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Abstract 
 
 This paper studies pricing and investment decisions on a congested transport corridor where 
the elements of the corridor are controlled by different governments. A corridor can be an interstate 
highway or railway line, or an inter-modal connection. We model the simplest corridor: two transport 
links in series, where each of the links is controlled by a different government. Each link is used by 
transit as well as by local traffic; both links are subject to congestion. We consider a two stage non-
cooperative game where both governments strategically set capacity in the first stage and play a pricing 
game in the second stage. Three pricing regimes are distinguished: (i) differentiated tolls between local 
and transit transport, (ii) one uniform toll on local and transit traffic, and (iii) only the local users can 
be tolled. Numerical analysis illustrates all theoretical insights. A number of interesting results are 
obtained. First, transit tolls on the network will be inefficiently high. If only local traffic can be tolled, 
however, the Nash equilibrium tolls are inefficiently low. Second, raising the toll on transit through a 
given country by one euro raises the toll on the whole trajectory by less than one euro. Third, higher 
capacity investment in a given region not only reduces optimal tolls in this region under all pricing 
regimes but it also increases the transit tolls on the other link of the corridor. Fourth, capacities in the 
different regions are strategic complements: when one country on the corridor increases transport 
capacity, it forces the other country to do the same.  Fifth, we find interesting interactions between 
optimal capacities and the set of pricing instruments used: capacity with differentiated tolls is 
substantially higher than in the case of uniform tolls but overall welfare is lower. Finally, if transit is 
sufficiently important, it may be welfare improving not to allow any tolling at all, or to only allow the 
tolling of locals.  
 
Keywords: congestion pricing, transport investment, transit traffic 
JEL: H23, H71, R41, R48 
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0. Introduction 

 The purpose of this paper is to study pricing and investment decisions on a 

congested transport corridor of which each of the links are under the jurisdiction of a 

different government. Fiscal and expenditure externalities give rise to strategic pricing 

and investment behaviour by the various governments involved. Potential 

applicability of the analysis includes investment and pricing on Trans European 

Networks (“TEN’s” basically a border-crossing highway, rail or multimodal system) 

in Europe and the interstate highway system in the US. Moreover, it is equally 

relevant for pricing and investment decisions for inter-modal trips where the transfer 

facility (ports, airports, freight terminal) and the upstream or downstream 

infrastructure is controlled by different governments or by different private 

monopolists. The paper yields new theoretical insights, and it illustrates the results 

using numerical simulation analysis.  

 Interstate highways in the US and the TEN’s in Europe have raised many 

policy questions. The two most prominent ones are on tolling and on investment. 

Allowing tolling by different governments will help to control congestion and 

generates resources for investments, but there is a fear of too high taxes on transit. 

When it comes to investment, the general idea is that, without federal help, 

investments in corridors that are used intensively by transit would be too low. 

Obviously both questions are linked: allowing tolling may help to overcome 

insufficient investment, but the net efficiency gain is not clear.   

 The approach we take focuses on models of interregional competition and 

considers various tolling or user charge possibilities for the governments involved. 

Specifically, the model set up contains two serial links where each of the links is 

controlled by one government1. The two links together form a corridor for transit 

traffic but each of the links is also used by local traffic. Both links are subject to 

congestion. We consider a two stage game where both governments set capacity in the 

first stage and play a Nash pricing game in the second stage. We follow De Borger, 
                                                 
1 Government stands here for a public body that represents faithfully the interests of the local voters. 
This can be a country government, a state government in a federation, or the officials of a smaller 
constituency like a city controlling a port.  
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Proost, Van Dender (2005) in explicitly distinguishing 3 pricing regimes: (i) tolls can 

be differentiated between transit and local users; (ii) only one uniform toll can be 

charged to local and transit traffic; and (iii) only local users can be charged.  

 This paper builds in a natural way on several strands of literature. First, a 

number of papers have considered pricing decisions for congested facilities, assuming 

a simple parallel network setting and excluding tax competition. In an early 

contribution, Braid (1986) studied Cournot and Bertrand pricing rules for congested 

facilities in a symmetric private duopoly setting. This work was extended in various 

directions. For example, Verhoef, Nijkamp, Rietveld (1996) considered competition 

between a private road and a free-access road, and compared the second-best optimal 

tolls with those obtained when both roads are privately owned. De Palma and Lindsey 

(2000) use a bottleneck model of congestion and compare three types of ownership 

structure: a private road competing with a free access road, two competing private 

roads, and competition between a private and a public operator. More recently, Van 

Dender (2005) highlighted the important distinction between facility-specific traffic 

(e.g., traffic to access a port or airport) and other traffic on the network (e.g., local 

traffic not using port or airport facilities). All these papers implicitly consider a 

parallel network structure, they do not deal with tax competition, and they ignore 

capacity competition.2 Second, De Borger et al. (2005) studied tax competition for 

transit transport in a simple network setting, assuming welfare-maximizing 

governments. However, unlike the current paper they focus on parallel networks and 

ignore the possibility of capacity investment as a strategic variable. Third, recent work 

looks specifically at tax exporting in the transport sector within a serial network 

setting. For example, Levinson (2001) analyses US States’ choice of instruments for 

financing transportation infrastructure. He shows that jurisdictions are more likely to 

opt for toll-financing instead of  fuel taxes, for example, when the share of non-

residential users is large.  His model does not include capacity decisions, however.  

Both De Palma and Leruth (1989) and De Borger and Van Dender (2005) do study 

two stage games in capacities and prices for parallel congested facilities. However, 

they do not look at issues of tax and capacity competition on a serial transport 

corridor. Moreover, they do not consider the range of pricing instruments nor the 
                                                 
2 Acemoglu and Ozdazgar (2005) recently provide a detailed theoretical analysis of competition and 
efficiency on parallel network markets. They show that more competition among oligopolists can 
reduce efficiency on congested markets. Moreover, pure strategy equilibria may not exist, especially 
when congestion functions are highly nonlinear. However, they do not consider capacity competition. 
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interaction between capacity choice and pricing regimes studied in the current paper. 

Finally, our model setting can be compared to the problem of airline alliances studied 

by Brueckner (2001). In an airline alliance, airlines cooperate in the international 

interhub (cross atlantic) markets, but the hubs are feeded and connected by local lines 

that are operated by each of the carriers. The alliance reduces competition on the 

interhub market but avoids the double margins on the feeding or connecting local 

lines. Compared to Brueckner’s paper, we concentrate on the serial network 

(forgetting the parallel interhub part) and we have congested infrastructure so that 

capacity decisions matter. Finally, we have local governments as decision makers 

rather than profit maximising airline operators.     

 A number of interesting results are obtained. First, if transit can be tolled we 

find that all tolls are inefficiently high. However, if only local traffic can be tolled, 

Nash equilibrium tolls are inefficiently low: tolls are shown to be smaller than the 

marginal external congestion cost imposed on local traffic. The reason is that higher 

local tolls would attract too much transit traffic and hence reduce welfare. Second, the 

pricing behavior for transit transport boils down to a variant of the double 

marginalization problem for successive monopolies in the industrial organization 

literature (see, e.g., Tirole (1993)). It is shown that reaction functions in transit tolls 

are negatively sloped, so that increasing the transit toll in one region by one euro 

raises the total toll on transit users for the whole trajectory by less than a euro. Third, 

at the capacity stage of the game, we show that capacity reaction functions are 

plausibly upward sloping: capacities are strategic complements. Fourth, we find that 

capacity changes strongly affect optimal tolling behavior. Higher capacity investment 

in a region not only lowers optimal tolls in this region under all pricing regimes, but it 

also increases tolls on transit in the other region. Moreover, there are interesting 

interactions between optimal capacities and the pricing instruments used: optimal 

capacity with differentiated tolls is higher than in the case of uniform tolls but welfare 

is lowest; the largest optimal capacity results when only local tolls are used. Fifth , if 

transit is sufficiently important, it may be welfare improving not to allow any tolling at all, 

or to only allow the tolling of locals. Sixth, it is well known that, in a tax competition 

setting (see Kanbur and Keen (1993)), the smaller country has an interest to go after 

the revenue objective. We find similar behaviour in the case of uniform tolls.  

The paper concentrates on cases where there is always some local and some 

transit traffic, but some extreme cases are interesting too. First, if there is no transit, 
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there is no strategic interaction and the first best solution can be achieved if all traffic 

can be tolled. Second, when transit is tolled but local demand is negligible, the two-

stage game reduces to a pure standard duopoly problem in which the optimal tolls on 

transit are both independent of the level of capacity and of the slope of the congestion 

function.  

 The structure of the paper is as follows. In a first section we describe the setup 

of the model. In Section 2 we look in detail at the pricing stage of the game. We 

study, for different tolling regimes, the countries’ optimal choice of transport tolls, 

conditional on given capacities and the tolls imposed on the other network link. We 

explicitly analyze the characteristics of the toll reaction functions and the resulting 

Nash equilibrium for the simplified case of linear demand and cost functions. Section 

3 deals with the first stage of the game, where regions decide on capacity, given the 

pricing behaviour at the second stage. In Section 4, we present some numerical results 

of the tax-capacity game to illustrate the main theoretical insights. We identify the 

welfare losses due to the lack of coordination between governments and we analyze 

the importance of three parameters: the share of transit, the slope of the congestion 

function and the relative size of the two countries.  Finally, Section 5 concludes with 

some generalisations and caveats. 
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1. Model structure 

 

 The simple setting we consider consists of two serial links; it is assumed that 

pricing of each link is the responsibility of a different government. We assume each 

link carries local traffic and transit traffic. Local traffic uses only the local link. 

