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Abstract

Consider the following nine rules for adjudicating conflicting claims: the pro-
portional, constrained equal awards, constrained equal losses, Talmud, Piniles’,
constrained egalitarian, adjusted proportional, random arrival, and minimal
overlap rules. For each pair of rules in this list, we examine whether or not the
two rules are Lorenz comparable. We allow the comparison to depend upon
whether the amount to divide is larger or smaller than the half-sum of claims.
In addition, we provide Lorenz-based characterizations of the constrained equal
awards, constrained equal losses, Talmud, Piniles’, constrained egalitarian, and
minimal overlap rules.

Keywords. Claims problem · Bankruptcy · Taxation · Lorenz dominance · Progressivity ·
Proportional rule · Constrained equal awards rule · Constrained equal losses rule · Talmud
rule · Piniles’ rule · Constrained egalitarian rule · Adjusted proportional rule · Random
arrival rule · Minimal overlap rule

JEL classification. D63
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1 Introduction

How should an amount of money be divided among a group of individuals if the amount
available falls short of the sum of the individuals’ claims? Several distribution problems take
the form of this “claims problem”—two typical examples are the problems of bankruptcy
and taxation. In the case of bankruptcy, the amount to divide is the liquidation value of
the firm that goes bankrupt, and the claims are the entitlements of the creditors; in the
case of taxation, the amount to divide is the difference between the total pre-tax income
and the tax revenue, and the claims are the pre-tax incomes. The literature on the claims
problem is largely devoted to the axiomatic study of rules that associate with each possible
claims problem a division among the individuals.1

We examine how the divisions selected by nine well known rules compare in terms of
inequality (or, in the terminology of the taxation, how the rules compare in terms of pro-
gressivity). As a criterion for making inequality comparisons, we use the Lorenz dominance
relation which constitutes the cornerstone of the literature on inequality measurement.2 In
order to illustrate our analysis, let us consider a claims problem involving three individuals
with claims equal to 500, 2000, and 3500, and an amount to divide equal to 1500. Table 1
presents the divisions proposed for this claims problem by the nine rules that we consider
in our examination: the proportional (P ), constrained equal awards (CEA), constrained
equal losses (CEL), Talmud (T ), Piniles’ (Pin), constrained egalitarian (CE), adjusted
proportional (A), random arrival (RA), and minimal overlap (MO) rules. The final row
of the table presents totals, with the total claim equal to 6000 and the amount to divide
equal to 1500.

Table 1. Example with an amount to divide of 1500

Claims CEA CE, P in, T A RA, MO P CEL
0500 0500 0250 0214 0167 0125 0000
2000 0500 0625 0643 0667 0500 0000
3500 0500 0625 0643 0667 0875 1500
6000 1500 1500 1500 1500 1500 1500

All divisions in Table 1 can be compared with respect to inequality. As we move
from left to right in the table, the award allocated to the smallest claim decreases, while
the award allocated to the largest claim increases. In more general terms, moving from
left to right, divisions become more unequal according to the Lorenz dominance relation.
So, for instance, the adjusted proportional rule selects a less unequal division than the
minimal overlap rule for the given claims problem. The key question is whether this type
of conclusion holds in general or depends upon the particular characteristics of the example.

The next theorem—which is proven in Section 3—summarizes a first set of results.
A rule R is said to Lorenz dominate a rule R′ if, for each claims problem, the division
proposed by R Lorenz dominates the division proposed by R′.

1See Moulin (2002) and Thomson (2003) for surveys.
2See, e.g., the survey of this literature by Sen and Foster (1997).
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Theorem 1. The Lorenz dominance relation ranks the nine rules as follows.

CEA CE Pin

RA

A

T

P

MO
CEL.

An arrow (or a sequence of arrows) from R to R′ indicates that R Lorenz dominates R′.
The absence of an arrow (or of a sequence of arrows) indicates the absence of a Lorenz
relationship.

Related results have been established in the literature. Thomson (2002) provides a
Lorenz ranking of the members of the family of increasing-constant-increasing rules which
includes the constrained equal awards, constrained equal losses, Talmud, and minimal over-
lap rules. Moreno-Ternero and Villar (2006) rank the family of TAL-rules which includes
the constrained equal awards, constrained equal losses, and Talmud rules.

Theorem 1 shows that some rules are Lorenz incomparable. This is the case, for in-
stance, for the proportional rule and the Talmud rule. To illustrate this point, we consider
a claims problem with claims as in Table 1, but with an amount to divide of 4500 instead
of 1500. The divisions proposed by the different rules are given in Table 2.

Table 2. Example with an amount to divide of 4500

Claims CEA, CE Pin P RA A T MO CEL
0500 0500 0500 0375 0333 0286 0250 0167 0000
2000 2000 1625 1500 1333 1357 1375 1417 1500
3500 2000 2375 2625 2833 2857 2875 2917 3000
6000 4500 4500 4500 4500 4500 4500 4500 4500

Whereas, for the claims problem of Table 1, the Talmud rule proposes a less unequal
division than the proportional rule, the converse is true for the claims problem of Table
2. As some rules—viz., the Talmud, Piniles’, and constrained egalitarian rules—explicitly
treat claims problems differently according to whether the amount to divide is smaller or
larger than the half-sum of claims, it seems natural to consider restrictions of the Lorenz
dominance relation on those two subsets of claims problems. It turns out that significantly
more rules are Lorenz comparable on these restricted domains: for instance, for each claims
problem with an amount to divide smaller than the half-sum of claims, the division selected
by the Talmud rule Lorenz dominates that selected by the proportional rule, whereas the
converse relation holds for each claims problem with an amount available larger than the
half-sum of claims. The results for the restricted domains are summarized in Theorem 2,
which is stated and proven in Section 4.

