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Abstract

We present a nonparametric approach for the equity and e¢ ciency evaluation of

(private and public) primary schools in Flanders. First, we use a nonparametric (Data

Envelopment Analysis) model that is specially tailored to assess educational e¢ ciency

at the pupil level. The model accounts for the fact that minimal prior structure is

typically available for the behavior (objectives and feasibility set) under evaluation, and

it reckons with outlier behavior in the available data, while it corrects for �environmental�

characteristics that are speci�c to each pupil. Second, we propose �rst- and second-order

stochastic dominance (FSD and SSD) criteria as naturally complementary aggregation

criteria for comparing the performance of di¤erent school types (private and public

schools) in Flanders. While FSD only accounts for (Pareto) e¢ ciency, SSD also takes

(Pigou-Dalton) equality into consideration. We �nd that private schools outperform

public schools in terms of SSD.
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1 Introduction

An important theme in policy evaluation is the question whether public funds are used in

an equitable and e¢ cient way. In the speci�c context of education, the comparison between

private � but, possibly, publicly funded� schools and public schools is at the heart of a

debate, which started with the work of Coleman et al. (1982). They �nd that (1) catholic

school students obtain higher standardized test scores than public school students (after

controlling for family background), and (2) catholic schools provide more equal educational

outcomes for minority students. Therefore, one could conclude that catholic schools were both

more e¢ cient and more equitable than public schools in the U.S. at that time. The work of

Coleman et al. was (and still is) controversial, not only in the public debate (see, e.g., the New

York Times articles of April 7, April 12 and April 26, 1981, discussing the consequences of

Coleman et al.�s results for the introduction of tuition tax credits and/or school vouchers), but

also in academics (see, e.g., Cain and Goldberger (1983) for a neat overview of methodological

problems). In spite of these criticisms, many studies have con�rmed the outperformance of

public by private schools; see, e.g., the literature review in Altonji et al. (2005).

This study compares private and public primary schools in Flanders, i.e., a region in

Belgium, on the basis of both equity and e¢ ciency considerations. Our methodology con-

sists of two steps, a measurement and an aggregation step. The distinguishing feature is that

both steps are entirely nonparametric. First, we use a nonparametric e¢ ciency evaluation

model � also called a Data Envelopment Analysis (DEA) model� which is specially tailored

for environment-corrected educational e¢ ciency evaluation at the pupil level. Second, we

use nonparametric stochastic dominance techniques � which allow us to take e¢ ciency and

equity considerations into account� to compare the aggregate performance of private and

public schools. While our focus is on comparing school types, this aggregation step could

alternatively be implemented e.g. for performance assessments at the school level. In addi-

tion, although our application focuses on education, we believe that the suggested method is

applicable in a wide variety of public sector settings (e.g., health services), which typically

involve not only e¢ ciency but also equity considerations.

To set the stage, we brie�y present the measurement and aggregation step in more detail

and relate them to the existing literature. We use a nonparametric DEA model to measure

educational e¢ ciency at the pupil level on the basis of test scores in mathematics and lan-

guage pro�ciency (writing and reading in Dutch). We account for the inputs used (which the

policy makers do control) as well as for possibly diverging �environmental�variables � socio-

economic status of parents and lagged test score results� that might a¤ect pupil performance

(and which often fall beyond the control of policy makers and schools). DEA has the at-
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tractive feature that it imposes minimal a priori structure on the behavior (objectives and

feasibility set) that is evaluated. This is particularly convenient in the context of primary

education, where little a priori information is available; as such, the use of DEA minimizes

the risk of speci�cation error.

DEA models have been used before to evaluate the educational e¢ ciency at the pupil

level; see, e.g., Grosskopf et al. (1997, 1999) and Portela and Thanassoulis (2001) and the

references therein. In the current study, we propose a DEA model that is specially designed

for educational e¢ ciency evaluation: while at the input side it uses the minimal �free dis-

posability�assumption (in casu, more input never leads to a lower (potential) performance),

at the output side it uses the linear aggregation that is typical for measuring pupil perfor-

mance in primary education (i.e., aggregate performance results are conventionally de�ned

as weighted sums of the results in separate disciplines). Focusing on linearly aggregated

output, it measures educational ine¢ ciency in terms of the di¤erence between the maximally

attainable output and the actually achieved output.

Two additional features of our DEA model are worth mentioning. First, it uses linear

output aggregation, but it allows for �exible weights for the di¤erent performance dimensions.

Essentially, such a �exible weighting allows each pupil to be evaluated in terms of his/her

own �most favorable�weighting scheme, which accounts for �specialization�in education; we

avoid undesirable �extreme�specialization by limiting the range of possible output weights

through pre-speci�ed bounds. Second, by suitably adapting the methodology of Daraio and

Simar (2005, 2007) to our DEA model, it can account for outlier behavior, while it also

allows us to explain observed performance di¤erences in terms of diverging environmental

characteristics in a nonparametric way. The observed environmental impact as well as the

corresponding environment-corrected e¢ ciency results provide an easy-to-implement tool for

attention-direction in the political process.

Finally, we suggest �rst-order and second-order stochastic dominance criteria (also known

as, respectively, �rank dominance�and �generalized Lorenz dominance�in the normative wel-

fare literature) for comparing the aggregate performance of public and private schools; see,

e.g., Lambert (2001) and Levy (1992) for surveys of stochastic dominance criteria in the

welfare and risk literature, respectively. These criteria allow us to compare the social welfare

loss in public and private schools, i.e., the di¤erence between the maximally attainable wel-

fare and the actual welfare of their pupils. We believe these criteria are particularly useful in

the context of DEA e¢ ciency evaluation of the public sector. First, they are nonparametric

in nature, which naturally complies with the nonparametric orientation of DEA. Next, the

second order stochastic dominance criterion considers not only aggregate (Pareto) e¢ ciency

but also expresses a concern for inequality, which is particularly relevant within the context

of public policy evaluation. As with DEA, these aggregation criteria are easy-to-implement,

which makes them attractive for practical applications.