Transit traffic, by definition, passes through the two links. Link capacities can be 

augmented through investments; however, once capacity is chosen, both links are 

potentially congestible. The distinction between the parallel network, analyzed in De 

Borger et al. (2005), and the serial setting considered in the current paper, is 

illustrated on Figure 1.  

  Both governments are assumed to maximise a local welfare function that 

reflects two concerns, viz. (i) the travel conditions of its local users and the associated 

welfare, and (ii) total tax revenues on the link it controls. Transit traffic is supposed to 

have its origin and destination outside the two-link network, so that the two 

governments are not interested in the transport costs and the welfare of transit traffic3. 

Finally, we assume that all traffic flows are uniformly distributed over time and are 

equal in both directions, allowing us to focus on one representative unit period and 

one direction.                                                                   

 

Country A

Country B

Country A Country B

TRANSIT
LOCAL

LOCAL

TRANSIT
LOCAL LOCAL

TRANSIT

TRANSIT

 
 Figure 1: Parallel versus serial competition 

                                                 
3 We could, for example, add local traffic originating in one of the countries that contributes to transit 
through the other country. This would imply a third category of traffic that reacts to the sum of the 
local toll and the transit toll abroad. This complicates matters but does not yield additional insights. 
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 Turning to the specification of the model, demand for local transport in 

regions A and B is represented by the strictly downward sloping and twice 

differentiable inverse demand functions ( )Y
A AP Y  and ( )Y

B BP Y , respectively, where AY  

and BY  are the local flows on both links. As is common in the transport literature, 

prices (.)j
iP  are generalised prices including resource costs, time costs and tax 

payments or user charges. Similarly, overall demand for transit traffic is described by 

the strictly downward sloping inverse demand function ( )XP X , where X is the transit 

traffic flow that passes through both regions A and B. 

 Turning to the cost side, the generalised user cost for transit, denoted as Xg , 

equals the sum of the time and resource costs of travel plus the transit tolls in both  A 

and B:  

 
( ) ( )

with 

X
A A A A B B B B

i i i

g C V R C V R
V X Y

τ τ= + + +
= +

 

In this expression, the (.)iC  are the time plus resource costs on link i, and iR  is the 

inverse of capacity4. The user cost function is twice differentiable and strictly 

increasing in i iV R , the total traffic volume relative to capacity. Making time costs a 

function of volume-capacity ratio is a common practice in transport economics5. The 

transit tolls are denoted iτ . Similarly, the generalised user cost functions for local use 

of links A and B are given by, respectively: 

 ( )Y
A A A A Ag C V R t= + . 

 ( )Y
B B B B Bg C V R t= + . 

The it  are the tolls on local transport. 

 Transport equilibrium for transit and local traffic implies 

 

( ) ( ) ( )X X
A A A A B B B BP X g C V R C V Rτ τ= = + + +                      (1)         

                                                 
4 A trick we borrowed from de Palma and Leruth (1989). 
5 See Small (1992) for a discussion of the congestion functions for different modes. In the industrial 
organisation literature an  ┘shaped congestion function is used by Kreps and Scheinkman (1983) to 
show that a 2 stage capacity and price game gives the same results as a one stage Cournot game in 
quantities. Our model does not fit into this category because of the different shape of the congestion 
function and because of the difference in objective functions of the agents.  
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 ( ) ( )Y Y
A A A A A A AP Y g C V R t= = +    (2) 

 ( ) ( )Y Y
B B B B B B BP Y g C V R t= = +    (3) 

 

2. Strategic transport pricing in a serial corridor 
 

 In this section, we study the second stage of the tax-capacity game and focus 

on strategic pricing behaviour of the two governments, conditional on capacity levels. 

Here the methodology closely follows De Borger et al. (2005). Three different 

assumptions are made on the tolling instruments available: we consider the case 

where governments have access to differentiated tolls on local and transit traffic, we 

look at uniform tolls and, finally, we study the case where only local traffic can be 

tolled. In each case we first discuss the reduced-form demand system that expresses 

all demand functions as functions of the policy variables only. Next we derive the 

optimal tax rules for a given region. As the reaction functions and the resulting Nash 

equilibrium in taxes are rather cumbersome in general, we finally study strategic 

behaviour using linear demand and user cost functions. Throughout this section we 

only report the main insights; technical details are provided in appendices. 

 

2.1 The case of differentiated tolls 

 

2.1.1. The reduced-form demand system 

 

 We start from the equilibrium conditions (1), (2) and (3) given above. This 

system can easily be solved for the three transport volumes demanded as functions of 

the four tax rates and the two capacity levels: 

    ( , , , , , )r
A B A B A BX X t t R Rτ τ=         

    
( , , , , , )

( , , , , , )

r
A A A B A B A B

r
B B A B A B A B

Y Y t t R R

Y Y t t R R

τ τ

τ τ

=

=
       

These reduced-form demand functions are an interesting short-cut because they 

already incorporate feedback effects of congestion on demand. This is the reason why 

any tax change of one of the governments affects all the transport flows, including 

local traffic flows abroad.  
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 Unless otherwise noted we limit our analysis to the domain where all flows are 

strictly positive6. In Appendix 1 we show that the demand function for transit 

transport has the following properties:     

    
0, 0, 0, 0

0, 0

r r r r

A B A B
r r

A B

X X X X
t t

X X
R R

τ τ
∂ ∂ ∂ ∂

< < > >
∂ ∂ ∂ ∂

∂ ∂
< <

∂ ∂

          (4)  

Expression (4) implies that higher transit taxes in an arbitrary region reduce overall 

transit demand and, as higher local taxes in any given region reduce congestion, they 

raise transit demand. Higher investment in capacity in either country raises transit 

demand.  

 Similarly, the reduced-form demand for local transport in region A has the 

following characteristics (again, see Appendix 1): 

                                
0, 0, 0, 0

0, 0

r r r r
A A A A

A B A B
r r

A A

A B

Y Y Y Y
t t

Y Y
R R

τ τ
∂ ∂ ∂ ∂

> > < <
∂ ∂ ∂ ∂

∂ ∂
< >

∂ ∂

   (5) 

This shows that transit taxes reduce transit demand and hence congestion, raising 

local demands, whereas local taxes reduce local demand.  Moreover, raising capacity 

abroad in B attracts more transit, increases congestion and, as a consequence, 

decreases local traffic in A. Finally, a local capacity increase in A raises local traffic 

demand in this region.  

 

2.1.2. Optimal toll rules 

 

 We focus on region A. Consider the problem of determining the tolls on local 

and transit traffic that maximizes local welfare, conditional on the existing capacities 

in both regions and taking tax levels in B as given. Region A solves: 

                                  
,

0

1( ( ))
A

A A

Y
Y Y

A A A A A A A At
A

Max W P y dy g Y t Y X K
Rτ

τ= − + + −∫ .          (6)

     

                                                 
6 This assumption is necessary to guarantee differentiable demand functions. 
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where AK is the constant unit rental cost of capacity7, and the demand functions are the 

reduced-form demands just described. We show in Appendix 1 that the first-order 

conditions with respect to At and Aτ imply the following tax rules: 

                 ' '( )A A A A A A At Y X C R LMEC XC R= + = +                        (7)                       

                                         

r
A

A
A A r

A

A A

Y
tLMEC X

z X
t

τ

τ

 ∂
 ∂ = −

∂ ∂ 
 ∂ ∂ 

                                   (8)            

where '
A A A ALMEC Y C R= is the local marginal external cost and ( , , )A A Az X R t  stands 

for the (non reduced) demand function for local traffic. The local marginal external 

cost is the extra congestion cost imposed on local road users by one extra car on the 

link. These tax rules have the same structure as in the parallel network case (De 

Borger et al. (2005)) although, see below, they imply very different strategic tolling 

behaviour. The reduced-form demand derivatives given in (7)-(8) imply that both 

taxes exceed local marginal external cost. Moreover, in Appendix 1 we show that the 

transit tax exceeds the local tax. These results imply tax exporting (taxing transit at a 

higher rate than local demand) and tax competition (taxing a common tax base 

without any regard to the effects on the other region’s revenue). The latter yields tolls 

on local traffic above marginal cost to reduce congestion and attract more transit.    

 

  

2.1.3. Tax reaction functions for linear demand and cost functions  
 
 Note that (7)-(8) implicitly describe region A’s reaction functions: they give 

optimal taxes for given tax rates in B, at given capacity levels in both regions. To 

study some of the properties of these reaction functions and to get insight into 

regions’ strategic behaviour, we simplify the analysis by assuming linear demand and 

cost functions. Let transit and local demands be given by, respectively: 

                                         

( )
( )

( )
, , , , , 0

X

Y
A A A A A
Y

B B B B B

A A B B

P X a bX
P Y c d Y

P Y c d Y
with a b c d c d

= −

= −

= −
>

                                                  

                                                 
7 We assume constant returns to scale in capacity, an assumption more justified for road than for rail. 
We return to this assumption in our concluding section. 
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Cost functions for transport time (and resources) are specified as: 

 
* *

( ) * ( )
( ) * ( )

,
, 0

A A A A A

B B B B B

A A A B B B

C X Y X Y
C X Y X Y

where R R
and

α β
α β

β β β β
α β

+ = + +
+ = + +

= =
>

 

Note that demands and costs are linear in generalized prices and transport volumes, 

respectively. The cost function assumes that congestion is determined by the ratio of 

the traffic flow relative to capacity (remember that the ( , )kR k A B= are inverse 

capacities). The formulation in terms of the β* is convenient because at the pricing 

stage of the game we hold capacities constant. 

