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Abstract

In transportation planning there can be long lead times to adapt ca-
pacity. This paper addresses two questions. First, in a one mode world
(say rail or road), what is the optimal capacity choice when faced with
uncertain demand, long lead times and congestion. Using a simple an-
alytical model it is shown that when demand is inelastic, it is socially
optimal to invest more than if only the expected level of demand is taken
into account. In this case it may be bene�cial to overinvest in capacity
because congestion costs are a convex function of relative use. This result
holds with or without optimal tolling. The second question deals with
two competing modes and where only one mode has long lead times for
capacity while the other has �exible capacity. This is typical for the com-
petition between High Speed Rail and air for the medium distance trips
(500 to 1000 km), or for the competition between inland waterways and
trucks for freight. We �nd that overinvestment is less justi�ed because
the substitute mode can more easily absorb the high demand outcomes.
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1 Introduction

Transport infrastructure is known as a lumpy investment with long lead times.
The construction of a new motorway, a new high speed rail line or a new canal
may take 10 years or more. Whether to take on a new project or not and in
order to choose the right capacity, one needs demand forecasts for the next 10
to 30 years. Studies of past large transport infrastructure projects have shown
that demand has been systematically overestimated and that costs have often
been underestimated (Flyberg, Bruzelius and Rothengatter [6]).
There are many sources of uncertainty in infrastructure projects. In this

paper we concentrate on only one possible source of uncertainty: the level of
future demand. Given that future demand is uncertain and that one needs to
decide on the capacity level now, is there a justi�cation to overinvest rather
than to underinvest in infrastructure capacity? To discuss this question we use
two analytical models: a one mode model and a two mode model.
In the one mode model we are able to show analytically that "overinvest-

ment" is under certain conditions a better strategy than to chose the capacity
in function of the expected level of demand. These conditions are surprisingly
simple: the demand elasticity has to be smaller than one. This one mode model
makes more sense when there are no easy transport alternatives for a given trip.
In the second model we deal with two modes that can easily be substituted

and where one mode has long lead times in capacity additions, but the other
mode can easily adjust its capacity. Examples are the competition between high
speed rail (long lead times) and air transport for passengers and the competition
between inland waterways (long lead times) and trucks for freight. In this case
it is no longer possible to show that "overinvestment" is systematically optimal
because the other mode serves as an escape route for high demands.
In section 2 we introduce the topic and illustrate the main results graphically.

Section 3 links our paper to the literature. In section 4 we use the one mode
model, section 5 analyses the two mode model and section 6 concludes.

2 Transport investments under uncertainty: a
graphical illustration

In this section we introduce our problem setting using graphical illustrations.
We do this primarily for the case where no tolls exist. In section 4 we will show
that most results carry over to the case with optimal or non optimal tolling. We
�rst illustrate the one mode case and then extend our illustration to the two
mode case.
There is a transport planner who faces an uncertain level of future demand

for trips between two points. There is only one mode of transport, demand
levels, once realized, are constant over time and the capacity of the transport
infrastructure has to be decided before the level of demand is known. Typical
examples are new motorways, high speed rail connections, canals and ports
whose construction or extension may take 10 or more years. The level of capacity
that is chosen determines the users�costs. In Figure 1 we represent the simplest
case where demand (for a representative period) is price inelastic and is either
equal to a level N� or equal to N+, both with equal probability. The expected
demand level is shown as �N . The Y axis represents the generalized cost of a trip.
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To simplify the analysis we put non time costs equal to zero. We furthermore
restrict ourselves to a linear average time cost function (ATC(N; �K)). The
average time cost of a trip is an increasing function of the level of use and a
decreasing function of the level of capacity. In Figure 1, we show the average
time cost function that corresponds to the capacity level �K. This capacity level
is the level of capacity that maximizes welfare (consumer surplus minus costs
of capacity) if the decision maker only takes into account the expected demand
level �N .

