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Abstract

We present an IP-based nonparametric (revealed preference) testing proce-
dure for rational consumption behavior in terms of general collective models,
which include consumption externalities and public consumption. An empiri-
cal application to data drawn from the Russia Longitudinal Monitoring Survey
(RLMS) demonstrates the practical usefulness of the procedure. Finally, we
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1. Introduction

The collective approach, which Chiappori (1988, 1992) originally presented in the con-
text of household labor supply, has become increasingly popular for modeling house-
hold consumption behavior. This approach explicitly recognizes that multi-person
households consist of several individuals who have their own rational preferences.
These individuals jointly take consumption decisions, which are assumed to result in
Pareto-e¢ cient intra-household allocations. This collective model provides a positive
answer to the methodological and empirical shortcomings of the traditional unitary
model, which assumes that multi-person households act as if they were single decision
makers.
Browning and Chiappori (1998) provided a characterization of a general collec-

tive consumption model, which allows for public consumption and externalities inside
the household; they take the �minimalistic�prior that the empirical analyst does not
know which commodities are characterized by public consumption and/or external-
ities. Their core result for two-person households is that under collectively rational
behavior the pseudo-Slutsky matrix can be written as the sum of a symmetric negative
semi-de�nite matrix and a rank one matrix. Browning and Chiappori demonstrated
necessity of this condition, while Chiappori and Ekeland (2006) addressed the associ-
ated su¢ ciency questions.
The collective rationality test of Browning and Chiappori is parametric in nature;

it requires a (non-veri�able) functional/parametric structure that is imposed on the
household allocation process and the individual preferences. Cherchye, De Rock and
Vermeulen (2007a) established a nonparametric characterization of the same general
collective consumption model. More speci�cally, by using revealed preference axioms,
they derived conditions that allow for testing whether observed household consump-
tion behavior is collectively rational, without imposing any parametric structure on the
within-houshold decision process (possibly characterized by public consumption and
externalities). As such, they also complemented the literature that focuses on non-
parametric characterizations and tests of the unitary model; see, for example, Afriat
(1967), Varian (1982) and, more recently, Blundell, Browning and Crawford (2003,
2005).
Cherchye, De Rock and Vermeulen (2005) provided a �rst application to real-life

data of these testable nonparametric collective rationality conditions. They test the
general collective consumption model for data drawn from the Russia Longitudinal
Monitoring Survey (RLMS). The RLMS is one of the few surveys that enables con-
structing a detailed panel of household consumption, which permits to conduct non-
parametric tests without having to assume that preferences are homogeneous across
similar individuals in di¤erent households. Moreover, there is enough regional and
intertemporal relative price variation to test behavioral models in a meaningful way,
even though the data contains only 8 observations per household.
While Cherchye, De Rock and Vermeulen (2005) explicitly focused on testing alter-

native behavioral models (including the unitary model), the current study concentrates
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on computational aspects associated with the nonparametric necessity test for collec-
tive rationality. Our focus on the necessary condition falls in line with the very nature
of the nonparametric approach that we follow, which typically concentrates on the
minimal (or �necessity�) empirical restrictions that can be obtained from the available
data. See Cherchye, De Rock and Vermeulen (2007a,b) for discussion on complemen-
tary su¢ ciency conditions; our following discussion of the necessary condition readily
translates towards these (computationally less complex) alternative conditions.
More speci�cally, we concentrate on the formulation of the necessity test as an in-

teger programming (IP) problem (see also Cherchye, De Rock and Vermeulen, 2007b).
In addition, we show that this IP formulation easily allows for incorporating a number
of mechanisms that enhance the computational e¢ ciency of the testing exercise. We
assess the practical usefulness of the IP-based test and the corresponding e¢ ciency en-
hancing mechanisms by means of an empirical application that again uses the RLMS
data. Still, given our speci�c purpose (i.e. not testing the validity of behavioral
models in se), we now do assume preference homogeneity across di¤erent households.
This assumption allows us to focus on sets of observations that are bigger than those
originally considered by Cherchye, De Rock and Vermeulen (2005), and thus to as-
sess computational feasibility of the IP-based necessity test for data sets of reasonable
size. Finally, we show that the IP formulation provides a useful basis for evaluating
the �goodness-of-�t�of the collective model subject to testing, and to quantify and
improve the �power�of the corresponding collective rationality tests when brought to
real-life data.
The rest of the paper is structured as follows. In Section 2, we reiterate the

nonparametric (revealed preference) conditions for rational consumption behavior in
terms of the unitary model and, subsequently, the general collective model. Section
3 focuses on operational IP-based procedures to test these nonparametric conditions
for collectively rational consumption behavior; this also includes the use of e¢ ciency-
enhancing testing mechanisms. Section 4 discusses our application to the RLMS data.
Section 5 considers extensions that allow for dealing with goodness-of-�t and power
considerations in practical applications. Section 6 concludes.

2. Conditions of rational consumption behavior

2.1. Setting the stage: unitary rationality

We �rst consider the unitary model for rational household consumption behavior,
which models the household as if it were a single decision maker; each observed house-
hold consumption bundle maximizes a single utility function subject to the correspond-
ing household budget constraint. The unitary nonparametric condition for rational
household consumption behavior then essentially requires that there exists such a well-
behaved (i.e. non-satiated, concave and continuous) utility function that rationalizes
the observed household consumption in terms of this unitary model. Assume a situa-
tion withN goods, and suppose we observe T household consumption bundles qt 2 RN+
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and corresponding prices pt 2 RN++ (t = 1; :::; T ); let S = f(pt;qt); t = 1; :::; Tg be the
corresponding set of observations. A utility function U provides a unitary rationaliza-
tion of S if for each observed consumption bundle qt, with corresponding prices pt,
we have

U(qt) � U(q) (2.1)

for all q 2 RN+ with p0tq � p0tqt:

A core result in the nonparametric literature is that such a unitary rationalization
of the data is possible if and only if the data satisfy the Generalized Axiom of Revealed
Preference (GARP ; Varian, 1982). Essentially, GARP exploits the insight that �utility
maximization over the budget set�can equivalently (�dually�) be represented as �cost
minimization over the better-than set�; GARP testing boils down to checking this last
cost minimization condition.
The distinguishing feature of the nonparametric approach lies in the construction

of the better-than set, which is nonparametrically reconstructed as a revealed preferred
set. First of all, this set includes directly revealed preferred bundles. The direct revealed
preference relation is de�ned as:

if p0sqs � p0sqt, then qsR0qt (�qs is directly revealed preferred to qt�). (2.2)

The intuition is easy. Under the prices (ps) and the outlay (p0sqs) that correspond
to the bundle qs, the bundle qt was equally obtainable but not chosen. Hence, the
household directly reveals its preference for the bundle qs over the bundle qt.
Next, the construction of the revealed preferred set additionally exploits transitivity

of preferences. Starting from the notion of direct revealed preference, the more general
revealed preference relation is de�ned as:

if qsR0qu; quR0qv; :::;qzR0qt for some (possibly empty) sequence qu;qv; :::;qz,

then qsRqt (�qs is revealed preferred to qt�). (2.3)

Clearly, qsR0qt implies qsRqt.
Consistency with the unitary GARP condition requires that each observed bundle

qt must be cost minimizing over the set of revealed preferred bundles qs (with qsRqt).
Formally, we de�ne this GARP condition as:

S satis�es GARP if for all qt: p0tqt � p0tqs whenever qsRqt: (2.4)

Varian (1982) suggested a two-stage procedure for testing data consistency withGARP.
The �rst step constructs the revealed preference relations for the set S (using War-
shall�s algorithm). Subsequently, the second step veri�es whether each bundle qt is
e¤ectively cost minimizing over the correspondingly de�ned revealed preferred set of
observations.
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2.2. Collective rationality: the general model

In contrast to the unitary model, the collective model explicitly recognizes the multi-
person nature of multi-person households. Moreover, the general collective consump-
tion model allows for (in casu positive) externalities and public consumption in this
intra-household allocation process. In the present context, public consumption of a
certain good, which must be distinguished from private consumption, means that con-
sumption of this good by one household member does not a¤ect the supply available
for another household member, and no individual can be excluded from consuming
it (at least if one wants to maintain the household). Of course, some commodities
may be partly publicly consumed (e.g. car use for a family trip) and partly privately
consumed (e.g. car use for work). Next, consumption externalities refer to the fact
that one household member gets utility from another member�s consumption (e.g. the
wife enjoys her husband�s nice clothes).
To model externalities and public consumption, we consider personalized quan-

tities bqt = (q1t ; :::; q
M
t ; q

h
t ); these personalized quantities decompose each (observed)

aggregate consumption bundle qt into M quantities qmt 2 RN+ capturing the private
consumption of each household member m (m = 1; :::;M), and quantities qht 2 RN+
representing public consumption. Of course, the di¤erent components of bqt must add
up to the aggregate consumption bundle for each observation t:

qt =
MX
m=1

qmt + q
h
t : (2.5)