 In Appendix 1 we show that the toll reaction functions for region A that 

follows from these specifications can be written as: 

   1
1 1( ) ( )
2 2

B
A A B Bc z tττ τ= − −  

   1
1 1( ) ( )
2 2

t A B A
A A B Bt c L z L tτ= + +  

where the parameters Acτ , t
Ac , 1

Bz and AL  are all rather complex functions of demand 

and cost parameters. Note that 1
Bz  (which is negative, see Appendix 1) gives the effect 

of an exogenous increase in transit transport in region B on the demand for local 

transport in that region. Moreover, we have 1 0AL− < < . 

 Interpretation of the signs of taxes in region B on optimal taxes in A is then 

clear. We find that an increase in the transit tax in B induces region A to optimally 

reduce both its transit tax and the tax on local traffic. The higher tax on transit in B 

reduces transit demand and hence reduces congestion in A. The optimal response in A 

is therefore to reduce both taxes. Similarly, a higher local tax in B induces region A to 

optimally raise transit as well as local taxes in A. The higher local tax in B reduces 

congestion in B, and attracts more transit. This also raises congestion in A. Therefore, 

country A raises its tax rates on all traffic on its territory.  

 Note that, despite the very different setting, the structure of the reaction 

functions bears some close resemblance to well-known results in industrial 

organisation. For example, it implies that an increase in the transit toll in one region is 

partially compensated by a reduction in the transit toll imposed by the other region. 

More specifically, a one euro toll increase on transit in B induces region A to reduce 
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its toll by 0.5 euro, so that the overall transit toll for the whole trajectory rises by 0.5 

euro only. This phenomenon is reminiscent of the pricing behaviour of successive 

monopolies, where in the case of linear demands and costs a cost increase by one unit 

raises the final price by exactly 0.5 euro (see Bresnahan and Reiss (1985), Tirole 

(1993)).     

 Together with the equivalent expressions for B, we have four reaction 

functions that can be solved for the Nash equilibrium in taxes. We denote this 

solution, which depends on the capacity levels, as 

( , ), ( , ), ,NE NE
k A B k A BR R t R R k A Bτ = . Unfortunately, despite the simplicity of the 

model (linear demands and costs), the expression that describes the partial effects of 

capacities on Nash equilibrium taxes are cumbersome, and even the signs of these 

derivatives are hard to determine analytically. Intuitively, one expects a capacity 

increases in A to reduce Nash equilibrium taxes in A, because of lower congestion 

(although it also implies extra revenue-raising capacity). A capacity increase in B 

raises congestion in A and is therefore likely to raise taxes in A. We expect, therefore: 

   0, 0, 0, 0
NE NE NE NE
A A A A

A A B B

t t
R R R R
τ τ∂ ∂ ∂ ∂

> > < <
∂ ∂ ∂ ∂

 

Numerical analysis, see Section 4, confirms these signs. 

 

 

2.2. The case of uniform tolls  

 

 The procedure to derive the reduced-form demand system is entirely 

analogous to the differentiated tolling case; the only difference is that we set the local 

toll ( , )kt k A B= and the transit toll ( , )k k A Bτ = equal. We denote the uniform tolls 

by ( , )k k A Bθ = . Derivations are summarized in Appendix 2. There we determine the 

following signs for the partial effects of the uniform taxes and capacity changes on 

transit demand ( , , , )r
A B A BX X R Rθ θ= : 

 0
r

A

X
θ

∂
<

∂
,
  

0
r

B

X
θ

∂
<

∂
     

     0
r

A

X
R

∂
<

∂
, 0

r

B

X
R

∂
<

∂
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Both tax rates reduce transit demand. Capacity increases raise demand for transit. 

Similarly, we have the following partial effects for the local demand function 

( , , , )r
A A A B A BY Y R Rθ θ= :  

                          
0, 0

0, 0

r r
A A

A B
r r

A A

A B

Y Y

Y Y
R R

θ θ
∂ ∂

< >
∂ ∂

∂ ∂
< >

∂ ∂

  

A higher tax rate in A reduces local demand in A; an increase in the tax rate abroad 

reduces transit demand and, hence, raises local demand in A. Capacity increases in A 

(B) raise (reduce) local demand in A.    

 The optimal uniform tax can be written as, see Appendix 2.   

   

A A r r
A

A A

XLMEC
Y X

θ

θ θ

= −
∂ ∂

+
∂ ∂

 

Noting the signs derived before, it follows that the tax rate exceeds the local marginal 

external cost. The difference positively depends on the importance of transit. 

 Finally, in the linear demand and cost case, the reaction function for region A 

can be written as (see Appendix 2): 

   A
A A Bc mθθ θ= +  

where Am <0. This shows that the reaction function is downward sloping. A higher 

tax in B reduces transit demand through both regions, reducing congestion in A. This 

induces this region to reduce its uniform tax. 

 Nash equilibrium taxes are denoted by ( , )NE
k A BR Rθ , ,k A B= . Again, the 

derivatives of these tax expressions with respect to capacities are not easily 

determined, even for the linear case. However, one expects:    

   0, 0
NE NE
A A

A BR R
θ θ∂ ∂

> <
∂ ∂

  

Higher capacity in A reduces congestion and hence one expects lower taxes. More 

capacity in B attracts more traffic to A and suggests higher taxes. Numerical analysis 

confirms this intuition; see Section 4.  
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2.3. The case of local tolls only  

 

 The case of local tolls only is analyzed in detail in Appendix 3. The 

derivatives of the reduced-form demand functions with respect to the local tolls are 

identical to those for the differentiated tolling case. Indeed, the only difference is that 

the transit toll is set to zero. The optimal local toll is shown to be given by:  

 1

r

A
A A r

A

A

X
tt LMEC
Y
t

 ∂
 ∂ = +

∂ 
 ∂ 

 

where, importantly, the term between square brackets is between zero and one. This 

implies that the optimal tax is positive but smaller than the local marginal external 

cost. Finally, in the linear demand and cost cases, reaction functions are found to be 

linear and downward sloping: a higher local tax in B reduces local demand but attracts 

more transit, which passes through both A and B. Hence, congestion in A rises, 

reducing local traffic demand in A. This reduces the local marginal external cost so 

that country A reduces its tax rate on local demand. The intuition is that by doing so, 

country A raises local demand and thus congestion, which is the only way to reduce 

transit through its territory.  

 Note that in this case expectations on the partial effects of capacity changes on 

tolling behaviour are not obvious. More capacity in A attracts more transit, which 

remains un-tolled. To the extent that the capacity increase yields less congestion one 

expects the region to set a lower tax; this is confirmed in our numerical illustrations in 

section 4.      
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 3. Strategic capacity choices: the first stage of the game 

 

 In this section we study the capacity competition game, taking into account the 

implications of capacity choices for pricing behaviour derived in the previous section. 

Given the complexity of strategic capacity choices and its interaction with pricing at 

the second stage, the capacity game of this general case does not yield transparent 

theoretical results. To get some preliminary insights on the nature of capacity 

interaction between the two links we therefore start out by briefly considering some 

special cases, viz. capacity competition in the absence of local traffic (subsection 3.1) 

and the case where tolls are not used at all (subsection 3.2). This second case allows 

us to exclusively focus on strategic capacity choices. Moreover, it is not uninteresting 

in its own right, because in some European countries within the EU, congestion tolls 

are indeed not used at all. The general case where both tolls and capacities are 

strategically used is considered in subsection 3.3. Throughout we focus on linear 

demands and costs.  

 
3.1. Capacity competition without local traffic 
  

 Consider first the special case of zero local demand. Since transit welfare does 

not enter the local welfare function there is no congestion externality, and the 

objective function of each region simply consists in maximizing the transit tax 

revenues minus capacity costs. It is easily shown that the pricing solution then boils 

down to the standard private duopoly result (Tirole (1993), Gibbons (1992)). We find 

that the only Nash equilibrium in tolls: (i) is symmetric, even if the free-flow cost 

parameters differ; (ii) is independent of capacities, and (iii) is independent of the slope 

of the congestion function. Moreover, the capacity reaction functions are 

unambiguously positively sloped.  

 

3.2. Capacity competition when congestion tolls are not used 
 
 If tolls are not used at all, the optimal capacity choice problem of the country 

government reduces to:                                    

   
0

1( ( ))
A

A

Y
Y Y

A A A A AR
A

Max W P y dy g Y K
R

= − −∫              (9) 
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The first-order condition is given by: 

   2

Y
A A

A
A A

g KY
R R

∂
=

∂
                 (10) 

Using the definition of the generalized cost for the linear case, it can be written in 

implicit form as: 

   2( , ) ( ) 0
r r

A A
A B A A A A A A

A A A

Y KXR R V Y R Y
R R R

ψ β β ∂ ∂
= + + − =

∂ ∂
          (11) 

Expression (11) implicitly describes the reaction function in capacity for region A. In 

Appendix 4 we show that its slope is highly plausibly positive so that, when tolls are 

not used at all, capacities in the two regions will be strategic complements The 

intuition is clear. Suppose region B raises capacity. This attracts more transit through 

both A and B so that, in order to dampen the negative welfare effect on local demand, 

country A reacts by also raising capacity. Of course, when tolls can be used as well, 

the increase in capacity also affects tolling behavior at the second stage, and our 

conjecture of positively sloped reaction functions may have to be amended. 

