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Abstract 

In this paper we study how trip chaining affects the pricing and equilibrium number of 
firms. We use a monopolistic competition model where firms offer differentiated 
products as well as differentiated jobs to households who are all located at some 
distance from the firms. Trip chaining means that shopping and commuting can be 
combined in one trip. The symmetric equilibriums with and without the option of trip 
chaining are compared. We show analytically that introducing the trip chaining option 
can, in the short run, only decrease the profit margin of the firms and will increase 
welfare. The welfare gains are however smaller than the transport cost savings. In 
the long run, with free entry, the number of firms decreases but welfare with trip 
chaining possible is still higher than when it is excluded. A numerical illustration 
gives orders of magnitude of the different effects. 
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1. INTRODUCTION 

Trip chaining is considered to be a growing phenomenon in travel and activity behaviour, as 
individuals try to reduce the amount of travel time needed to complete daily activities, given the 
limitations of their time budget. Most trip chaining research has concentrated on the demand 
side taking the prices of products and wages as given. In this paper we pursue a different 
avenue of research and examine the effect that the trip chaining options by households has on 
the pricing and wage setting decisions of firms. Do trip chaining possibilities increase or 
decrease the profit margins, does this in the end also lead to more or fewer firms and how does 
it affect welfare?  

Our starting point is an analytical, symmetric model of a city (de Palma and Proost, 2006), in 
which households live in the city centre and shop and work in equidistant subcentres. Each 
subcentre offers a different variety of the product and offers a different workplace variety. 
Households’ consumer and labour supplier choices are modelled using a logit model. The 
unique firm located in each subcentre maximizes profits by setting a price and a wage that 
attracts the optimal number of customers and attracts the necessary workers to supply the 
demand addressed to it. In this model, there exists a unique symmetric short term Nash 
equilibrium in prices and wages and a free entry equilibrium. In the original model individuals 
made separate working and shopping trips. Here we relax this assumption and allow consumers 
to shop at the sub centre where they work.  

For this model, we show that a symmetric short term and a free entry Nash equilibrium exist 
when the trip chaining option is introduced. We present four key results. First, in the short run, 
trip chaining will increase competition between subcentres and decrease mark ups as long as 
the love for variety in the product space is strictly different from the love for variety in the 
workplace space. Second, allowing trip chaining benefits consumers and increases welfare but 
the gain is smaller than the savings in transport costs. Third, in the free entry equilibrium, the 
trip chaining option decreases the number of firms. Finally, the welfare of the free entry 
equilibrium is higher with the trip chaining option than without the trip chaining option.  

The effect of the trip chaining option on the degree of competition has been studied by 
Claycombe (1991), Claycombe and Mahan (1993) and Raith (1996). In their approach the 
workplace and the wage are fixed and they concentrate on the shopping market only. The 
shopping market is represented by a Hotelling type of model where evenly spaced shops 
offering identical products are placed along one infinite line. Evenly distributed consumers have 
to make exogenously determined commuting trips of a given distance and may stop for 
shopping on their commuting trip. Raith proves that an increasing commuting distance means 
that more shops will be encountered on the trip to work and this implies more intensive price 
competition. Our approach is different on three accounts. First we use a monopolistic 
competition model with differentiated products which allows the effect of the love for variety to 
be studied. Second, we model the two trip purposes simultaneously as we have a general 
equilibrium model with differentiated workplaces and differentiated products, this is important as 
both markets interact. Third the number of firms can be endogenous in our approach as we also 
study the free entry equilibrium  
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The model is first briefly described in Section 2 and the short-run and free equilibrium with trip 
chaining and without trip chaining are compared. In Section 3 we look at the welfare 
implications of trip chaining. A small numerical illustration to show the relative importance of 
different parameters is included in Section 4 and Section 5 concludes.  

2. THEORETICAL FRAMEWORK 

2.1. Model Setting 

Imperfect competition in a city both with and without congestion has been analysed recently for 
a closed economy by de Palma and Proost (2006). In their model, all households live in the city 
centre and make trips to work and shop at n subcentres ( 2n ≥ ) that are located at identical 
travel cost from the city centre. In each subcentre there is one firm that offers a differentiated 
product and a differentiated work place. The firms compete in wages on the labour market to 
attract workers and compete in prices to attract customers. Households are constrained to make 
separate trips for shopping and working, so trip-chaining is de facto not permitted. In the current 
paper we relax this assumption and allow residents to shop at their work location without 
making a separate journey. The model set-up is still symmetric but, in contrast to de Palma and 
Proost (2006), we do not include congestion in order to focus solely on the effect trip-chaining 
has on the price equilibrium. In this section we provide a brief description of the model set-up 
and derive the relevant expressions for the symmetric price equilibrium without congestion but 
with trip chaining. 

All trips are between the city centre and the subcentres. Residents cannot travel directly from 
one subcentre to another. In the original model of de Palma and Proost, every work and 
shopping trip was a separate trip. In this paper we allow households to combine a working and 
a shopping trip. Residents first choose where to work and then decide whether to shop at their 
work location or at another subcentre; however residents can only travel between the centre 
and each subcentre and not between subcentres.  

A homogeneous good is produced in the city centre and used as an intermediate input for the 
differentiated good produced in the subcentres. A quantity c of homogenous good is necessary 
per unit of the differentiated good. Each of the N households supplies θ units of homogeneous 
labour for the production of the homogeneous good in the city centre. Each household also 
buys exactly one unit of the differentiated good and supplies exactly one unit of differentiated 
labour for the production of differentiated goods in the subcentre. Summing up, in order to 
produce its variety of the differentiated good, each of the n sub centres needs four inputs: the 
intermediate inputs (c per unit), one unit of differentiated labour, a fixed set up cost (F units of 
the homogenous good) and a public capital good (roads, parking etc.) that requires K units of 
the homogenous good.  

The total production possibilities of an economy with N households and n firms can then be 
expressed in terms of the following identity for total labour supply and demand: 

 (1 ) (1 )w d hN D cD nF nK tD Gθ α δ α α + = + + + + + − + +  , (1) 
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The left hand side represents the total labour supply that is fixed: for each household we have 
one unit of labour supplied to the subcentres and θ units of labour supplied to the production of 
homogenous goods. The total demand for the differentiated good is given by D. 

Both firms and households incur travel costs. Households have to make trips from the centre to 
the subcentres for working and shopping and firms have to bring the intermediate input from the 
centre to the subcentre. We assume that the transport cost per trip is t (measured in units of 
homogenous labour foregone per trip). The total transportation costs for commuting, shopping 
and shipping goods to the sub centres are given by (1 )w d h tDα δ α α + − +  . The parameters 

wα , dα and hα represent, respectively, the number of commuting and shopping trips the 
consumer1 undertakes per unit of production (respectively consumption) of the differentiated 
good and the number of shipping trips that are necessary to deliver the intermediate good to the 
subcentre. The parameter ( 1)δ ≤ effectively represents the proportion of consumers who take 

advantage of trip-chaining. When trip chaining is not possible each unit of the differentiated 
good that is bought requires dtDα  in terms of transport costs and δ equals zero. When trip 
chaining is an option, transport costs for shopping can be lower and total (1 ) dtDδ α− , where δ 

is endogenous as it depends on the extent of trip chaining. 