Each member m has a well-behaved (i.e. non-satiated, concave and continuous)
utility function Um that is non-decreasing in these personalized quantities, which ef-
fectively accounts for (positive) externalities and public consumption. The collective
model then regards the observed household consumption as the Pareto e¢ cient out-
come of a bargaining process between the M household members. Similar to before,
a combination of M utility functions U1; :::; UM provides a collective rationalization
of S if for each observed consumption bundle qt, with corresponding prices pt, there
exist feasible personalized quantities bqt and weights �1t ; :::; �Mt 2 R++ such that:

MX
m=1

�mt U
m ( bqt) � MX

m=1

�mt U
m
�
z1; :::; zM ; zh

�
(2.6)

for all z1; :::; zM ; zh 2 Rn+ with p0t[
XM

m=1
zm + zh)] � p0tqt:

In this formulation, each Pareto weight �mj can be interpreted as the bargaining weight
for the household member m; it represents the weight that is given to this member�s
utility function in the within-household optimization process.
The nonparametric condition for collectively rational household consumption be-

havior requires that there exists a representation of each household member�s pref-
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erences (Um) and the within-household bargaining process (�mj ) that rationalizes the
observed household consumption behavior in terms of this general collective model.
Cherchye, De Rock and Vermeulen (2007a) established testable (necessary and su¢ -
cient) nonparametric conditions for such a collective rationalization of the data. In
doing so, they adopted the minimalistic prior that the empirical analyst only observes
the aggregate bundle qt and not its intra-household allocation; such unobservability is
often the case in practical applications. As argued before, our focus is on the testable
necessary condition. As we will discuss, this necessary condition has a direct inter-
pretation in terms of the Pareto e¢ ciency assumption that underlies the collective
consumption model.

2.3. Pareto e¢ ciency and hypothetical preference relations

The starting point of the nonparametric necessary condition is that the true member-
speci�c (revealed) preference relations are not observed, because only the aggregate
household quantities (qt) and prices (pt) can be used. Given this, the condition fo-
cuses on so-called hypothetical member-speci�c preference relations. These relations
essentially represent feasible speci�cations of the true preference relations in terms
of a number of collective rationality conditions (�Rules 1 to 5�in the sequel) de�ned
on the observed (aggregate household) quantities and prices; these conditions have a
direct interpretation in terms of Pareto e¢ ciency and individual rationality. The non-
parametric condition for collectively rational consumption behavior then requires that
there must exist at least one speci�cation of the hypothetical member-speci�c preference
relations that simultaneously meets all these conditions (i.e. Rules 1 to 5). Example
1 illustrates this condition (including Rules 1 to 5) for the case with 2 household
members (M = 2).
To sketch the basic intuition of the hypothetical member-speci�c preference rela-

tions, we �rst focus on Rule 1, which provides the very basis for constructing these
relations. This Rule 1 extends the intuition of the �unitary�directly revealed preference
relation R0 in (2.2) towards the general collective setting withM household members.
Speci�cally, for the general case withM household members, Pareto e¢ ciency implies:

Rule 1
�
if p0sqs � p0sqt, then for some m 2 f1; :::;Mg we must have
qsH

m
0 qt (�member m hypothetically prefers qs to qt�).

The intuition is as follows. If the bundle qt was equally obtainable under the prices
(ps) and the outlay (p0sqs) that correspond to the chosen bundle qs, then Pareto
e¢ ciency requires that at least one household member must prefer the bundle qs to
the bundle qt. If we assume that member m prefers qs to qt, then we specify qsHm

0 qt.
Summarizing, the inequality p0sqs � p0sqt requires that we specify qsHm

0 qt for at least
one m.
The nonparametric condition for collectively rational household consumption re-

quires that there exists at least one speci�cation of the hypothetical revealed preference
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relations Hm
0 (m = 1; :::;M) that meets Rule 1 de�ned above and, in addition, a num-

ber of additional conditions. We next introduce these additional conditions (Rules 2
to 5).
Rule 2 uses that individual preferences are rational and, thus, transitive. Speci�-

cally, we have:

Rule 2
�

if qsHm
0 qu; quH

m
0 qv; :::;qzH

m
0 qt for some

(possibly empty) sequence qu, qv, ... , qz, then qsHmqt.

The correspondence between the relations Hm and Hm
0 for the collective model, which

are de�ned at the level of each individual household member m, is directly analogous
to that between the relations R0 and R for the unitary model, which are de�ned at
the level of the aggregate household.
The following Rules 3 to 5 pertain to rationality across the household members.

These additional rules use �M�-term sums�of quantities
PM�

k=1 qtk , which de�ne new
bundles as sums of observed bundles. Given this, Rule 3 is de�ned as:

Rule 3

8><>:
for M� < M andM  f1; :::;Mg: if p0sqs � p0s

�PM�

k=1 qtk

�
and

for all m 2M we have qtk(m)H
mqs for some k (m) �M�;

then qsH l
0qtk for some l 2 f1; :::;Mg nM and k �M�:

This condition expresses that, if all members m 2M prefer some qtk(m) over qs, and

the (newly de�ned) bundle
PM�

k=1 qtk is not more expensive than qs, then the choice of
qs can be rationalized only if another member l =2M prefers qs over some qtk . Indeed,
if this last condition were not satis�ed, then the bundle

PM�

k=1 qtk (under the given
prices ps and outlay p0sqs) would imply a Pareto improvement over the chosen bundle
qs.
Similarly, we have:

Rule 4

8><>:
for M� �M andM  f1; :::;Mg : if p0sqs � p0s

�PM�

k=1 qtk

�
and

for all m 2M we have qtk(m)H
mqs for some k (m) �M� � 1;

then qsH l
0qtM� for some l 2 f1; :::;Mg nM:

This condition expresses that, if qs is more expensive than the (newly de�ned) bundlePM�

k=1 qtk , while each member m 2 M prefers qtk(m) (with k (m) � M� � 1) over qs,
then the only possibility for rationalizing the choice of qs is that another member
l =2 M prefers qs over the remaining bundle qtM� . The interpretation in terms of
Pareto e¢ ciency is directly similar to the one for Rule 3.
Rules 1 to 4 de�ne restrictions on the relations Hm

0 and Hm. For a speci�cation
of these relations, the next condition de�nes the corresponding upper cost bound
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condition:

Rule 5

8<:
for M� �M :

if for all m we have qsk(m)H
mqt for some k (m) �M�;

then p0tqt �
PM�

k=1 p
0
tqsk :

This condition complements Rules 3 and 4. It states that, if each member m prefers
qsk(m) (k (m) � M�) over qt, then the choice of qt can be rationalized only if it is

not more expensive than the (newly de�ned) bundle
PM�

k=1 qsk . Indeed, if this last
condition were not met, then for the given prices (pt) and outlay (p0tqt) all members
would be better o¤ by buying the bundle

PM�

k=1 qsk rather than the chosen bundle qt,
which of course con�icts with collective rationality.
To summarize, Rules 1 to 5 imply a necessary condition for collectively rational

household behavior that can be tested on the available aggregate (price and quantity)
information. In fact, it can be veri�ed that the condition reduces to the GARP con-
dition for unitary rationality if M = 1; i.e. the household consists of a single (e.g.
dictatorial) decision maker. For the general case withM members, Cherchye, De Rock
and Vermeulen (2007a) have shown that the condition is empirically rejectable as soon
as there areM +1 goods andM +1 observations; e.g., in Example 1, which applies to
M = 2, we reject collective rationality for a situation with 3 goods and 3 observations.