The remainder of this paper unfolds as follows. The next section presents our research
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question. Section 3 discusses our methodology for evaluating educational e¢ ciency at the

individual pupil level. Section 4 presents the e¢ ciency results, with a main focus on envi-

ronmental e¤ects. Section 5 discusses the aggregation of the individual e¢ ciencies. A �nal

section 6 summarizes our main conclusions.

2 Motivation

The general belief is that private (mainly catholic) schools in Flanders perform better (i.e.,

the cognitive output of their pupils is thought to be higher on average), but this statement

is somewhat blurred by two counteracting forces related to inputs and environment. While

private schools are said to have more pupils with an �advantageous�family background, they

must also receive less funding as a consequence of the �Equal Educational Opportunities�

programme of the Flemish government. In this section, we will de�ne and describe the

inputs, outputs and environment in the Flemish educational system.

We use data from the SiBO-project, whose aim is to describe and explain di¤erences in the

primary school curriculum of a cohort of Flemish pupils. The dataset consists of a reference

group, which is representative for the Flemish population of primary school pupils, and three

additional data sets: (1) all public city schools of the city of Ghent, (2) an oversampling

to get a su¢ cient number of schools with a high number of disadvantage pupils (pupils for

whom the schools get additional means in the so-called �Equal Educational Opportunities�

programme of the Flemish government) and (3) an oversampling to obtain a su¢ cient number

of non-traditional schools. We use all pupils together, while correcting for the sample�s non-

representative nature in our empirical e¢ ciency evaluation. This leaves us with 3413 pupils

(with complete data), of whom 1774 attend private catholic schools, 1039 local public schools

and 553 Flemish public schools. The remaining 47 pupils take classes in private non-catholic

schools. Although these pupils are taken into account to estimate ine¢ ciency scores later on,

we use the term private to refer to pupils in catholic private schools in the sequel.

We look at the cohort of pupils in their second year of primary education (2004-2005) � at

the (normal) age of 7� while we use data from the same pupils in the �rst year (2003-2004)

to retrieve environmental variables. We extract 3 types of variables at the individual level,

called inputs, outputs and environmental variables in the sequel.

Financial inputs in primary schools mainly consist of salaries (80%) and operation costs

(20%). As we a priori assume that the di¤erences in operation costs are unlikely to cause

di¤erences in cognitive results, we only focus on inputs related to teaching. Government

assigns instruction units to pupils, which can be used by their respective schools to �nance

teachers: 24 instruction units correspond with a full-time teacher. The total number of

instruction units assigned to a particular pupil consists of regular and additional, so-called

�equal educational opportunity�(EEO), instruction units. Regular (per-capita) instruction

units (REG) are, roughly speaking, the same for all pupils, as they are divided among schools
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on the basis of a scale which is approximately linear in the number of pupils. The additional

EEO instruction units depend on certain �disadvantageous� pupil characteristics, to wit,

the household income consists of replacement incomes only, the pupil is living outside the

biological family, the level of education of the mother is low, the pupil�s family belongs to a

travelling population and � in combination with one of the former characteristics� the home

language is di¤erent from Dutch. Table 1 contains some summary statistics for both types of

instruction units REG and EEO over the di¤erent school types in Flanders.1 Overall, local

public schools receive most instruction units (per capita), private schools the least, while the

Flemish public schools are in between both.

Table 1: (Input) REG and EEO instruction units per school type.

school type all private public

input local Flemish

all
average

std. dev.

1.00

0.28

0.97

0.26

1.07

0.30

1.04

0.28

REG
average

std. dev.

0.88

0.18

0.87

0.18

0.92

0.19

0.86

0.15

EEO
average

std. dev.

0.12

0.19

0.09

0.17

0.15

0.20

0.19

0.22

Output is de�ned on the basis of test scores in three dimensions: mathematics, technical

reading and writing, collected at the end of the second year. All scores are set between 0

and 100. We calculate a language pro�ciency score as the simple average of the reading

and writing scores. Table 2 provides summary statistics for the mathematics (MATH ) and

language pro�ciency score (DUTCH ) for the di¤erent school types in Flanders. Private

(catholic) schools do best in both tests. They are followed closely by the local public schools

and, at some distance, by the Flemish public schools. Note also that the dispersion in

test scores in the private (catholic) schools is smaller compared to local public schools, and

dispersion in the latter type of schools is in turn smaller compared to Flemish public schools.

Table 2: (Output) MATH and DUTCH per school type.

school type all private public

output local Flemish

MATH
average

std. dev.

57.08

19.40

58.33

18.95

57.54

19.02

50.74

20.78

DUTCH
average

std. dev.

55.27

14.05

56.49

13.46

54.00

14.19

51.56

15.71

1All reported �gures in this paper are weighted by the inverse of the sampling probability, to correct for

the non-representative nature of the dataset.

5



Pupil environment is measured by three indices: socio-economic status and entry level

in mathematics and language pro�ciency. Socio-economic status (SES ) re�ects the cultural,

social and economic environment of the pupil�s home. It is calculated as the average of the

following three variables (after standardization): average education level, average professional

status and total income of the parents of the pupil; see Reynders et al. (2005) for details.

The begin level in mathematics (B-MATH ) and language pro�ciency in Dutch (B-DUTCH )

re�ect the intellectual antecedents of the pupil, and is equal to the mathematics and language

pro�ciency score of the pupil at the end of the previous year.