The last term in (1), G, represents the total quantity of the homogenous consumption good that 
will be available after all other production costs and transport costs related to the differentiated 
goods have been accounted for. Inspection of this equation can give us a flavour of the trade-
offs involved in trip chaining. Firstly, increasing the proportion of trip chaining δ reduces 
transport costs and allows higher consumption possibilities. Secondly, some consumers may 
give up their preferred product variant in order to save on transport costs: this means that 
welfare gains may be smaller than the saved transport costs. Finally, trip chaining may, by 
affecting the profit margins, also affect the number of subcentres in equilibrium and affect 
welfare in the long term. A lower number of subcentres saves on fixed costs but leads to a loss 
of diversity that itself has a welfare cost. 

As the household preference for variety plays a key role in the trip chaining process, we first 
define the specification of the working and shopping preferences of the households. Next we 
address the behaviour of the firm and we conclude with an analysis of the market equilibrium. 

In order to make the model complete, we define the government budget equilibrium and the 
ownership of the firms. The only role of government in this model is to supply the fixed public 
inputs (K per subcentre) and to finance this supply via a head tax on households T and a fixed 
levy S per firm. The government budget equilibrium requires nK nS NT= + . The ownership of 
all firms and their net profits are divided evenly between the N individuals.2 

2.2. Household Preferences 

Household utility is represented by a linear function of the utility obtained from consumption of 
the differentiated and homogeneous goods and the disutility of supplying labour to the 
production of these goods. Each of the N households is paid a wage, iw , for working at 

                                                      
1 In the following we will use household and consumer interchangeably as it is easier to consider the household as a 

single worker or shopper. 
2 As N is large this means that every firm will be directed by its shareholders to maximise net profits. 
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subcentre i and buys one unit of variant k at price, kp . Both prices and wages will be 

determined by the model. Homogeneous labour is supplied at the centre for a unit wage. The 
price of the homogenous consumption good, the price of intermediate deliveries and the price of 
delivering the fixed private and public infrastructure are all also equal to one. Using the 
household budget equation to substitute for consumption of the homogeneous good, an indirect 
conditional utility function can be derived to express household preferences. This utility function 
is only defined in as far as one unit of the differentiated good is consumed and one unit of 
differentiated labour is supplied. In the absence of trip chaining, the following utility function 
represents the preferences of a household that buys differentiated good k and supplies labour 
to subcentre i: 

 
1(1 )d w

ik k k k i i i l
l

A B C

U h p t w t T
N

δα β α θ β π= − + − + − + −∑ . (2) 

The first three terms (A) represent the net utility from consuming differentiated good k with 
intrinsic quality component or willingness to pay kh , that is bought at a price, kp . and this 

requires a travel cost dtα  to subcentre k. Note that for the consumer who trip chains, this travel 
cost is zero ( 0δ = ). The next three terms (B) are related to the supply of differentiated labour 

to subcentre i. This generates a wage iw  but has a disutility iβ  and requires a travel cost wtα . 

The three last terms (C) have to do with the consumption of the homogenous good (before 
subtracting the transport costs). As the disutility of homogenous labour equals β  , the first term 

in C represents the net utility derived from his supply of θ  units of homogenous labour for a unit 
wage. The second one represents the consumption possibilities derived from his equal share in 
total profits (π) and the last term is the head tax. The net utility derived from the consumption of 
the homogenous good equals the terms in (C) plus w d

i i k kw t p tα δα− − − , the net wage 

received from the supply of differentiated labour in i minus the costs of buying differentiated 
good k. Since the travel time required for shopping activities, kt , is zero if this consumer trip 

chains, this translates into a higher consumption of the homogenous good.  

We will concentrate on the symmetric case where all subcentres are equidistant from the centre, 
so that commuting and shopping travel times are identical and positive ( 0k it t t= = > ). 

Moreover, we assume all households value the quality of all product variants in the same way 
and experience the same disinclination to work at all subcentres. We set these valuations to 
zero without loss of generality. However, the households will still vary in their tastes. The utility 
of consumption of differentiated product variant k is then simply given by a stochastic 
component: d

kµ ε , such that 

 d
k kh µ ε=  (3) 

and the disutility of labour at subcentre i is similarly given by  

 w
i iβ µ ε= − . (4) 

The parameters iε and kε represent the intrinsic heterogeneity of household preferences and 

are assumed to be i.i.d. double exponentially distributed with mean normalised to zero and unit 
variance. The degree of heterogeneity of preferences is determined by wµ and dµ .  
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Substitution of (3) and (4) in the utility formulation (2) results in a random utility function for 
which the choice probabilities can be determined using the nested logit model.  

2.3. Nested logit model 

We use a heuristic approach to derive the probabilities of working and shopping at a given 
subcentre: the resident first selects his workplace and then chooses where to shop. In order to 
apply the nested logit approach, consistency requires that 0 d wµ µ< ≤ , so that households’ 

preferences for their choice of workplace are at least as strong as their preferences for 
shopping location.3 The consumer surplus associated with the resident’s shopping alternatives, 
given his work location, affects his initial workplace choice. A full derivation of the choice 
probabilities can be obtained using the Generalised Extreme Value (GEV) approach of 
McFadden (1978). The decision tree for the nested logit is shown in Figure 1 below.  

 
Figure 1 Nested logit 

Recall from Section 2.1 that it is assumed that every household consumes one unit of the 
differentiated good and that the production of every unit of differentiated good (produced by one 
firm at one subcentre) requires one unit of labour, which is provided by one household. 
Assuming that the labour market clears, this means that the proportion of residents who decide 
to work at a given subcentre must equal the proportion of residents who shop there.  

In order to simplify the exposition we will concentrate on the price 1p  and wage 1w  set by firm 

1 and assume that the prices and wages set by all other firms are identical and equal p∗  and 

w∗ respectively.  

                                                      

3 In the extreme case where individuals do not care where they work ( 0wµ = ), everybody trip chains in our model. 

When 
w dµ µ< we could reformulate the full model and define a nested utility function where the shopping decision 

comes first. All the results of this paper would carry over. 

1 2 n 

1 2 n 

Choice of work place 

Choice of shopping 

location 

 
1 2 n 1 2 n

µw 

µd 

. . . .