Example 1. Consider a situation with 3 goods (N = 3) and two household members
(M = 2), with the following three observed price-quantity combinations (T = 3):1

q1 =
�
8 2 1

�0
;q2 =

�
2 1 8

�0
;q3 =

�
1 8 2

�0
;

p1 =
�
5 2 1

�0
;p2 =

�
2 1 5

�0
;p3 =

�
1 5 2

�0
:

As a preliminary note, we indicate that this data structure implies

p01q1 > p
0
1 (q2 + q3) ; p

0
2q2 > p

0
2 (q1 + q3) ; and p

0
3q3 > p

0
3 (q1 + q2) :

These inequalities will be useful in our following discussion.
Let us then consider the implications of Rule 1. Given that p0sqs � p0sqt for each

combination s; t 2 f1; 2; 3g, this condition implies qsH1
0qt or qsH

2
0qt for each s; t.

For example, one possible speci�cation of the hypothetical member-speci�c preference
relations H1

0 and H
2
0 is:

q1H
1
0q2, q1H

1
0q3 and q2H

1
0q3;

q3H
2
0q2, q3H

2
0q1 and q2H

2
0q1.

We will next show that this speci�cation does not simultaneously meet Rules 2 to

1Cherchye, De Rock and Vermeulen (2007a) used the same data structure to illustrate their nec-
essary condition.
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5. A similar inconsistency argument holds for any other speci�cation of H1
0 and H

2
0

that is consistent with Rule 1.
For the given speci�cation of the relations H1

0 and H
2
0 , Rule 2 implies:

q1H
1q2, q1H1q3 and q2H1q3;

q3H
2q1, q3H2q2 and q2H2q1.

Let us then consider Rule 3. Given that M = 2, we must only regard M� = 1.
For M� = 1, we recall that p0sqs � p0sqt for each combination s; t 2 f1; 2; 3g. As such,
because of Rule 3, qtH1qs implies qsH2

0qt and, similarly, qtH
2qs implies qsH1

0qt: The
given speci�cation of the relations Hm

0 and Hm indeed satis�es these requirements.
Next, we consider Rule 4. This rule has no implications for M� = 1, so that we

can restrict to M� = 2: Again using that p0sqs � p0s (qt1 + qt2) for each combination
s; t1; t2 2 f1; 2; 3g with t1 6= t2, Rule 4 requires that qt1H

1qs implies qsH2
0qt2 and,

similarly, that qt1H
2qs implies qsH1

0qt2 : The given speci�cation of the relations H
m
0

and Hm e¤ectively meets these requirements.
To conclude, we regard Rule 5. First, as forM� = 1, p0sqs � p0sqt excludes qtH1qs

and qtH2qs for any combination s; t; this is indeed the case in our speci�cation of the
relations Hm.
Second, as for M� = 2; p0sqs > p0s (qt1 + qt2) excludes qt1H

1qs and qt2H
2qs for

any combination s; t1; t2 2 f1; 2; 3g. This requirement is not met for the current
speci�cation of hypothetical member-speci�c preference relations: q1H1q2 and q3H2q2
con�icts with p02q2 > p

0
2 (q1 + q3) : Thus, we conclude that the given speci�cation of

the relations Hm
0 and Hm does not simultaneously satis�es Rules 1 to 5.

As indicated before, it can be veri�ed that this inconsistency result does not depend
on the selected speci�cation of the relationsH1

0 andH
2
0 to obtain consistency with Rule

1. We conclude that the given data structure does not meet the necessary condition for
a collective rationalization, i.e. there does not exist a speci�cation of the hypothetical
member-speci�c preference relations Hm

0 and Hm that simultaneously meets Rules 1
to 5.

3. Tests of rational consumption behavior

In this section, we show that the nonparametric condition for collectively rational con-
sumption behavior can be veri�ed by solving an integer programming (IP) problem,
which implies an operational test for collective rationality that applies for the general
case with M household members. This IP formulation was introduced in Cherchye,
De Rock and Vermeulen (2007b) and is now operationalized and presented as a pro-
grammable code. First, we present the �basic testing procedure�. Next, we posit
that the IP formulation is particularly convenient from a practical point of view, be-
cause it allows for implementing (and extending) the e¢ ciency enhancing mechanisms
that were presented by Cherchye, De Rock and Vermeulen (2005). This obtains an

9



�e¢ ciency-enhanced testing procedure�.

3.1. Basic testing procedure

In its basic form, the testing procedure is essentially a straightforward three-step algo-
rithm. The �rst step prepares the available price and quantity data; it summarizes the
relevant information in the (aggregate price and quantity) data by identifying domi-
nance relationships involving the M�-term sums that are considered in the di¤erent
collective rationality rules de�ned above. The second step formulates the IP problem.
The decision variables in this problem are the binary variables xmst , which correspond to
the previously de�ned hypothetical relations Hm (more speci�cally, xmst = 1 complies
with �qs Hm qt�and xmst = 0 otherwise). Using this, Rules 1-5 are reformulated in IP
terms; the resulting Rules 1-IP to 5-IP de�ne the restrictions of the IP problem. The
�nal step consists of checking whether these IP restrictions de�ne an empty feasible
region. An empty feasible region means that the observed household behavior is not
collectively rationalizable; a non-empty feasible region indicates that there exists a
speci�cation of the hypothetical relations Hm that satis�es Rules 1 to 5.

3.1.1. Summarizing the relevant information

To provide the IP formulation of Rules 1 to 5, we �rst de�ne the variables dM� [s; t1; :::; tM� ] 2
f0; 1g and d+M� [s; t1; :::; tM� ] 2 f0; 1g (M� �M), as follows:

dM� [s; t1; :::; tM� ] = 1 if p0sqs �
XM�

k=1
p0sqtk and 0 otherwise;

d+M� [s; t1; :::; tM� ] = 1 if p0sqs >
XM�

k=1
p0sqtk and 0 otherwise. (3.1)

Basically, these variables compare p0sqs to theM
�-term sum

PM�

k=1 p
0
sqtk . This complies

with Rules 3 to 5; as we have discussed, these rules compare the expenditure for a single
bundle (qs) with, under the same prices (ps), the expenditures for a newly de�ned sum
of observed bundles (

PM�

k=1 qtk). (In this respect, also observe that Rule 1 pertains
to s and t with d1[s; t] = 1 (i.e. p0sqs � p0sqt):) Obviously, d

+
M� [s; t1; :::; tM� ] = 1

implies dM� [s; t1; :::; tM� ] = 1; we explicitly de�ne d+M� [s; t1; :::; tM� ] in view of Rule
5-IP introduced below.
For di¤erent M�, the IP formulation will focus on combinations of s and t1; :::; tM�

for which dM� [s; t1; :::; tM� ] = 1. Indeed, it follows from our discussion of Rules 1 to
5 that only such combinations de�ne relevant empirical restrictions for the collective
rationality test based on Rules 1 to 5; i.e. only such combinations can yield an empirical
rejection of collectively rational consumption behavior. As a result, the complexity
of the resulting IP problem will be directly related to the structure of the data (as
captured by the variables d(+)M� [s; t1; :::; tM� ]).
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3.1.2. Formulation of the IP problem

As mentioned above, the decision variables of the IP problem are the binary variables
xmst 2 f0; 1g (m = 1; :::;M ; s; t 2 f1; :::; Tg), which must be interpreted in terms of
the hypothetical preference relations that we had before. Given this, we will next
reformulate Rules 1 to 5 in (equivalent) IP terms as �Rules 1-IP to 5-IP�, which are
de�ned on the binary variables xmst . As such, we can nonparametrically verify data
consistency with collective rationality by checking non-emptiness of the feasible set of
an IP problem: for a given set of observations S, there exists a speci�cation of the
hypothetical relations Hm

0 and Hm that simultaneously satis�es Rules 1 to 5 if and
only if there exists a speci�cation of the variables xmst that simultaneously meets Rules
1-IP to 5-IP. Example 2 illustrates the IP conditions for the situation described in the
previous example.
Rule 1 is equivalent to

Rule 1-IP :
XM

m=1
xmst � d1[s; t]:

This constraint implies that, if d1[s; t] = 1, then xmst = 1 for some m (or qs Hm qt for
some m).
Rule 2 corresponds to

Rule 2-IP : xmsu + x
m
ut � 1 + xmst :

Thus, if xmsu = x
m
ut = 1 (or qs H

m qu and qu Hm qt) then xmst = 1 (or qs H
m qt), which

e¤ectively imposes transitivity.
Rule 3 complies with

Rule 3-IP

8<:
for all M� < M andM  f1; :::;Mg :

for all k(m); m 2M such that k (m) �M� :

dM� [s; t1; :::; tM� ] +
P

m2M x
m
tk(m)s

� jMj+
P

l2f1;:::;MgnM
PM�

k=1 x
l
stk
:

For each combination t1; :::; tM� and any subsetM  f1; :::;Mg, this constraint consid-
ers all possible speci�cations of the variables xmtk(m)s with k (m) � M

� for all m 2M.
For each of these speci�cations, Rule 3-IP imposes that, if for all m 2 M we have
xmtk(m)s = 1 (or qtk(m)H

mqs), given dM� [s; t1; :::; tM� ] = 1, then we must have xlstk = 1
(or qsH lqtk) for some l =2M and some k �M�.
Rule 4 is reformulated as

Rule 4-IP

8<:
for all M� �M andM  f1; :::;Mg :

for all k(m); m 2M such that k (m) �M� � 1 :
dM� [s; t1; :::; tM� ] +

P
m2M x

m
tk(m)s

� jMj+
P

l2f1;:::;MgnM x
l
stM� :

Similar to before, for each combination t1; :::; tM� and any subsetM  f1; :::;Mg, this
constraint considers all possible speci�cations of the variables xmtk(m)s with (in casu)
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k (m) � M� � 1 for all m 2M. Rule 4-IP imposes that, if dM� [s; t1; :::; tM� ] = 1 and
for all m 2 M we have xmtk(m)s = 1 (or qtk(m)H

mqs), then for the remaining M� we
must have xlstM� = 1 (or qsH

lqtM� ) for some l =2M.
Finally, Rule 5 corresponds to

Rule 5-IP

8<:
for all M� �M :
for all k(m) �M� :PM

m=1 x
m
sk(m)t

�M � d+M� [t; s1; :::; sM� ]:

For eachM�, this constraint considers all possible speci�cations of the variables xmsk(m)t
with k (m) � M� for all m 2 M; note that, as before, we can have k (m) = k (l)
(m 6= l) so that M� �M . For every possible speci�cation, it requires that, if for each
m we have xmsk(m)t = 1 (or qsk(m)H

lqt), then it must be that d+M� [t; s1; :::; sM� ] = 0 (or

p0tqt �
PM�

k=1 p
0
tqsk).

We conclude that consistency of the observed set S with the general collective
rationality condition requires that Rules 1-IP to 5-IP characterize a non-empty feasible
region (for xmst 2 f0; 1g). In the case of a non-empty feasible region, every feasible
speci�cation of the binary variables xmst corresponds to a speci�cation of the relations
Hm consistent with Rules 1-5.

Example 2. We recapture the situation in Example 1, and reformulate Rules 1 to 5
in IP terms. Consistent with our conclusion of Example 1, it can be veri�ed that the
correspondingly speci�ed Rules 1-IP to 5-IP de�ne an empty feasible region.
In this case (with T = 3 and M = 2) the IP problem has 18 binary variables,

namely x1st and x
2
st for each of the 9 possible combinations of s; t 2 f1; 2; 3g. Next, we

note that p0sqs > p
0
s (qt1 + qt2) for each combination s; t1; t2 2 f1; 2; 3g. This implies

d2[s; t1; t2] = d
+
2 [s; t1; t2] = 1 for all combinations s; t1; t2 and, thus, d1[s; t] = d

+
1 [s; t] =

1 for all combinations s; t.
Rule 1-IP boils down to

8s; t : x1st + x2st � 1:
Rule 2-IP is de�ned as

8s; t; u : x1su + x1ut � 1 + x1st and x2su + x2ut � 1 + x2st:

For Rule 3-IP we only need to consider M� = 1. We de�ne

forM = f1g : 8s; t : 1 + x1ts � 1 + x2st;
forM = f2g : 8s; t : 1 + x2ts � 1 + x1st:

For Rule 4-IP we only need to consider M� = 2, which obtains

forM = f1g : 8s; t1; t2 (t1 6= t2) : 1 + x1t1s � 1 + x
2
st2
;

and forM = f2g : 8s; t1; t2 (t1 6= t2) : 1 + x2t1s � 1 + x
1
st2
:
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Finally, Rule 5-IP boils down to,

for M� = 1 : 8s; t : x1st + x2st � 1;
and for M� = 2 : 8s1; s2; t : x1s1t + x

2
s2t
� 1:

3.1.3. Feasibility check and solution

Once the IP conditions have been generated, the non-emptiness of the feasible region
can be checked by using any IP solver. For a non-empty feasible region, every feasible
speci�cation of the binary variables xmst complies with a feasible speci�cation of the
hypothetical preference relations Hm.
Strictly speaking, this feasibility check implies a satis�ability problem (also known

as a constraint programming problem). The goal is to �nd at least one feasible solution
satisfying rules IP-1 to IP-5. (A more di¢ cult problem is to �nd all feasible solutions.)
In theory, because this is a satis�ability problem, no objective function is needed.
However, for some IP solvers an objective function needs to be added in order to
perform a feasibility check; this is also the case for Matlab�s Bintprog solver that is
used in our own empirical application in Section 4. Moreover, adding an objective
function can be useful, because it enables us to construct an explicit solution of the
hypothetical preference relations Hm that is consistent with Rules 1 to 5.
Of course, multiple speci�cations of the objective function are usually possible. Be-

cause the choice of the objective function is irrelevant for the outcome of the feasibility
check, it makes sense to take the easiest possible objective function, i.e. a constant;
this is the objective used in our empirical application. Another objective that can be
interesting is the following:

Min
TX
s=1

TX
t=1

MX
m=1

xmst . (3.2)

Because xmst = 1 means �qs H
m qt�, this e¤ectively computes the minimal number of

hypothetical preference relations that are in the data; this can be interpreted as an
indicator of the �richness�of the data in terms of the preference structure (at the level
of the individual household members) that they include. Evidently, a multitude of
alternative speci�cations in terms of the decision variables xmst are equally possible.

3.1.4. Number of IP restrictions

Essentially, the complexity of the IP problem depends on the number of combinations
of M�, s and t1; :::; tM� with d(+)M� [s; t1; :::; tM� ] = 1. As indicated before, only such
combinations can yield an empirical rejection of collectively rational consumption be-
havior and, therefore, only the corresponding IP restrictions need to be included in
the IP problem. As such, we can write the number of IP restrictions as a function of
the number of such combinations. This is done in Appendix 1; the functions in that
appendix clearly show that the number of relevant restrictions rises exponentially in
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T and M .
In this respect, it is worth noting that the basic testing procedure is already more

e¢ cient than the �naive�procedure proposed by Cherchye, De Rock and Vermeulen
(2007a), which explicitly enumerates all possible speci�cations of the hypothetical
member-speci�c preference relations Hm

0 and Hm. As compared to this naive proce-
dure, the use of an IP formulation for the collective rationality test implies implicit
enumeration of possible speci�cations of the binary variables xmst ; such implicit enu-
meration is intrinsic to the Branch-and-Bound procedures that are used by IP solvers
(including Matlab�s Bintprog solver). By construction, this implicit enumeration ex-
ploits the structure of the data more e¢ ciently.
To conclude, we provide some results for (arti�cial) problems with the largest

possible numbers of IP restrictions. Speci�cally, we consider M = 2 (like in our own
application), and we specify d+M� [s; t1; t2] = 1 for all s; t1 and ts; this necessarily implies
a rejection of collectively rationality (e.g. we can reconstruct the argument of Example
1 for every subset of 3 observations). Using the computer con�guration of our own
empirical application, we obtain a rejection of collective rationality in a CPU-time of
6.87 seconds for T = 10, a CPU-time of 73.59 seconds for T = 15, and a CPU-time
of 432.33 seconds for T = 20. (We use T = 10; 15; 20 as reference values because our
empirical application addresses IP problems based on (subsets with) similar numbers
of observations.) This indeed suggests that implicit enumeration e¢ ciently uses the
structure of the data.

3.2. E¢ ciency-enhanced testing procedure

Cherchye, De Rock and Vermeulen (2005) presented two e¢ ciency-enhancing mech-
anisms that are tailored to the problem at hand. A �rst mechanism is �observation
�ltering�. Essentially, this boils down to �ltering out observations that are irrelevant
to the collective rationality test; i.e. excluding these observations does not interfere
with the test result. This produces a reduced set of observations. A closely related
e¢ ciency-enhancing mechanism is �subsetting�. In essence, this amounts to construct-
ing mutually independent subsets of observations for which the collective rationality
test can be carried out separately. In the following, we enrich the basic testing proce-
dure by integrating these two mechanisms. In addition, we propose an extra e¢ ciency-
enhancing mechanism that is speci�c for our IP formulation, which we label �relation
�ltering�. Table 3.1 summarizes the resulting e¢ ciency-enhanced testing procedure,
which thus adds two �e¢ ciency-enhancing�steps to the three �basic�steps discussed
before.