Table 3 reports summary statistics for SES, B-MATH and B-DUTCH. We �nd that, on

average, private (catholic) schools attract pupils with more �advantageous� environmental

characteristics compared to local public schools and � to an even greater extent� Flemish

public schools. Notice that the di¤erences in EEO instruction units between the di¤erent

school types (reported in Table 1) re�ect the di¤erences in SES.

Table 3: (Environment) SES, B-MATH and B-DUTCH per school type.

school type all private public

environment local Flemish

SES
average

std. dev.

0.03

0.85

0.11

0.83

-0.01

0.85

-0.35

0.83

B-MATH
average

std. dev.

53.26

19.06

53.91

18.66

54.05

18.75

48.44

20.69

B-DUTCH
average

std. dev.

47.25

9.74

47.92

9.69

47.29

9.42

43.92

9.87

To summarize, our data roughly con�rm the widely held belief that private (catholic)

schools in Flanders perform better, while they receive less teaching inputs as a consequence

of their more �advantageous�pupil population. Our main research question is how we must

assess these output di¤erences in a fair way, i.e., by taking the di¤erences in inputs and

environment into account.

3 E¢ ciency measurement: method

Consider a general educational system that is characterized, at the level of the pupil, by p

inputs and q outputs. We denote the corresponding input vector by x 2 IRp+, and the output
vector by y 2 IRq+; in our application, p = 1 and the input is the sum of the REG and EEO

instruction units, while q = 2 and the outputs are the MATH and DUTCH scores. The set

of all feasible combinations of educational inputs and outputs is the feasibility set

F =
�
(x; y) 2 IRp+q+ j x can produce y

	
:
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Educational e¢ ciency analysis relates educational input to educational output. As such,

empirical e¢ ciency evaluation essentially requires two steps: (1) we need to empirically esti-

mate the feasibility set F ; (2) we have to evaluate observed e¢ ciency by using an e¢ ciency

measure that has a meaningful interpretation in terms of the underlying educational objec-

tives. These two issues are discussed next. Subsequently, we discuss two additional issues

that will be important for our empirical application: (3) we need to account for outlier ob-

servations in the empirical e¢ ciency evaluation; and (4) we want to correct the observed

e¢ ciency scores for environmental characteristics, which will also allow us to visualize the

impact of the latter on the former.

3.1 Empirical feasibility set

Usually, the �true�feasibility set F is not observed. To deal with such incomplete information,

the nonparametric approach suggests to start from the set of n observed input-output vectors

S � F (jSj = n); it assumes that observed input-output combinations are certainly feasible
(e.g., Varian, 1984). In addition, we assume that inputs and outputs are freely disposable,

which means:

if (x; y) 2 F then (x0; y0) 2 F for x0 � x and y0 � y:

Taken together, these assumptions lead to the empirical feasibility set

bF = �(x; y) 2 IRp+q+ j x0 � x and y0 � y for (x0; y0) 2 S
	
;

i.e., the free disposal hull (FDH) of the set S (e.g., Deprins et al., 1984; Tulkens, 1993).

We brie�y discuss the interpretation of the assumptions that underlie the construction ofbF . First, �free disposability of inputs�means that more input never implies a decrease of the
(maximally achievable) output. We believe this is a reasonable assumption in the current

context, where inputs stand for instruction units and outputs stand for pupil performance (in

alternative disciplines). Second, �free disposability of outputs�means that more output never

implies a decrease of the (minimally required) input. Once more, we believe this assumption

is tenable in our speci�c context.

Finally, the assumption S � F excludes measurement errors and atypical observations,

such that all observed input-output vectors are comparable (or, alternatively, that all relevant

input and output dimensions are included in the analysis). Admittedly, this assumption may

seem problematic in our application, which compares primary pupils that may be charac-

terized by di¤erent background characteristics (that are not explicitly included in our set of

conditioning/environmental variables; see further: conditional ine¢ ciency measure). There-

fore, as we will explain further on, we will use an e¢ ciency evaluation method that mitigates

the impact of potential outliers within the observed set S.
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3.2 Ine¢ ciency measure

Consistent with the usual practice in primary education, we focus on output performance

(see, e.g., Worthington, 2001). Speci�cally, we use an ine¢ ciency measure which is, for a

given input, equal to the maximally possible output performance minus the actual output

performance. The output performance is measured as a weighted sum of the output perfor-

mances in alternative disciplines (captured by the q constituent components of each output

vector y), which again re�ects the usual practice in primary education. Suppose, that we

are to evaluate a pupil observation (xE ; yE) 2 S (also referred to as �observation E�in what
follows) and that the relevant output weights are given by wE 2 IRq+. For the empirical
feasibility set bF , educational ine¢ ciency for this pupil is de�ned as

�E = max
(x;y)2 bF

�
wE � (y � yE)

wE � g
j x 6 xE

�
;

with g 2 IRq+ an aggregation vector that de�nes the denominator as a weighted sum of the

output weights; we use wE �g > 0. For the given input level, the measure takes the di¤erence
of (linearly aggregated) maximal output performance over actual output performance; this

di¤erence is normalized by dividing through the weighted sum wE � g. Clearly, 1 > �E � 0.
E¢ ciency implies �E = 0; and higher ine¢ ciency values generally reveals more ine¢ ciency.

In our application, we set the aggregation vector g equal to a q-dimensional vector of ones,

which implies that the denominator is simply the (equally weighted) sum of weights. We

believe this speci�cation of g is appropriate in our application context because the outputs

(MATH and DUTCH ) are measured in a comparable measurement unit: it naturally corrects

for the scale of the output weights wE (i.e. �wE obtains the same results as wE for all � > 0),

while treating the (directly comparable) output dimensions identically. But it should be clear

that, in general, our method also allows for other speci�cations of g, which accounts for the

possibility that di¤erent outputs are expressed in di¤erent measurement units.2

The measure �E assumes that the weighting vector wE is �xed a priori. Our following

application will focus on an alternative ine¢ ciency measure that allows for �exible weighting.