In addition to providing the Lorenz relationships between the nine rules, we characterize
six of them as maximal or minimal with respect to the Lorenz dominance relation: the con-
strained equal awards, constrained equal losses, Talmud, Piniles’, constrained egalitarian,
and minimal overlap rules. For instance, we show that the minimal overlap rule is Lorenz-
minimal in the set of rules satisfying order preservation of awards, order preservation of
losses, reasonable lower bounds on awards, limited consistency, and super-modularity in
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claims (a new property that is analogous to the traditional super-modularity property).
The characterizations of the constrained equal awards and constrained egalitarian rules
are closely related to results by Schummer and Thomson (1997) and Chun, Schummer,
and Thomson (2001), respectively. The propositions in Sections 3 and 4 formulate these
characterization results and Table 4 in Section 4 provides a summary.

2 Nine rules and ten properties3

An amount E in R+ has to be divided among a set N = {1, 2, . . . , n} of at least two
individuals with claims adding up to more than E. Let ci in R+ be individual i’s claim. The
n-tuple c = (c1, c2, . . . , cn) is said to be the vector of claims. The total claim c1+c2+· · ·+cn

is assumed to be positive and is denoted by C. A claims problem is an ordered pair (c, E)
with c the claims vector and E the amount to divide. The set C collects all claims problems
that involve n individuals. A rule is a map from the set C to the set R

n
+ of nonnegative

n-tuples, i.e.
R : C −→ R

n
+ : (c, E) �−→ R(c, E),

that satisfies the conditions R1(c, E)+R2(c, E)+ · · ·+Rn(c, E) = E and c ≥ R(c, E) ≥ 0.4

The division R(c, E) is said to be an awards vector for (c, E). Sometimes, we use Ri as
shorthand for Ri(c, E). The difference ci−Ri(c, E) is said to be the loss for claimant i. We
only consider anonymous rules, i.e. rules for which the identity of the claimants does not
matter. Accordingly, we limit our attention to claims vectors c with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn.

2.1 Nine rules

We list nine rules, starting with the four classical ones.5 The most commonly used rule in
practice makes awards proportional to claims.

Proportional rule, P . For each (c, E) in C, we have P (c, E) = E
C
c.

The next two rules both implement the idea of equality, albeit in different ways. The
constrained equal awards rule equalizes awards under the constraint that no individual’s
award exceeds her claim.

Constrained equal awards rule, CEA. For each (c, E) in C and each i in N , we have
CEAi(c, E) = min{ci, λ}, where λ is chosen so that

∑n
i=1 min{ci, λ} = E.

The constrained equal losses rule equalizes losses under the constraint that no award is
negative.

Constrained equal losses rule, CEL. For each (c, E) in C and each i in N , we have
CELi(c, E) = max{0, ci − λ}, where λ is chosen so that

∑n
i=1 max{0, ci − λ} = E.

The fourth classical rule, known as the Talmud rule, specifies two regimes depending
upon whether or not the amount to divide exceeds the half-sum of the claims. If the amount
available is less than the half-sum, then the Talmud rule coincides with the constrained
equal awards rule applied to the vector of half-claims. If the amount available is larger
than the half-sum, then the Talmud rule gives each claimant her half-claim and applies

3This section is strongly based on Thomson’s (2003) survey.
4Vector inequalities: x ≥ y, x > y, and x � y.
5Herrero and Villar (2001) provide a comparative examination of these four rules.
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the constrained equal losses rule to divide the remainder (where both the claims and the
amount to divide are truncated).

Talmud rule, T . For each (c, E) in C, we have that

(i) if 1
2
C ≥ E, then T (c, E) = CEA(1

2
c, E),

(ii) if 1
2
C ≤ E, then T (c, E) = 1

2
c + CEL(1

2
c, E − 1

2
C).

In the case where the amount to divide is equal to the half-sum of claims, the awards
vector in both regimes coincides with the vector of half-claims. If 1

2
C < E, then a typical

awards vector for the Talmud rule looks like (1
2
c1 , 1

2
c2 , . . . , 1

2
ck , ck+1−λ, ck+2−λ, . . . , cn−λ).

We continue with two rules that coincide with the Talmud rule whenever the amount
available is less than the half-sum of the claims. To illuminate the difference with the
Talmud rule, we present a typical awards vector for the case where the amount available
exceeds the half-sum of claims.

Piniles’ rule, Pin. For each (c, E) in C, we have that

(i) if 1
2
C ≥ E, then Pin(c, E) = T (c, E) = CEA(1

2
c, E),

(ii) if 1
2
C ≤ E, then Pin(c, E) = 1

2
c + CEA(1

2
c, E − 1

2
C).

If 1
2
C < E, then (c1, c2, . . . , ck,

1
2
ck+1 + λ, 1

2
ck+2 + λ, . . . , 1

2
cn + λ) is a typical awards

vector for Piniles’ rule.