3.2.1. Observation �ltering and subsetting

The basic idea underlying the observation �ltering mechanism is that tests for collec-
tive rationality need only consider observations k that are implicated in a sequence of
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Table 3.1: E¢ ciency-enhanced testing procedure
Step 1. Summarize relevant information
Step 1.1. De�ne all dM� [s; t1; :::; tM� ] (basic)
Step 1.2. Observation �ltering and subsetting (e¢ ciency-enhancing)

for each (sub)set of observations:
Step 2. Formulation of the IP problem
Step 2.1. Construct IP condition set (basic)
Step 2.2. Relation �ltering (e¢ ciency-enhancing)

Step 3. Feasibility check and solution
Step 3.1. Check feasibility of IP condition set (basic)
Step 3.2. If feasible, give possible solution (basic)

end for

observations Seq (s; t) entailing a violation of the unitary GARP condition. The con-
struction of each sequence Seq (s; t) proceeds in two steps. First, for the observations
s and t it veri�es the condition:

qs R qt while p0tqt > p
0
tqs, (3.3)

which implies a violation of the GARP condition for unitary rationality. Next, if
condition (3.3) is met, then the corresponding Seq (s; t) includes all observations k
with qs R qk and qk R qt. This obtains:

Seq(s; t) = f(qk;pk) j qsR qk and qkR qtg if condition (3.3) applies;
Seq(s; t) = ; otherwise. (3.4)

Observation �ltering means that the collective rationality test only considers ob-
servations that are in the union USeq of the sets Seq(s; t) de�ned over all couples
s and t. Cherchye, De Rock and Vermeulen (2005) argue that (other) observations
(q0k;p

0
k) 2 S n Useq are �irrelevant�to the test in that they can be omitted without

changing the test result.
Subsequently, the subsetting mechanism partitions the resulting set USeq into sub-

sets that are mutually independent. In this context, mutual independence means that
any two subsets USeq1 and USeq2 have no observations in common (i.e. USeq1 \
USeq2 = ?). Cherchye, De Rock and Vermeulen (2005) argue that testing the col-
lective rationality condition for each subset separately is equivalent to testing the
condition at the level of their union USeq.
Appendix 2 presents an algorithm for e¢ ciently implementing observation �ltering

and subsetting. Because the complexity of the testing problem rises exponentially
with the amount of observations, the use of these e¢ ciency-enhancing mechanisms
can generate considerable e¢ ciency gains in practice.
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3.2.2. Relation �ltering

The relation �ltering mechanism is speci�c to the IP formulation. It exploits the
possibility that the IP problem contains variables xmst that have a coe¢ cient of zero
in all IP restrictions; in terms of Rules 1 to 5 regarding feasible speci�cations of the
hypothetical member-speci�c preference relations, this means that the aggregate price
and quantity data do not imply any restriction on qsHmqt for the corresponding
member m and the observations s and t. Relation �ltering excludes such variables xmst
from the IP test. Such exclusion is e¢ cient because these variable have no relevance
for the outcome of the IP test and including them only puts extra burden to the test.
At this point, it is worth noting that, as is easily veri�ed, this relation �ltering

becomes redundant when observation �ltering and subsetting have been carried out.
In such a case, the IP problem de�ned for (testing collective rationality of) each
separate subset of observations is such that every variable xmst has a coe¢ cient equal
to one in at least one IP restriction. However, in some extensions of the model (see
our discussion in Section 5), observation �ltering and subsetting may no longer be
appropriate. In those cases, relation �ltering can e¤ectively turn out to be a valuable
e¢ ciency-enhancing mechanism.

4. Application

As stated in the introduction, a main purpose of the current study is to explore the
computational aspects of the IP-based testing procedure presented above. More specif-
ically, we want to demonstrate the practical usefulness of our IP-based test procedure,
which also includes illustrating the di¤erent e¢ ciency-enhancing testing mechanisms.
Ideally, the test should be applied to panel data, where each household is taken as a
time series on its own right. This allows for maximal heterogeneity across households
and only requires an assumption about homogeneity of preferences over time for a
particular household. Cherchye, De Rock and Vermeulen (2005) followed exactly this
approach when they conducted nonparametric tests for collective rationality on the
Russia Longitudinal Monitoring Survey (RLMS), which is a panel with detailed house-
hold consumption. Although this obtained no more than 8 observations per household,
the substantial relative price variation across time enabled them to test unitary and
collective rationality in a meaningful way.
The aim of the current paper, however, is not a careful analysis of which model

�ts the data best. Given that we want to illustrate the usefulness of the testing
algorithms proposed above, we need more observations per household. As far as we
know, existing panel data with detailed consumption only contain a rather limited
number of observations per household. For example, Christensen (2007) and Blow,
Browning and Crawford (2007) use, respectively, Spanish and Danish consumer panels
with at most 24 observations per household. Because we want to demonstrate that the
proposed IP-based procedure can handle data sets that are at least of the same order
of magnitude, we will assume preference and allocation process homogeneity across
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di¤erent households; i.e., we will construct data sets that contain quantity and price
information of di¤erent households that are observed over time. The rest of this section
provides a more detailed discussion of the data used in our tests and, subsequently,
presents the main results of our empirical analysis.

4.1. Data

Our data are drawn from Phase II of the RLMS, which covers the time period between
1994 and 2003 (Rounds V-XII). The data set contains detailed expenditures and other
characteristics from a nationally representative sample of Russian households. Al-
though the RLMS survey design focuses on a longitudinal study of populations of
dwelling units, it allows a panel analysis of those households remaining in the original
dwelling unit over time.
To keep the analysis simple, the sample selection is for couples with no one else

in the household. (We note, however, that the IP test can be applied to the general
case with M household members.) We select households where both members are
employed, which mitigates the issue of non-separability between consumption and
leisure (see Browning and Meghir, 1991). Finally, in order to fully exploit the relative
price variation, we only consider households that were observed in all the available
rounds of Phase II of the RLMS. This results in a basic sample of 148 couples that
are observed 8 times. (More information, including summary statistics, for this basic
sample can be found in Cherchye, De Rock and Vermeulen (2005).)
In the empirical application, we focus on a rather detailed commodity bundle that

consists of 21 nondurable goods: (1) bread, (2) potatoes, (3) vegetables, (4) fruit, (5)
meat, (6) dairy products, (7) fat, (8) sugar, (9) eggs, (10) �sh, (11) other food items,
(12) alcohol, (13) tobacco, (14) food outside the home, (15) clothing, (16) car fuel,
(17) wood fuel, (18) gas fuel, (19) luxury goods, (20) services and (21) rent. Prices are
obtained by averaging recorded prices across the households in a given census region.
Some of the commodities that we use are aggregate commodities. The price index for
a composite commodity is the weighted geometric mean of the prices of the di¤erent
items in the aggregate good, with weights equal to the average budget shares in a
given census region (i.e. the Stone price index).
On the basis of the above sample of 148 households, we construct 200 synthetic

data sets that consist of 40 observations each. Every synthetic data set is obtained
by randomly drawing 5 households from the basic sample. Since each household is
8 times observed, this results in 40 observations per set. The testing algorithms will
be applied to each of these 200 sets. Note that the number of observations per set
is larger than for existing consumer panels. Bigger data sets are in principle possible
to handle, but there are clearly physical limits (de�ned in terms of computer memory
and speed) on the maximum number of observations. As our following results will
indicate, the complexity of the data (de�ned on the basis of theM�-term sums, which
in turn depend on aggregate quantities and prices) has an important impact on the
CPU-time needed to reach a conclusion.
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As for a data set that exceeds the physical limits of the IP procedure (for a given
computer con�guration), a possible solution consists of repeatedly applying the test
to randomly drawn subsamples of the original set of observations. If the subsamples
are su¢ ciently small, then such a procedure is always feasible. In addition, it nat-
urally complies with the necessary nature of the collective rationality condition that
is subject to testing. (Interestingly, such a repeated subsampling procedure may also
provide insight into which (potential �outlier�) observations cause violations of collec-
tive rationality.) We will illustrate this application for some data sets in the following.
Still, to keep our discussion focused, we abstract from a detailed analysis in this study.