. . . . . . 
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2.4. Shopping model 

We first consider the shopping model. The probability of a resident shopping at subcentre 1 that 
charges a price 1p , given he works there and given that all other subcentres charge a price 

p∗ , can be expressed as 

 ( )1|1 1|11 1( , ) exps d sP p p p Dµ∗ = − , (5) 

where ( ) ( )( )1|1 1exp ( 1)exps d d dD p n p tµ α µ∗= − + − − − . The exponents of the terms in (5) 

represent the utility derived from shopping by the resident who works at subcentre 1. Thus, the 
first term of 1|1

sD  (and the numerator of (5)) refers to a resident who trip chains, working and 

shopping at subcentre 1 (where price 1p  is charged), while the second refers to the resident 

who works at subcentre 1 but shops elsewhere. The consumer surplus associated with the 
shopping decisions of a resident who works at subcentre 1 can be calculated from the expected 
maximum utility derived from his shopping activities. This can be shown to be the log sum of 

1|1

sD (Anderson et al., 1992, Ben-Akiva and Lerman, 1979). Hence the consumer surplus takes 

the form  

 
1 1|1

logs d sCS Dµ  =   . (6) 

The corresponding probability of a resident shopping at subcentre 1, given he does not work 
there is given by 

 ( )( )1| 1 1| 11 1( , ) e xps d d sP p p p t Dα µ
− −

∗ = − − , (7) 

where ( )( ) ( ) ( )( )1| 1 1exp exp ( 2)exps d d d d dD p t p n p tα µ µ α µ
−

∗ ∗= − − + − + − − − . Since 

all subcentres with the exception of subcentre 1 are identical, only one expression is needed. In 
this case the terms in 

1| 1

sD
−

 cover the options of: a) shopping at subcentre 1 but working 

elsewhere so there is a travel cost; b) shopping and working at some subcentre ( 1k ≠ say); and 
c) shopping at k but working at subcentre j ( 1j k or≠ ), so there is a travel cost component. 

The resident has to travel to subcentre 1, so t appears in the numerator. Again the consumer 
surplus associated with shopping activities is calculated from the log sum of 

1| 1

sD
−

. 

The consumer surplus, 
1

sCS
−

, for the shopping activity of a resident who shops at 1 but works at 

any other subcentre k, ( 1k ≠ ) is 

 
1 1| 1

logs d sCS Dµ
− −

 =   . (8) 

2.5. Employment model 

The utility of an individual working at subcentre 1 is 

 1 1 1 1
w w s wU w t CSα µ ε= − + + , 
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where the parameter 1ε  represents the intrinsic heterogeneity of household preferences for 

working at subcentre 1 (see Section 2.2). The probability of working at subcentre 1 is given by a 
nested logit model, as follows: 

 1

1|1

1
1 1( , ) exp

w s
w w

w

w t CS
P w w D

α
µ

∗
 − +

=   
 

, (9) 

where ( )( ) ( )( )1|1 1 11p ( 1)expw w s w w s wD ex w t CS n w t CSα µ α µ
−

∗= − + + − − +  and 
1

sCS  is 

defined in (6). The probability of working at a subcentre other than subcentre 1 is given by 

 1

1 1|11( , ) exp
w s

w w
w

w t CS
P w w D

α
µ

−

−

∗
∗

 − +
=   

 
. (10) 

The denominator (
1|1

wD ) is the same as in (9) since the consumer still has the same chance of 

working at subcentre 1 and being paid 1w  or working at another subcentre and being paid w∗ . 

1

sCS
−

 is defined in (8). 

2.6. Market clearing 

Let 
1

wN be the proportion of households that work at subcentre 1 and 
1

sN  the proportion that 

shop there. Then, by market clearing we need, for each firms, that the number of workers 
equals total sales4 so that 

 
1 1

w sN N= . (11) 

We can further express the number of shoppers frequenting subcentre 1 as 

 
1 1 1|1 1 1| 1

(1 )s w s w sN N P N P P
−

= + − , (12) 

where 
1

wP is the probability of working at subcentre 1, and 
1|1

sP  and 
1| 1

sP
−

 respectively denote the 

probability of a resident shopping at subcentre 1, given that he does or does not work there. 
Then, since by definition 

1 1

w wN NP= , (12) simplifies to 

 
1 1|1 1| 1 1| 1

1 0w s s sP P P P
− −

 − + − =  , (13) 

which provides an implicit relation between the price 1p and wage 1w set by firm 1. This relation 

means that in an equilibrium, a firm that wants to cut its price and gain market share will need to 
increase its wage in order to produce the extra goods for sale. Equation (13) is still in implicit 
form; its implications for the behaviour of the firm are explained in the following sections. 

2.7. Behaviour of firms 

In general, the profit of firm i can be written 

                                                      
4 Remember the assumption that the production of one unit of the differentiated good requires one unit of differentiated 

labour. 
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 1( , ) ( ) ( ) 1... ,
i

h w
i i iw p p w c t NP F S i nπ α= − − − − + ∀ =  (14) 

where the demand 
i i

d w
iD NP NP= = under market clearing conditions5.  

Firms compete in a non-cooperative Nash game with their own prices and wages as the 
strategic variables. Since from (13) we know that 1p determines 1w  and vice versa, we take the 

wage as the strategic variable for firm 1 and write 1 1 1( )p g w= . Note that all firms other than 

firm 1 charge p* for their product and pay wage w*. Then, further assuming that firm 1 takes the 
prices and wages of the other firms as given, the first order condition for profit maximisation by 
this firm is given by 

 ( ) 1

1

11 1
1 1

1 1

1
1 0

w
h w

w

Pd dg p w c t NP
dw dw
π α

µ

  − 
= − + − − − =          

. (15) 

In Section 2.9, we derive an expression for the key strategic term 1 1dg dw  in the case with trip 

chaining. As we want later to compare the equilibrium with and without trip chaining, in the next 
section, we recall some properties of the non trip chaining equilibrium derived in de Palma and 
Proost (2006).  

2.8. Market equilibrium without trip chaining 

Recall Propositions 1 and 3 in de Palma and Proost (2006) for the no congestion case. 

Proposition (price)  When no trip chaining is permitted, there exists a unique symmetric short 
run Nash equilibrium in prices and wages. The price-wage equilibrium is given by 

 1 ( )
1

h w d
ntc ntc

np w c t
n

α µ µ∗ ∗− = + + +
−

. (16) 

In the next section (see discussion after Proposition 1) we will show that this proposition is a 
limiting case of the equilibrium with trip chaining. 

Proposition (free entry)  In the free entry symmetric Nash equilibrium with no trip chaining 
permitted and when firms pay a levy equal to the public infrastructure cost there is one 
subcentre too many.  

In this equilibrium, trip-chaining does not occur and households make separate working and 
shopping trips, although these may be to the same destination. We denote this as reference 
equilibrium and in later sections; we compare the results for the reference equilibrium with the 
results for the trip-chaining equilibrium.  

2.9. Short run market equilibrium with trip chaining  

We will show that the symmetric price equilibrium with trip chaining is indeed a short run Nash 
equilibrium. In order to show the properties of this equilibrium we start with the symmetric price 
equilibrium with trip-chaining in which all firms charge p∗  and pay w∗ . We consider single price 

                                                      

5 
i

wP and 
i

dP  are the probability of working and shopping at any subcentre i, respectively. 
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and wage deviations from this equilibrium. We first suppose that firm 1 deviates and sets price 

1p for its product and pays its workers a wage 1w . All other firms continue to charge p∗  and 

pay w∗ . Market clearing in fact precludes any other possible deviations since, as we have seen, 
a change in wage by one firm must be accompanied by a price alteration at the same firm. 
Analysis of the behaviour of firm 1 allows us to derive the conditions for the symmetric price 
equilibrium with trip-chaining. 