   

 

3.3. Tax-capacity competition: the general case 

  

 The general case is complex due to the nonlinearities in the capacity reaction 

functions and the interaction with the pricing game. As an example, take the case of 

differentiated tolling. Optimal capacity at the first stage of the game is defined 

implicitly by the first order condition for a maximum of the local welfare function 

defined in (6), taking into account the dependency of optimal Nash equilibrium taxes 

at the second stage of the game on capacity.  

 The first-order condition of maximizing (6) with respect to inverse capacity in 

A can, using the equality between generalized price and cost, be written as: 

 2

rY r NE NE
A A A A A

A A A A
A A A A A A

dXdg dY t KY t Y X
dR dR dR R R R

ττ ∂ ∂
− − − − =

∂ ∂
                                       (12)           

Interpretation of (12) is conceptually simple. The right hand side reflects the capacity 

cost savings realised by a decrease in capacity. The left hand side gives the increase in 

user cost for local traffic (first term on the left hand side) and the change in tax 

revenues (other left hand side terms) caused by the decrease in capacity. Note that in 
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(12) all taxes are evaluated at their Nash equilibrium values, and the total derivatives 

capture direct capacity effects and indirect effects via tax adjustments:  

   ( )
Y r r NE
A A A

A A A
A A A A

dg dY dX tV R
dR dR dR R

β
  ∂

= + + +  ∂ 
 

   
, ,

NE NEr r r r
k kA A A A

k A B k A BA A k A k A

tdY Y Y Y
dR R t R R

τ
τ= =

∂ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂∑ ∑  

   
, ,

NE NEr r r r
k k

k A B k A BA A k A k A

tdX X X X
dR R t R R

τ
τ= =

∂ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂∑ ∑  

   

 The first-order condition (12) can be simplified by substituting the above total 

derivatives and using the first-order conditions for optimal taxation in region A. These 

could be written (see Appendix 1) 

   
( ) ( ) 0

( ) ( ) 0

r r
A

A A A A A A A A
A A
r r

A
A A A A A A A A

A A

Y Xt Y R Y R
t t

Y Xt Y R Y R X

β τ β

β τ β
τ τ

∂ ∂
− + − =

∂ ∂

∂ ∂
− + − + =

∂ ∂

 

Using these results in (12), and noting the definition of the local marginal external 

cost, we find that the optimal capacity rule in region A can be written as: 

 

2

( )

( )

r r NE r NE
B B

A A A A A
A B A B A

r r NE r NE
A A B A B A

A A
A B A B A A

X X t XV Y LMEC
R t R R

Y Y t Y Kt LMEC
R t R R R

τβ τ
τ

τ
τ

  ∂ ∂ ∂ ∂ ∂
− − + +  ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂ ∂
− − + + =  ∂ ∂ ∂ ∂ ∂  

            (13) 

The left hand side captures all welfare effects of demand changes induced by 

capacity: the first term is the direct user cost increase of capacity changes at constant 

demand, the second and third terms represent the net welfare effects via induced 

demand changes. These terms are the product of the total demand change (direct and 

indirect via tax adjustments in the other region) and the deviation of taxes and local 

marginal external costs. Observe that tax adjustments in A do not appear in this 

expression, because taxes in A have been determined optimally.  

 A special case is when no transit traffic exists. In that case the optimal local 

toll equals the local marginal congestion costs, and the left hand side of (13) reduces 

to the first term only: the direct costs of a reduction of capacity. We then obtain a first 

best result because there is no strategic interaction between both governments. 



 17 
 

 Expression (13) implicitly describes the reaction function in capacities for the 

first stage of the game. Unfortunately, determining the sign of the slope of this 

reaction function is difficult because demands and Nash equilibrium taxes are all 

highly nonlinear in capacity. We did not attempt to do so, but will rely on numerical 

analysis below. The numerical results do confirm that capacity reaction functions are 

plausibly upward sloping in the general case as well. 

 For completeness sake, consider the other pricing regimes. In the case of 

uniform taxes the first-order condition can be rewritten as (see Appendix 5): 

 2( )
r r r r NE

A A A A B A
A A A A A

A A B B A A

Y X Y X KV Y LMEC
R R R R

θβ θ
θ θ

  ∂ ∂ ∂ ∂ ∂
− − + + + =  ∂ ∂ ∂ ∂ ∂  

         (14) 

Interpretation is as before. The first term represents the direct effect of increasing user 

costs for local traffic. The second term represents the induced losses of local and 

transit traffic multiplied by the net tax margin (Tax minus local marginal external 

costs).  

 Finally, for local tolls only we can derive (see Appendix 5 for derivation) the 

following optimal capacity condition:   

2( )
r r NE r r NE

A A B B A
A A A A A A

A B A A B A A

Y Y t X X t KV Y t LMEC LMEC
R t R R t R R

β
   ∂ ∂ ∂ ∂ ∂ ∂

− − + + + =   ∂ ∂ ∂ ∂ ∂ ∂   
       (15) 

We again see a first term that represents direct user cost losses of a reduction of 

capacity. The second term represents the change in welfare of induced local traffic 

that does not pay its external congestion cost. The third term represents the gain in 

welfare when under-priced transit traffic decreases as a result of a decrease in 

capacity.  



 18 
 

4. A numerical illustration 
 

 This section illustrates the results using numerical simulation analysis. We 

first explain the calibration of the no toll reference equilibrium for the symmetric case 

with identical regions (subsection 4.1). Next we discuss the outcomes of the first stage 

of the game, i.e., the Nash equilibrium tolls for given capacities under the three 

different pricing regimes (subsection 4.2). Then the results of the complete two-stage 

pricing and capacity game are considered (subsection 4.3). Moreover, the importance 

of transit and of the slope of the congestion function for the results is highlighted. 

Finally, we conclude this section by discussing the role of the relative size of the two 

countries (subsection 4.4). 

 

4.1 Calibration of the reference case 

 

 Assume initially that the two regions are ex ante symmetric. Moreover, the no 

toll reference case is constructed such that local and transit demand each account for 

50% of total traffic in a given region. Local and transit demand each amount to 1300 

trips per time unit. Capacity was set at 2000 in each region; which implies the 

reference value for inverse capacities 0.0005A BR R= = 8.  

 The zero toll equilibrium was used as the reference situation to calibrate the 

parameters of the model. In other words, all parameters (demand function parameters, 

slope of the congestion function, the capacity cost, etc.) were calibrated so that the 

parameters reproduced the zero toll Nash equilibrium consistent with the transport 

volumes and capacities assumed. The set of parameters that resulted from the 

calibration procedure is reproduced in Appendix 6.  
 
 
4.2. Optimal pricing at given capacities: the pricing stage of the game 
 

 In Table 1 we report results for the pricing game at fixed capacities. We 

consecutively report 5 different equilibria: the no toll situation to which the 

parameters were calibrated, three Nash equilibrium outcomes (differentiated tolls, 

                                                 
8 Note that these  capacity levels are chosen so that, in the absence of tolling, they reflect the optimal 
values for each of the countries, given the cost of capacity. This will become important when we 
endogenize the choice of capacity. 
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uniform tolls, local toll only) and the centralized solution. The centralized solution 

reflects the optimal policies when the two-link serial transport corridor would be 

operated by one welfare maximizing government.     

 Results indicate the following. First, the equilibrium with tax differentiation 

yields very high taxes on transit; this follows from the fact that transit yields no 

benefits except tax revenues to the individual regions. The consequence is a drastic 

reduction in transit transport. Welfare of the individual countries rises substantially: 

despite the toll on local transport the generalized cost of local transport only increases 

slightly; this is due to the lower time cost associated with much lower transit demand. 

Of course, the welfare increase in the two countries is due to the fact that the welfare 

of transit traffic is not incorporated into the countries’ individual welfare functions. 

Incorporating the reduction in welfare for transit, which is almost wiped out, implies 

that total welfare declines compared to no tolls at all. Second, in the case of uniform 

taxes we observe taxes substantially exceeding local marginal external costs, yielding 

a reduction in countries’ individual welfare compared to the tax differentiation case. 

Third, if only local tolls are optimized we see, consistent with the prediction from the 

theoretical sections, taxes that are (slightly) below local marginal external cost. 

Interestingly, in this case not only is the countries’ individual welfare higher than in 

the reference case, but even accounting for transit welfare this solution improves 

overall welfare. Transit is obviously better off because it is not tolled and local 

transport is, reducing congestion. Finally, the centralized optimal solution yields a 

uniform toll of about 30% the level at the uniform toll Nash equilibrium; it leads to 

higher regional welfare as well as overall welfare.  

 Of course, the results are highly sensitive to the importance of transit in the 

initial equilibrium. Calibrating the model for a 10% share of transit in the reference 

situation, we find that all symmetric Nash equilibria, except the differentiated tolling 

case, improve overall welfare. Moreover, uniform tolls are much lower than before.   
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4.3. Strategic capacity choices and pricing  

 

 In this subsection we turn to the complete capacity-pricing game. First we 

illustrate the impact of capacity changes on optimal tolling behaviour; next we discuss 

the results of the full solution to the two-stage game. 

