normalization is redundant in our approach 
(this also means that we have taken the original rather than the logged values for the 
telephone and electricity values).  For the baseline scenario, we additionally appended “pie 
share” constraints that are directly inspired by the experts’ stated weight sets.  Specifically, 
we required that the relative pie share of each indicator should not lie outside the minimum 
and maximum bounds as tabulated in Table 1 (i.e., the pie share of patents is between 5% and 
20%, the pie share of royalties between 0 and 30%, etc.).  

Figure 1 is used to demonstrate how the results of our approach can be presented 
graphically (we refer to Nardo et al. 2005b, for comments on the issue of presenting CIs and 
for a list of possible alternatives).  We have taken two examples, to wit, top ranked Finland 
and Singapore, for which the baseline scenario in fact entails a significant drop as compared 
with the actual TAI-figures.  The difference in the total composite indicator value is indicated 
by the size of the pies, the importance of the sub-indicators by the pie-shares. Directly below 
the figures, in Table 2, one finds the values of these and some other countries’ “pie shares” 
(measured in absolute numbers), so that the sum of these shares yields their composite 
indicator value.  Recalling Table 1, one can readily inspect that all tabulated pie shares are in 
accordance with our starting point of granting leeway to each country when assigning shares, 
without however violating the upper and lower bounds on the relative shares as retrieved from 
the expert group.  One further infers that the so-obtained pie shares can in fact be quite 
diverse in terms of their relative importance. Compare e.g. Finland with Singapore, with 
Finland assigning 1/4 of its total to schooling, and Singapore less than 1/14; or with Finland 
assigning 16/100 to royalties whereas Singapore actually maximizes its (duly constrained) 
score by completely neglecting that sub-indicator, etc.  This is even the case for countries 
having a similar composite indicator value (e.g. Belgium and New Zealand).  Note that 
assigning zero weights is consistent with the idea of respecting the lower bounds as provided 
by the panel (for example, three experts recommended to discard the electricity indicator).  
Using superscripts, we have also indicated in Table 2 whether the pie share-constraints are 

                                                 
7  Essentially, the pie share constraint limit weight flexibility across performance dimensions. In fact, it is also 
possible to limit weight flexibility across countries, i.e. weights cannot vary (too much) over different country 
observations. See Cherchye and Kuosmanen (2004) for a detailed discussion. We will refrain from pursuing this 
further in this paper, and instead build explicitly on the information as provided by our experts.  In doing so, we 
bear in mind the remark of Foster and Sen (1997, p. 206) that while “the possibility of arriving at a unique set of 
weights is rather unlikely, that uniqueness is not really necessary to make agreed judgments in many situations”. 
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binding at the lower or upper bound (or not).  Again, one notices considerable differences in 
this respect among the different countries.  

 
 

Figure 1: TAI for Finland (100%) and Singapore (14.3%) in baseline DEA scenario  
 

 
 

  
 
 
 
 
 
 
 

 
 
 
 

Table 2: Pie shares (in absolute terms) and their (‘composite’) sum for selected countries   
Pie shares Patents Royalties Internet Exports Telephone Electricity Schooling Enrolment � 
Finland 0,05L 0,16 0,02 L 0,15 0,07 0,00 L 0,25 U 0,30 U 1.000 
Japan 0,20 U 0,00 L 0,02 L 0,33 U 0,20 U 0,12 0,09 0,04 1.000 
Belgium 0,03 L 0,18 U 0,01 L 0,07 0,01 L 0,00 L 0,15 U 0,15 0.616 
NZ 0,03 L 0,00 L 0,12 U 0,06 L 0,07 0,09 U 0,15 U 0,09 0.614 
Italy 0,01 L 0,00 L 0,00 L 0,04 0,04 U 0,00 L 0,05 U 0,06 U 0.204 
Singapore 0,01 L 0,00 L 0,03 U 0,05 U 0,00 L 0,01 0,01 L 0,04 U 0.143 

Superscript ‘L’ (resp. ‘U’) indicates that this value equals the lower (resp. upper) bound of the 
relative pie share constraint associated with this indicator. 