Constrained egalitarian rule, CE. For each (c, E) in C, we have that

(i) if 1
2
C ≥ E, then CE(c, E) = T (c, E) = CEA(1

2
c, E),

(ii) if 1
2
C ≤ E, then, for each i in N , we have CEi(c, E) = max{1

2
ci , min{ci, λ}}, where

λ is chosen so that
∑n

i=1 max{1
2
ci , min{ci, λ}} = E.

If 1
2
C < E, then (c1, c2, . . . , ck, λ, λ, . . . , λ, 1

2
c�,

1
2
c�+1, . . . ,

1
2
cn) is a typical awards vector

for the constrained egalitarian rule.
We close this list of rules with three rules that coincide with the Talmud rule in the

case of two claimants. The adjusted proportional rule first allocates to each claimant her
minimal right, i.e. the part of the amount to divide that is left after each other claimant
is fully compensated (such a minimal right might be zero). Next, the claims and the
amount to divide are revised and the resulting problem is solved using the proportional
rule. Formally, for the claims problem (c, E), claimant i’s minimal right mi(c, E) is defined
as max{0 , E − C + ci} and m(c, E) = (m1(c, E), m2(c, E), . . . , mn(c, E)). Furthermore,
the adjusted amount to divide E − ∑n

i=1 mi(c, E) is denoted by EA.

Adjusted proportional rule, A. For each (c, E) in C, we have

A(c, E) = m(c, E) + P
(
(min{ci − mi(c, E) , EA})i∈N , EA

)
.

To define the next rule, suppose the individuals arrive one at a time and are fully
compensated until the money runs out. By averaging the awards vectors obtained in this
way over all possible orders of arrival, we get the division proposed by the random arrival

5



rule. For a formal definition, let P collect the n! different orderings in the set N . For each
ordering π in P and for each individual i in N , the set π[i] collects the predecessors of i
with respect to the ordering π.6

Random arrival rule, RA. For each (c, E) in C and for each i in N , we have

RAi(c, E) =
1

n!

∑
π ∈P

min
{
ci , max{0, E −

∑
j ∈π[i]

cj}
}
.

Finally, the minimal overlap regards each individual i as claiming the part [0, ci] of the
interval [0, E]. The rule distinguishes two cases. (i) In the case where there exists a claim
at least as great as the amount to divide, all claims are first truncated by the amount
available. Next, each part of [0, E] is divided equally among all individuals claiming it.
For instance, the interval [0, c1] is claimed by everyone, and so everyone gets c1/n. The
interval (c1, c2] is claimed by everyone except individual 1, and so each member of N −{1}
receives in addition (c2 − c1)/(n− 1). This process continues until the entire interval [0, E]
is covered. (ii) In the case where all claims are smaller than the amount to divide, one lets
c0 = 0 and looks for the largest k∗ in {0, 1, 2, . . . , n − 2} for which there exists a t in R+

that satisfies

ck∗ < t ≤ ck∗+1 and (ck∗+1 − t) + (ck∗+2 − t) + · · · + (cn − t) = E − t.7 (1)

Each individual i in the set {k∗ + 1, k∗ + 2, . . . , n} obtains a first share equal to ci − t, i.e.
the part of the interval (t, E] that i alone claims. The remaining part [0, t] is divided as in
case (i) (with t as the amount to divide). For the definition, we follow Chun and Thomson
(2005, p. 138).

Minimal overlap rule, MO. Let c0 = 0. For each (c, E) in C, we have the following.

(i) Let ck∗ < E ≤ ck∗+1 ≤ cn with k∗ in {0, 1, 2, . . . , n − 1}. Then,

MOi = c1
n

+ c2−c1
n−1

+ c3−c2
n−2

+ · · ·+ ci−ci−1

n−i+1
for each i = 1, 2, . . . , k∗,

MOj = MOk∗ + E−ck∗
n−k∗ for each j = k∗ + 1, k∗ + 2, . . . , n.

(ii) Let cn < E. Let ck∗ < t ≤ ck∗+1 with k∗ in {0, 1, 2, . . . , n − 2} and t as in (1). Then,

MOi = c1
n

+ c2−c1
n−1

+ c3−c2
n−2

+ · · ·+ ci−ci−1

n−i+1
for each i = 1, 2, . . . , k∗,

MOj = (cj − t) + MOk∗ + t−ck∗
n−k∗ for each j = k∗ + 1, k∗ + 2, . . . , n.

Individual k∗ is said to be pivotal. Observe the particular position of claims problems
(c, E) with pivotal individual k∗ equal to 0: if (i) applies, then the minimal overlap proposes
equal division, whereas if (ii) applies, then the minimal overlap rule selects the constrained
equal losses division (each claimant loses C−E

n
≤ n−1

n
c1).

6For example, let N = {1, 2, 3} and consider the ordering π = (1, 3, 2) in which individual 1 queues
first, followed by 3, and finally 2. In this case, π[3] = {1}.

7If the claims happen to be feasible, i.e. c1 + c2 + · · · + cn = E, then k∗ = 0 and we allow t = c0 = 0.