Figure 1: Uncertain demand levels call for larger capacities if demand is price
inelastic

We will now show that in this case it is bene�cial to invest more than �K when,
instead of the expected demand level �N , one takes into account the explicit
distribution of demand levels N� and N+. We illustrate this by demonstrating
that the expected savings in users�costs of a small increase in capacity �K are
higher when explicit account is taken of the two possible demand levels N+ and
N�. The equilibrium time cost when the demand level would be �N equals �P ,
the corresponding equilibrium user prices equal P� and P+ if demand turns
out to be low or high. Consider now the savings in users�costs when capacity is
increased by �K. The savings in users�costs now equal B+ if demand is high
and B� when demand is low. The weighted sum of these areas [0:5B++0:5B�]
is clearly larger than the gross bene�ts �B associated to the use of the expected
demand level only. Hence marginal bene�ts of capacity extension are clearly
larger when the uncertainty of demand is explicitly taken into account. As can
be seen, the bene�ts of a capacity extension are a quadratic function of the
level of realized demand and this explains that it is bene�cial to �overinvest�
compared to the expected demand level.
In this paper we show that this result holds more generally whenever the

price elasticity of demand is smaller than one. Why this is the case can be
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easily shown in Figure 1 by rotating the demand function in point A to the
price elastic function N+

1 . A more price sensitive demand level implies that the
realized demand increases when capacity is extended as demand reacts to the
lower time costs. At the same time the savings in user bene�ts become smaller:
demand is larger but the savings per user become smaller. When the elasticity of
demand is larger than one, the reduction in expected user cost savings becomes
smaller than the user cost savings associated to the expected demand level. It
then becomes bene�cial to underinvest compared to the expected demand level.

Let us now turn to the two mode case. The typical problem we have in mind
is the investment in a new rail line for passengers between two cities. Creating a
new rail line requires investments long before the service is operational. If both
cities have an airport it could be easier to set up a direct air connection between
the two cities. So in this example, air would be the second (competing) mode.
The simplest case is where both modes are perfect substitutes (only the

average user cost matters), where total demand for both modes is price inelastic
but uncertain and where all modes are priced at marginal social cost (MSC).
The mode with the long time lag has a �xed infrastructure cost. Its variable
infrastructure cost is proportional to the level of congestion. The �exible mode
is characterized by an average time cost that is constant.
We can now start with a graphical illustration that is identical to Figure

1. In Figure 2 we represent the average time cost (ATC(N; �K)) and the social
marginal time cost (MSC(N; �K)) and concentrate our attention �rst on the
expected total demand level �N . In contrast to Figure 1, we assume perfect
pricing of the rail mode: the user price consists of the average time cost plus
a charge that equals the extra time losses imposed on others. Let �K be the
capacity level that minimizes the user costs associated to the expected demand
level �N .

Figure 2: Uncertain demand levels in the two mode case.
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We now bring in the second mode by drawing an average cost function AC2.
We have drawn an AC2 curve such that the social marginal cost of the rail
mode

�
MSC( �N;K)

�
is lower at a demand level �N . In this case there are two

possible solutions: either the �xed cost of rail is relatively high and it is better
to rely completely on the second mode (air), or it makes sense to invest in rail
and then rail takes the whole market. This is a �rst simple result that is useful
to address the case of uncertain demand.
We now introduce a demand level that can be either low (N�) or high

(N+) and return to our question whether �overinvestment� in capacity can
make sense. Contrary to the one mode model with uncertain and inelastic
demand, one can now show that it is no longer always optimal to �overinvest�
in rail capacity. Start with capacity �K; which is the optimal capacity when
only the expected demand �N is taken into account. In that case we assume it
is interesting that rail serves the whole market

�
MSC

�
�N; �K

�
< AC2

�
: When

demand is high (N+) it may be interesting not to extend capacity to K +�K
and let from the extra demand

�
N+ � �N

�
only a part be satis�ed by rail (�)

and the rest
�
N+ � �N � �

�
by using the second �exible mode. Consider now

the bene�ts of adding extra rail capacity; this will lower the trip costs in the
cases where N� and N+ materialize. Consider the bene�ts if N+ materializes.
Then the bene�ts are limited to the area ABC instead of ABCD. The presence
of the other mode has taken away part of the congestion reduction bene�ts we
observed in the one mode case.