 
 
In Table 3, the composite indicator values of this baseline scenario (in bold) are compared 

with two other cases.  On the left one finds the actual TAI values as calculated by the UN, and 
countries have been ranked in the table accordingly.  The second column provides DEA-based 
CI-values for a benefit-of-the-doubt model that only uses the non-negativity constraints on 
weights. All countries get a higher CI value than they have on the basis of the UN’s fixed 
weighting scheme, and several of them even get the maximum score of 100%.  This is what 
one would expect from ‘benefit-of-the-doubt’ weights. As we emphasized before, the 
unrestricted DEA model allows for extreme weight scenarios; e.g., in our application, we get 
a zero weight in 63.5% of all 184 cases (= 23 countries x 8 dimensions). Still, differences are 
also partially due to the ‘artificial’ normalisation stage of the actual TAI. Norway, for 
example, considerably increases its score due to the fact that its relatively high figures for 
telephone and electricity are no longer smoothed out by taking logarithms.  Similarly, the 
sharp drop for Singapore as one moves from the first to the third column is largely driven by 
this phenomenon, working in the opposite direction.8  Once again of course, this highlights 
the need for uncertainty analysis.  

                                                 
8 If one calculates the equally weighted TAI with normalized data, but without using logs for these 2 indicators,   
Norway would move up to the 4th place. Similarly, Singapore would be positioned on the 13th  rather than on the 
8th place.  The maximal score of Singapore in the second column is a direct consequence of the absence of any 

Patents 
Royalties 
Internet 
Exports 
Telephone 
Electricity 
Schooling 
Enrolment 
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Table 3: TAI-values 
Countries Original 

(UN) 
Unconstrained 

BotD 
Baseline 

Finland 0.744 1.000 1.000 
US 0.733 1.000 1.000 
Sweden 0.703 1.000 1.000 
Japan 0.698 1.000 1.000 
Rep. of Korea 0.666 1.000 0.625 
Netherlands 0.630 0.994 0.901 
UK 0.606 0.976 0.750 
Canada 0.589 0.982 0.435 
Australia 0.587 1.000 0.618 
Singapore 0.585 1.000 0.143 
Germany 0.583 0.921 0.818 
Norway 0.579 1.000 0.732 
Ireland 0.566 0.831 0.735 
Belgium 0.553 0.802 0.616 
New Zealand 0.548 0.975 0.614 
Austria 0.544 0.820 0.729 
France 0.535 0.849 0.736 
Israel 0.514 0.813 0.565 
Spain 0.481 0.756 0.436 
Italy 0.471 0.822 0.204 
Czech Republic 0.465 0.792 0.331 
Hungary 0.464 0.856 0.320 
Slovenia 0.458 0.684 0553 

 
 

 
4. Uncertainty and sensitivity analysis 
 

4.1. Uncertainty analysis 
 

In the general case, uncertainties in the development of a composite indicator would be 
linked to a number of factors, including (Nardo et al., 2005b):   

 
a) The model chosen for estimating the measurement error in the data, e.g. based on 

available information on variance estimation.  
b) The mechanism for including or excluding sub-indicators in the composite.  
c) The transformation and/or trimming of sub-indicators, e.g. removing outliers.   
d) The type of normalisation scheme, e.g. re-scaling or standardisation, applied to 

remove scale effects from the sub-indicators. 
e) The amount of missing data and the choice of imputation algorithm used to replace 

missing data. 
f) The choice of the weights, e.g., equal weights or weights derived from a DEA-

based approach.  
g) The level of aggregation, if more than one levels are used, e.g., at the indicator or 

at the sub-indices level.  
h) The choice of aggregation system, e.g., additive, multiplicative, or multi-criteria 

analysis.       

                                                                                                                                                         
pie-share constraints: it then assigns no less than 85% of its pie to the exports indicator, and effectively neglects 
five other dimensions (viz. those for which it reaches the lower bound in table 2). 
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All these assumptions can heavily influence countries scores in a composite indicator and 
should be taken into account before attempting any interpretation of the results. Saisana et al. 
(2005) studied the uncertainties in the Technology Achievement Index focusing on the type of 
normalisation for the sub-indicators, the weighting scheme, and the sub-indicators’ weights. 