Since firm 1 deviates, his profit becomes 

 
1

1
1 1 1 1 1( , , , ) ( ) ( )h ww w p p p w c t NP F Sπ α∗ ∗ = − − − − + . (17) 

In order to derive an expression for a candidate Nash equilibrium from the profit maximisation 
condition and prove its existence, we first need to determine the derivative of the price at firm 1 
with respect to its wage ( 1 1dg dw  in (15)). Defining 1d wµ µ µ≡ ≤  and 

( )1 1|1 1| 1, s sp p P P∗
−Φ ≡ − > 0, we have 

Lemma 1  1

1

0
1 (1 )

dg
dw

µ
µ

−
= <

+ − Φ
.  

Proof. See Appendix A1. 

To understand Lemma 1, take first the case without trip chaining. Then 1 1 ntcdg dw µ= − , 

which means that the more consumers are loyal to their variety of product, the larger the price 
cut needed to sell the extra production brought about by the workers attracted by a wage 
increase. When trip chaining is permitted, the necessary price cut is smaller because the extra 
workers attracted by a wage increase will actually trip chain themselves, so fewer new 
customers need to be attracted. There is a greater probability of trip chaining than of working 
and shopping in separate locations. 

Substitution of 1 1dg dw from Lemma 1 in (15)  and replacing 1
wP  in terms of the conditional 

shopping probabilities (
1|1

sP and
1| 1

sP
−

) from (13), we obtain 

 ( ) [ ] [ ]
1|1 1| 11

1 1

1(1 ) (1 ) 0
1 (1 ) 11

s s
h

w

P P
p w c t Nµ µ α

µ µ
−

  − − + − − Φ
+ − − − =     + − Φ −Φ−Φ     

. (18) 

Now, at equilibrium in the symmetric case, 1 *p p= and we can therefore rewrite the conditional 

shopping probabilities (5) and (7) as 

 1|1
1 1

1 ( 1)
sP

n nλ
= >

+ −
, (19) 

and 1| 1
1

1 ( 1)
sP

n n
λ

λ− = <
+ −

, (20) 

where ( )/ 0,1
d dte α µλ −≡ ∈ from our model assumptions. λ  can be seen as a trip chaining cost 

parameter. When travel costs are high and shopping and variety preferences are not strong, λ  
is small and there is more frequent trip chaining. Note that total transport costs for shopping 
amount to ( )1|11 s dP tNα−  (see (1) where 1|1

sPδ = and N=D). Thus, we can write 
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1

1 ( 1)n
λ

λ
−

Φ =
+ −

. (21) 

Substitution of expressions (19), (20) and (21) in (18) allow us to specify the candidate Nash 
equilibrium. 

Proposition 1 When trip chaining is permitted, there exists a unique symmetric short run Nash 
equilibrium in prices and wages. The price-wage equilibrium is given by 

 
( )

[ ]
1 (1 ) 1

( )
1 1 2 ( 2)

d
h w d n np w c t

n n n
µ λµα µ µ

µ λ µλ
∗ ∗  − − − = + + + −  − − − + − +  

. (22) 

Proof. See Appendix A2.  

From (14), in equilibrium, a firm’s profit per household is 

 
( )

( )
(1 ) 1( )

1 1 2 ( 2)

w d d F S
n n n N

µ λµ µ µπ
µ λ µλ

∗  − −+ +
= − − 

− − − + − +  
. (23) 

Using the fact that 1µ <  and 1λ < , it can be verified that the gross profit (neglecting fixed 

costs) is positive. The comparative statics result is straightforward and left to the reader. The 
relationship between the mark-up (price minus wage), profit and the parameters 

, , , ,d w dn tα µ µ and λ is discussed in Section 4 using a numerical example. 

It is possible to perform the same analysis, within the nested logit framework, for the case where 
consumers have to perform two single purpose trips, even if they work and shop at the same 
subcentre. This is the reference equilibrium without trip chaining, which is the same as the 
equilibrium which can be derived when working and shopping decisions are taken 
independently (see (16)), with the restriction d wµ µ≤ for the nested logit approach (Anderson 

et al., 1992). In this case profits only depend on the household heterogeneity parameters and 
number of firms. We can now compare the symmetric short run trip chaining equilibrium, (22), 
with the symmetric short run, reference equilibrium, (16).  

Proposition 2 The symmetric short run firm mark-up when households can trip chain cannot 
exceed the mark-up when households can only perform single purpose trips. The mark-ups are 
equal when d wµ µ= . The difference in mark-up is given by 

 ( ) ( ) ( )
( )

1(1 ) 0
1 2 ( 2)

d

ntc ntc
np w p w

n n
λµ µ

µ λ µλ
∗ ∗ ∗ ∗  −−
− − − = − < 

− − + − +  
. (24) 

The intuition why trip chaining decreases margins is not obvious given the complexity of the 
RHS of (24). The dominant mechanism can be seen as follows. Compared to the no trip 
chaining case, the same price decrease will attract more customers because a relatively large 
part (> 1/n) of the necessary labour to produce it trip chains and adds to the group of customers. 
This means there is a larger reward for a price cut (a flatter demand curve) and this will lead to 
more price cuts and ultimately lower profit margins.   

2.10. The long run free entry equilibrium with trip chaining  

Using (23) we can write the difference in profit per household as 
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( )

( )
(1 ) 1

0
1 2 ( 2)

d

ntc n n
µ λµπ π

µ λ µλ
∗ ∗  − −
− = − < − − + − + 

. (25) 

It follows directly from (25) that, for any given number of firms n, the profit level of firms present 
in the market when trip chaining is possible always lies below the corresponding level when trip 
chaining is not possible. At free entry, the profit of all firms in the market is zero. Hence this 
must occur at a smaller value of n when there is trip chaining. 

Proposition 3 The symmetric long run Nash equilibrium with free entry has a smaller number 
of firms when trip chaining is possible than when trip chaining is not possible: f f

ntcn n< .  

We will illustrate this difference in the entry of firms numerically in Section 4. 

3. WELFARE ANALYSIS 

3.1. Consumer Surplus in the short run 

Using the expected maximum utility approach described in Section 2.4, the total consumer 
surplus, from working and shopping activities associated with households working at subcentre 
1, can be obtained from the log sum of the denominator of (9). In the symmetric equilibrium, this 
is indeed the consumer surplus of households working at any subcentre and can be written as 

 log exp
w s

w
w

w t CSCS n α βµ
µ

∗  − + −
=   

  
, (26) 

 where [ ]* log 1 ( 1)s dCS h p nµ λ= − + + − is the consumer surplus6 derived by households 

from shopping activities ((6) and (8)) in the symmetric equilibrium with trip chaining. An 
equivalent expression can be obtained for the reference case without trip chaining (see 
Appendix A3). 