3 A brief review of the literature

There is a large body of literature on investment decisions under uncertainty.
There is the option theory that attaches an extra value to any project that can
be adjusted or postponed until more is known about demand. This theory is
now the basis for investments in �rms (Dixit and Pindyck [4]) and is also used
in cost bene�t assessments (Graham [7]). Another related debate is the use of
a higher discount rate in function of the riskiness of the project. Here we take a
social cost bene�t approach and in this case the risks of a transport project are
small and diversi�able, so that the risk free discount rate makes sense (Arrow
and Lind [2]).
When it comes to investments in transport, there are two strands of lit-

erature. We classify them in function of the type of demand uncertainty. In
the �rst strand demand is �stochastic�, in the sense that users, making their
decision to make a trip or not, do not know the aggregate level of demand or
the available capacity and therefore face an uncertain user cost. Kraus [8] has a
simulation model with uncertainty in individual demand, risk averse individuals
and ex ante optimal tolling, and �nds that highway capacity could be 3 to 12%
higher. In [5], D�Ouville and McDonald use an analytical model to treat the
same question. They have optimal ex ante tolls, no risk aversion and also �nd
that optimal capacity is always larger relative to the mean level of demand than
in the case of no uncertainty.
Arnott, de Palma and Lindsey [1] use a model with uncertain demand and

capacity levels, a constant elasticity of demand function and no tolls. They have
one result which is of interest to us. With perfect information for the users, the
optimal capacity level is higher in the uncertainty case than in the certainty
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case if the demand elasticity is lower than one.
The second strand of the literature deals with �macro-economic uncertainty�

in the level of demand. Ex ante, demand levels are unknown to the planner but
once the investment has been made, the level of demand and user�s costs are
known to all users. This is the problem we want to address.
Saphores and Boarnet [9] deal with the optimal investment time for a con-

gestion relief investment in a city where the population growth is uncertain.
They �nd that, when the uncertainty is high and the lead times are long, it may
be better to advance the investment time compared to a traditional cost bene�t
analysis. Our model uses a simpler representation of uncertainty than theirs;
they use a geometric Brownian motion formulation, while we use a simple de-
mand uncertainty representation with a high and a low value. Other di¤erences
are that we explore the role of congestion pricing for the capacity decision and
that we only deal with the choice of the capacity level and not with the timing.

4 One mode model

4.1 Model structure

We have opted for a simple model that can be solved analytically. The (gener-
alized) average user cost before toll � , capacity cost and demand functions are
assumed to be:

C (N;K) = �

�
N

K

�s
(1)

F (K) = kK" (2)

N (P ) = q0P
�� (3)

where N is the volume, P the generalized price, K the capacity of the mode,
� value of time of the (homogenous) users, the parameter s � 0 denotes the
elasticity of user cost with respect to the volume-capacity ratio, " � 0 is the
elasticity of construction costs and � � 0 the demand elasticity. The model
de�ned in (1), (2) and (3) has been used previously by de Palma and Lindsey
[3] to study cost recovery properties of tolls. The average user cost function
(1)1 becomes independent of usage and capacity when s = 0; for high values of
s we have a user cost function that increases strongly once one hits the capacity
K. The average cost of capacity (2) can be decreasing in K (" < 1), constant
(" = 1) or increasing in K (" > 1): In order to make capacity costs comparable
to the user bene�ts we make two assumptions. First, the cost of capacity has
been corrected with a discount factor to correct for the lag between investment
and the realization of demand. Second, we measure capacity costs as a rental
cost per unit period using an annuity of the capital cost. The demand function
given in (3) is a constant elasticity function where � can vary between 0 and1.

1One could generalise the user cost function by adding a constant term. This would not
a¤ect Proposition 1.
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4.2 No Uncertainty

4.2.1 Equilibrium and optimal use

It is well known that, in the presence of congestion, it is optimal to charge a
toll that equals the marginal external congestion cost. Since optimal congestion
tolling may not be a realistic option because of implementation costs or political
opposition we will consider the case with and without optimal tolls. We can in
general write for the toll

� = f � CNN; (4)

where subscripts denote a derivative e.g. @C
@N � CN : When f = 0, we have no

tolling and when f = 1 the toll is set optimally, any non optimal toll can be
considered by using f 6= 1:
Equilibrium usage is determined by the condition that the willingness to pay of
the last user equals the users cost, that equals the time cost plus the toll:

P (N) = C (N;K) + � : (5)

Given (3), (1) and (4), this solves for N :

N� (K) =
h
(q0)

1
� AKs

i �
s�+1

; (6)

where A � 1
�(1+fs) : Usage is a positive function of capacity and a negative

function of the toll (f).