Even when restricting ourselves in this work to a DEA-model that incorporates expert 
opinion, our baseline scenario still is characterized by specific modelling choices. We focus 
on two points of the chain of composite indicator building, which can introduce uncertainty in 
the countries scores: point (c) on the consideration of logarithms for “Telephones” and 
“Electricity”, as applied in the original version of the Index by the UN and point (f) on the 
weights provided by experts and the weight bound scenarios for the DEA-model. We remind 
the reader that in the DEA-model, normalisation is not required. 

The uncertain input factors in our analysis are described in Table 4. The triggers 1X  to 

21X  decide whether to consider an Expert’s set of weights. The experts are sampled 
independently of one another. Next, factor 22X  determines the type of the weight bound 
scenario for the DEA, be it either the min-max values of the set of weights of the selected 
experts, or the 5th-95th percentiles, or the 10th-90th percentiles. Finally, trigger 23X  determines 
whether to use logarithms for “Telephones” and “Electricity”. Note that in the 

23=K dimensional space of uncertainties there are 221×3×2 = 12,582,912 possible 
combinations of the input factors values. Given that we cannot afford a full design with so 
many simulations, we need a representative sampling of the space of uncertainties. We 
anticipate here that we use an LP-� sampling scheme (Sobol’, 1967) of size 576,24=N  for 
the purposes of the sensitivity analysis to be discussed in detail in Section 4.2. With LP-� we 
guarantee that all combinations consider more than three experts. 

 
 Table 4: The 23 uncertain input factors for the analysis 

  

All these uncertainties are translated into a set of N combinations of scalar input factors, 
which are sampled from their discrete distributions (2 levels for 1X , 21X  and 23X , and 3 levels 
for 22X ) in a Monte Carlo simulation framework. The composite indicator is then evaluated N 
times and the values obtained are associated to the corresponding draws of uncertain factors 
to appraise their influence. As a result, all composite indicator values are non-linear functions 
of the uncertain input factors, and the estimation of their probability distribution functions 
(pdf) is the purpose of the uncertainty analysis (UA).  

Figure 2 presents the results of the uncertainty analysis for the Technology Achievement 
Index, which are summarised by country scores statistics (median, 5th and 95th percentiles). 

Input factor  Definition Alternatives 

1X  Consideration of Expert 1  � Included 
� Excluded 

2X  Consideration of Expert 2  � Included 
� Excluded 

… … … 

21X  Consideration of Expert 21  � Included 
� Excluded 

22X  Weight bound scenario � Min-max 
� 5th -95th  percentile 
� 10th -90th  percentile 

23X  Data transformation � Raw data 
� Logarithms for Telephones & Electricity 



 11 

The graph should be read "horizontally": sets of whisker plots partially overlapping indicate 
situations when the ranking of the corresponding countries can interchange, so showing 
similar degree of performance. If two countries have non-overlapping bounds, the policy 
inference is robust, independently of the level of uncertainty in the data. Finland, USA, and 
Sweden are unarguably the best performing countries, both in the original UN version of TAI 
and in the present case in which we acknowledge uncertainties related to the DEA-model. 
There are, however, several countries whose relative performance is strongly influenced by 
the assumptions in the evaluation model.  

 

Figure 2: Results of Uncertainty analysis - Countries scores  

 

 
Note: Original TAI scores in the UN version (grey marks), median TAI scores (black mark), 5th and 95th 

percentiles (bounds). Countries are ordered according to the median of ranks. 
 

Table 4 gives the countries ranks based on the original TAI and the median of ranks from 
the robustness analysis. For about 13 countries the difference between the TAI rank and the 
median rank when considering the DEA-related assumptions is less than 2 positions. 
Singapore and Korea decline the most (more than 10 positions). Conversely, Austria, France 
and Slovenia improve their rank between 6 and 7 positions. Looking at the range of the 
uncertainty bounds, Korea and Slovenia are two of the most volatile countries. Their 
distributions are plotted in Figure 3. Korea’s score, considering the 5th and 95th percentiles of 
the distribution, can range between 0.276 and 0.625, while for Slovenia the performance is 
estimated between 0.275 and 0.564.  
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Table 4: Countries ranks and median scores 
 

 Countries Rank based on 
original score 

Median of 
Ranks 

Difference in rank 
(original-median) 