Speci�cally, for each pupil observation we choose �most favorable�weights bwE that maximize
the e¢ ciency of the input-output vector under evaluation; this conveniently allows for �spe-

cialization� in learning: e.g. if a pupil performs relatively well in mathematics, then this

discipline gets a relatively high weight in her/his ine¢ ciency measure. To avoid undesirable

�extreme�specialization, we impose that the endogenously selected relative output weightsbwE should respect upper and lower bounds, which are captured by the set WE � IRq+ char-
acterized in terms of linear constraints ( bwE 2 WE satisfying bwE � g > 0). (The construction

2 In this respect, it is also worth indicating that, for general g, the �empirical� ine¢ ciency measure b�E
(cfr. infra) is formally similar to the so-called �directional distance function�; see, for example, the duality

results in Chambers et al. (1998, p. 358). These authors also provide a discussion on possible speci�cations

of g; while they focus on pro�t e¢ ciency, the analogy with our setting is straightforward.
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of WE for our empirical application is discussed in the beginning of section 4.) This yields

the empirical ine¢ ciency measure

b�E = minbwE2WE

max
(x;y)2 bF

� bwE � (y � yE)bwE � g j x 6 xE
�
:

Clearly, for wE 2 WE we have �E � b�E � 0. The measure b�E , with endogenously de�ned
most favorable weights, has a directly similar interpretation as the measure �E , with a priori

�xed weights wE .

To conclude, we note that the empirical ine¢ ciency measure can be computed by simple

linear programming. Speci�cally, given the construction of bF , the computation proceeds
in two steps. The �rst step identi�es the set of observations that dominate the evaluated

observation in input terms:

DE = f(x; y) 2 S j x 6 xEg :

The second step involves the linear programming problem. As a preliminary note, we

recall that bwE � g > 0 in the above de�nition of b�E , so that we can use the normalizationbwE � g = 1 (because the set WE only restricts the relative output weights). As such, we can

compute

b�E = min
u; bwE2WE

8>><>>:u� bwE � yE j bwE � g = 1
u � bwE � y 8y : (x; y) 2 DEbwE 2WE

9>>=>>; :
This is a linear programming problem given that the set WE is characterized by linear con-

straints. For general WE , the fact that merely linear programming is required for the com-

putation of the empirical ine¢ ciency measure b�E (after a trivial check of input dominance)
makes it attractive for practical applications.

3.3 Outlier-robust ine¢ ciency measure

To mitigate the impact of (potential) outlier behavior in the observed sample S, we use the

order-m method as suggested by Cazals et al. (2002); we adapt the method for the speci�c

ine¢ ciency measure b�E de�ned above. Essentially, in terms of the terminology introduced
above, this boils down to repeatedly drawing (with replacement) R subsamples Dr;m

E (r = 1;

:::; R) from the dominating set DE ; each subsample D
r;m
E contains m (> 1) input-output

vectors that are selected from DE , i.e. D
r;m
E � DE and jDr

E j = m.3 For each Dr;m
E we

3Remark that, to correct for the non-representative nature of our dataset, we take the probability of

drawing a pupil proportional to the inverse of the probability that this pupil appears in the sample due to the

speci�c sampling design. A similar quali�cation applies to the environment-corrected ine¢ ciency measure

where we weight the Kernel functions by the inverse of the sampling probability.
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compute the corresponding empirical ine¢ ciency measure

e�r;mE = min
u; bwE2WE

8>><>>:u� bwE � yE j bwE � g = 1
u � bwE � y 8y : (x; y) 2 Dr;m

EbwE 2WE

9>>=>>; ;
which again uses linear programming. Subsequently, the outlier-robust order-m ine¢ ciency

measure is de�ned as the arithmetic average

e�mE = PR
r=1

e�r;mE
R

:

Referring to Cazals et al. (2002), this measure has attractive statistical properties and con-

veniently mitigates outlier behavior. See also Simar (2003) for a related discussion.4 As a

�nal note, because it can well be that (xE ; yE) =2 Dr;m
E , we can have e�r;mE < 0. We will label

such observation as �super-e¢ cient�in what follows.

3.4 Environment-corrected ine¢ ciency measure

To capture environmental e¤ects, we use the procedure outlined by Daraio and Simar (2005,

2007). Like before, we adapt this method to the speci�c ine¢ ciency measure under consid-

eration.

Suppose we want to take up k environmental characteristics, which corresponds to a k-

dimensional vector z of environmental indicators associated with each input-output vector

(x; y); in our application, k = 3 and the vector z captures SES, B-MATH and B-DUTCH. For

the evaluated observation E, the Daraio-Simar procedure computes an environment-corrected

ine¢ ciency measure by conditioning on the corresponding value zE of the environmental

vector: it selects input-output vectors (x; y) 2 DE with z in the neighborhood of zE . This
gives us the conditional ine¢ ciency measure

b�E (zE) = min
u; bwE2WE

8>><>>:u� bwE � yE j bwE � g = 1
u � bwE � y 8y : (x; y) 2 DE(zE)bwE 2WE

9>>=>>; ,
with DE(zE) = f(x; y) 2 DE j jzE � zj � hg and h a Kernel bandwidth vector. In our appli-
cation, when the number of conditioning variables k is larger than 1, we �rst apply a so-called

Mahalanobis transformation to decorrelate the environmental variables (see, e.g., Mardia et

al., 1979). Afterwards, we perform a sequential Kernel estimation � as if all environmental

variables were independently distributed� to compute the optimal bandwidth vector (via

4Cazals et al. (2002) actually consider an e¢ ciency measure that does not consider linear but monotonic

aggregation of the outputs. But their main results carry over to the linear variant that we consider. A similar

quali�cation applies for our use of the procedure of Daraio and Simar (2005) to account for environmental

e¤ects in the e¢ ciency evaluation exercise. In fact, these authors also focus on input e¢ ciency, while we

translate their procedure towards output e¢ ciency.
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the likelihood cross-validation criterion) and the probability weights used to draw the sample

of size m.