4.2.2 Optimal capacity

In our simple partial equilibrium model, welfare is equal to the area below the
demand curve minus the total social cost:


 =

Z N

n=0

P (n) dn� C (N;K)N � F (K) : (7)

The �rst order condition for optimal capacity is:

@


@K
= �CKN � FK + [P (N)� C (N;K)� CNN ]

@N

@K
= 0 (8)

Substituting (5) and (4) the �rst order condition can be rewritten as

�CKN � FK| {z }
(1)

+ (f � 1)CNN
@N

@K| {z }
(2)

= 0 (9)

Term (1) in (9) represents the savings in user costs of an extra unit of capacity
minus the marginal capacity cost. With optimal pricing (f = 1), the second
term (2) dissapears. Term (2) in (9) incorporates the e¤ects of induced demand.
Suppose now that usage is under-priced (f < 1). Given @N

@K > 0 , term (2) is
negative which might suggest that the marginal bene�ts of capacity expansion
are reduced ( since �CKN > 0), as a result the second-best capacity would be
less than �rst-best capacity. However, with a suboptimal toll usage, N and CK
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in term (1) are greater than in the �rst best. The net e¤ect of these opposing
e¤ects is ambiguous a priori.
Solving the �rst order condition with respect to the capacity yields:

K� (N) = B
1

s+"N
s+1
s+" ; (10)

where B � �s
"k

1+�fs
1+�s :

Solving (6) and (10) simultaneously, we obtain the following expressions for the
optimal usage and capacity in function of the parameters f; �; "; s and � that
are included in A, B and C.

N� =

"
B
h
A (q0)

1
�

i (s+")�
s�

# s�
C

and (11)

K� =

"
B
h
A (q0)

1
�

i (s+1)�
s�+1

# s�+1
C

; (12)

where C � (s+ ") + s� ("� 1) : We see that the optimal usage and capacity
are decreasing in capacity cost k. Depending on the values of s; " and �, the
optimal capacity for non-optimal tolling will be either larger or smaller than the
�rst-best capacity.

4.3 Uncertainty on demand

In our model we deal with an uncertainty of demand that is long term or macro-
economic in nature. Economic growth and location of �rms are not perfectly
known at a horizon of 5 to 15 years and this means that the aggregate demand
level is unknown. We assume, however, that when the infrastructure has been
constructed, the level of demand, congestion and the (perfect or imperfect) toll
are known by everybody and there is no remaining uncertainty for the users.
This is the justi�cation for using utility functions without risk aversion. This
contrasts with the models of Kraus [8], D�ouville and McDonald [5] that deal
mainly with �stochastic�uncertainty at the level of the individual user. Their
users decide while not knowing what is the available capacity. Arnott, et al.[1]
deals with the two cases: what they call �perfect information case�is useful for
our problem, their imperfect information case deals more with the �stochastic�
demand.

The simplest way to model demand uncertainty is to assume that demand can
take only two values (low or high)23 . With probability 0 � P � 1 the demand
function is given by:

N (P ) = q�0 P
�� (13)

with probability 1� P it is given by:

N (P ) = q+0 P
�� (14)

2We could generalise our results by introducing continuous probability distributions. See
[1] for an illustration.

3We use a model formulation where the demand level for a given price is uncertain. An
alternative formulation would start from uncertain willingness to pay levels for a given price.
Would one obtain the same basic insights? The answer is yes but one has to take care of the
e¤ect of the model calibration.
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where q+0 > q�0 , so that, for equal user cost, demand will be higher. The
"expected" demand function is

N (P ) = �q0P
�� (15)

with
�q0 � Pq�0 + (1� P) q+0 (16)

We are interested in comparing two solutions. One where no account is taken
of the uncertainty range and where an average ("expected") demand function is
used. In the second approach (the "expected welfare" approach) we explicitly
take into account the range of demand functions that can materialize. In the
following sections we compare the capacity levels that are optimal when only
the expected demand functions are taken into account, with capacity levels that
are optimal when explicit account is taken of the range of potential demand
realizations.