4.2. Results

We programmed the IP-based procedure in Matlab (version 7.4.0.287), because of the
matrix-oriented structure of our problem and Matlab�s wide availability. The algo-
rithm is available in Matlab m-�le format and as a stand-alone application.2 Any
optimization package can be used to solve the generated IP problems; we used Mat-
lab�s built-in Integer Programming solver Bintprog on a single computer node of the
K.U.Leuven VIC HPC Cluster with a two-way 2.4 gHz processor and 16 gigabytes of
RAM memory.
Table 4.1 presents summary statistics for the necessity test applied to 200 synthetic

data sets consisting of 40 observations each. Focusing on M = 2, all data sets pass
the necessary condition for data consistency with the collective consumption model;
we do not obtain a rejection of collective rationality.3 (We return to the power of
the nonparametric collective rationality tests in Section 5.) Let us then consider the
e¤ect of our di¤erent e¢ ciency enhancing mechanisms. First, it is clear from the
results that the observation �ltering mechanism is extremely useful. The average
number of relevant observations is about 15, which means that on average more than
25 observations per data set turn out to be irrelevant in that they are not (directly or
indirectly) involved in a unitary GARP violation. The maximum number of relevant
observations is 34 and the minimum number is 0; this minimum refers to data sets
that can be rationalized by a unitary model.
Next, the subsetting mechanism also proves to be very helpful: on average 3 sub-

sets can be constructed by means of the remaining relevant observations. While the

2The procedure can be downloaded from http://www.kuleuven-kortrijk.be/~u0052996/. While
our following application reports results for M = 2, this procedure can be used for the general case
with M household members. See Sabbe (2007) for details.

3The results in Table 4.1 also show that only two synthetic data sets satisfy the unitary GARP
condition; these are the only synthetic data sets that can be rationalized by means of the unitary
model. This deviates from the results in Cherchye, De Rock and Vermeulen (2005), who found that
the observed consumption behavior of 117 out of the 148 couples in the basic data set could be
rationalized by the unitary model. Of course, the di¤erent results in the current study partly follow
from the fact that we now focus on synthetic data sets obtained by merging 5 di¤erent households.
One possible conclusion is that heterogeneity across households should be carefully taken into account
when nonparametrically testing behavioral models.
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minimum number of subsets is 0 (i.e. the data sets that are consistent with the uni-
tary model), the maximum number is no less than 7. If we have a closer look at these
subsets, then we �nd that the largest subset (which generally requires most of the
computation time) contains on average about 9 observations, which is far below the
40 initial observations per data set. Note, however, that there is quite some dispersion
around this average: the largest subsets per synthetic data set range from 0 to 34
observations. Given that the necessity test can be computationally burdensome when
applied to large data sets, these are interesting results from a practical point of view:
they illustrate the operational feasibility of the necessity test applied to real-life data
sets.
This also appears from the CPU-time needed to conduct the necessity tests. For

each of the 200 synthetic data sets, we imposed a maximum CPU-time of 1 hour to
conduct the e¢ ciency-enhanced IP-based testing procedure. The IP-test came to a
conclusion within this time limit in 197 cases (i.e. 98.5% of all data sets that we
considered). As for the 3 remaining data sets, we experimented with longer maxi-
mum CPU-times, but this did not yield a conclusion either. Therefore, we conducted
subsampling in these cases: we repeatedly applied the IP-test to randomly drawn sub-
samples of size 10 and 15; we considered 1000 iterations for each data set. Each of
these subsamples was consistent with the necessary condition; we conclude that we
cannot reject the necessary condition for these 3 remaining data sets. (Admittedly,
our choice of subsample size and number of iterations is rather ad hoc; we consider a
more in-depth investigation of subsampling design as an interesting avenue for follow-
up research.) As for the full collection of 200 data sets, the median CPU-time is about
15 seconds. Once more, there is substantial variation across the synthetic data sets:
the minimum is about 1.5 seconds, while the maximum (in casu de�ned over the 197
data sets for which the IP-test reached a conclusion within 1 hour) equals about 43
minutes. All in all, these results are very reasonable.
To analyze the required CPU-time in more detail, we applied a tobit model to

account for the right-censoring of 3 CPU-times. The dependent variable is the loga-
rithm of the CPU-time, while the number of subsets, the number of observations in
the largest subset and the fraction of GARP violations are the independent variables.
We are merely interested in associations between the logarithm of the CPU-time and
the other variables, although some may argue that the regression even establishes a
causal relationship given the set-up of the testing procedure. Next, we recall that our
regression pertains to data sets that do pass the collective rationality test; they do not
allow drawing conclusions on data sets for which collective rationality is rejected.
Regression results are given in Table 4.2. The number of subsets and the fraction of

GARP violations turn out to be signi�cantly associated with the dependent variable.
Let us then interpret the estimated coe¢ cients (given the small number of censored
observations, we interpret marginal e¤ects in terms of the latent variable). Ceteris
paribus, one extra subset implies an average increase in CPU-time of about 16 per
cent. Next, one more observation in the largest subset implies an average increase in
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CPU-time of about 2 per cent, all else equal. Finally, a one percentage point higher
fraction of GARP violations implies an average increase in CPU-time of about 28 per
cent. Note that the constant partly captures the time needed to de�ne the IP-problem.
Of course, the de�nition of the IP-problem also depends on the complexity of the data
captured by some of the other regressors. All in all, the regression results are quite
intuitive and may provide some guidance to conduct a preliminary analysis of the
data before conducting the necessity test. Such a preliminary analysis may give an
indication on the feasibility of the necessity test and the time needed to come to a
conclusion.

Table 4.1: Computational results
Number of observations 40
Average number of relevant observations 14.62
Minimum number of relevant observations 0
Maximum number of relevant observations 34
Average number of subsets 2.99
Minimum number of subsets 0
Maximum number of subsets 7
Average number of observations in largest subset 9.01
Lowest maximum number of observations in largest subset 0
Highest maximum number of observations in largest subset 34
Median CPU-time in seconds for M = 2 14.74
Minimum CPU-time in seconds for M = 2 1.5
Maximum CPU-time in seconds for M = 2 2554.72
Fraction of sets that satisfy GARP 1.00%
Fraction of sets that satisfy collective necessity condition 100%
Fraction of GARP violations 4.14%
Minimum fraction of GARP violations 0.00%
Maximum fraction of GARP violations 32.82%

Averages and medians calculated on the basis of tests applied to
200 synthetic data sets, which contain each 5 households that are
8 times observed. Fraction of sets that satisfy GARP (collective
necessity condition) refers to the proportion of sets that pass the
associated criterion (with the collective necessity condition per-
taining to M = 2). Maximum CPU-time is de�ned over the 197
data sets for which the IP-test reached a conclusion within 1 hour.
Fraction of GARP violations equals the average percentage of ob-
servations per data set that do not meet the GARP consistency
condition (3.3).
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Table 4.2: Tobit estimates
Dependent variable: logarithm of CPU-time

Coe¢ cient Standard error
Constant 1.348� 0.104
Number of subsets 0.155� 0.024
Number of observations in largest subset 0.018 0.017
Fraction of GARP violations 0.281� 0.023
Pseudo R2 0.67
Number of observations 200
Number of right-censored observations 3
Log likelihood -123.86

An asterisk denotes signi�cance at the 1 per cent signi�cance level.

5. Extensions

In the previous section, we have provided an empirical application of our IP-based
testing procedure. This demonstrates the practical usefulness of the procedure, even
for fairly large data sets. Generally, in view of practical applications two important
considerations concern (1) the goodness-of-�t of the collective consumption model
when data do not pass the (�sharp�) condition for collective rationality that is tested,
and (2) the power of the nonparametric tests in terms of the probability of detecting
collectively irrational behavior. For example, in our illustrative application, all data
pass the collective rationality tests. This makes the goodness-of-�t concern redundant
since the data perfectly �t the (necessary) empirical implications of the collective
model under study. Next, as for the power concern, the fact that all data pass the
collective rationality test may signal low power of the test.
Conveniently, as we will show, our IP-based procedure allows for incorporating

such considerations in the analysis by suitably adapting approaches that have been
suggested in the context of nonparametric tests for the unitary rationality model.
As for the goodness-of-�t issue, we discuss extensions that evaluate goodness-of-�t in
terms of optimization error and in terms of measurement error; this will obtain newly
de�ned programming problems that build on the IP problem formulated in Section
3. Next, when dealing with the power issue, we will also argue that our IP-based
approach provides a useful basis for adapting existing approaches to increase the power
in practical applications. For compactness, we will not illustrate these extensions in
the current study, but the empirical application should be easy given our previous
discussion.