   

4.3.1. Exogenous capacity adjustments and optimal tolling behaviour 
 

 Note that in the theoretical sections it proved difficult to produce clear-cut 

analytical results for the signs of the partial derivatives of taxes with respect to 

capacities: 

    , ( , )
NE NE
k k

A A

t k A B
R R
τ∂ ∂

=
∂ ∂

, ( , )
NE
k

A

k A B
R

θ∂
=

∂
 ,  ( , )

NE
k

A

t k A B
R

∂
=

∂
   

We therefore first illustrate the effect of increasing capacity on Nash equilibrium 

taxes. Given fixed inverse capacities, RA and RB, and assuming linear demand and cost 

curves, we can solve the pricing game analytically to determine the variables 

, , , , ,A B A B AX Y Y t t τ  and Bτ  as functions of the inverse capacities.  This has been done 

for the three tax regimes: differentiated tolls, uniform tolls and local tolls only. We 

can then evaluate these expressions for various values of capacity in a given region, 

say A, holding all other variables and parameters constant. In all other respects 

countries A and B are treated as identical.  

 We summarize the results in Figure 2, where we concentrate on two cases: 

uniform tolls and local tolls only. Consider the uniform tolling case. The figure shows 

the effect of capacity changes in country A on the optimal uniform taxes of both 

regions. In the initial situation where the capacities in A and B are identical we have a 

Nash equilibrium with uniform tolls equal to 104 in both regions. Halving capacity in 

A increases the uniform toll in A but forces B to reduce its toll slightly. The elasticity 

of the Nash tolls with respect to a capacity change in A is in absolute terms twice as 

large for the toll in A than for the toll in B. This reaction is confirmed if we cut 

capacity by half once more and arrive at tolls of 124 in A and 91 in B. The exogenous 

lowering of capacity in A increases the local marginal external congestion cost and 

this is an important ingredient of the optimal uniform tax in A. Country B now faces a 

transit demand with a lower residual willingness to pay and is forced to cut its 

uniform tolls in order to protect its revenues. With the exogenous decrease in 
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transport capacity in A, transit demand will decrease, local demand in country A will 

contract strongly while local demand in country B will expand as a result of less 

transit. The same profile of reactions can be found in the differentiated tolling case 

(not shown on Figure 2): an exogenous reduction of capacity in A will increase the 

local tax and transit tax at home and will decrease the local and transit tax in B.  

When only local demand can be tolled, an exogenous reduction of capacity in 

A will reduce the local toll in A (see Figure 2, lower left corner). An important 

difference with the uniform case is that the tax on local traffic in B now stays 

approximately constant. This can be explained by the fact that the risk of increasing 

congestion caused by higher transit traffic, due to capacity reductions and increased 

tolls in A, is much less severe than in the uniform toll or differentiated toll case.  

103,87

112,06

123,73θA
tA

Nash equilibria uniform toll

tB, θB

Exogenous doublings of
Capacity in A 

14,12

22,96

31,83

Nash equilibria
Local tolls only

Exogenous doublings of 
Capacity in A 

 
Figure 2: Shifts in Nash equilibria for uniform tolls and differentiated tolls as a 
result of exogenous changes in the transport capacity in A. 
 

4.3.2. Strategic tolling and capacity choices on a transport corridor 

 

 Some results for the complete two-stage game are summarized in Table 2. 

First, consider the implications of the different pricing regimes for the optimal 

capacity choice in equilibrium. We observe that, compared to the no-toll capacity of 

2000, optimal capacities decline for all three tolling regimes. This is not surprising. 

The no-toll equilibrium was calibrated such that the observed capacity was optimal in 
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the Nash equilibrium, and the use of tolls reduces overall transport demand in each 

country. One therefore expects that capacity is lower than when no tolls are charged. 

Note that the capacity reduction strongly differs with the tolling regime in place. 

Optimal capacity is smallest when regions compete on the basis of uniform tolls; in 

that case high uniform tolls to tackle congestion lead to strong reductions in demand 

and, hence, low capacities. The optimal capacity is much larger when regions only use 

local tolls. In that case high transit demand implies a relatively small demand 

reduction compared to the no-toll equilibrium; capacity is much higher than with tolls 

on transit as a consequence. The case of differentiated tolls takes up an intermediate 

position: capacity is somewhat higher than in the uniform toll case. Transit demand is 

low, but local demand is much higher than with uniform tolls.   

 Second, note that the optimal tolls on local transport are, for all tolling 

regimes, higher than in the case capacity could not be optimally chosen. This is not 

surprising, because we showed in the previous subsection that capacity reductions at 

the first stage of the game induce regions to raise tolls on local transport at the second 

stage. Capacity reductions raise congestion, giving rise to higher taxes on local 

demand. The optimal toll on transit slightly declines in comparison with the case of 

fixed capacity. It is the joint effect of capacity expansions in the own region and in the 

competing region.       

 In Table 1, we have seen that, when transit is sufficiently important, allowing 

individual countries to toll actually reduces overall welfare, except for the case where 

countries can only toll local traffic. The intuition for this result is clear: a country will 

only toll its home traffic if its local consumer surplus plus tax revenue on locals 

increases, and any tax increase on local traffic benefits transit through lower 

congestion. So for the case of local tolls only, toll incentives are compatible with 

overall welfare. Interestingly, in Table 2 we see that this result still holds when we 

include capacity choice. In all cases, when tolling is introduced, it becomes interesting 

to reduce the overall capacity level, which will affect transit welfare negatively. 

However, for the case of local tolls only, this does not outweigh the benefit received 

from tolling local traffic.  

 Finally, note that we have only considered the case where transit and local 

demand make up 50% each of total transport in a given region. It is clear that tolling 

behaviour and capacity choices may be substantially affected by assuming different 

shares of transit. A share of only 10% transit in the no toll Nash equilibrium is 
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analysed in Table 3; the two regions are still assumed to be symmetric. This case has 

the same total demand function, the same congestion function and the same unit 

capacity cost as the previous 50%-50% case discussed in Table 2.   

 Results from comparing Tables 2 and 3 are as follows. The optimal uniform 

tolls in the 10% transit case are substantially lower than in the 50%-50% case, despite 

the increase in local marginal external cost. This follows from the decreased tendency 

for tax exporting behaviour. In the case of local tolls only, the Nash equilibrium local 

toll in Table 3 is higher than in Table 2, and it hardly differs from the (higher) local 

marginal external cost; this again reflects the lower importance of transit. Relative 

capacity reductions in the differentiated and uniform tolling cases are also slightly 

smaller in the case with low transit shares. This is due to the fact that the benefits of 

capacity provision are enjoyed to a larger extent by local traffic. Finally, note that the 

centralized solution in the 10% transit case yields the same optimal tolls and capacity 

levels as in the 50%-50% case considered in Table 2; this follows from our 

assumption of identical total demand and congestion functions.  

 We further also checked the sensitivity of the symmetric results by increasing 

the slope of the congestion function (β) by 20%. We found (these results are not 

shown) that this implies higher optimal capacities, higher tolls and lower volumes; 

moreover, and that it does not alter the welfare ranking of the five capacity-price 

equilibria we study.  
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4.4 Role of relative country size 

 
 In this subsection we illustrate the role of asymmetries in country size. It is 

well known in the tax competition literature (see Kanbur and Keen (1993)) that, in a 

cross border context, the small country has a larger incentive to undercut the tax rate 

of its neighbour. This typically holds for cigarettes or gasoline. The intuition is that 

the big country loses more revenue by lowering taxes because it can never gain 

abroad what it loses at home. Our context is different in two respects. Firstly, the 

country governments we analyze are by assumption maximizers of local welfare 

rather than pure revenue maximizers. Secondly, the transit tax base is the same for 

both countries and does not shift from one country to another like the demand for 

sigarettes would do. 

 In Tables 4 and 5 we report the results of the capacity and price competition 

for the case where a corridor runs through two different countries. The first one is a 

“small” country where, in the absence of tolling,  transit is as important as local traffic 

(similar  to our 50%  transit case of Table 2); the second country is a “large” country 

where, in the absence of tolling, transit is only 10% of total traffic (similar to the 90%, 

10% case of Table 3). Because the transit traffic is the same in the small and the large 

country, the large country has a higher total demand than the small country. As the 

cost of capacity is kept constant, the slope of the congestion function in the large 

country has been increased to have the same generalised cost in the no toll 

equilibrium.  

 The behaviour of both countries depends now strongly on the type of tolling 

instrument that is available. We see that in the Nash differentiated toll case, both 

countries charge high tolls on transit and we have the same double marginalisation 

problem as in the symmetric case. When only uniform tolls are available, the 

behaviour of the small and large country are very different. The small country A now 

has an interest to favour the revenue motive and accept inefficient pricing for its local 

users, while the large country gives much higher weight to the local users. In the local 

tolls only case, we have again fairly similar results for both countries. In terms of 

overall welfare (small + large country), the ranking of the solutions is similar to the 

symmetric case. Worst is the tax discrimination case, followed by the uniform case, 

the no toll case and the local tolls only case. It is interesting to note that the small 
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country can spoil the welfare gains the large country could generate with a uniform 

tax. In the symmetric 10% transit case, shown in Table 3, the uniform solution was 

better than the no tolling case. This is no longer true here because the small country 

has in a serial network a strong incentive to abuse its monopoly power. 
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5. Summary and caveats 
 

 In this paper we have analyzed the strategic behaviour of country governments 

that each operate one individual link of a congested transport corridor. We studied a 

two stage game in capacities and prices under three different pricing regimes.  

 The conclusions are easily summarized. With respect to optimal tolling 

behavior we showed that, when transit can be tolled, strategic behavior implies that a 

unit increase in the transit toll in one region raises the total toll on transit users for the 

whole trajectory by less than one unit. Moreover, transit tolls are inefficiently high. 