4.3.1 Expected demand function approach

The optimal usage �N� and optimal capacity �K� when the expected demand
function is used, are given by (11) and (12), with �q0 instead of q0 :

�N� =

"
B
h
A (�q0)

1
�

i (s+")�
s�

# s�
C

and (17)

�K� =

"
B
h
A (�q0)

1
�

i (s+1)�
s�+1

# s�+1
C

: (18)

4.3.2 Expected welfare

If instead of using the expected demand function, one can maximize the expected
welfare with respect to N and K; taking explicitly the two realizations into
account. The expected welfare is given by:


 = P
"Z N

n=0

P (n) dn� C (N;K)N � F (K)
#
q0=q

�
o

+(1� P)
"Z N

n=0

P (n) dn� C (N;K)N � F (K)
#
q0=q

+
0

(19)

Solving the �rst order condition with respect to K yields

K̂� =

"
B

"
P
h
A
�
q�0
� 1
�

i (s+1)�
s�+1

+ (1� P)
h
A
�
q+0
� 1
�

i (s+1)�
s�+1

## s�+1
C

(20)

Proposition 1 If there is uncertainty in demand , then the use of an expected
demand function approach leads to too low capacity levels if the demand elasticity
is smaller than one (j�j < 1):
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Proof. The statement that the use of an expected demand function approach
leads to too low capacity levels corresponds to stating that

�K� < K̂�

rewriting �K� given in (18) as

�K� =

�
BA

(s+1)�
s�+1

�
Pq�0 + (1� P) q+0

� s+1
s�+1

� s�+1
C

;

substituting � � (s+1)�
s�+1 ; x � q

�
0 and y � q+0 ; this becomes

�K� =
h
BA� (Px+ (1� P) y)

a
�

i s�+1
C

:

Making the same substitutions in eq(20) gives

K̂� =
h
BA�

h
P (x)

a
� + (1� P) (y)

a
�

ii s�+1
C

Using the above two expressions, the inequality �K� < K̂� is equivalent with

[Px+ (1� P) y]
a
� < Px

a
� + (1� P) y

a
�

Since 0 � P � 1 this is the same as stating that the function f (x) = x
a
� is

convex. Since x is always positive, the function f is convex whenever its second
derivative is positive, which is true if and only if a� > 1; or � < 1: Thus, we can

conclude that if � < 1 then �K� < K̂�.

It is useful to analyze a few special cases in order to understand the intuition
behind this result.

If s = 1 (linear congestion function) and � ! 0 (inelastic demand) then we
see that the marginal bene�ts of an increase in capacity will increase more
than proportionally with the realized demand level: In this case it is clear that
it will be optimal to invest more than the optimal capacity for the expected
demand level �N: This was illustrated in Figure 1. When demand elasticity is
high (j�j > 1); there is a need to invest less than the expected demand function
would tell us to do. The reason is simple; a high (generalized) price elasticity
means that it is easy to reduce the number of trips (substituting to other modes
etc.). This implies that a capacity shortage, when demands happens to be high,
has only a small welfare cost.

It is important to note that our Proposition 1 holds, regardless of the pricing
regime since f can take any value. Of course the value of f will a¤ect usage
and optimal capacity, but it will do this in a consistent way. One can, however,
conjecture that with optimal pricing (f = 1) the welfare loss of non-optimal
capacity levels will be lower because tolls are a more e¢ cient rationing device
than congestion costs.