6



2.2 Ten properties

We consider ten properties. Table 3 indicates which of these properties are satisfied by
each of the nine rules defined in the previous subsection.

Order preservation of awards requires that awards are ordered as claims are.

Order preservation of awards. For each (c, E) in C, we have that if ci ≤ cj , then
Ri(c, E) ≤ Rj(c, E).

Order preservation of losses demands that losses are ordered as claims are.

Order preservation of losses. For each (c, E) in C, we have that if ci ≤ cj , then
ci − Ri(c, E) ≤ cj − Rj(c, E).

Resource monotonicity holds that if the amount to divide increases, then each individual
should receive at least as much as she did initially.

Resource monotonicity. For each pair (c, E) and (c, E ′) in C, we have that if E ≤ E ′ ≤
C, then R(c, E) ≤ R(c, E ′).

The next two properties describe responses of the awards vector to changes in the
amount available and in the claims vector, respectively. The first requires that if the
amount to divide increases, of two individuals, the one with the greater claim benefits
more than the other. This property is commonly known as super-modularity,8 but we refer
to it as “super-modularity in amount available” in order to distinguish it from an analogous
property. This property—which we refer to as “super-modularity in claims”—requires that
if the claim of individual k decreases, of two individuals in N−{k}, the one with the greater
claim benefits more than the other.9

Super-modularity in amount available. For each pair (c, E) and (c, E ′) in C with
E ≤ E ′ ≤ C, and for each pair i and j in N with ci ≤ cj , we have Ri(c, E

′) − Ri(c, E) ≤
Rj(c, E

′) − Rj(c, E).

We write (c′k, c−k) for the claims vector obtained from c by replacing ck with c′k.

Super-modularity in claims. For each k in N , for each pair (c, E) and (c′, E) in C with
c′ = (c′k, c−k) and c′k < ck, and for each pair i and j in N − {k} with ci ≤ cj, we have
Ri(c

′, E) − Ri(c, E) ≤ Rj(c
′, E) − Rj(c, E).

We postpone the discussion of which rules satisfy super-modularity in claims to the end
of this subsection.

The next property requires that truncating the claims at the level of the amount to
divide has no impact on awards.

Invariance under claims truncation. For each claims problem (c, E) in C, we have
R(c, E) = R((min{ci, E})i∈N , E).

A self-dual rule treats the problem of dividing the amount available and the problem of
dividing the shortfall (i.e. the difference between the total claim and the amount to divide)
in a symmetrical way.

Self-duality. For each (c, E) in C, we have R(c, E) = c − R(c, C − E).

8See Thomson (2003, p. 270).
9The property appears in Thomson (2006, p. 106) with the label “order preservation under claims

variations.”
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The adjusted proportional rule inherits self-duality from the proportional rule (Thomson
and Yeh, 2006, Corollary 1).

The midpoint property requires the awards vector to coincide with the vector of half-
claims whenever the amount to divide coincides with the half-sum of claims.

Midpoint property. For each (c, E) in C with E = 1
2
C, we have R(c, E) = 1

2
c.

Self-duality implies the midpoint property: indeed, if R(c, E) + R(c, C − E) = c, then,
for a claims problem (c, E) with C = 2E, we have 2R(c, E) = c.

Limited consistency states that adding an individual with a zero claim does not change
the awards of the claimants initially present. We abuse notation and use R to denote both
the n-claimants and the (n + 1)-claimants version of a rule. Obviously, if (c1, c2, . . . , cn, E)
is a claims problem involving n claimants, then (0, c1, c2, . . . , cn, E) is a claims problem
with n + 1 claimants.

Limited consistency. For each (c, E) = (c1, c2, . . . , cn, E) in C involving n individuals,
we have R(0, c1, c2, . . . , cn, E) = (0, R(c1, c2, . . . , cn, E)).

Finally, reasonable lower bounds on awards ensures that each claimant receives at least
the minimum of (i) her claim divided by the number of claimants and (ii) the amount
available divided by the number of claimants (see Moreno-Ternero and Villar, 2004, and
Dominguez and Thomson, 2006).

Reasonable lower bounds on awards. For each (c, E) in C and for each i in N , we
have Ri(c, E) ≥ 1

n∗ min{ci, E}, where n∗ denotes the number of individuals with a positive
claim.

We now turn to the question of which rules satisfy super-modularity in claims. First, it
can easily be established that each consistent10 rule satisfies super-modularity in claims if
and only if it satisfies super-modularity in amount available. The proportional, constrained
equal awards, constrained equal losses, Talmud, and Piniles’ rules all satisfy consistency
and super-modularity in amount available, and therefore satisfy super-modularity in claims.
The constrained egalitarian rule, on the other hand, is consistent but does not satisfy super-
modularity in amount available. Hence, it does not satisfy super-modularity in claims.

Now consider the adjusted proportional rule. The larger the claim is, the larger the
minimal right. If one of the claims decreases, then the minimal rights of the other claimants
increase in an order preserving manner (the minimal right either stays at the zero level,
or becomes positive, or increases with the amount the particular claim decreases). The
proportional rule is applied to the adjusted claims problem, and its proposal is added to
the minimal rights vector. Since, moreover, the proportional rule satisfies super-modularity
in claims, the adjusted proportional rule also satisfies the property.