Proposition 4  In the symmetric short run Nash equilibrium, the consumer surplus when 
households can trip chain is larger than the consumer surplus when households must perform 
only single purpose trips. The difference in consumer surplus is given by 

 ( )
1 1( ) log 1 0d

ntc ntc ntcCS CS p w p w
n

λµ
−

∗ ∗ ∗ ∗  −
− = − − − + + > 

 
. (27) 

Proof. See Appendix A3.  

A higher mark up (p-w) for the firm means a higher price and lower wage for the differentiated 
good so a lower consumer surplus for the household. The second travel cost component can be 
clarified by further subdividing this term into the travel time saving for households who do not 
change their behaviour between the two equilibria and the cost for a household that changes its 
shopping behaviour to take advantage of trip chaining. Hence 

 
11 11 1log 1 log 1

d
d d nt

n n n
λ α λµ µ λ

− −    − −
+ = + +   

    
 (28) 

                                                      
6 Consumer surplus and welfare are calculated per household. 
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The first term on the RHS (28) of the above equation is equal to the transportation cost saving 
when an individual works in a subcentre and has his most preferred good in the same subcentre 
(this event happens with probability 1/n). The second term is the saving from economising on 
transport cost when the first best choice is not at the same location as the work place but close 
enough in the idiosyncratic preference space (see Anderson et al., 1989). This second term, 
which translates the quality adjustment of the consumer, is strictly positive and converges to 
zero when the travel time goes to zero and λ goes to one.  

Substitution of the mark-up terms from (24) into (27) allows us to perform a comparative statics 
exercise on the model parameters. It can easily be shown that the difference in consumer 
surplus is decreasing in the trip chaining cost λ and n. These results are verified by the 
numerical exercise in Section 4. 

3.2. Welfare effects in the short run 

For a quasi linear utility function, welfare difference is the sum of the difference in consumer 
surplus from the consumption and supply of differentiated product and differentiated labour plus 
difference in producer surplus from the supply of the differentiated product. Using expression 
(27) and the fact that profits are redistributed equally to households, we obtain:  

Proposition 5 In the symmetric short run Nash equilibrium, welfare6 is greater when 
households can trip chain, than when they have to perform only single purpose trips. The 
difference in welfare is given by 

 
1 1log 1d

ntcW W
n

λµ
− −

− = + 
 

. (29) 

Clearly the difference in welfare between the equilibria with and without trip chaining is equal to 
the difference in consumer surplus minus the difference in profits.  Equation (29) is positive 
since with trip chaining the individuals have more options (to use or not use the trip chaining 
scheme). Therefore (29) represents, in a sense, the option value associated with trip chaining. 
Note that the fact that prices are adjusted by trip chaining is irrelevant for the welfare analysis, 
since price changes are pure transfers with no social impacts. 

3.3. Welfare effects in the long run  

When we analyse the welfare effects of trip chaining in the long run, there are three conflicting 
forces to consider. For an identical number of firms (short run) we know that the gain in 
transport costs is larger than the loss in consumer diversity (Proposition 5). But, we also know 
from Proposition 3 that the free entry number of firms is smaller with trip chaining than without 
trip chaining and this means a loss of diversity (welfare loss) and a decrease in fixed costs 
(welfare gain).  

We will be able to show that trip chaining is indeed welfare enhancing even with free entry but 
this will require a few intermediate steps contained in Lemmas 2 and 3. These are proved in 
Appendices A4 and A5. 

Lemma 2 The welfare maximising number of firms is smaller when the trip chaining option is 
possible: 0 0

ntcn n< . 
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The next intermediate result we need is to show that with the trip chaining option, the free entry 
equilibrium has always too many firms compared to the optimal number of firms.  

Lemma 3 When trip chaining is possible, the free entry number of firms is larger than the 
optimal number of firms: 0fn n> . 

We can now prove the following proposition, which extends Proposition 5 to the long run. 

Proposition 6 In the free entry Nash equilibrium, the welfare is higher when trip chaining is 
possible than when it is not.  

 0 0( ) ( ) ( ) ( )f f
ntc ntc ntc ntcW n W n W n W n≥ ≥ ≥ . (30) 

Proof  

Recall from Section 2.10 that the profit curve for firms when trip chaining is possible always lies 
below that when trip chaining is not possible, as shown on Figure 2. Further, from Proposition 3 
the free entry number of firms with trip chaining is smaller than without trip chaining 
( f f

ntcn n< ). Using Lemma 2 and Lemma 3, we also have 0 f f
ntcn n n≤ ≤ . We know from (29) 

(Proposition 5) that the welfare curve when there is trip chaining always lies above that when 
trip chaining is not possible. These curves are also illustrated in Figure 2. We can then show 
that (30) holds. The first inequality follows from the definition of an optimum, the next inequality 
follows from the concavity of W, the last inequality follows from Proposition 5. QED. 

 

Π,W

W

Wntc

πntcπ

nn°
n°ntcnf nf

ntc
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B

 
Figure 2   Welfare and profit functions with and without the possibility of trip 
chaining 
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4. NUMERICAL EXAMPLE 

The trip chaining equilibrium in price and wages, (24), depends in a complex way on a number 

of parameters: in particular , , ,w d d nµ µ α , /d dte α µλ −≡ and travel time, t. The following 

numerical exercise illustrates the effect of each of these parameters on the price-wage 
equilibrium and also on profit, consumer surplus and welfare. 

We use the simple, stylised example of an economy of one day. As a reference, for the short 
run equilibrium, we assume there are three firms offering the differentiated good. Each resident 
makes one commuting trip and one shopping trip per day, giving a total transport time of one 
hour. He also supplies 7.5 hours of labour, of which one hour is spent on the production of the 
differentiated good. Truck deliveries are such that each truck contains sufficient intermediate 
good to produce 50 units of the differentiated good. One unit of the differentiated good requires 
an intermediate input that can be produced using 0.1 units of homogeneous labour. Finally, we 
set the fixed costs7 per firm at 0.5 hours of labour per capita, as these do not affect the short-run 
equilibria or welfare analysis, and present gross profits per household. 

In Table 1 we examine, for the short run equilibrium with a fixed number of firms, the effect on 
price minus wage and gross profit (π) of varying exogenous factors like the consumers’ 
preference for work and shopping locations ( wµ and dµ , respectively), number of shopping 

trips ( dα ) and travel time, for the equilibria with and without trip chaining. In the last line, we 
also look at the effect of increasing the number of firms. The short run equilibria (with given 
number of firms) are presented in the second part of Table 1. The long run equilibrium number 
of firms are given in the last two columns. 

We first examine the short run equilibria. When consumers can trip chain, profits increase as 
wµ increases since the strong preference for working location means that a firm can pay lower 

wages (or charge higher prices) without losing workers. Similarly, a weak preference for 
shopping location (small dµ ) necessitates firms charging lower prices to retain shoppers. Profits 

also decrease when there are more firms due to increased competition. Similar effects are also 
seen for changes in these parameters in the no trip-chaining reference case.  