Our Proposition 1 is in line with Theorem 1 of Arnott et al [1]. They also �nd
that optimal capacity is larger when demand uncertainty is explicitly taken into
account. Their result is more general in that they use a more general form of
demand uncertainty. Our result is more general in that it holds for any tolling
policy and also for any iso-elastic capacity cost function.
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5 Analyzing a two-mode problem with demand
uncertainty

One often faces investment problems where two modes compete. A typical
example is the rail-air competition where both rail and air compete for the
same travellers (N) going from one city to another. While air travel is supplied
by airlines that can easily adapt capacity by hiring extra planes, the supply of
rail is characterized by an important �xed cost and requires long lead times.
The fact that for rail there is a large �xed cost and a long investment lag while air
can adjust its capacity fairly easily (provided that there is already some airport
infrastructure) adds an additional feature; it implies that rail has to decide
�rst whether it wants to invest or not and if it does, how much. A similar
problem exists in freight transport where the construction or improvement of
inland waterways has a long lead time while the capacity of road freight can be
more easily adjusted at least when the road network is dense. Throughout the
rest of this text we will use the rail-air interpretation.

We assume that the cost function for rail is given by

CCr = KF + lrnr + kK (21)

where KF are the �xed costs, lr the constant variable cost per passenger, nr
the number of passengers, k is the constant average cost of capacity and K
the capacity (tracks, trains etc.). The combination of a high �xed cost and a
constant marginal capacity cost allows us to approximate cost functions with
increasing returns to scale4 .
For air, we assume that the �xed costs can be neglected and that the variable
costs per passenger (la) are constant. The cost function is given by:

CCa = lana (22)

We use the simplest demand speci�cation. Demand is �xed (unlike the one
mode case) at level N and users select the mode with the lowest generalized
price (Wardrop principle).

We are interested in how demand uncertainty will in�uence investment decisions
in rail. To obtain a better insight into the problem we will start with the case
where there is no uncertainty.

5.1 No uncertainty case

5.1.1 User equilibrium

We assume the same functional forms for the user cost of rail as in the previous
section but take the special case that s = 1 (linear in volume capacity ratio).
The generalized price for rail use is then,

UCr = �+
�nr
K

+ � r (23)

4The cost function for rail is highly simpli�ed here. Compared to other modes like air and
road it has important economies of scale in density. The simpliest representation is a linear
formulation with �xed costs.
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where � is a mode speci�c user cost. We assume that rail is optimally priced,
i.e. toll equals the resource cost plus the social marginal external congestion
cost, i.e.

� r =
�nr
K

+ lr (24)

By assumption, in air transport there is no congestion and the users�costs for
air are simply equal to the fee charged by the airline (�a). Because we assume
that average costs for air transport supply are constant, we can assume that
there is perfectly competitive pricing5 as well:

UCa = �a = la (25)

We assume perfect substitutability between the two modes and assume that
in equilibrium, users�costs are equalized across modes. The market allocation
between modes will depend on the di¤erence between the �xed user cost of both
modes. Let L � la � lr � �; if the average cost for air transport is lower than
the �xed users costs for rail (L < 0) everyone will travel by air (nr = 0) : For
high average costs for air transport

�
L > 2�N

K

�
; rail will serve the whole mar-

ket ( nr = N). For values in between
�
0 � L � 2�N

K

�
, both modes will attract

travellers: nr = LK
2� and na = N � nr:

5.1.2 Optimal rail capacity

There is one interesting result in our certainty case: if it makes sense to invest
in rail it is always bene�cial to serve the whole market.

Proposition 2 Assuming full substitutability between modes, �xed total de-
mand, and given the cost functions for the two modes de�ned in (21) and (22),
if it is bene�cial to invest in the high �xed cost mode (rail), it is optimal to serve
the whole market.

The proof of this proposition is given in Appendix A.

The intuition can be understood as follows. Forget about the �xed cost for
the moment. The best rail capacity is the capacity which minimizes the average
time cost plus the variable capacity cost. This total optimised variable cost is
constant for the capacity function we selected. Consider now total demand N ,
for this demand either the total optimised variable cost is su¢ ciently lower than
the average variable air transport cost so that the rail advantage can cover the
�xed rail cost or this is not the case. This implies that we have either rail or air
covering the whole market.

The following proposition tells us under which circumstances it makes sense to
invest in rail and if this is the case, what the optimal capacity level is.