4 E¢ ciency measurement: application

In this section, we focus on visualizing the impact of the environmental variables SES, B-

MATH and B-DUTCH on educational e¢ ciency at the pupil level, by using the outlier-

robust order-m ine¢ ciency measures described in the previous section. For these measures,

an additional consideration concerns the speci�cation of the paramaters R (the number of

drawings with replacement) and m (the number of input-output vectors selected from DE in

each drawing). In the following, we discuss empirical results for R = 50 and m = 100 as, from

these values on, the number of super-e¢ cient observations (see supra) in the sample is robust

at around 1%; the same criteria is used by Daraio and Simar (2007). Still, at this point it

is worth stressing that we have also experimented with other values for R (R = 10; 25; 100)

and m (m = 10; 25; 50; 125; 150); these alternative con�gurations generally obtained the same

qualitative conclusions. For compactness, we do not include all these results in the current

paper, but they are available from the authors upon simple request.

As discussed before, our application avoids �extreme� specialization in either DUTCH

or MATH by focusing on a restricted set WE � IRq+ (with q = 2), which captures upper

and lower bounds of the relative output weights. To construct these bounds, we divide the

number of hours spent on DUTCH in the classroom by the sum of the number of instruction

hours spent on DUTCH and MATH. This re�ects the weight attached to DUTCH (relative

to MATH ) in the second year of primary education. The average equals 0.54 � and is very

similar for the di¤erent school types� while the 1 and 99-percentile values equal 0.44 and

0.71, respectively. These 1 and 99-percentile values will serve as (relative) weight restrictions

for DUTCH (and hence 0.56 and 0.29 for MATH ). To check sensitivity of our main results

with respect to this particular speci�cation ofWE , we have also considered extreme scenarios

with no weight �exibility (i.e. using 0.50 as a �xed weight for the two outputs DUTCH

and MATH ) and full weight �exibility (i.e. WE = IRq+, with bwE � g = 1 for bwE 2 WE).

Our main qualitative results appeared to be robust for these alternative weight bounds; the

corresponding results will not be reported in the current paper, but they are available from

the authors upon simple request.

4.1 Outlier-robust ine¢ ciency measures

Before visualizing the impact of the di¤erent environmental variables under study, Table 4

provides summary statistics for alternative outlier-robust order-m ine¢ ciency measures. We

report results for the full sample (see the column �all�) and for the subsamples that correspond

to the di¤erent school types (private schools, local public schools and Flemish public schools).
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Table 4: Some summary statistics for the robust ine¢ ciency measures.

school type all private public

environment local Flemish

; average 26.99 25.74 27.68 31.61

std. dev. 13.85 13.28 13.78 15.49

minimum -5.70 -3.50 -3.67 -5.70

maximum 74.10 74.03 74.10 71.39

SES average 26.97 25.39 27.43 31.17

std. dev. 13.80 13.25 13.78 15.27

minimum -3.02 -2.85 -3.02 -2.34

maximum 75.96 73.45 75.96 70.03

B-MATH average 24.17 23.00 25.12 27.88

std. dev. 12.34 11.87 12.28 13.62

minimum -5.74 -5.42 -4.92 -5.74

maximum 72.46 61.63 71.52 72.46

B-DUTCH average 23.61 22.61 24.34 27.04

std. dev. 12.35 11.80 12.39 14.03

minimum -6.54 -1.37 -6.54 -0.86

maximum 65.41 62.88 65.41 60.09

B-MATH, B-DUTCH & SES average 17.18 16.34 18.52 18.70

std. dev. 10.16 9.78 10.35 11.04

minimum -17.52 -1.99 -17.52 -3.39

maximum 55.14 49.72 55.14 53.43

Let us �rst regard the unconditional ine¢ ciency values (with environment = ;). Table
4 reports an average ine¢ ciency score of 26.99 over all pupils in our sample. In words, the

average pupil achieves an output level that is 26.99 points below the best possible performance

for (at most) the same amount of instruction units (= REG + EEO = input). To interpret

this result, we recall that aggregate output performance is measured as a weighted sum

of the output performance in the disciplines MATH and DUTCH (using �most favorable�

weights for each individual pupil), and that the MATH and DUTCH scores are both set

between 0 and 100. As such, this average shortage of 26.99 points should be compared

to a (�theoretical�) maximum possible shortage of 100 points. Next, we also observe much

variation in the e¢ ciency scores over pupils. For example, the standard deviation in the

ine¢ ciency values is 13.85; and the maximum ine¢ ciency value amounts to 74.10 points,

while the minimum value equals -5.70.5 Finally, we �nd di¤erences in the distributions for

di¤erent school types; for example, the average ine¢ ciency value for private schools (25.74)

5We recall that negative ine¢ ciency values are possible for super-e¢ cient observations because we focus

on outlier-robust ine¢ ciency measures.
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is below that for local public schools (27.68), which in turn is below that for Flemish public

schools (31.61).