Median of 
scores 

FIN Finland 1 2 -1 1.000 
USA United States 2 2 0 1.000 
SWE Sweden 3 2 +1 1.000 
JPN Japan 4 4 0 0.950 
KOR Korea, Rep. of 5 16 -11 0.357 
NLD Netherlands 6 5 1 0.847 
GBR United Kingdom 7 7 0 0.719 
CAN Canada 8 17 -9 0.426 
AUS Australia 9 14 -5 0.587 
SIN Singapore 10 23 -13 0.143 
DEU Germany 11 6 5 0.758 
NOR Norway 12 10 2 0.675 
IRL  Ireland 13 8 5 0.708 
BEL Belgium 14 12 2 0.613 
NZL New Zealand 15 14 1 0.576 
AUT Austria 16 10 6 0.680 
FRA France 17 10 7 0.676 
ISR Israel 18 15 3 0.555 
ESP Spain 19 18 1 0.420 
ITA Italy 20 22 -2 0.200 
CZE Czech Republic 21 20 1 0.309 
HUN Hungary 22 21 1 0.305 
SVN  Slovenia 23 17 6 0.443 

 
 

Figure 3: Uncertainty analysis of the composite indicator TAI for Korea and                                                         
Slovenia who present very large uncertainty bounds (most volatile countries)  

 
 
An evident question related to the overlapping in the countries scores, as shown in Figure 

3, is: which countries have significantly different performance in the technological 
development? Can we argue that France (median score = .676) performs significantly better 
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than Norway (median score = .675), or that Canada’s level of technological achievement 
(median score = .426) is superior to that of Spain (median score = .420)? A hypothesis test 
could provide such an answer. One of the advantages of uncertainty analysis, which has not 
been exploited so far in the literature of composite indicators development, is that it allows for 
an estimation of the pdf for a country’s score and the respective pdf of its rank. We applied 
the Wilcoxon signed rank test, also known as the Wilcoxon matched pairs test, to test the 
median difference in paired TAI scores (Conover, 1980). This test is the non-parametric 
equivalent of the paired t-test, and it does not require the distributional assumption that the 
differences follow a normal distribution, which was not confirmed in our case. On the 
contrary, the only assumption required for this test, that the distribution of the differences is 
symmetric, was confirmed. Applying this test we identify four groups of countries for which 
no distinction should be made on their technological achievement level. The groups are 
shaded in grey in Figure 3. The first group contains the top three performing countries Finland 
(1.00), USA (1.00) and Sweden (1.00). The second group contains Austria (.680), France 
(.676) and Norway (.675). Australia (.587) and New Zealand (.576) belong to the third group. 
Finally, Slovenia (.443) and Canada (.426) belong to the forth group. Note that, although the 
median score for Spain is .420, which is very close to that of Canada, the performance of the 
two countries can be clearly distinguished.  
 
 
4.2 Sensitivity analysis 
 

We next complement our uncertainty analysis with sensitivity analysis. We first 
investigate sensitivity of the above uncertainty results with respect to outlier countries. 
Subsequently, we use variance-based techniques to apportion the calculated (aggregate) 
variance/uncertainty in the country scores to the uncertain input factors in our analysis; this 
provides insight into the sensitivity of the countries scores with respect to each individual 
source of uncertainty. 

Sensitivity analysis for outlier countries 

Procedures that randomly omit some observations (in our case countries; e.g. one 
randomly excludes one country at a time) have been suggested in the DEA literature as a way 
to correct for the impact of outlier observations (e.g., Wilson, 1995; Cazals et al., 2002; 
Simar, 2003). With a view to assess such an impact on the countries scores we have repeated 
the Monte Carlo approach described above eliminating one country at a time from the set of 
23 countries. The 576,24=N composite indicator values are estimated for each group of 22 
countries. The boxplots are presented in Figure 4, for the entire set of 23 countries (ALL) and 
for each country’s elimination starting from Finland to Israel. The two countries that have the 
greatest impact in the countries scores are Japan and Finland. When Japan is eliminated from 
the set, the countries that improve their score are: Finland, United Kingdom, Australia, 
Ireland, Spain, Czech. Rep., Canada, Singapore, Norway, Belgium, Israel, Italy and Hungary. 
When Finland is eliminated from the set, the countries that improve their score are: Sweden, 
United States, Korea, Germany, France, and to a lesser degree Japan. The elimination of the 
remaining countries does not have any notable impact on the countries scores. This result 
confirms a quite robust DEA-model to outlier observations. In our opinion, this justifies that 
we do not explicitly account for outlier countries in our remaining analysis. 
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Figure 4: Boxplots of countries TAI scores when eliminating one country at a time 
 