Proposition 3 Under the same assumptions as in Proposition 2 it makes sense
to invest in rail if and only if

k <
L2

4�
(26)

5One could introduce monopolistic pricing by airlines but this would distract our attention
away from the central issue: the optimal level of capacity under uncertainty.

12



and
KF <

�
L� 2

p
�k
�
N (27)

If both conditions are satis�ed, then the optimal level of capacity is:

K� =

r
�

k
N (28)

For a proof, see Appendix B.

Figure 3: Marginal bene�t (solid line) and marginal cost (dashed line) of a
capacity extension.

In Figure 3 we represent the marginal cost and marginal bene�ts of a capacity
extension for rail. We need k < L2

4� , before any investment in rail makes sense

as air will otherwise always be cheaper. For any k that is smaller than L2

4� , the
optimal level of capacity increases with a lower k. For an optimal choice of K
(covering the whole market with rail) the savings in total variable cost for rail
and air has to be su¢ ciently high so that the �xed rail cost can be compensated.

5.2 With Uncertainty

Suppose that there are two possible realizations of N : with probability P we
have N = N�, and with probability (1�P) we have N = N+ where N+ > N�.
The expected number of users is equal to: �N � PN� + (1� P)N+:

Investment decisions will be made before knowing the realization of N . Once
the investments are made, demand is observed and prices are set with perfect
knowledge of demand levels. We are interested in �nding the welfare gains a
planner can achieve when he explicitly uses the information that demand is

13



uncertain rather than to use the expected demand level only. We will show
that, although we work with an inelastic demand assumption, the result of
Proposition 1, that overinvestment is bene�cial, does not carry over to our two
mode setting. The main reason is that in the unexpectedly high demand case,
calling upon the second mode may be more economical than investing in extra
capacity.

5.2.1 Expected demand approach

If the social planner takes the expected demand as only information, it is clear
that the results will be the same as before without uncertainty and with N = �N
we have that: if and only if

k <
L2

4�
(29)

and
KF <

�
L� 2

p
�k
�
�N (30)

then rail will invest and will do so until

�K� =

r
�

k
�N (31)

5.2.2 Expected welfare approach

The expected welfare is given by

EW (K) = PW (K) jN=N� + (1� P)W (K) jN=N+ (32)

We can distinguish three cases (or regions) which are depicted in Figure 4,
where the solid line represents the user cost for rail and the dotted (red) line
represents the user cost for air (note that both functions are shifted downwards
by a constant factor �+ lr).

Figure 4: The three possible regions.
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In the �rst case (region I in Figure 4), we have that K < 2�N�

L � K̂�: In
this case, rail will only serve part of the market whether or not demand is low.
Uncertainty of demand would thus have no in�uence on the results. We know
from Proposition 2 that this can never be optimal. If it is useful to build a new
rail line it will take the whole market (so at least N�) and capacity will be at
least K̂�:
In the other two cases, it may be bene�cial for rail to invest. In region III of Fig-

ure 4
�
where K > 2�N+

L � K̂+
�
, rail is certain to serve the whole market even

in the high demand case, while in region II of Figure 4
�
where K̂� < K < K̂+

�
rail

serves all users if N = N�; but if N = N+; then rail shares the market with
air.
The resulting expected welfares are di¤erent in both cases:

EW III (K) = PWH (K) jN=N� + (1� P)WH (K) jN=N+ (33)

EW II (K) = PWH (K) jN=N� + (1� P)WP (K) jN=N+ (34)

where WH (K) (given in (42)) is the welfare when rail serves all users and
WP (K) (given in (39)) is the welfare when rail shares the market with air.
Solving the �rst order conditions for an optimal choice of K gives:

K�
III =

r
�

k

rh
P (N�)

2
+ (1� P) (N+)

2
i

(35)

as optimal capacity if K > K̂+. Under the constraint that K̂� < K < K̂+;
optimal capacity is:

K�
II = 2�N

�

s
P

4�k � (1� P)L2 : (36)

Whether the social planner chooses a capacity equal to K�
II or K

�
III will depend

on the parameter values of the problem. In Appendix C, we derive the conditions
that determine the regime.
Will the social planner invest more or less when he uses the expected welfare

approach rather than using the expected demand approach? Using Proposition
1 we see that K�

III >
�K� , and in this case the social planner will overinvest.