5.1. Goodness-of-�t

The collective rationality tests reviewed above are �sharp� tests; they only tell us
whether observations are exactly optimizing in terms of the behavioral model that is
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under evaluation. However, as argued by Varian (1990), exact optimization may not
a very interesting hypothesis. Rather, one may be interested whether the behavioral
model under study provides a reasonable way to describe observed behavior; for most
purposes, �nearly optimizing behavior�is just as good as �optimizing�behavior. This
pleads for using measures that quantify the goodness-of-�t of the behavioral model
under study. In the following, we discuss two such measures. The �rst measure is
inspired by Varian (1990)�s idea to quantify goodness-of-�t in terms of optimization
error (which obtains an actual expenditure level that exceeds the -in casu collectively-
rational level); it can be interpreted as a measure for the economic signi�cance of ob-
served violations of collective rationality. The second measure is based on Varian�s
(1985) idea to quantify goodness-of-�t in terms of measurement error, and can be
interpreted as a measure for the statistical signi�cance of observed violations of collec-
tive rationality. To structure our following discussion, we will treat the two measures
separately. Still, in practice it can be useful to combine both measures. For example,
one may quantify the statistical signi�cance of violations of collective rationality that
account for a certain degree of optimization error. Starting from the methodology
introduced below, such extensions should be fairly straightforward.
To calculate the goodness-of-�t measures, we endogenously de�ne the variables

d
(+)
M� [s; t1; :::; tM� ] 2 f0; 1g in the programming problem, i.e. we treat them as binary
decision variables in our problem formulation. Speci�cally, for allM� and correspond-
ing s; t1; :::; tM� we include the additional restrictions

dM� [s; t1; :::; tM� ] � p0s

�eqs �XM�

k=1
eqk�+ "; (5.1)

d+M� [s; t1; :::; tM� ] � p0s

�eqs �XM�

k=1
eqk� .

For " arbitrarily small and positive, this implies dM� [s; t1; :::; tM� ] = 1 if p0seqs �PM�

k=1 p
0
seqk; and, analogously, d+M� [s; t1; :::; tM� ] = 1 if p0seqs > PM�

k=1 p
0
seqk. In this

formulation, the vectors eqt 2 RN+ are endogenously de�ned quantities; they are also
treated as decision variables in the programming formulation. Essentially, the follow-
ing goodness-of-�t measures seek minimal adjustments in the original quantity values,
which implies eqt that are �as close as possible� to the observed quantities qt; the
criterion for �closeness�depends on the speci�c goodness-of-�t measure at hand.

5.1.1. Optimization error and economic signi�cance

The �rst measure quanti�es optimization error ; it is inspired on the goodness-of-�t
idea of Varian (1990), which is based on Afriat (1972, 1973). Following Varian (1990),
this measure quanti�es the economic signi�cance of observed violations of collective
rationality. It seeks the minimal proportional reductions of the observed expendi-
ture levels that is required for establishing consistency with the collective rationality
condition. For compactness, our following discussion mainly focuses on the calcula-
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tion of such goodness-of-�t measures by starting from the IP formulation discussed
in previous sections. We refer to Varian (1990) for a detailed discussion on the in-
terpretation of these measures in practical applications. While Varian focused on the
unitary model, his main arguments directly carry over to the general collective model
under consideration.
In our formulation, we calculate the reductions in the expenditure levels in terms

of proportional reductions of the observed quantities qt. Speci�cally, we de�ne for
each observation t eqt = �tqt with 0 � �t � 1; (5.2)

again, we treat each variable �t as an endogenously de�ned decision variable. The
interpretation is easy: for every observation t, the corresponding value of �t captures
a proportional expenditure reduction that is independent of the price vector that is
used (i.e. �t = (p0eqt=p0qt) for every p 2 RN++).
Finally, given that we are interested in minimal adjustments of the observed quan-

tity vectors, we can de�ne the objective function of the newly de�ned programming
problem as follows:

max

XT

t=1
�t

T
:

In combination with the decision variables d(+)M� [s; t1; :::; tM� ] and eqt de�ned in (5.1)
and (5.2), and after adding the Rules IP-1 to IP-5 described above, this obtains a
mixed integer linear programming (MILP) problem. This MILP structure implies
that the measure can be operationalized, and so provides a useful tool for practical
applications to real-life data. (Of course, alternative speci�cations of the objective
function are equally possible; e.g., one can use di¤erent weights for the �t associated
with other observations t.)
The optimal objective function value has a direct interpretation in terms of required

expenditure reduction for establishing collective rationality. First, an optimal objective
value of unity indicates consistency of observed behavior with the collective rationality
condition; in this case, no adjustment of the observed quantities is necessary (eqt = qt
and �t = 1 for all t). In the other case, the optimum objective value (below unity)
indicates the average expenditure reduction that is required to obtain consistency
with the collective rationality conditions; each �t gives the corresponding expenditure
reduction for every individual observation t. Generally, the objective value can be
compared to a speci�ed cut-o¤ level, to assess whether or not observed violations are
�economically signi�cant�; a cut-o¤ level 1� � (e.g. 0:95 or 0:90) then corresponds to
a signi�cance level � (e.g. 0:05 or 0:10).

5.1.2. Measurement error and statistical signi�cance

The second measure quanti�esmeasurement error ; it extends the idea of Varian (1985)
to the collective rationality test. This obtains a test for the statistical signi�cance of
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observed violations of collective rationality. Like before, we will mainly concentrate
on the calculation of this goodness-of-�t measure; and we refer to Varian (1985) for a
more detailed discussion on its interpretation.
In this case, the vectors qt =

�
q1;t; :::; qN ;t

�0
stand for the �true�quantities, which

can be di¤erent from the observed quantities qt = (q1;t; :::; qN ;t)
0. To account for

measurement error, we assume the following relationship between true and observed
quantities:

qn;t = qn;t + �n;t, n = 1; :::; N ; t = 1; :::; T; (5.3)

with the error term �n;t assumed to be an independently and identically distributed
random variable drawn from N (0; �2), for �2 the variance of the measurement error.
Using this, a statistical test for data consistency with the collective rationality model
could compute the test statistic

NX
k=1

TX
t=1

�
qn;t � qn;t

�2
�2

: (5.4)

Under the null hypothesis that the true data satisfy the collective rationality condition,
the test statistic follows a Chi-squared distribution with NT degrees of freedom. As
such, collective rationality for the data would be rejected if this test statistic exceeded
the critical value that corresponds to a speci�ed signi�cance level. However, this test
statistic is not observable. Therefore, following Varian (1985), a lower bound on the
above statistic can be calculated by means of the programme

min
NX
k=1

TX
t=1

(eqn;t � qn;t)2
�2

subject to the vectors eqt = (eq1;t; :::; eqN ;t)0 satisfying the necessary condition for col-
lective rationality. Speci�cally, using the decision variables d(+)M� [s; t1; :::; tM� ] in (5.1),
and adding the Rules IP-1 to IP-5 obtains a mixed integer quadratic programming
(MIQP) problem, which again implies potential operationalization and thus practical
usefulness.
Under the null hypothesis, the �true�data satisfy the constraint, which implies that

the resulting function value of the above minimization programme should be no larger
than the test statistic (5.4). Consequently, if we reject the null hypothesis on the basis
of the obtained function value, then we certainly reject the null hypothesis on the basis
of the true test statistic.
In practice, an important di¢ culty concerns the speci�cation of the variance �2.

Varian (1985) discusses two alternative solutions. First, we can use estimates of the
error variance derived from (parametric or nonparametric) �ts of the data, or from
knowledge about how accurately the variables were measured. Alternatively, we can
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calculate how big the variance needs to be in order the reject to null hypothesis of
collectively rational behavior, and compare this to our prior opinions regarding the
precision with which the data have been measured.