However, if only local traffic can be tolled, Nash equilibrium tolls are inefficiently 

low: tolls are shown to be smaller than the marginal external congestion cost imposed 

on local traffic. The reason is that higher local tolls would attract too much transit 

traffic and hence reduce welfare.  

 At the capacity stage of the game, we showed that capacities in the two 

regions are likely to be strategic complements: reaction functions are plausibly 

upward sloping so that higher capacity on one link of the corridor induces the operator 

of the other link to invest in capacity as well. Moreover, we find that capacity changes 

strongly affect optimal tolling behavior. Higher capacity investment in a region not 

only lowers optimal tolls in this region under all pricing regimes, but it also affects 

tolls on transit in the other region. We further find interesting interactions between 

optimal capacities and the pricing instruments used: optimal capacity with 

differentiated tolls is higher than in the case of uniform tolls; the largest optimal 

capacity results when only local tolls are used. Finally, we emphasized the role of the 

share of transit and of asymmetric country sizes for the results.    

 Although the analysis was based on a very simple model, it may have potential 

applicability in a number of cases where capacity and pricing decisions in regions are 

strategically chosen. This includes investment and pricing on Trans European 

Networks (basically a border-crossing highway system) in Europe and the interstate 

highway system in the US. Moreover, it is equally relevant for pricing and investment 

decisions for long distance rail trips, and with minor adaptation the analysis also 

applies to inter-modal freight trips where the transfer facility (ports, airports, freight 

terminal) and the upstream or downstream infrastructure is controlled by different 

governments. 
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 Several avenues for extension could be considered. One is to generalise the 

results for transport corridors through n (rather than just 2) countries. Another is to 

explore the implications of relaxing the assumption of constant returns in capacity 

expansion. A third extension could be to integrate the results for serial networks with 

those obtained for parallel networks. A fourth extension would be to pay specific 

attention to the timing of the game with, say, one country leading in the capacity 

extension. A further extension would be to examine a cooperative process. Finally, 

one could examine other assumptions on the behaviour of the countries’ decision 

makers and explicitly develop some of the political economy aspects of tax and 

capacity decisions.  
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Appendix 1: The case of differentiated tolls 

 

In this appendix we derive the most relevant results for the differentiated tolling case. 

The procedure is the same as in De Borger et al (2005) but requires some adjustment 

for the particular serial setting considered here.  

 

Characteristics of the reduced-form demands 

 We start from the equilibrium conditions: 

             ( ) ( ) ( )X
A A A A B B B BP X C V R C V Rτ τ= + + +         (A1.1)                     

 ( ) ( )Y
A A A A A AP Y C V R t= +          (A1.2)                              

 ( ) ( )Y
B B B B B BP Y C V R t= +          (A1.3)  

Noting that k AV Y X= + , first solve the two last equations for local transport as a 

function of transit demand, the local tax rate and capacity in a given region: 

    ( , , )A A A AY z X R t=                              (A1.4)

             ( , , )B B B BY z X R t=               (A1.5) 

Application of the implicit function theorem to (A1.2) implies: 

   
'

'
0A A A

Y
A

A A
A

z C R
PX R C
Y

∂
= <

∂∂ −
∂

       (A1.6)

   
'

1 0A
Y
AA

A A
A

z
Pt R C
Y

∂
= <

∂∂ −
∂

              (A1.7) 

'

'
0A A A

Y
AA

A A
A

z V C
PR R C
Y

∂
= <

∂∂ −
∂

    (A1.8) 

where ( )'

( )
A A A

A
A A

C V R
C

V R
∂

=
∂

. 

 An analogous result is derived for B. Interpretation is simple: an exogenous 

increase in transit reduces the demand for local transport, as it raises local congestion 

and hence generalised user cost.  Raising the local tax, at a given transit level, reduces 

local demand for transport. Finally, increasing capacity (decreasing R), increases the 

local transport flow. 

 Note that (A1.6) implies that, for k=A,B: 
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'
(1 ) 0

Y
k

k k
Y

k
k k

k

P
z Y

PX C R
Y

∂
∂ ∂

+ = >
∂∂ −
∂

       (A1.9) 

Moreover, substituting (A1.4)-(A1.5) into (A1.1) yields: 

  

  [ ] [ ]( ) ( ( , )), ( ( , )),X
A A A A A B B B B BP X C X z X t R C X z X t Rτ τ= + + + + +  

                                                         

Solution of this expression for transit demand X yields the reduced form demand for 

transit as a function of all four tax rates. Using the implicit function theorem we 

derive the following results for A (analogous results hold for B): 

 

   '1 A
A A

A A

zdX C R
dt t

 ∂
= −  ∆ ∂ 

         (A1.10)        

 1

A

dX
dτ

= −
∆

                                         (A1.11)                              

'1 B
B B

B B

zdX C R
dt t

 ∂
= −  ∆ ∂ 

                                     (A1.12)                       

   1

B

dX
dτ

= −
∆

                                (A1.13)                  

' '1 A
A A A A

A A

zdX C V C R
dR R

 ∂
= − + ∆ ∂ 

    (A1.14) 

' '1 B
B B B B

B B

zdX C V C R
dR R

 ∂
= − + ∆ ∂ 

          (A1.15) 

where   

                               ' '(1 ) (1 )
X

A B
A A B B

z zP C R C R
X X X

 ∂ ∂∂
∆ = − − + − + ∂ ∂ ∂ 

 

Using (A1.9) immediately yields 0∆ > . Since simple algebra also implies:   

     
'

0

Y
k

k
k k

k k Y
kk

k k
k

PV
z YV R

PR R C
Y

∂
∂ ∂

+ = >
∂∂ −
∂
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we then also easily show that the effects of taxes and capacity on reduced form 

demand are: 

    
0, 0, 0, 0

0, 0

r r r r

A B A B
r r

A B

X X X X
t t

X X
R R

τ τ
∂ ∂ ∂ ∂

< < > >
∂ ∂ ∂ ∂

∂ ∂
< <

∂ ∂

      (A1.16)  

where reduced form demand is denoted by the superscript r. Moreover, we 

have
r r

A A

X X
tτ

∂ ∂
>

∂ ∂
.   

 Finally, to determine the impact of taxes and capacities on local demands, we 

have (see A1.4-A1.5): 
r r

A A A

A A A
r r

A A

A A
r r

A A

B B
r r

A A

B B
r r

A A A

A A A
r r

A A

B B

Y z zX
t X t t

Y z X
X

Y z X
t X t

Y z X
X

Y z zX
R X R R

Y z X
R X R

τ τ

τ τ

∂ ∂ ∂∂
= +

∂ ∂ ∂ ∂

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂ ∂∂
= +

∂ ∂ ∂ ∂

∂ ∂ ∂
=

∂ ∂ ∂

  

Substituting previous results, it follows after simple algebra: 

                                
0, 0, 0, 0

0, 0

r r r r
A A A A

A B A B
r r

A A

A B

Y Y Y Y
t t

Y Y
R R

τ τ
∂ ∂ ∂ ∂

> > < <
∂ ∂ ∂ ∂

∂ ∂
< >

∂ ∂

   (A1.17) 

 

Optimal taxes 

 We focus on region A. Consider the problem of determining the welfare 

optimal taxes on local and transit transport, conditional on the existing capacities in 

both regions and taking tax levels in B as given. Region A solves: 
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,

0

1( ( ))
A

A A

Y
Y Y

A A A A A A A At
A

Max W P y dy g Y t Y X K
Rτ

τ= − + + −∫ .           

    

where AK is the unit rental cost of capacity, and the demand functions are the reduced 

form demands just described. The first-order condition with respect to the local tax 

rate can be written as:         

 0
r r Y r r

Y YA A A A
A A A A A A

A A A A A

Y Y g Y XP g Y t Y
t t t t t

τ∂ ∂ ∂ ∂ ∂
− − + + + =

∂ ∂ ∂ ∂ ∂
   

Differentiating           

    ( ) ( )Y Y
A A A A A A AP Y g C V R t= = +   

and using equality of generalized price and generalized cost in equilibrium allows us 

to rewrite this expression, after simple manipulation, as follows: 

                                ( ) ( )' ' 0
r r

A
A A A A A A A A

A A

Y Xt C Y R C Y R
t t

τ∂ ∂
− + − =

∂ ∂
                  

A similar procedure is used to show that the first-order condition with respect to 

Aτ can be written as:                               

 ( ) ( )' ' 0
r r

A
A A A A A A A A

A A

Y Xt C Y R C Y R Xτ
τ τ

∂ ∂
− + − + =

∂ ∂
         

                To determine the optimal taxes, we write the system in matrix notation and 

solve by Cramers’ rule. We find, using similar manipulations as described in De 

Borger et al. (2005), the following tax rule for local traffic and transit, respectively: 

                 ' '( )A A A A A A At Y X C R LMEC XC R= + = +                                             

                                         

r
A

A
A A r

A

A A

Y
tLMEC X

z X
t

τ

τ

 ∂
 ∂ = −

∂ ∂ 
 ∂ ∂ 

                                                 

where '
A A A ALMEC Y C R= is the local marginal external cost. 

 To show that the transit tax exceeds the local tax subtract the two taxes, use 

previous results and explicitly substitute the definition of ∆ . We find:  

                       ' 1 0
X

B
A A B B

B

zPt X C R
X X

τ
  ∂∂ − = − − + >  ∂ ∂   
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Tax reaction functions: The case of linear demands and costs                                                   

 We report results for country A; all results for B are derived analogously. 