 
Note: The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines 

extending from each end of the box to show the extent of the rest of the data. Outliers (+) are data with values 
beyond the ends of the whiskers. If there are no data outside the whisker, a dot is placed at the bottom whisker. 
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Sensitivity analysis using variance-based techniques 

 
At this step it is useful to use sensitivity analysis to apportion the variance (uncertainty) in 

the countries scores to the different K uncertain input factors (in our case K = 23; see Table 4). 
The starting point of the variance-based methods is the variance decomposition 

))|(())|(()( kk XYVEXYEVYV += , where kX  is an uncertain input factor, Kk ,...,1= . Note 
that in both expressions V(E(.)) and E(V(.))  the outer operator is taken over the conditioning 
argument while the inner operator is taken over its complementary set, i.e.  

 
( )( )kXk XYEVXYEV

kk −
≡ X))|((  where k−X   is the vector of all-but- k  factors.   

 
  The first-order sensitivity measures can be calculated as )())|(( YVXYEVS kk = for 

each uncertain factor. The higher kS , the higher the importance of kX , as the larger the 
average drop in variance )Y(V  obtained when fixing kX  within its range.  

In the case of an additive (and hence linear) model where no interactions between its 
uncertain factors occur, we have 

1
1

K

kk
S

=
=� . For non-additive models, higher order 

sensitivity measures that capture interaction effects among sets of input factors have to be 
computed, to help us improve our understanding of the model structure. However, higher 
order measures are usually not estimated, as in a model with K factors the total number of 
sensitivity measures (including the first-order) that should be estimated is as high as 2K-1. For 
this reason, a more compact sensitivity measure is used. This is the total-effect measure that 
concentrates in one single term all the interactions involving a given factor kX  (Homma and 
Saltelli, 1996). We indicate with TkS  the average of the four estimates of total-effect measures. 

When several layers of uncertainty are simultaneously activated, composite indicators 
turn out to be non-linear, possibly non-additive models due to interactions between the 
uncertain input factors (Saisana et al., 2005). As a result, all TAI scores and ranks are non-
linear functions of the uncertain input factors. As argued by practitioners (Saltelli et al., 2000, 
EPA 2004), robust, “model-free” techniques for sensitivity analysis should be used for non-
linear models. Variance-based techniques have been shown to yield useful results for 
sensitivity analysis. The discussion of their methodological formulation to compute sensitivity 
measures that account for the interaction between the input factors goes beyond the scope of 
this report and the reader is referred to Saltelli et al. (2000). Here we only display those 
additional properties of model-free variance-based techniques that are convenient for the 
present analysis:  

• they allow an exploration of the whole range of variation of the input factors, instead of 
just sampling factors over a limited number of values, as done e.g. in fractional factorial 
design (Box et al. 1978); 

• they are quantitative, and can distinguish main effects (first order) from interaction effects 
(second and higher order);  

• they are easy to interpret and to explain; 
• they allow for a sensitivity analysis whereby uncertain input factors are treated in groups 

instead of individually. 
 

The extended variance-based methods, including the version we used here based on the 
work of Saltelli (2002), are implemented in the freely distributed software SIMLAB (Saltelli 
et al., 2004).  
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The pair ( Tkk SS , ) gives a fairly good description of the DEA-model sensitivities at a 
reasonable cost, which for the improved method is of )1(2 +KN  model evaluations. In our 
analysis, the base sample is of size N = 512 and the composite indicator value for each 
country is evaluated performing 576,24)123(5122 =+⋅⋅  DEA-model runs.  