Next, we check whether the random arrival rule satisfies super-modularity in claims. Let
(c, E) be a claims problem, let ck decrease to c′k, and let i and j be two claimants different
from k such that ci ≤ cj . Consider an order of arrival π in which the decrease in ck generates
an increase in claimant i’s award (i.e. k ∈ π[i] and 0 < E −∑

�∈π[i] c� < ci). Switch the

positions of i and j in π and obtain the order π′. Then, k ∈ π′[j] and 0 < E−∑
�∈π′[j] c� < cj .

With respect to the order π′, claimant j experiences at least the same increase as i does
with respect to π. By consequence, the random arrival rule satisfies super-modularity in
claims.

10See Thomson (2003, p. 279) for a definition of the consistency property.
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Finally, the minimal overlap rule also satisfies super-modularity in claims, as will be-
come clear in the proof of Proposition 5 in Section 3.

Table 3. Rules and properties (for at least three individuals)

P CEA CEL T Pin CE A RA MO
Order preservation of awards yes yes yes yes yes yes yes yes yes
Order preservation of losses yes yes yes yes yes yes yes yes yes
Resource monotonicity yes yes yes yes yes yes yes yes yes
Super-modularity in amount available yes yes yes yes yes NO yes yes yes
Super-modularity in claims yes yes yes yes yes NO yes yes yes
Invariance under claims truncation NO yes NO yes yes yes yes yes yes
Self-duality yes NO NO yes NO NO yes yes NO

Midpoint property yes NO NO yes yes yes yes yes NO

Limited consistency yes yes yes yes yes yes yes yes yes
Reasonable lower bounds on awards NO yes NO yes yes yes yes yes yes

3 Lorenz comparisons on the full domain

In this section we prove Theorem 1. First, we define the Lorenz dominance relation. Let
R

n
≤ be the set of nonnegative n-tuples x = (x1, x2, . . . , xn) ordered from small to large, i.e.

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Let x and y be in R
n
≤. We say that x Lorenz dominates y if we

have
x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk for each k = 1, 2, . . . , n − 1,

and x1 +x2 + · · ·+xn = y1 +y2 + · · ·+yn. If x Lorenz dominates y and x 	= y, then at least
one of these n − 1 inequalities is a strict inequality. We consider only Lorenz comparisons
of vectors that are ordered from small to large as this seems natural in the given context.

Definition. Let R and R′ be two rules that satisfy order preservation of awards and let
D ⊆ C be a set of claims problems. Then, R Lorenz dominates R′ on the domain D if
R(c, E) Lorenz dominates R′(c, E) for each (c, E) in D.

We shorten “Lorenz dominance on the domain C” to “Lorenz dominance.” The transi-
tivity and reflexivity of the Lorenz dominance relation in the set R

n
≤ implies the transitivity

and reflexivity of the Lorenz dominance relation in the set of rules.
According to the next lemma, the duality operator reverses the Lorenz dominance

relation. The dual rule Rd of R treats what is available for division in the same way as R
treats what is missing. Formally, for each (c, E) in C, we have Rd(c, E) = c−R(c, C −E).
The claims problems (c, C − E) and (c, E) are said to be dual.

Lemma 1. Let R and S be two rules that satisfy order preservation of awards and let
D ⊆ C be a set of claims problems. Then, R Lorenz dominates S on the domain D if and
only if Sd Lorenz dominates Rd on the domain Dd of dual claims problems.

Proof. Let (c, E) be a claims problem in D. Then, (c, C − E) belongs to Dd. Duality
implies

R(c, E) + Rd(c, C − E) = c and S(c, E) + Sd(c, C − E) = c.
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Conclude that R(c, E) Lorenz dominates S(c, E) if and only if Sd(c, C − E) Lorenz domi-
nates Rd(c, C − E). �

The rest of this section proves the Lorenz relationships indicated by the arrows in
Theorem 1 (see Section 1): we proceed from left to right and from top to bottom. In-
comparabilities are postponed until Section 4. A Lorenz-based characterization of a rule is
stated as a proposition.

3.a. CEA → CE. This Lorenz comparison follows from the fact that the constrained equal
awards rule is Lorenz-maximal in the set of rules that preserve the order of awards.

Proposition 1.11 Let R be the set of rules that satisfy order preservation of awards. The
constrained equal awards rule is the only rule in R that Lorenz dominates each rule in R.

Proof. It suffices to show that CEA Lorenz dominates each rule in R. This is done by
contradiction. Let R in R and (c, E) in C be such that x = CEA(c, E) does not Lorenz
dominate y = R(c, E). Let k in N be the smallest number such that x1 + x2 + · · ·+ xk <
y1 + y2 + · · · + yk.

Hence, xk < yk ≤ ck. Therefore, xk = λ (according to CEA the individuals that receive
less than λ are fully compensated). As λ < yk and yk ≤ yk+1 ≤ · · · ≤ yn (the rule R
preserves the order of awards), the allocation y is not feasible. �

3.b. CE → Pin. This is a consequence of the next proposition. Recall that the constrained
egalitarian and Piniles’ rules satisfy resource monotonicity and the midpoint property.