Using linear specifications , the demand for local transport in A conditional on transit 

demand and the local tax is given by: 

    0 1 2
A A A

A AY z z X z t= + +      

where 

0 1 2
* 1, ,

* * *
A A AA A A

A A A A A A

cz z z
d d d

α β
β β β

−
= = − = −

+ + +
 

                                           

Substituting these functions in the equilibrium condition for transit yields:                                

           

    0 1 1 1 1 1( )( ) ( )( ) ( )( )r A B
A B A BX z t z tγ γ τ τ γ γ= + + + +  

where:  

    

* *
0 0

0

1
1 0

A B
A A B Ba z zα β α βγ

γ

− − − −
=

∆

= − <
∆

 

and * *
1 1(1 ) (1 ) 0A B

A Bb z zβ β∆ = + + + + > .  

 The first order conditions for optimal local and transit taxes for country A can 

be written as:  

    ' *( ) ( )A A A A A At Y X C R Y Xβ= + = +                                                      

    
2

* 2 1 1

2 1

( )

r
A

A A
A

A A A Ar A
A

A A

Y
t z zLMEC X Y X

z X z
t

γτ β
γ

τ

 ∂
   ∂ + = − = −  ∂ ∂   
 ∂ ∂ 

 

Substituting for transit demand X, using the definitions of the various parameters and 

making use of the specification of ∆  we find, after simple algebra, the reaction 

functions: 

   1
1 1( ) ( )
2 2

B
A A B Bc z tττ τ= − −  

   1
1 1( ) ( )
2 2

t A B A
A A B Bt c L z L tτ= + +  
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where   *
0 0

1
2

A
A Ac zτ β γ = +∆  ,       

   * *
0 0 0 1

1

1 ( )
2

A
t A A A
A A A A

Lc z T z
T

β γ β γ
γ

 = + +  
, 

 and    1

1 11 (1 )

A
A

A A

TL
z T

γ
γ

=
− +

; *
1(1 )A A

AT zβ= +  

Note that simple algebra shows that 1 0AL− < < . 

 Existence of equilibrium in prices follows as in De Borger et al (2005).  
 
 

Appendix 2: The uniform tolling case 

 

Reduced-form demands 

Going through exactly the same derivations as before we easily derive:  

 ( ) ( )( ) ( , , ) ( , , )X
A A A A A A B B B B B BP X C X z X R R C X z X R Rθ θ θ θ   = + + + + +     

Using the implicit function theorem, we obtain the partial effects of the uniform taxes 

on transit demand (the definition of 0∆ >  is the same as before): 

'1 1 0
r

A
A A

A A

zX C R
θ θ

 ∂∂
= − + < ∂ ∆ ∂           

    

                                       '1 1 0
r

B
B B

B B

zX C R
θ θ

 ∂∂
= − + < ∂ ∆ ∂ 

     

      '1 0
r

A
A A A

A A

zX C V R
R R

  ∂∂
= − + <  ∂ ∆ ∂  

 

   '1 0
r

B
B B B

B B

zX C V R
R R

  ∂∂
= − + <  ∂ ∆ ∂  

                     

 
0, 0

0, 0

r r
A A

A B
r r

A A

A B

Y Y

Y Y
R R

θ θ
∂ ∂

< >
∂ ∂

∂ ∂
< >

∂ ∂

  

 

Optimal tax rule 

The first-order condition to the problem 
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0

( ( )) ( )
A

A

Y
Y Y A

A A A A A A
A

KMax W P y dy g Y Y X
Rθ

θ= − + + −∫ , 

can be written as: 

          

 ( ) ( ) 0
r r Y r r

Y Y r rA A A A A
A A A A A

A A A A A

Y Y g Y YP g Y Y Xθ
θ θ θ θ θ

∂ ∂ ∂ ∂ ∂
− − + + + + =

∂ ∂ ∂ ∂ ∂
 

To simplify, use: 

   [ ]( ) ( )Y Y
A A A A A A AP Y g C X Y R θ= = + + , 

differentiate with respect to Aθ and substitute to obtain: 

     

 ' 1 ( ) ( ) 0
r r r r

r rA A A
A A A A A

A A A A

Y X Y YY C R Y Xθ
θ θ θ θ

  ∂ ∂ ∂ ∂
− + + + + + + =  ∂ ∂ ∂ ∂  

 

Solving for the tax yields: 

A A r r
A

A A

XLMEC
Y X

θ

θ θ

= −
∂ ∂

+
∂ ∂

 

Noting the signs derived before, it follows that the tax rate exceeds the local marginal 

external cost. 

 

Tax reaction function: linear demand and cost 

 In the case of uniform tolls, the reduced form demand for transit can be written 

as: 

   0
r

A A B BX γ γ θ γ θ= + +  

where  

   

* *
0 0

0

1

1

1 0

1 0

A B
A A B B

A

A

B

B

a z z

z

z

α β α βγ

γ

γ

− − − −
=

∆
+

= − <
∆

+
= − <

∆

 

Uniform tax increases reduce transit demand.    

 The optimal tax rule for A is given by:  
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*
A A A A Ar r

A

A A

XLMEC Y X
Y X

θ β η

θ θ

= − = −
∂ ∂

+
∂ ∂

 

where 
1 2

1 0
(1 )A A A

A z z
η

γ
= <

+ +
.  

Reaction functions can be written as: 

   
A

A A B
B

B B A

c m

c m

θ

θ

θ θ

θ θ

= +

= +
 

where 
* *

0 1 0
* *

2 1

( )
1 ( )

A A
A A A

A A A
A A A A

z zc
z z

θ β β η γ
β β η γ

+ −
=

− − −
, 

*
1

* *
2 1

( )
1 ( )

A
A A A B

A A
A A A A

zm
z z
β η γ

β β η γ
−

=
− − −

; coefficients for 

B are defined analogously. The sign of the slopes of the reaction functions can be 

shown to be negative. Indeed, using the definitions of Aη  and Aγ , and substituting for 

∆  in the resulting expressions, the numerator of Am can be shown to be negative, the 

denominator positive. This shows that the reaction function is downward sloping.  

 

Appendix 3: The case of local tolls only 

 

Optimal tax rule 

The first-order condition to the problem 

                                    
0

( ( ))
A

A

Y
Y Y A

A A A A A At
A

KMax W P y dy g Y t Y
R

= − + −∫  

yields, using the same simple manipulations as in previous cases: 

 ( )' 0
r r r

A A
A A A A

A A A

Y Y Xt Y C R
t t t

 ∂ ∂ ∂
− + = ∂ ∂ ∂ 

  

Solving for the optimal local toll leads to: 

 1

r

A
A A r

A

A

X
tt LMEC
Y
t

 ∂
 ∂ = +

∂ 
 ∂ 

 

Importantly, the term between square brackets can be shown to be between zero and 

one. That it is smaller than one is obvious, since 0, 0
r r

A

A A

Y X
t t

∂ ∂
< >

∂ ∂
. To see that the 
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bracketed term is positive it suffices to show that 0
r r

A

A A

Y X
t t

∂ ∂
+ <

∂ ∂
. To do so, elaborate 

as follows:  

 (1 )
r r r r r

A A A A A

A A A A A A A

Y X z z X X z z X
t t t X t t t X t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

Then substitute for 
r

A

X
t

∂
∂

and use ∆  to find: 

 '1 (1 ) 0
r r

A A A
A A

A A A

Y X z zC R
t t t X

∂ ∂ ∂ ∂ + = ∆ + + < ∂ ∂ ∆ ∂ ∂ 
 

The implication is economically important. It implies that the optimal tax is positive 

but smaller than the local marginal external cost. 

 

Tax reaction functions: linear demands and costs 

Finally, in the case of local taxes only, we have that the demand for transit only 

depends on the two local taxes; the coefficients are the same as those defined for the 

tax differentiation case. The optimal tax rule can be written as:  

 ' 1

r

A
A A A A r

A

A

X
tt Y C R
Y
t

 ∂
 ∂ = +

∂ 
 ∂ 

* 1 1
2

2 1 1

, (1 )
( )

A

A A A A A A

zY s s
z z

γβ
γ

= = +
+

       

Note that 0 1As< < . Substituting the reduced form demand for local transport and 

working out leads to the following reaction function for country A’s optimal local tax 

as a function of the local tax in B: 

 t
A A A Bt c r t= +  

where 
*

0 1 0
* 2

1 1 2

( )
1 (( ) )

A A
t A A
A A A

A A

s z zc
s z z

β γ
β γ

+
=

− +
 , 

*
1 1 1

* 2
1 1 21 (( ) )

A B
A A

A A A
A A

s z zr
s z z

β γ
β γ

=
− +

.  