5.2. Power

In view of empirical applications, an important concern relates to the power of the
collective rationality tests, i.e. the probability of detecting an alternative hypothesis
(in casu collectively irrational behavior) to the model under study. Indeed, the fact
that the general collective consumption model takes into account externalities and
public consumption inside the household, while imposing minimal prior structure, can
also make it hardly rejectable in practice. Although our above discussion makes clear
that the model can be rejected on the basis of aggregate price and quantity data, the
question remains how powerful the theoretical implications are in real-life applications.
Therefore, in addition to the mere nonparametric tests, it generally seems use-

ful to include a power analysis of the tests in practical applications. Bronars (1987)
�rst de�ned power measures for the unitary rationality model. His alternative hy-
pothesis was based on Becker�s (1962) notion of irrational behavior, which states that
households randomly choose consumption bundles that exhaust the available budget.
Bronars� power measures then capture the probability that the unitary rationality
tests reject such randomly drawn consumption bundles from the observed budget hy-
perplanes. While Bronars focused on the unitary rationality condition, his ideas are
readily adapted to the IP-based collective rationality tests presented in the current pa-
per. See also Cherchye, De Rock and Vermeulen (2005) and Cherchye and Vermeulen
(2007) for applications of Bronars�approach to nonparametric tests of (less general)
collective rationality models. Andreoni and Harbaugh (2006) recently reviewed alter-
native nonparametric power assessment tools that are currently available, which may
also be adapted to the IP test presented here.
If the power turns out to be low, our IP-based procedure provides a useful basis

for incorporating alternative strategies to increase that power. First, one can impose
additional prior structure on the underlying collective model. In the context of the
collective model, this includes using information on observability of the distribution of
commodities over household members, or of the publicly consumed quantities; and it
also includes the possible use of additional prior structure on the nature of the exter-
nalities (e.g. exclude externalities for some or all commodities). A speci�c application
concerns the use of �assignable commodities�, which means that the empirical analyst
observes how much a group member consumes (privately) of a particular commodity
(e.g. Bourguignon, Browning and Chiappori, 2006); such information on assignable
commodities is often used in parametric analysis of collective consumption behavior.
See Cherchye, De Rock and Vermeulen (2007b) for the corresponding extensions of
the IP formulation used in the current paper; these extensions can be integrated in
the IP-based testing procedure that we have presented.
Next, the power of the nonparametric methodology can be further increased by
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adapting the �sequential maximum power path�idea of Blundell, Browning and Craw-
ford (2003, 2005), who focused on unitary rationality. Essentially, the approach of
Blundell, Browning and Crawford uses estimated Engel curves for given price regimes
to construct �virtual�quantity bundles that maximize the power of the nonparametric
rationality tests. In our opinion, adapting this approach to the methodology presented
in this paper can be particularly valuable in view of real-life applications, and thus
constitutes an interesting avenue for future research.

6. Conclusion

We have presented an IP-based nonparametric (revealed preference) testing proce-
dure for collectively rational consumption behavior. We focused on the necessary
condition derived by Cherchye, De Rock and Vermeulen (2007a) for a general col-
lective consumption model, which accounts for consumption externalities and public
consumption while using minimal assumptions on observable price-quantity informa-
tion. We also showed that the procedure readily allows for incorporating a number
of e¢ ciency-enhancing testing mechanisms. Finally, we presented extensions of the
testing procedure to evaluate the goodness-of-�t of the general collective consump-
tion model, and to quantify and improve the power of the corresponding collective
rationality tests.
An empirical application to households drawn from the Russia Longitudinal Mon-

itoring Survey (RLMS) demonstrated the practical usefulness of the IP-based testing
procedure. For realistic numbers of observations (40 observations per synthetic data
set in our application), the procedure came to a conclusion in reasonable time. We also
found that the e¢ ciency-enhancing mechanisms e¤ectively can (often substantially)
reduce the computational burden of the test in practical applications. At this point,
it is important to note that the type of tests that we focus on is ideally applied at the
level of individual households, to allow for maximal heterogeneity across couples. As
stated in the main text, existing detailed consumer panels all have maximum numbers
of observations that are substantially below the 40 observations in the synthetic data
sets considered in our application, which suggests that the IP-based procedure may
also proceed e¢ ciently for other available data.
As for large data sets with IP problems that still exceed the computational limits of

the given computer con�guration, we recall the possibility of repeatedly applying the
test to randomly drawn subsamples of the original set of observations. This procedure
is always feasible when the subsamples are su¢ ciently small; and it complies with the
necessary nature of the collective rationality condition that is subject to testing. Still,
given the ever increasing computational capacity of computer con�gurations at a fairly
low cost, we may expect that in the near future the procedure will be able to deal with
fairly big data sets even without using this subsampling solution.
A �nal note pertains to the power of the general collective rationality tests that we

considered. For example, the fact that our own empirical application did not reject
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collective rationality for any data set may signal low power. In turn, this may plead for
imposing additional prior structure in practical applications (e.g. in terms of public
consumption and externalities within the household). As we have discussed, such
extra structure is easily implemented by starting from the IP formulation presented
in this paper; see also our reference to the corresponding theoretical speci�cations of
Cherchye, De Rock and Vermeulen (2007b). In this respect, we also recall the possible
adaptation of the �sequential maximum power path�concept of Blundell, Browning
and Crawford (2003, 2005) as a possibly fruitful avenue for follow-up research.

Appendix 1

In this appendix, we de�ne the number of IP restrictions as a function of the number
of combinations of M�, s and t1; :::; tM� with d(+)M� [s; t1; :::; tM� ] = 1. For each M�, let
#d

(+)
M� be the number of combinations s and t1; :::; tM� with d(+)M� [s; t1; :::; tM� ] = 1; it

follows from our previous discussion that these numbers #d(+)M� will de�ne the number
of (relevant) IP restrictions associated with Rules IP-1, IP-3, IP-4 to IP-5. Next,
let #R be the number of combinations of s, t and u such that qsRqu and quRqt (in
terms of the unitary model: �qs is revealed preferred to qu, and qu is revealed preferred
to qt�); this number #R is relevant for Rule IP-2. Then it can be veri�ed that the
di¤erent Rules IP-1 to IP-5 imply the following number of (relevant) IP restrictions

for Rule 1-IP: #d1;
for Rule 2-IP: #R�M ;
for Rule 3-IP:

PM�1
M�=1#dM� �

PM�1
jMj=1[C(M; jMj)� (M�)jMj];

for Rule 4-IP:
PM

M�=1#dM� �
PM�1

jMj=1[C(M; jMj)� (M� � 1)jMj];

for Rule 5-IP:
PM

M�=1[(M
�)M �#d+M� ]:

We brie�y explain how the IP restrictions Rules 1-IP to 5-IP result in these num-
bers. First, as for Rule 1-IP, we have for each d1[s; t] = 1 exactly one relevant IP
restriction. Similarly, for Rule 2-IP, we have for each combination of observations s, t
and u that satisfy the condition stated above, M relevant IP restrictions, i.e. one for
each member m:
Next, for each dM� [s; t1; :::; tM� ] = 1; Rule 3-IP implies a relevant IP restriction

for each subset M and each speci�cation of the k(m): The number of subsets M of
given cardinality jMj is equal to C(M; jMj); which stands for all drawings without
replacement of jMj elements out of M elements. Given a subset M; the number of
speci�cations of the k(m) is equal to (M�)jMj; i.e. for each m 2 M; k(m) can be
any number between 1 and M�: Hence, to count the number of relevant IP restric-
tions for a given dM� [s; t1; :::; tM� ] = 1; we have to multiply these two numbers and
consider all possible cardinalities jMj ; this obtains the second summation (recall that
M  f1; :::Mg): Given that M� is strictly smaller than M; the �rst summation then
simply considers all possibilities for M�. Finally, the computation of the numbers of
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relevant IP-restrictions stemming from Rules 4-IP and 5-IP is directly similar as for
Rule 3-IP.

Appendix 2

In this appendix, we present an algorithm that e¢ ciently implements observation
�ltering and subsetting. In what follows, SSM (for SubSet Matrix) is a matrix which
contains all subsets. Each subset is written on a separate line, and empty spaces due
to di¤erent subset lengths are �lled up with zeros. Therefore, the matrix SSM has
the following dimension: (number of subsets) � (number of observations in the largest
subset). The pseudo-code for the algorithm is the following:

SSM = ;
for each observation s

for each observation t
if qs R qt and p0tqt > p

0
tqs

Seq(s; t) = fk j qs R qk and qk R qtg;
if Seq(s; t) \ SSM = ;

create a new subset: write Seq(s; t) on a new line in SSM ;
else

de�ne A = Seq(s; t) \ SSM ;
if all a 2 A are members of one subset i in SSM

add members of Seq(s; t) =2 A to this subset i;
else (the elements of A are members of di¤erent subsets)

merge those subsets (put them together on one row);
add members of Seq(s; t) =2 A to newly created subset in SSM ;

end if...else
end if...else

end if
end for

end for
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