Proposition 2.12 Let R be the set of rules that satisfy order preservation of awards, the
midpoint property, and resource monotonicity. The constrained egalitarian rule is the only
rule in R that Lorenz dominates each rule in R.

Proof. It suffices to show that CE Lorenz dominates each rule in R. This is done by
contradiction. Let R in R and (c, E) in C be such that x = CE(c, E) does not Lorenz
dominate y = R(c, E). Let k in N be the smallest number such that x1 + x2 + · · ·+ xk <
y1 + y2 + · · · + yk.

Hence, xk < yk and x� > y� for some � > k. The inequalities xk < yk ≤ ck imply that
either xk = 1

2
ck or xk = λ < ck. In addition, � > k implies x� < c� (CE fully compensates

only—if any—the smaller claims). We distinguish 1
2
C > E from 1

2
C < E. The midpoint

property tackles the case 1
2
C = E.

Case 1, 1
2
C > E and xk = 1

2
ck. Then, yk > xk cannot hold because of resource

monotonicity and the midpoint property. Indeed, if E increases towards 1
2
C, then yk

should increase towards 1
2
ck, and a contradiction follows.

Case 2, 1
2
C > E and xk = λ. Then, the inequalities λ < yk ≤ yk+1 ≤ · · · ≤ yn (R

preserves the order of awards) make the vector y infeasible.
Case 3, 1

2
C < E and y� < x� = 1

2
c�. Again, a contradiction follows: if E decreases

towards 1
2
C, then y� should decrease towards 1

2
c�.

Case 4, 1
2
C < E and y� < x� = λ. We obtain the configuration xk = xk+1 = · · · = x� =

λ. Then, the rule R does not preserve the order of awards: yk > λ, while y� < λ. �

11See Schummer and Thomson (1997, Propositions 3 and 4) for related results.
12See Chun, Schummer, and Thomson (2001, Theorem 3) for a different proof.
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3.c. Pin → {RA, A, T, P}. In the case where the half-sum of claims is larger than the
amount to divide, Piniles’ rule coincides with the constrained egalitarian and Talmud rules.
Proposition 2 implies that CE Lorenz dominates Pin, RA, A, T , and P . Hence, on the
domain C1 of claims problems (c, E) with 1

2
C ≥ E, the rule Pin = T = CE Lorenz

dominates RA, A, and P .
Now, we focus on problems with a half-sum of claims less than the amount to divide.

Let C0 collect the problems (c, E) for which 1
2
C ≤ E. Since the rules Pin, RA, A, T , and P

all satisfy the properties required, the next lemma simultaneously tackles the relationships
on the restricted domain C0.

Lemma 2. Restrict the domain to C0. Let R be the set of rules that satisfy order
preservation of awards, the midpoint property, and super-modularity in amount available.
Piniles’ rule (Pin|C0

) is the only rule in R that Lorenz dominates each rule in R on the
domain C0.

Proof. It suffices to show that Pin Lorenz dominates each rule in R. This is done by
contradiction. Let R in R and (c, E) in C0 be such that x = Pin(c, E) does not Lorenz
dominate y = R(c, E). Let k in N be the smallest number such that x1 + x2 + · · ·+ xk <
y1 + y2 + · · · + yk.

Hence, xk < yk ≤ ck and y� < x� ≤ c� for some � > k. The definition of Pin implies
that xk = ck

2
+ λ and x� = c�

2
+ λ. As the rule R satisfies the midpoint property, we

have Rk(c, E) − Rk(c, C/2) = yk − ck

2
> λ, while R�(c, E) − R�(c, C/2) = y� − ck

2
< λ.

This contradicts the fact that R satisfies super-modularity in amount available (recall that
ck ≤ c�). �

The combination of Lemma 2 and Proposition 2 entails a Lorenz-based characterization
of Piniles’ rule.

Proposition 3. Let R be the set of rules that satisfy order preservation of awards, resource
monotonicity, the midpoint property, and super-modularity in amount available. Piniles’
rule is the only rule in R that Lorenz dominates each rule in R.

3.d. {RA, A, T} → MO. If there are only two claimants, then the random arrival, adjusted
proportional, Talmud, and minimal overlap rules coincide (with the concede-and-divide
rule; see Thomson, 2003). The next proposition provides a Lorenz-based characterization
of the minimal overlap rule.

Proposition 4. Let R be the set of rules that satisfy order preservation of awards, order
preservation of losses, super-modularity in claims, limited consistency, and reasonable lower
bounds on awards. The minimal overlap rule is the only rule in R that is Lorenz dominated
by each rule in R.

Proof. By induction on the number of claimants.

Proof for n = 2. Let (c, E) be a claims problem with two individuals. If k∗ = 0, then either
(i) E ≤ c1 and MO(c, E) = (E/n, E/n), or (ii) MO(c, E) = CEL(c, E). Since each rule R
in R satisfies (i) reasonable lower bounds, and (ii) order preservation of losses, the awards
vector R(c, E) Lorenz dominates MO(c, E).

11



If k∗ = 1, i.e. c1 < E ≤ c2, then the minimal overlap rule proposes x = (c1/2, E−c1/2).
Each rule that satisfies reasonable lower bounds on awards proposes a division either equal
to or Lorenz dominating x.