Exogenous parameters Short run equilibria Free entry 
dµ  wµ  dα  t 

(hrs) n λ * *p w−  * *ntc ntcp w− π* πntc 
∆π* 
(%)† 

fn  ntc

fn  

1 2 1 0,5 3 0,61 4,488 4,610 1,459 1,500 2,7 6 7 
1 5 1 0,5 3 0,61 8,923 9,110 2,938 3,000 2,1 12 13 
0,1 2 1 0,5 3 0,01 3,188 3,260 1,026 1,050 2,3 5 5 
1 2 0,2 0,5 3 0,90 4,585 4,610 1,492 1,500 0,6 6 7 
1 2 2 0,5 3 0,37 4,379 4,610 1,423 1,500 5,1 6 7 
1 2 1 2 3 0,14 4,259 4,640 1,373 1,500 8,5 6 7 
1 2 1 0,25 3 0,78 4,543 4,605 1,479 1,500 1,4 6 7 
1 2 1 0,5 10 0,61 3,410 3,443 0,330 0,333 1,0   

Table 1  Comparative statics with and without trip chaining in the short run and 
in the long run  

                                                      
7 Fixed costs here include levies (S) which are assumed equal to the fixed public inputs (K) since there are 

no head taxes (T).  
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† The difference in profit is calculated as a percentage of the symmetric case without trip chaining. 

Interestingly, however, we see that, when consumers can work and shop at the same 
subcentre, the number of shopping trips they make ( dα ) plays a role. If consumers do not make 
frequent shopping trips then firms can make higher profits. A small value of dα means that the 
travel cost for shopping trips is low, a smaller proportion of workers trip chain and profits 
increase. Decreasing or increasing the travel time from the city centre to the subcentres has the 
same effect on profits as does dα . A longer travel time means higher travel costs and, in this 
case, a higher proportion of the workforce prefers to trip-chain to minimise these costs. The 
demand curve is consequently flatter. For the no trip-chaining case, the price mark-up over 
wage does depend on travel time because of travel costs for the intermediate good but profits 
are independent of travel cost. Note also that, for the trip chaining case, profit increases with the 
trip chaining cost parameter for households, λ . 

It is clear from Table 1 that when consumers can trip chain, firms cannot make greater profits 
than when consumers can only make single purpose trips. The magnitude of the difference in 
profits obviously depends on the values of the input parameters but the difference is large for 
long travel time or high frequency of shopping trips.  

With free entry, we see that trip chaining reduces the number of firms. The effect of travel time 
and trip frequency is much smaller than that of consumer heterogeneity and is not apparent 
when integer numbers of firms are considered, as is the case here.  

 In Table 2 we present the difference in consumer surplus and welfare (per household) between 
the two equilibria in the short and long run. For the short-run equilibrium, as expected, 
consumer surplus decreases with n (and λ). The largest gains in consumer surplus and welfare 
with trip chaining are seen when travel costs are high or when consumers have a low 
preference for shopping location, so they are more likely to trip chain and firms also charge 
lower prices. With respect to shorter travel time or reduced trip frequency, consumer surplus 
also increases as firms are able to increase prices and profits but these increases are smaller 
than in the reference case without trip chaining so the gain in consumer surplus from trip 
chaining is reduced.  

The total reduction in travel costs per capita due to trip chaining is given by dtδα . This can be 
larger or smaller than the gain in consumer surplus due to trip chaining, depending on the 
exogenous model parameters (see Section 3.1).  
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Exogenous parameters Short run equilibria Free entry 
dµ

 

wµ
 

dα
 

t (hrs) n 
dtδα

 
ntcCS CS−

 
ntcW W−

 
ntcW W−

 (%GDP) 

( ) ( )f f
ntc ntcW n W n−  

(%GDP) 
 

1 2 1 0,5 3 0,23 0.32 0,20 2,3 1.65 
1 5 1 0,5 3 0,23 0.38 0,20 2,3 0.9 
0,1 2 1 0,5 3 0,49 0.46 0,39 4,6 4.0 
1 2 0,2 0,5 3 0.04 0.06 0,03 0,4 0.6 
1 2 2 0,5 3 0.58 0.68 0,45 5,3 3.4 
1 2 1 2 3 1.57 1.52 1,14 13,4 9.0 
1 2 1 0,25 3 0.10 0.15 0,09 1,1 1.0 
1 2 1 0,5 10 0,08 0.10 0,06 0,7  

Table 2  Welfare effects with and without trip chaining 

In the long run with free entry, welfare is always greater when trip chaining is possible, as 
shown in Proposition 6. In this case the largest gains in welfare are also seen when travel costs 
are high or when consumers have a low preference for shopping location. However, when 
consumer preference for working location is strong the benefits of trip chaining are smaller. 
Preference for work location has an impact on welfare gains from trip chaining in the long run 
because there are fewer firms in the long run equilibrium with trip chaining. Consumers have 
less choice of working location which reduces welfare. In the short run, there are the same 
number of firms in the equilibria with and without trip chaining, so wµ does not play a role.  

5. CONCLUSIONS 

In this paper we studied the effect of trip chaining on the profits and number of firms as well as 
on welfare. We found that firms make smaller profits when the trip chaining is permitted 
because price cuts tend to generate higher demand responses. The higher demand responses 
come from the workers that are also partly consumers of the firm. In the symmetric equilibrium, 
lower profit margins imply that a smaller number of firms can survive in the free entry case. 
Welfare does unambiguously increase in the short run and with free entry because the gain in 
transport costs is not fully offset by the loss of variety of firms.  

Trip chaining is beneficial to consumers in the short and long run. On the contrary, firms 
collectively loose when trip chaining is possible and would therefore not support legislation 
promoting it. However, the net impact (i.e. the impact on welfare) is positive, which obviously 
suggests such legislation should be encouraged (via parking policies, pricing and information 
systems, for example). 

In this paper we compared a symmetric equilibrium where trip chaining is allowed with a 
symmetric equilibrium where it is not. We can add one step to the game and consider trip 
chaining as an option to be decided unilaterally by each firm. Consider a situation where n-m 
firms allow trip chaining and the remaining m do not allow trip chaining. We look at the incentive 
for one of the m firms to change its policy and allow trip chaining. The profits of a firm that 
decides to allow trip chaining change for two reasons. First, keeping its price fixed, its demand 
increases as the transport cost reduction increases its attractiveness. Second, there will be new 
price equilibriums since the competition will decrease their price and since goods are strategic 
substitutes, the deviant firm will also decrease its price. We conjecture the latter effect is 
dominated by the former and as a result the profit of the deviant firm increases while the profit of 
the other n-1 firms decreases. We are typically facing a prisoners’ dilemma situation and as a 
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result all firms will accept trip chaining one after another and, as we have seen from Proposition 
2, all firms will be worse off compared to the situation when trip chaining is not allowed.  