The sensitivity measures kS  and TkS are given in Table 5. When we use kS  for sensitivity 
analysis, we are looking for important input factors that - if fixed singularly - would reduce 
the most the variance in the output variable. “Importance” in sensitivity analysis, though, is a 
relative notion and there is no established threshold: one usually looks at the kS  values and 
the distances between them and considers the first few factors as important. In this work, an 
input factor will be considered as important if kS > 0.10 (i.e. if the input factor explains more 
than 10% of the variance in a country’s score). The greater the value of the measure kTk SS − , 
the more that factor is involved in interactions with other factors. 

The countries with the largest uncertainty bounds are Slovenia and Korea. Some 70% of 
Slovenia’s variance is mainly explained by consideration of Expert 3. A total of 82.6% of the 
country’s variance in technological achievement is explained by considering the input factors 
singularly. The remaining 17.4% of the variance is due to interactions among the factors. 
Korea’s variance is due to the consideration of Expert 15 (73% variance explained) and to 
interactions of this factor with the consideration of Expert 3. 

For the entire set of countries, Experts 1, 3, 12, 14, and 20 are those driving most of the 
variance in the countries scores. The weight bound scenario (

22X ) is influential only to a few 
countries, i.e. Japan, Netherlands, Germany, Norway, Ireland and France. Finally, the data 
transformation which consists in considering the logarithms of ‘Telephones’ and ‘Electricity’ 
is not influential to any country’s variance, when total-effects measures are analysed. This 
means that it would be meaningless to discuss on the use of scale transformations for those 
two indicators (in the class of DEA-models). In principle, one could omit the log-
transformation as the results, in terms of country scores, are not affected. This result may 
seem to contradict the conclusion in Section 3 on Norway’s and Singapore’s score being 
affected by the logarithmic transformation. However, the right interpretation is that our 
discussion in Section 3 pertained to a comparison of the original TAI model (which includes 
logarithmic transformation and fixed weighting) with the unconstrained DEA model (which 
includes flexible weighting without a prior logarithmic transformation), whereas the current 
discussion relates to comparing alternative DEA-models (i.e., with or without the logarithmic 
transformation). In fact, the result in Table 5 suggests that flexible weighting DEA-models (to 
an important extent) effectively accommodate for sensitivity with respect to prior 
transformation schemes. 

 
 

Table 5. Sensitivity measures of first order and total effect for the composite indicators scores. 

 
First-order sensitivity measures, kS  
 

 
1X
 

2X
 

3X
 

4X
 

5X
 

7X
 

10X
 

12X
 

14X
 

15X
 

16X
 

17X
 

19X
 

20X
 

22X
 

23X
 Sum 

Finland .01 .00 .00 .00 .00 .00 .00 .04 .02 .00 .00 .00 .00 .01 .00 .00 .091 

United States .00 .00 .00 .00 .09 .06 .00 .00 .00 .00 .14 .02 .00 .00 .00 .00 .317 

Sweden .01 .00 .01 .00 .03 .11 .03 .00 .00 .02 .10 .00 .01 .01 .05 .01 .460 

Japan .00 .00 .04 .00 .06 .12 .14 .00 .00 .16 .00 .00 .00 .00 .13 .01 .685 

Korea .00 .00 .10 .00 .00 .00 .00 .00 .00 .73 .00 .00 .00 .00 .00 .00 .855 

Netherlands .00 .00 .00 .00 .13 .12 .01 .00 .01 .14 .00 .00 .02 .00 .17 .01 .653 
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U. Kingdom .07 .00 .00 .00 .00 .00 .00 .03 .05 .09 .00 .00 .01 .03 .03 .00 .323 

Canada .06 .00 .01 .00 .00 .00 .00 .08 .06 .00 .00 .00 .00 .09 .00 .00 .316 

Australia .05 .01 .17 .01 .00 .00 .01 .08 .05 .00 .00 .00 .03 .15 .02 .00 .615 

Singapore .07 .00 .00 .00 .00 .00 .00 .07 .06 .03 .00 .00 .00 .07 .00 .00 .332 

Germany .00 .00 .05 .00 .00 .00 .04 .00 .01 .31 .00 .00 .00 .01 .13 .07 .627 

Norway .02 .00 .12 .01 .00 .01 .00 .09 .03 .00 .00 .00 .01 .19 .09 .02 .621 

 Ireland .05 .01 .00 .00 .00 .00 .00 .00 .05 .19 .00 .00 .01 .01 .06 .03 .401 

Belgium .07 .00 .00 .00 .00 .00 .00 .05 .07 .02 .00 .00 .00 .05 .00 .04 .315 

New Zealand .01 .01 .48 .01 .00 .00 .00 .03 .00 .00 .00 .00 .01 .18 .02 .05 .808 

Austria .00 .00 .58 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .13 .02 .01 .748 