Inductive step. Suppose that the proposition holds for claims problems with at most
n − 1 claimants. We have to show that the proposition holds for claims problems with n
claimants. Consider a rule R—defined for each number of claimants—in R.

Let (c, E) be a claims problem with n individuals and let k∗ be its pivotal claimant. If
k∗ = 0, then either (i) E ≤ c1 and MO(c, E) = (E/n, E/n, . . . , E/n), or (ii) MO(c, E) =
CEL(c, E). Since each rule R in R satisfies (i) reasonable lower bounds, and (ii) order
preservation of losses, the awards vector R(c, E) Lorenz dominates MO(c, E) (for (ii), see
Proposition 5 below).

If k∗ > 0, then c2 + c3 + · · · + cn > E and (0, c2, c3, . . . , cn, E) is a claims problem. In
addition, the pivotal claimant for the problem (0, c2, c3, . . . , cn, E) coincides with k∗.

The inductive hypothesis implies that the (n−1)-tuple R(c2, c3, . . . , cn, E) Lorenz dom-
inates MO(c2, c3, . . . , cn, E). Since R and MO satisfy limited consistency, we have

(0, R(c2, c3, . . . , cn, E)) Lorenz dominates (0, MO(c2, c3, . . . , cn, E)),
‖ ‖

R(0, c2, c3, . . . , cn, E) Lorenz dominates MO(0, c2, c3, . . . , cn, E).

Start from (0, c2, c3, . . . , cn, E) and let the claim of individual 1 move up from 0 to c1. The
minimal overlap rule transfers an amount c1/[n(n − 1)] from each claimant i = 2, 3, . . . , n
towards claimant 1, who obtains an award equal to c1/n. On the other hand, the rule R
allocates at least c1/n to claimant 1. Furthermore, the rule R satisfies super-modularity
in claims. Hence, when the claim of individual 1 moves from 0 to c1, the decrease in the
award Ri of individual i 	= 1 is increasing in i. Conclude that R(c1, c2, . . . , cn, E) Lorenz
dominates MO(c1, c2, . . . , cn, E). �

3.e. {MO, P} → CEL. The constrained equal losses rule is the dual of the constrained
equal awards rule (see, e.g., Herrero and Villar, 2001). Whereas the constrained equal
awards rule is Lorenz-maximal, the constrained equal losses rule is Lorenz-minimal.

Proposition 5. Let R be the set of rules that satisfy order preservation of awards and
order preservation of losses. The constrained equal losses rule is the only rule in R that is
Lorenz dominated by each rule in R.

Proof. Note that if a rule satisfies order preservation of awards, then its dual satisfies order
preservation of losses. Take the dual of Proposition 1 and apply Lemma 1. �

This completes the proof of Theorem 1, except for the incomparabilities.

4 Lorenz comparisons on restricted domains

Theorem 1 presents an incomplete ranking: the set {RA, A, T, P} and the pair {P, MO}
are not ranked. In this section, we focus on both these sets of rules and study their
relationships on the restricted domains C0.5 ( 1

2
C=E), C0 ( 1

2
C≤E), and C1 ( 1

2
C≥E). As already
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mentioned, the position of the amount to divide against the half-sum of claims is crucial.
We formulate our second theorem.

Theorem 2. On the restricted domains C0.5, C0, and C1, the Lorenz dominance relation
ranks the nine rules as follows.

C0.5 ( 1
2
C=E): CEA CE = Pin = RA = A = T = P MO CEL,

C0 ( 1
2
C≤E): CEA CE Pin

P A

RA

T MO CEL,

C1 ( 1
2
C≥E): CEA CE = Pin = T

A

RA

P

MO

CEL.

An arrow (or a sequence of arrows) from rule R to R′ indicates that R Lorenz dominates
R′ on the relevant restricted domain. The absence of an arrow (or of a sequence of arrows)
indicates the absence of a Lorenz relationship.

We subsequently discuss the domains C0.5, C0, and C1, and prove the relationships not
covered by Theorem 1. We distinguish the Lorenz relations by denoting the domain in

stack position, e.g. P
C0−→ A.

4.a. The domain C0.5. The arrows involving the constrained equal awards, minimal overlap,
and constrained equal losses rules are implied by Theorem 1. The equalities CE = Pin =
RA = A = T = P follow from the midpoint property. �

We now consider the domains C0 ( 1
2
C≤E) and C1 ( 1

2
C≥E). Observe that several rankings

reverse over these domains: we have P
C0−→ A

C0−→ T and T
C1−→ A

C1−→ P , as well as

RA
C0−→ T and T

C1−→ RA.13 Since the domains C0 and C1 are dual and the rules P , A, T ,
and RA are self-dual, these reversals are a consequence of Lemma 1.

4.b. P
C0−→ A and A

C1−→ P . By Lemma 1 and self-duality of P and A, we need only
consider the second statement. Let (c, E) be a claims problem with 1

2
C ≥ E. If the minimal

right mi of individual i is positive, then either E−C+ci > 0, or E+ci > C ≥ 2E, or ci > E.
By consequence, at most one individual has a positive minimal right. We distinguish two
cases.