In the following, we investigate to what extent these patterns in the distribution of the in-

e¢ ciency scores can be attributed to environmental di¤erences, as captured by the variables

SES, B-MATH and B-DUTCH. The summary statistics in Table 4 provide some prelimi-

nary insights. We �rst consider the separate impact of the social and cultural environment

of a pupil�s home (captured by SES ) and the cognitive antecedents of the pupil (captured

by B-MATH and B-DUTCH ). As expected, we �nd that all three variables in�uence the

pupils�e¢ ciency values; for example, when focusing on the full sample (see the column �all�),

average ine¢ ciency reduces to 26.97, 24.17 and 23.61 when controlling for, respectively, SES,

B-MATH, and B-DUTCH. In addition, we observe a decrease in the variation of the ine¢ -

ciency values; for example, the standard deviation reduces to 13.80, 12.34 and 12.35 when

conditioning on, respectively, SES, B-MATH and B-DUTCH. This indicates that each indi-

vidual variable can explain the observed variation in the ine¢ ciency values to some extent.

Finally, if we simultaneously control for SES, B-MATH and B-DUTCH, we observe a fur-

ther and rather substantial decrease of the average ine¢ ciency value (to 17.18 for �all�) as

well as the standard deviation of ine¢ ciency values (to 10.16 for �all�). This suggests that

simultaneous consideration of all three environmental variables can e¤ectively yield addi-

tional �explanatory�value in terms of explaining patterns of educational ine¢ ciency. The

same general conclusions hold for all three school types (private schools, local public schools

and Flemish public schools). Remark, �nally, that for all speci�cations of the conditioning

variables that we consider, private schools are, on average, more e¢ cient than both types of

public schools, and that local public schools outperform Flemish public schools.

4.2 Environmental e¤ects

To visualize environmental e¤ects and, consequently, to detect whether an environmental

variable is favorable or unfavorable, we adapt Daraio and Simar (2007)�s methodology to our

setting. If z�jE denotes the vector of all conditioning variables, except for the j-th entry, and

zjE is the j-th entry, then we can nonparametrically regress the di¤erences e�mE (zE)�e�mE �z�jE �
on the observed values for zjE . If, for a certain range, the regression is decreasing, the j-th

environmental variable is unfavorable to e¢ ciency, behaving as a �substitutive�output in the

educational process. Conversely, an increasing curve indicates a favorable variable that plays

the role of a �substitutive� input in the educational process. Finally, a �at curve suggests

that there is no e¢ ciency e¤ect of the environmental variable.
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Figure 1: (Environmental impact) SES, B-MATH and B-DUTCH.

Figure 1 visualizes the environmental e¤ects. We �rst consider the variable SES. Gen-

erally, we �nd a positive �rst order e¤ect of SES on the educational e¢ ciency for low SES
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values, and a negative �rst order e¤ect for high SES values. The full line suggests a negative

second order e¤ect. Still, the e¤ect for high SES values is not very pronounced; in fact,

the observation points are widely scattered around the full line. We infer that, while SES

admittedly has some (positive) e¤ect on educational e¢ ciency, much of this e¤ect is already

captured by the other two variables B-MATH and B-DUTCH, which causes the residual

impact of SES to be rather low.

Let us then regard the variable B-MATH. Figure 1 reveals a positive monotonic �rst order

impact and a generally negative second order e¤ect. Taken together, this indicates that, on

average, a higher B-MATH value predicts a higher educational e¢ ciency, but the marginal

impact decreases when the B-MATH value increases. Compared to the SES picture, the

observation points are much more narrowly scattered around the full line, which provides

more convincing support for this residual B-MATH e¤ect.

Finally, we consider the variable B-DUTCH. The general conclusions drawn from Figure

1 are similar to those for B-MATH : there is a clearly positive monotonic �rst order e¤ect;

and, generally, a negative second order e¤ect, which is now even more pronounced than in

the B-MATH case. As before, we infer that, on average, a higher B-DUTCH value leads

to a higher educational e¢ ciency, but the marginal impact decreases when the B-DUTCH

score increases (in casu, at a relatively rapid rate). The fact that the observation points are

narrowly scattered around the full line implies quite strong support for this conclusion.

The overall conclusion, which falls in line with our prior expectations, is that each of

the environmental variables positively impacts the educational e¢ ciency (see the �rst order

e¤ects), and that this positive e¤ect prevails in particular for low initial values for SES,

B-MATH and B-DUTCH (see the second order e¤ects). Although we �nd stronger e¤ects

for B-MATH and B-DUTCH than for SES, we believe that our results provide su¢ ciently

strong support for simultaneously conditioning on all three variables when comparing the

educational e¢ ciency for di¤erent pupils. Therefore, our aggregation exercise in the next

section will mainly focus on such fully conditioned educational e¢ ciency values.

5 Aggregation: e¢ ciency versus equity

This section aims to compare the aggregate e¢ ciency and equity performance of private

schools, local public schools and Flemish public schools. Speci�cally, we start with the

pupils� ine¢ ciency values and the corresponding optimal weights that underlie the results

presented in the previous section. Using these pupil-speci�c weights to aggregate DUTCH

and MATH, we obtain what we will call the �actual score�. Adding the ine¢ ciency score

to it, we get the so-called �potential score�. It follows from our previous discussion that

these actual and potential scores correct for input di¤erences (in terms of REG and EEO

instruction units), and avoid extreme specialization in DUTCH or MATH (through weight

bounds). In addition, given that we focus on order-m ine¢ ciency measures, it also accounts
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for possible outlier behavior. Finally, the use of conditional ine¢ ciency measures corrects for

environmental di¤erences (in terms of SES, B-MATH and B-DUTCH ).

Once we have derived distributions of actual and potential scores for the pupils in di¤erent

school types, we investigate whether one school type is �better�than another in a robust way,

i.e., without assuming a speci�c parametric functional form to aggregate outcomes. To do so,

we focus on First-order and Second-order Stochastic Dominance (FSD and SSD), two popular

nonparametric dominance criteria in the risk and welfare literature. We start with FSD, and

show how we can adjust it to correct for input and environmental di¤erences between school

types. Since we obtain inconclusive results, we next present SSD, which turns out to be a

more powerful dominance criterion in the current setting.