One may therefore expect that industry associations will lobby against trip chaining, for 
example, by relocating far enough from the business district to make trip chaining unfeasible. 
This is the same phenomenon as the opening hours’ discussion where each firm has an 
incentive to deviate and steal markets from its competitors by staying open longer (Rouwendal 
and Rietveld, 1999). However, at least when demand is inelastic, all firms will be worse off with 
extended opening hours. 
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APPENDICES 

Appendix A1: Proof of Lemma 1. 

Recall from (13) that 

 1 1|1 1| 1 1| 11 0w s s sP P P P− − − + − =  . (31) 

 

We will denote the left hand side of (31) by X so that 0X = .This expression is constant and 
can be differentiated implicitly to give  

 1 1 1

1 1

( )dg w X w
dw X p

∂ ∂
= −

∂ ∂
. (32) 

We next evaluate the numerator and denominator of the right hand side of (32) by differentiating 
(31). 

A)  [ ]1

1 1

1
wPX

w w
∂∂

= −Φ
∂ ∂

 (Recall 1|1 1| 1
s sP P −Φ ≡ − .) 

We can substitute 1
1 1

1

1 1
w

w w
w

P P P
w µ

∂  = − ∂
to obtain 

 [ ]1 1
1

1 1 1w w
w

X P P
w µ
∂  = − −Φ ∂

. (33) 

B) [ ] 1|1 1| 11
1 1

1 1 1 1

1 (1 )
s sw

w wP PPX P P
p p p p

−∂ ∂∂∂
= −Φ − − −

∂ ∂ ∂ ∂
. (34) 

To evaluate this expression, we consider each of the partial derivatives on the right hand side in 
turn. Firstly 

 1 1 1
1 1 1 1

1 1 1

1 11 ( 1)
w

w w w w
w w

P CS CS
P P n P P

p p pµ µ
−

−

∂ ∂ ∂ = − − − ∂ ∂ ∂
. (35) 

The derivatives of the consumer surplus with respect to price are given by 

( ) 11
1 1|1 1|1

1

1expd d s s
d

CS p D P
p

µ µ
µ

−  ∂ −
= − = − ∂  

 and 

( )( ) 11
1 1| 1 1| 1

1

1expd d d s s
d

CS p t D P
p

µ α µ
µ

−−
− −

 ∂ −
= − − = − ∂  

 with 

( ) ( )( )1|1 1exp ( 1)exp *s d d dD p n p tµ α µ= − + − − −  and 

( )( ) ( ) ( )1| 1 1exp exp * 1 ( 2)exps d d d d dD p t p n tα µ µ α µ−
 = − − + − + − −  . These are the 

expressions for Roy’s identity in the case of a discrete choice model. Substituting these 
derivatives in (35) leads to 
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1 11

1

1 w ww

w

P PP
p µ

 −∂  = − Φ
∂

, (36) 

where we have also used ( )1 11 ( 1)w wP n P−− = − . 

Next we have  

 1|1
1|1 1|1

1

1 1
s

s s
d

P
P P

p µ
∂

 = − − ∂
 (37) 

and  

 1| 1
1| 1 1| 1

1

1 1
s

s s
d

P
P P

p µ
−

− −

∂
 = − − ∂

. (38) 

 

Substituting (36), (37) and (38) in (35), we obtain 

 [ ]
( )1 1 11

1|1 1|1 1| 1 1| 1
1

1 1
1 1 1

w w ww
s s s s

w d d

P P PPX
P P P P

p µ µ µ − −

− −∂
= − − Φ + − + −

∂

      Φ     . (39) 

Finally, substituting (33) and (39) in (32) leads to 

 
[ ]

[ ]
( )

1 1

11 1 1
1|1 1|1 1| 1 1| 1

1

1

1
1 1

11
1 1 1

w w

w

ww w w
s s s s

w d d

P P

PP P P
P P P P

dg
dp

µ

µ µ µ − −

− − Φ

= −
−−

Φ − Φ + − + −

  

  −       

. (40) 

 We can now use our original expression (31) to eliminate 1
wP from (40). Then, dividing 

numerator and denominator by [ ]1−Φ to simplify the equation, we obtain 

 1

1 1 (1 )
dg
dw

µ
µ

−
=

+ − Φ
 (41) 

where 
d

w

µµ
µ

≡ . QED. 

Appendix A2: Proof of Proposition 1. 

Recall from Lemma 1 that at the candidate equilibrium  

 1

1 1 (1 )
dp
dw

µ
µ

−
=

+ − Φ
, (42) 

where 
d

w

µµ
µ

≡  and 1|1 1| 1
s sP P −Φ ≡ − . This expression is negative and single valued, so that 

there exists a one-to-one relationship between 1p  and 1w . Hence the set of prices is a convex, 

compact set and the equilibrium exists. Further (42) is constant, since µ, t and n are all 
exogenous. 
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Since a candidate equilibrium exists, we need only show that the profit function is quasi-
concave to guarantee that the candidate equilibrium is the unique Nash solution. 

At any extremum 

 ( )11 1 1
1 1 1

1 1

1
1 0

w
h w

w

d dp P
p w c t NP

dw dw
π
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    −
= − + − − − =   
     

. (43) 

The corresponding second order condition is given by 
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From (43) we can replace ( )1
1 1

hp w c tα− − −  in (44) to get 
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1 1 1 1 1

1 12
1 1 1

2
1 1 1

1 2
1 1

1 1 21 2
1

1 2 2 1 21
1

1 .

w w
w w

w w

w w w
w w

w w

w
w

w

d d p P dp PNP NP
dw dw dw P

d p P dp P PNP NP
dw dw P

d p P dpNP N
dw dw

π
µ

µ

µ

     − −
= + − −      −     

   − − − +
= + −    −   

  
= + −  

  

 (45) 

Now 
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[ ]

[ ]

[ ]

2
1
2

1 1

2
1

2
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3
1|1 1| 1

3
1 1

3

1|1 1|1 1| 1 1| 13

3

1|1 1| 13

1 (1 )

1 (1 )

1 (1 )

1 11 1
1 (1 )

1 .
1 (1 )

s s

s s s s
d d

s s
d

d p d
dw dw

dp
p dw

P P
p p

P P P P

P P

µ
µ

µ
µ

µ
µ

µ
µ µµ

µ
µ µ

−

− −

−

 −
=  + − Φ 

− ∂Φ
=

∂+ − Φ

 ∂ ∂
= − 

∂ ∂+ − Φ   

    = − − + −    + − Φ  

−  = Φ − − + − Φ

 (46) 

From our model assumptions 0 1µ< ≤  and 0dµ > . Further, we know that, at the candidate 

symmetric equilibrium, 0Φ > , 1|1
1

1 ( 1)
sP

n λ
=

+ −
 and 1| 1 1 ( 1)

sP
n
λ

λ− =
+ −

, where 
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/ 0
d dte α µλ −≡ > . Hence 

( )
( )1|1 1| 1

2
1

1 1
s s n

P P
n

λ
λ−

−
 − − =  + −

 is non-negative for 2n ≥ . Thus 

(46) is non-positive. 