13The switch from P
C0−→ A to A

C1−→ P is especially noteworthy because the proportional and adjusted
proportional rules—in contrast to, for instance, the Talmud rule—do not have different recipes for claims
problems according to whether the half-sum of claims is larger or smaller than the amount available.
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Case 1, mn(c, E) = 0. Then, each individual has a minimal right equal to 0. The
definition of A implies

A(c, E) = A(c̄, E) = P (c̄, E) with c̄ = (min{ci, E})i∈N .

Only the larger claims are truncated. Therefore, the vector P (c̄, E) Lorenz dominates
P (c, E).

Case 2, mn(c, E) > 0. The minimal rights vector reads m = (0, 0, . . . , 0, E − C + cn).
The adjusted amount to divide EA is equal to E −mn = C − cn. Also, cn −mn > E −mn.
Next, we determine P (c1, c2, . . . , cn−1, C − cn , C − cn). As the claims add up to 2(C − cn),
we obtain Pi(c̄, E) = 1

2
ci for each i in N . By consequence,

A(c, E) =
(
c1/2, c2/2, . . . , cn−1/2, E − (C−cn)/2

)
.

On the other hand, E
C
≤ 1

2
implies P (c, E) ≤ 1

2
c. The Lorenz dominance result follows. �

4.c. {A, RA} C0−→ T and T
C1−→ {A, RA}. The second statement already appeared in the

previous section (see 3.c, first paragraph). Self-duality transforms the second statement
into the first by Lemma 1. In addition, we provide the next Lorenz-based characterization
of the Talmud rule.

Proposition 6. Restrict the domain to C0. Let R be the set of rules that satisfy order
preservation of awards, order preservation of losses, resource monotonicity, and the mid-
point property. The Talmud rule (T |C0

) is the only rule in R that is Lorenz dominated by
each rule in R on the domain C0.

Proof. The midpoint property and resource monotonicity are self-dual properties: if a rule
R satisfies these properties, then so does Rd (Thomson, 2003). Also, the domains C0 and
C1 are dual. Restrict Proposition 2 to C1, take its dual, and apply Lemma 1. �

Table 4 presents an overview of the propositions.

Table 4. A summary of the Lorenz-based characterizations

Proposition 1 2 3 4 5 6

Lorenz-maximal CEA CE (T |C1
) Pin

Order preservation of awards • • • • • •
Midpoint property • • •
Resource monotonicity • • •
Super-modularity in amount available •
Super-modularity in claims •
Reasonable lower bounds on awards •
Order preservation of losses • • •

Lorenz-minimal MO CEL T |C0

We continue by illustrating the incomparabilities. Each example involves a small num-
ber of claimants: to increase this number, just add individuals with zero claims and use
limited consistency.
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4.d. RA and P are incomparable in C0 and in C1. Consider (c, E) = (20, 30, 10) and
(c′, E ′) = (10, 30, 30, 30) in C1. We have that RA(c, E) = (5, 5) Lorenz dominates P (c, E) =
(4, 6), while P (c′, E ′) = (4.3, 12.9, 12.9) Lorenz dominates RA(c′, E ′) = (3.3, 13.3, 13.3).
The dual problems (c, E)∗ = (20, 30, 40) and (c′, E ′)∗ = (10, 30, 30, 40) tackle the incom-
parability on the domain C1. �

4.e. RA and A are incomparable in C0 and in C1. Consider (c, E) = (10, 10, 10, 20, 20)
and (c′, E ′) = (10, 20, 30, 20) in C1. We have that RA(c, E) = (4.2, 4.2, 4.2, 7.5) Lorenz
dominates A(c, E) = (4, 4, 4, 8), while A(c′, E ′) = (4, 8, 8) Lorenz dominates RA(c′, E ′) =
(3.3, 8.3, 8.3). The dual problems (c, E)∗ = (10, 10, 10, 20, 30) and (c′, E ′)∗ = (10, 20, 30, 40)
tackle the incomparability on the domain C0. �

4.f. MO and P are incomparable in C1. Consider the problems (c, E) = (20, 30, 10) and
(c′, E ′) = (10, 10, 10, 40, 20) in C1. We have that MO(c, E) = (5, 5) Lorenz dominates
P (c, E) = (4, 6), while P (c′, E ′) = (2.9, 2.9, 2.9, 11.4) Lorenz dominates MO(c′, E ′) =
(2.5, 2.5, 2.5, 12.5). �

This completes the proofs of Theorem 2 and of Theorem 1. The next corollary closes
the paper. The Lorenz ranking for each of the pairs {T, A} and {T, RA} reverses in moving
from C1 to C0. Furthermore, the Talmud, adjusted proportional, and random arrival rules
all satisfy invariance under claims truncation. By consequence, for claims problems that
shift from C1 to C0 if claims are truncated, the divisions proposed by these three rules
should coincide. A claims problem (c, E) with 1

2
C ≥ E generates a truncated claims

problem (c̄, E) with 1
2
C̄ ≤ E if and only if c1 + c2 + · · ·+ cn−1 ≤ E ≤ cn.

Corollary. Let (c, E) be a claims problem with C−cn ≤ E ≤ cn. The Talmud, adjusted
proportional, and random arrival rules propose (1

2
c1,

1
2
c2, . . . , 1

2
cn−1, E− 1

2
(C−cn)).
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