5.1 Only e¢ ciency matters: FSD

FSD can be characterized by the intuitive Pareto e¢ ciency principle, which states that higher

outcomes are always better. In words, one school type, say A, is better than another school

type, say B, according to FSD, denoted A %1 B, if and only if welfare (denoted by W ),
measured by the average utility, is higher in A than in B for all increasing (di¤erentiable)

utility functions. Formally, for U1 = fU : R! R jU 0 � 0g the set of all increasing utility
functions, we get

A %1 B ,WA �WB =

Z 1

0

UdFA �
Z 1

0

UdFB � 0, for all U in U1,

with FA and FB the distribution functions of the actual scores for two school types. Using

integration by parts, we obtain the following equivalent, implementable condition

A %1 B , FA (y)� FB (y) � 0, for all y 2 R+; (1)

see, e.g., Lambert (2001). Notice that FSD is a robust ranking criterion, since it holds for all

speci�cations of U within U1 (i.e. �all utilitarians with increasing utility functions agree�).
Still, it comes at a cost, since two distributions might turn out to be non-comparable.

Importantly, equation (1) does not take di¤erences in inputs and school environment into

account and would therefore be a rather blunt approach to assess school types. One way to

correct for this, is to focus on the welfare di¤erence between what is actually achieved (via

the actual scores) and what could have been achieved (via the potential scores), i.e.,

�WAjZ =

Z 1

0

UdFA �
Z 1

0

UdF potAjZ ;

where F potAjZ is the distribution function of potential scores of the pupils in school type A

conditional upon �inputs�x and �environment�z, collected in Z = fx;zg. Generally, higher
values for �WAjZ suggest better performance, as they indicate that � in aggregate welfare

terms� the school type comes closer to potential achievement (while accounting for the given

input and the environmental characteristics of the pupil population).
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Given this, let A %1jZ B denote that school type A is better than B according to FSD,

corrected for ine¢ ciency, measured conditionally upon Z; we get

A %1jZ B , �WAjZ ��WBjZ � 0, for all U in U1.

As before, using integration by parts, this equation can be equivalently expressed as

A %1jZ B ,
�
FA (y)� F potAjZ (y)

�
�
�
FB (y)� F potBjZ (y)

�
� 0, for all y 2 R+. (2)

Rewriting this equation, it consists of two components: a term FA (y) � FB (y) which is
the same as in equation (1), and a term F potBjZ (y) � F

pot
AjZ (y) which can be interpreted as

the correction term. The following two simple examples illustrate the basic intuition. First,

suppose that both school types are equally e¢ cient, but have a very di¤erent pupil population

in terms of z. In that case, the correction term F potBjZ (y) � F
pot
AjZ (y) tends to be equal to

FB (y)�FA (y) and will mitigate the �rst term FA (y)�FB (y). Second, suppose both school
types have the same inputs and the same environment for each pupil, but one school is better

than the other in terms of actual scores, i.e. FA (y) � FB (y) � 0 everywhere. In this case,
the correction term F potBjZ (y) � F

pot
AjZ (y) tends to zero and only the di¤erences in the actual

scores will play a role in assessing both school types.

Table 5 presents our results for the corrected FSD criterion in (2). We consider two

extreme cases in terms of the speci�cation of Z: the �rst case (Z = fREG+EEO ;;g) does
account for input di¤erences but not for environmental di¤erences (i.e., it is based on the

unconditional ine¢ ciency measure e�mE , which coincides with e�E (zE) for zE empty); the

second case (Z = fREG+EEO ;SES,B-MATH,B-DUTCH g) simultaneously takes account of
input and all three environmental variables (i.e., it is based on the measure e�E (zE), with
zE capturing SES, B-MATH and B-DUTCH ). For each case, Table 5 reports the dominance

relation between the row school type and the column school type: either the row school

type �dominates�or �is dominated by�the column type, or the row type is not comparable

to (�not comp. to�) the column type. Two remarks are in order. First, following the usual

practice, dominance is checked at 10 data points (equally spread over the common grid of

both distributions), rather than at all points y 2 R+. Second, we use a naive bootstrap
procedure for statistical inference. That is, we calculate the proportion of the total number

of bootstraps, i.e., 10000 drawings with replacement from the original sample, in which a

certain result (�dominates�, �is dominated by�, or �not comp. to�) was found.6 In Table 5 we

mention the most frequent result together with the corresponding �naive�p-value, i.e., the

proportion of times this result was found.

In terms of average test scores, we saw before that private schools outperform local public

schools, while the latter in turn outperform Flemish public schools. Still, the results in Table

5, which pertain to the more robust FSD concept, do not allow us to conclude that one

school type outperforms another in a signi�cant way (i.e., using a naive p-value > 0.95,

6Notice that, from 5000 bootstrap samples onwards, the results remain stable.
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which corresponds to a 5% signi�cance level); in fact, this result holds for both (extreme)

speci�cations of Z that we consider.

Table 5: Corrected FSD results.