Since the numerator of the slope coefficient is negative and the denominator positive, 

it follows that the slope of the reaction function is negative.  
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Appendix 4. Capacity competition in the absence of tolling 
 
 
 For the simplified case of zero taxes, the optimal capacity choice problem 

reduces to:                                    

   
0

1( ( ))
A

A

Y
Y Y

A A A A AR
A

Max W P y dy g Y K
R

= − −∫  

The first-order condition is given by: 

   2

Y
A A

A
A A

g KY
R R

∂
=

∂
 

Alternatively, it reads: 

   [ ]
2

( )
, ( , ) ( , )A A A r rA

A A A A A B
A A

C V R KY V Y X R X R R
R R

∂
= = +

∂
    (A4.1) 

 We are interested in the reaction function in capacities, i.e., the optimal 

capacity in A, conditional on capacity in B. Expression (A4.1) implicitly defines this 

reaction function, which we denote ( )R
A BR R . Writing it in implicit form yields:  

    [ ]
2

( )
( , ) 0A A A A

A B A
A A

C V R KR R Y
R R

ψ
∂

= − =
∂

        (A4.2) 

In the remainder of this appendix we focus on the linear demand and cost case. Then 

we have: 

 [ ] [ ]( ) ( )
( ) ( )

rr
A A A A A A A A

A A A A
A A A A

C V R R X Y YXX Y R
R R R R

α β
β β

∂ ∂ + + ∂∂
= = + + +

∂ ∂ ∂ ∂
 

The final term between brackets is given by:      

   1 1 1(1 )
rr r r r

A A AA A A

A A A A A A A

Y z VX X X Xz z z
R R R R R R R

∂ ∂∂ ∂ ∂ ∂
+ = + + = + +

∂ ∂ ∂ ∂ ∂ ∂
 

so that simple algebra yields: 

   [ ]
1

( )
(1 )

r
A A A A

A A A
A A

C V R Xz V R
R R

β
∂  ∂

= + + ∂ ∂ 
         (A4.3) 

Note that this expression, by the first order condition (A4.2), must be positive: a 

capacity reduction in A raises travel cost. Substituting (A4.3) in (A4.2) leads to: 

   1 2( , ) (1 ) 0
r

A A
A B A A A A

A A

KXR R Y z V R
R R

ψ β
  ∂ = + + − =  ∂   

      (A4.4)  
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 To determine the slope of the reaction function we use the implicit function 

theorem: 

   ( )R
A B B

B

A

R R R
R

R

ψ

ψ

∂
∂ ∂

= −
∂∂
∂

            (A4.5) 

where the denominator is negative by the second order condition of the optimal 

capacity choice problem. The sign of (A4.5) therefore depends on the numerator only. 

To determine its sign, differentiate (A4.4) with respect to inverse capacity in B: 
2

1 1(1 ) (1 )( )
rr r

r A AA A
A A A A A A

B B A B A B

V YX XY z R z V R
R R R R R R
ψ β β

  ∂ ∂∂ ∂ ∂ = + + + + +  ∂ ∂ ∂ ∂ ∂ ∂   
        (A4.6) 

This can be simplified as follows. First, noting that in the linear case A1.14) reduces 

to: 

    1(1 )
r

AA A

A

VX z
R

β∂
= − +

∂ ∆
           (A4.7) 

we have  

   
2

1 2(1 )

A
A

A B B
A

A B

V V
R RX z

R R
β

 ∂ ∂∆ ∆ −  ∂ ∂∂   = − + ∂ ∂ ∆  
    

.  

Substituting this result in (A4.6) and slightly rewriting yields:  

 

1
1

1
1 2

1

(1 )(1 ) 1

(1 )(1 )

(1 )

A
r A A A

A A A
B B

A
r A A

A A A A
B

rr
A A

A A A
A B

z VY z R
R R

zY z V R
R

YXz V R
R R

βψ β

ββ

β

 + ∂∂
= + − ∂ ∆ ∂ 

 + ∂∆
+ +  ∆ ∂ 

  ∂∂
+ + + ∂ ∂ 

                  (A4.8) 

Second, using the definition of ∆ , we have 

    1
1

(1 ) 11 (1 ) 0
A

AA
A A A

z R R zβ β+  − = ∆ − + > ∆ ∆
 

Third, we further easily show, see (7): 

   1(1 ) 0
r

AA
A A A A

A

VXV R R z
R

β∂  + = ∆ − + > ∂ ∆
         (A4.9) 

Fourth, again using the definition of ∆ , we have by differentiation: 
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   1
1(1 )

B
B

B B B
B B

zz R
R R

β β
 ∂∂∆

= + + ∂ ∂ 
        (A4.10) 

where  1 0
B

B

B B B B

z d
R d Rβ

∂
= − <

∂ +
. Working out (A4.10) then shows that:   

    
2( ) 0B B

B B B B

d
R d R

β
β

 ∂∆
= > ∂ + 

                 (A4.11) 

Finally, note that 

    1

r r
AA

B B

Y Xz
R R

∂ ∂
=

∂ ∂
>0          (A4.12) 

    1(1 )
rr r

AA A

B B B B

V YX X z
R R R R

∂ ∂∂ ∂
= + = +

∂ ∂ ∂ ∂
<0                               (A4.13) 

  

 Substituting (A4.9), (A4.11), (A4.12) and (A4.13) in (A4.8), and using the 

definition of total demand, A AV Y X= + , then gives after simple manipulation: 

1 1 1 1

2
1

1 2

1(1 ) (1 ) (1 2 )

(1 ) ( )(1 )

r
A A r A A

A A A A
B B

A
r A A B B

A A A A
B B B

Xz R z Y z Xz
R R

z dY z V R
d R

ψ β β

β ββ
β

∂ ∂   = + ∆ − + + +   ∂ ∆ ∂

 +
+ +  ∆ + 

                     (A4.14) 

This expression consists of two terms. The second is positive, the first is ambiguous. 

Since the term  

    0
r

B

X
R

∂
<

∂
 

the first term will also be positive provided  

    1 1(1 2 )r A A
AY z Xz+ + <0.          (A4.15) 

This will be the case if transit is relatively important and the impact of transit on local 

demand ( 1 0Az < ) is sufficiently large in absolute value.   

 Note that it is quite plausible that (A4.15) is satisfied; a sufficient condition is 

that ( 1 0.5Az > , or alternatively, that A A Ad Rβ< . The left hand side is the slope of the 

local inverse demand function, the right hand side is the slope of the congestion 

function at given capacity. A sufficient (but by no means necessary) condition is, 

therefore, a sufficiently sloped congestion function.  
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 The implication is that capacities in the two regions will be strategic 

complements (i.e., capacity reaction functions are upward sloping) if transit is 

sufficiently important, that is, if transit demand is non-negligible and if more transit 

appreciably reduces local demand through congestion effects. The intuition is clear. 

Suppose region B raises capacity. This attracts more transit through both A and B so 

that, in order to dampen the negative welfare effect on local demand, country A reacts 

by also raising capacity.  

 Note, however, that when transit is rather unimportant and if it does not much 

affect local demand then the reaction functions may in principle be negatively sloped. 

In that case, higher capacity in B induces A to reduce capacity: more transit is 

attracted through both regions by the capacity increase in B, but this hardly affects 

local demand in A so that, given the cost of capacity expansion, it is not worthwhile to 

expand capacity. In fact, capacity is reduced if the welfare loss due to slightly more 

congestion is more than compensated by the marginal capacity cost savings. 

 

Appendix 5: The optimal capacity choice rule for the cases of uniform taxes and 

local taxes only  

  

In the case of uniform taxes the first-order condition can be rewritten as: 

 2( ) ( )
Y r r NE
A A A A A

A A A
A A A A A

dg dY dX KY Y X
dR dR dR R R

θθ ∂
− + − + =

∂
 

with: 

   ( )
Y r r NE
A A A

A A A
A A A A

dg dY dXV R
dR dR dR R

θβ
  ∂

= + + +  ∂ 
 

   
,

NEr r r
kA A A

k A BA A k A

dY Y Y
dR R R

θ
θ=

∂∂ ∂
= +

∂ ∂ ∂∑  

                                    
,

NEr r r
k

k A BA A k A

dX X X
dR R R

θ
θ=

∂∂ ∂
= +

∂ ∂ ∂∑  

Interpretation is as before. The first order condition equates marginal costs and 

benefits of capacity expansion, where the indirect effects via tax adjustment are taken 

into account. Substituting the total derivatives and using the first-order condition for 

optimal tax setting by region A, the optimal capacity choice rule can be reformulated 

as :  
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 2( )
r r r r NE

A A A A B A
A A A A A

A A B B A A

Y X Y X KV Y LMEC
R R R R

θβ θ
θ θ

  ∂ ∂ ∂ ∂ ∂
− − + + + =  ∂ ∂ ∂ ∂ ∂  

 

 Finally, for the case of local tolls only we have: 

 2

Y r NE
A A A A

A A A
A A A A

dg dY t KY t Y
dR dR R R

∂
− − =

∂
 

where  

    ( )
Y r r NE
A A A

A A A
A A A A

dg dY dX tV R
dR dR dR R

β
  ∂

= + + +  ∂ 
 

    
,

NEr r r
kA A A

k A BA A k A

tdY Y Y
dR R t R=

∂∂ ∂
= +

∂ ∂ ∂∑  

    
,

NEr r r
k

k A BA A k A

tdX X X
dR R t R=

∂∂ ∂
= +

∂ ∂ ∂∑  

This can be rewritten as, using the optimal tax condition for region A, as: 

2( )
r r NE r r NE

A A B B A
A A A A A A

A B A A B A A

Y Y t X X t KV Y t LMEC LMEC
R t R R t R R

β
   ∂ ∂ ∂ ∂ ∂ ∂

− − + + + =   ∂ ∂ ∂ ∂ ∂ ∂   
      

 

Appendix 6: Calibration of parameters for numerical example  

 

Remember that the parameters , , ,a b c d describe the demand for local and transit 

transport, and ,α β determine the congestion function. Moreover, 
* 0.0005*Rβ β β= = , and K is the cost of capacity. All parameters are the same in A 

and B, reflecting symmetry.  

 

 
a 567.11 
b 0.34 
c 283.56 
d 0.17 
α 34.34 
β∗ 0.01 
β 23.92 
Κ 18.69 

Table A6.1. Calibration constants (identical for regions A and B) 
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