Substituting from (46) in (45) means that the first term on the right hand side of (45) is non-
positive. We also know from (42) that 1 1 0dp dw < , so the second term in (45) is negative. 

Hence 
2

1
2

1

d
dw
π

 is strictly negative at any extremum (solution of the first-order equations) and thus 

the profit is quasi-concave. As a consequence, the candidate Nash equilibrium is a Nash 
equilibrium. QED. 

 

Appendix A3: Proof of Proposition 4 

Recall from (26) that with trip chaining 

 
*log

w s
w

w

w t CSCS ne α βµ
µ

 − + −
=  

 
, (47) 

where [ ]* log 1 ( 1)s dCS h p nµ λ= − + + −  and /d dte α µλ −≡ . By substitution, the above 

equation can be reformulated as 

 [ ]log * * log 1 ( 1)w w dCS n w p h t nµ β α µ λ= + − + − − + + − . (48) 

Note that, for the case without trip chaining 

 1 1 1|1log
ntc ntc ntc

s s d d sCS CS h t Dα µ−  = = − +    (49) 

and 

 11 1
1 1 1|1( , *) exp

ntc ntc

w s
w w

w

w t CSP w w Dα
µ

− − +
=  

 
, (50) 

where ( )( ) ( ) ( )1|1 1 1xp exp ( 1)exp *
ntc

w w s w w wD e t CS w n wα µ µ µ = − + + −  . 

Similarly using (49) and the log sum of the denominator of (50) both evaluated at the symmetric 
equilibrium, we obtain  

 
*log

w s
w ntc ntc

ntc w

w t CSCS ne α βµ
µ

 − + −
=  

 
 (51) 

for the reference case without trip chaining, where * logs d d
ntc ntcCS h p t nα µ= − − + . 

Substituting for s
ntcCS  in (51) and subtracting the resulting equation from (48) leads to 

 

[ ]
1

( * * ) ( * *) log log 1 ( 1)

1( * * ) ( * *) log 1

d d d
ntc ntc ntc

d
ntc ntc

CS CS p w p w t n n

p w p w
n

α µ µ λ

λµ
−

− = − − − + + + + −

 −
= − − − + + 

 

 (52). 

QED. 
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Appendix A4: Proof of Lemma 2 

Call the welfare optimum number of firms without trip chaining 0
ntcn  and the optimal number of 

firms when trip chaining is possible 0n . 

The optimal number of firms in the absence of trip chaining maximizes the following welfare 
function (per household): 

 ( ) ( ) ( ) logd wnW n F K n
N

µ µ= Ψ − + + + , 

where 1(1 ) h d wc t h t tθ β α α β αΨ = − − + + − − − ,so the optimal number of firms satisfies the 

following first order condition: 

 0 0

w d

ntc ntc

F K
n n N
µ µ +

+ = . 

When trip chaining is allowed, the welfare function (per household) to be maximised is  

 
[ ]( ) ' log log 1 ( 1) ( )w d nW n n n F K

N
µ µ λ= Ψ + + + − − +

’ 

where ' dtαΨ = Ψ + . This leads to the first order condition 

 0 01 ( 1)

w d F K
n n N
µ µ λ

λ
+

+ =
+ −

. 

Comparing both first order equations, the solutions must satisfy: 0 0
ntcn n≥ . Q.E.D.  

Appendix A5: Proof of Lemma 3 

We first show that in the symmetric equilibrium with trip chaining allowed, the profit per firm is a 
decreasing function of the number of firms. We limit ourselves to the case where 2n ≥ . Taking 
the derivative of the profit equations for firms when trip chaining is possible, (23), with respect to 
n we find: 

 

2

2 2

( ) (1 )(1 )
( 1)

( 1) (2 ( 2) ) ( 1) (2 ( 2) )

( 1) (1 )(1 )( )
(2 ( 2) ) 2 ( 2)

w d

d d

d
w d d

n n

n n n n

nsign sign
n n n

π µ µ µ λ

µ µ λ
µ λ µλ µ λ µλ

π λ µ µ λµ µ µ
µ λ µλ µ λ µλ

∂ +
= − + − −

∂ −

 
+ − − + − + − − + − + 

  ∂ − − − = − + + +  ∂ − + − + − + − +   

 

The first term on the right hand side is negative. Because µ and λ are both smaller than one, we 

know that the term 
(1 )(1 )

2 ( 2)n
µ λ

µ λ µλ
− −

− + − +
 is at most equal to one, we will use therefore the 

upper bound for this term and put this term equal to one.  

It is therefore sufficient to show that the following expression is negative: 
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[ ]{ }
{ }
{ }

2 ( 2) ( 1)

2 ( 2) ( 1)

( ) ( 2) ( )

w d

w d w d d

w d w d w

sign n n

sign n n

sign n

µ µ λ µλ λ µ

µ µ µ λ µ λ λ µ

µ µ µ λ µ µ

− − + − + + −

= − + − − − + −

= − + − + − −

, 

where we have used the definition 1d wµ µ µ≡ ≤  and this last expression is indeed negative. 

The optimal number of firms can be found by using the first order condition for a maximum of 
the welfare function 

 0 0 0
1 ( 1)

w d F K
n n N
µ µ λ

λ
+

+ − =
+ −

 (53) 

and the equation that determines the free entry equilibrium number of firms is (using (23) and 
the zero profit condition) 

 
( )

( )
(1 ) 1( ) 0

1 1 2 ( 2)

w d d F S
n n n N

µ λµ µ µ
µ λ µλ

 − −+ +
− − = 

− − − + − +  
. (54) 

We know from the above that the left hand side of (54) is a decreasing function of n. Moreover 
we know that the profit goes to infinity (or at least a very large number) when n approaches one. 
The left hand side (LHS) of (53) is however finite when n approaches one. This means that 
starting from a value of n=1, the LHS of (53) is initially always smaller than the LHS of (54). 
Since both LHS are decreasing, it is sufficient to prove that the LHS of (53) and (54) can never 
be equal to know that the solution of (54) is always larger than the solution of (53). 

We now show that there is no value of n >0 that satisfies the LHS of both equations. Equating 
the left hand sides of (53) and (54) and rearranging, we have 

1 (1 )(1 )
1 ( 1) (2 ( 2)

w
d

n n n
µ µ λµ

λ µ λ µλ
 − − −

= + + − − + − + 
, 

which can be rewritten as 

 
[ ] [ ]

[ ][ ]
2 ( 2) (1 )(1 ) 1 ( 1)

1 ( 1) 2 ( 2)

w
d n n

n n n
µ λ µλ µ λ λµ µ

λ µ λ µλ
 − − + − + + − − + − =  + − − + − +  

. (55) 

The LHS is always positive and the denominator of the RHS is always positive in (55), so it is 
sufficient to prove that the numerator is always negative to prove our result. The numerator of 
the LHS of (55)can be simplified to { }1 ( 1)nλ µ λµ λ− − − − + . This is always negative given 

that µ and λ are both smaller than one. Q.E.D.  
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