France .00 .00 .06 .00 .00 .00 .03 .00 .02 .39 .00 .00 .00 .00 .12 .02 .646 

Israel .05 .00 .00 .02 .00 .00 .00 .05 .10 .00 .00 .00 .00 .03 .01 .01 .287 

Spain .05 .01 .28 .01 .00 .00 .00 .02 .06 .01 .00 .00 .00 .14 .00 .02 .583 

Italy .06 .00 .04 .00 .00 .00 .00 .06 .07 .00 .00 .00 .00 .10 .00 .00 .347 

Czech Rep. .02 .01 .43 .00 .00 .00 .00 .02 .02 .00 .00 .00 .00 .17 .00 .01 .698 

Hungary .04 .00 .25 .00 .00 .00 .00 .03 .04 .00 .00 .00 .00 .14 .00 .02 .545 

 Slovenia .00 .00 .70 .00 .00 .00 .00 .00 .00 .03 .00 .00 .00 .08 .00 .01 .826 
  

Total-effect sensitivity measures, TkS  
 

 
1X
 

2X
 

3X
 

4X
 

5X
 

7X
 

10X
 

12X
 

14X
 

15X
 

16X
 

17X
 

19X
 

20X
 

22X
 

23X
  

Finland .65 .00 .00 .43 .00 .01 .00 .66 .57 .01 .01 .00 .10 .69 .00 .00  

United States .02 .48 .08 .02 .56 .56 .13 .02 .02 .16 .51 .14 .00 .02 .09 .00  

Sweden .16 .22 .02 .04 .35 .56 .11 .04 .14 .29 .26 .08 .09 .05 .10 .07  

Japan .04 .04 .12 .05 .18 .24 .31 .03 .03 .28 .03 .04 .03 .04 .33 .01  

Korea .03 .01 .15 .02 .01 .03 .03 .01 .02 .78 .02 .01 .00 .04 .03 .00  

Netherlands .08 .07 .05 .06 .30 .28 .04 .08 .11 .21 .07 .03 .05 .09 .27 .01  

U. Kingdom .46 .01 .01 .10 .01 .02 .02 .42 .43 .12 .01 .01 .02 .42 .07 .00  

Canada .50 .01 .01 .09 .01 .00 .01 .54 .52 .00 .01 .00 .00 .53 .01 .00  

Australia .26 .02 .21 .06 .02 .04 .02 .36 .33 .00 .02 .01 .06 .39 .06 .00  

Singapore .54 .01 .00 .08 .01 .00 .01 .55 .54 .00 .01 .00 .00 .55 .00 .00  

Germany .06 .03 .15 .04 .07 .06 .14 .04 .06 .43 .02 .02 .02 .08 .25 .07  

Norway .15 .02 .17 .05 .03 .07 .01 .30 .22 .01 .03 .02 .05 .38 .19 .02  

 Ireland .34 .02 .03 .10 .02 .06 .05 .27 .31 .24 .02 .01 .03 .26 .12 .03  

Belgium .50 .01 .00 .13 .00 .01 .01 .50 .50 .02 .01 .00 .01 .47 .00 .05  

New Zealand .05 .01 .59 .03 .01 .03 .01 .11 .08 .01 .01 .01 .02 .31 .06 .05  

Austria .01 .01 .75 .01 .02 .01 .02 .01 .02 .02 .01 .01 .01 .29 .07 .01  

France .06 .02 .13 .03 .06 .06 .12 .02 .07 .49 .02 .02 .02 .07 .22 .03  

Israel .44 .01 .01 .14 .02 .02 .02 .46 .50 .02 .01 .00 .00 .41 .06 .01  

Spain .27 .01 .35 .07 .02 .01 .02 .25 .28 .03 .02 .00 .00 .40 .02 .02  

Italy .49 .01 .05 .08 .01 .00 .01 .49 .50 .00 .01 .00 .00 .54 .00 .00  

Czech  Rep. .17 .01 .52 .05 .01 .01 .00 .17 .18 .01 .01 .00 .00 .39 .02 .01  

Hungary .30 .01 .31 .07 .01 .01 .01 .30 .30 .01 .01 .00 .00 .43 .02 .02  

 Slovenia .01 .00 .81 .01 .01 .01 .01 .01 .01 .06 .01 .01 .00 .18 .03 .01  

Marked values are in yellow (>0.10), grey (>0.30) and black (>0.50). kS is the average of the eight 