Z = {REG+EEO;;} {REG+EEO;SES,B-MATH,B-DUTCH}

local public Flemish public local public Flemish public

private catholic dominates

(0.5791)

not comp. to

(0.9966)

dominates

(0.7644)

not comp. to

(1.0000)

local public not comp. to

(1.0000)

not comp. to

(1.0000)

5.2 Equity also matters: SSD

We next include a preference for equality in addition to Pareto e¢ ciency in our comparison

of the aggregate performance of di¤erent school types. The SSD criterion simultaneously

assesses e¢ ciency and equity in a robust way. This dominance criterion can be characterized

by the principle that higher outcomes are better (Pareto e¢ ciency) and, additionally, the

principle that more equal outcomes are better (Pigou-Dalton principle), i.e., more weight to

lower scores. As a consequence, SSD is a necessary condition for FSD and leads to a more

complete binary relation. According to SSD, school type A is better than school type B,

denoted A %2 B, if and only if welfare (denoted by W , and again measured by the average
utility) is higher in A than in B for all increasing and concave (twice di¤erentiable) utility

functions. Let U2 = fU : R! R jU 0 � 0 & U 00 � 0g the set of increasing and concave utility
functions; we get

A %2 B ,WA �WB =

Z 1

0

U (x) dFA (x)�
Z 1

0

U (x) dFB (x) � 0, for all U in U2.

Twice integrating by parts leads to the equivalent condition

A %2 B ,
Z y

0

(FA (x)� FB (x)) dx � 0, for all y 2 R+; (3)

see again Lambert (2001).

Analogous to before, we propose a corrected version of the criterion in (3): A %2jZ B
means that school type A is better than B according to SSD, conditional upon inputs x and

environment z, collected in Z = fx; zg. Formally, it is de�ned as

A %2jZ B , �WAjZ ��WBjZ � 0, for all U in U2;

and this dominance condition can be equivalently expressed as

A %2jZ B ,
Z y

0

h�
FA (x)� F potAjZ (x)

�
�
�
FB (x)� F potBjZ (x)

�i
dx � 0, for all y 2 R+; (4)

18



the interpretation is directly analogous to that of (2).

Table 6 presents our results. The interpretation of the di¤erent entries is similar to that of

Table 5, but now pertains to the SSD criterion in (4). Interestingly, we now do �nd signi�cant

dominance relations, which is in sharp contrast to the FSD results in Table 5. If we consider

the right column as the most fair comparison, then private schools signi�cantly dominate

public schools, while we cannot distinguish between the two types of public schools in a

signi�cant way. Note also that conditioning the e¢ ciency scores plays a role when comparing

both types of public schools.

Table 6: Corrected SSD results.

Z = {REG+EEO;;} {REG+EEO;SES,B-MATH,B-DUTCH}

local public Flemish public local public Flemish public

private catholic dominates

(0.9075)

dominates

(1.0000)

dominates

(0.9667)

dominates

(0.9998)

local public dominates

(1.0000)

not comp. to

(0.5014)

6 Conclusion

Focusing on educational e¢ ciency, we have presented a nonparametric approach for ana-

lyzing public sector e¢ ciency which also accounts for equity considerations. First, we have

designed a nonparametric (DEA) model that is specially tailored for educational e¢ ciency

evaluation at the pupil level. It requires minimal a priori structure regarding the educational

feasibility set and objectives. This is particularly convenient in the current context, which

typically involves minimal a priori information. Next, we have argued that the First-order

and Second-order stochastic dominance (FSD and SSD) criteria are particularly well-suited

for comparing the educational e¢ ciency of di¤erent school types; these nonparametric dom-

inance criteria for comparing aggregate (school type) e¢ ciency naturally complement our

nonparametric model for evaluating individual (pupil level) e¢ ciency. FSD is the appro-

priate criterion if only (Pareto) e¢ ciency matters. By contrast, the more powerful SSD

criterion is recommendable when (Pigou-Dalton) equity is important in addition to (Pareto)

e¢ ciency; such equity considerations are usually prevalent in the context of public sector

e¢ ciency evaluation. We have shown that our approach directly allows for adapting the

methodology of Daraio and Simar (2005, 2007), to account for potential outlier behavior and

environmental characteristics (in casu the pupils�educational environment) in the e¢ ciency

assessment. Although our application concentrates on educational e¢ ciency, we believe that

the presented approach is also more generally useful for e¢ ciency evaluation in the public

sector: such evaluation often (1) involves little a priori information about the underlying
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feasibility set and objectives, and (2) focuses on comparisons of the aggregate e¢ ciency of

di¤erent groups, in which (3) equity considerations are important.

Our application demonstrates the practical usefulness of our approach. First, we have

investigated the impact of the �environmental characteristics�socio-economic status (SES ),

and begin-level in mathematics (B-MATH ) and language pro�ciency (B-DUTCH ) on the

educational e¢ ciency for individual pupils. In line with our prior expectations, we �nd that

all three environmental variables have a positive �rst-order e¤ect on educational e¢ ciency:

on average, higher SES, B-MATH or B-DUTCH values systematically entail higher educa-

tional e¢ ciency for individual pupils; although for high SES values, the �rst-order e¤ect is

negative. In addition, we �nd that the (average) second order e¤ects are always negative

and more pronounced for low values of the environmental variables, which suggests that

the positive �rst-order e¤ect prevails in particular when the initial SES, B-MATH and B-

DUTCH status is low. Although we �nd stronger e¤ects for B-MATH and B-DUTCH than

for SES, we believe that our results convincingly support that all three environmental vari-

ables should simultaneously be accounted for to obtain a fair e¢ ciency evaluation. Next, we

have compared the aggregate e¢ ciency of private schools, local public schools and Flemish

public schools. Focusing on FSD, we �nd that no school type robustly dominates another

school type; we conclude �non-comparability�in all pairwise comparisons. However, the story

changes dramatically if we focus on SSD. When accounting for the diverging environmental

characteristics of the pupil populations, we �nd that private schools signi�cantly dominate

both types of public schools. In addition, our results suggest that local public schools out-

perform Flemish public schools, but this result is not supported in a signi�cant way. These

results are in line with the seminal work of Coleman et al. (1982) and are consistent with the

mainstream literature. Given that our aggregate e¢ ciency comparisons account for both eq-

uity and environment, we consider them as most fair in the (public sector) evaluation context

under study.
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