estimates of first-order measures for factor kX , and TkS is the average of the four estimates of total 

effect for factor kX . 
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We are further interested in the difference in the technological achievement levels 
between Slovenia (median score = .4425) and Korea (median score = .3571), which present 
significant overlapping in their scores. In such cases, where partial overlapping between two 
countries occurs, the difference in the countries scores can be further analyzed in a sensitivity 
framework to identify the most influential factors and provide insight into the situation. 
Figure 5 provides the relative performance of the two countries acknowledging the 
uncertainties in the DEA-approach. Note that, although Slovenia has a higher median score of 
technological performance than Korea, 61% of the score differences fall in the left-hand 
region, where Korea performs better than Slovenia. In fact, this was the message, i.e. the 
better performance of Korea with respect to Slovenia, which was conveyed when examining 
the median of the ranks. We recall that in the original version of TAI, Korea is ranked 5th, 
whilst Slovenia is situated on the 23rd position. The next issue that comes into question is: 
which factors are mostly responsible for that uncertainty? The results of the sensitivity 
analysis are given in Table 6. Taken singularly, the factors account for 91.3% of the variance 
in the difference between the two countries. Most of the variance is due to the consideration 
of the weights provided by Expert 15 (70.5%) and by Expert 3 (16.3%). The remaining small 
portion of the output variance, i.e. 8.7%, is explained by the interactions among the factors 
themselves. Previously, in the study of the effect of expert inclusion/exclusion on the 
individual country scores, Expert 15 was mainly responsible for Korea and Expert 3 for 
Slovenia. Yet, one could not foresee the degree to which these two Experts determine the 
difference in scores between the two countries. This is now feasible thanks to the results 
presented in Table 6, from which we can see that Expert 15 drives the preference between 
Korea and Slovenia. As expected, the importance of factors depends from the output being 
considered. Here it makes a difference whether we look at a country score or at the difference 
between two countries. In general, prior to applying sensitivity analysis, the questions to be 
answered need to be clearly specified and the output variables clearly identified.  
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Figure 5: Uncertainty analysis for the Technology 
Achievement Index for Slovenia vs. Korea  

 Table 6: Sensitivity measures of 
first-order and total effect for 
the difference between the 
composite indicator score for 
Slovenia and Korea 

 

Conclusion 
 
Media and policy-makers look with increasing interest at 
composite indicators as appealing tools to attract the attention 
of the community, build narratives and help focusing policy 
debates. Methodological gaps or fragilities in their design and 
construction may invite politicians to draw simplistic 
conclusions or the press to communicate misleading 
information. That is why national and international 
organisations believe that it is important to focus on 
methodological issues in the design of composite indicators. 
Here, we have illustrated a generalisation of the DEA-model 
for the selection of weights combined with a variance-based 
sensitivity analysis method. In addition, we have tested it on a 
practical case study related to the design stage of composite 
indicators, where rarely robustness and sensitivity analysis are 
applied. 

 kS  TkS  

1X  0.000 0.018 

2X  0.002 0.006 

3X  0.163 0.209 

4X  0.000 0.007 

5X  0.001 0.004 

6X  0.003 0.002 

7X  0.000 0.015 

8X  0.001 0.003 

9X  0.000 0.006 

10X  0.002 0.015 

11X  0.002 0.004 

12X  0.000 0.008 

13X  0.003 0.001 

14X  0.000 0.021 

15X  0.705 0.731 

16X  0.003 0.007 

17X  0.000 0.001 

18X  0.000 0.005 

19X  0.000 0.000 

20X  0.019 0.047 

21X  0.000 0.001 

22X  0.000 0.015 

23X  0.008 0.008 

Sum 
 
0.913 
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