In this regime the social planner is sure to be able to serve the whole market
independently of the �nal realization of the demand. The intuition behind the
"overinvestment" is the same as in the one mode situation. In the second regime
the social planner is not sure whether it will have to share the market with air
or not. We can show that the planner overinvests (invests more than �K� ) only
if

k <
L2

4�

"
(1� P)

�
�N
�2�

�N
�2 � P (N�)

2

#
: (37)

The higher the probability of having a low demand, the less likely it will be that
any overinvestment occurs. If the di¤erence between high and low demand is
large, the social planner will be more cautious and overinvestment will again be
less likely.
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Figure 5: Capacity choices in the two mode problem.

5.2.3 Summary

The results of the two-mode model are summarized in Figure 5. The two critical
parameters are the variable investment cost k (vertical axis) of the rail mode and
the �xed investment cost of the rail mode KF (horizontal axis). We have 4 types
of solutions. First, if the variable and the �xed costs are too high it is better
not to invest in rail at all: these are the North, East and North-East regions
(zone I) in Figure 5. In this case all tra¢ c is served by the other mode (say air).
When it makes sense to invest in rail, one will always invest such as to take the
full market in the low demand case. In the second type of solution (zone II in
Figure 5) one invests less in the expected welfare approach than in the expected
demand approach (K� < �K�). This will be the case when the variable cost of
capacity is relatively high or when the probability of low demand outcome is
high. In the third regime (when the variable cost of capacity is lower, zone III
in Figure 5) it makes sense to provide a capacity K� in excess of what would
be optimal for expected demand ( �K� < K� < K̂+): In the fourth case (zone IV
in Figure 5) it is optimal to provide a level of capacity that always takes the
whole market even if the demand level turns out to be high ( �K� < K̂+ < K�).

Overall, "overinvesting" in capacity (K� > �K�) is not in general better in this
model. When the variable cost of capacity is relatively high it is better to
serve the "unexpected" part of the market with the other mode that is �exible.
As in the one mode model, "overinvestment" can be optimal when the cost of
capacity is relatively high because congestion costs remain a convex function of
the demand over capacity ratio.
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5.3 Conclusions

In this paper we have analyzed whether overinvestment in capacity, in the sense
of investing more than for the expected demand level, can be bene�cial. In both
the one mode and the two mode case we found that this can be the case. The
main reason is the presence of congestion costs that tend to be convex in the
demand over capacity ratio. Overinvestment is not optimal when demand is
relatively elastic or when a more �exible substitute mode is available. Even if
the full range of possible demand realizations are taken into account, demand
uncertainty remains costly when capacity decisions have long lead times. The
"overinvestment strategy", studied in this paper, should be compared with other
strategies such as investment in improved information on future demand and
more �exible capacity extension options.

A Proof of Proposition 2

Assume that rail invests so that its capacity is insu¢ cient to serve the whole
market, in other words K < 2�N

L � K̂, where K̂ is by de�nition the minimum
capacity level that decreases the users cost of rail su¢ ciently to take the whole
market. The market share of rail will be equal to nr = LK

2� .
Welfare of providing rail is equal to the sum of toll revenues (TR), minus

the total cost of providing rail (TC):

WP = CS + TR� TC = �n2r
K

� kK �KF (38)

Substituting nr;

WP =
L2K

4�
� kK �KF (39)

The �rst order condition for optimal capacity is

@W

@K
=
L2

4�
� k = 0 (40)

We see that, as usual, the �rst order condition tells us that the social plan-
ner will invest up to the point where marginal bene�ts equal marginal costs.
Consequently the social planner will choose not to invest when

k >
L2

4�
; (41)

since then welfare will be negative.
If, however, k is smaller than L2

4� and since the welfare function W
P is linear in

capacity, the social planner will want the capacity to be as large as possible. At
a certain point K will become larger then the boundary value K̂ and rail will
attract all the users.

B Proof of Proposition 3

If capacity is such that the user costs for rail are always inferior to that of air,
or if capacity satis�es K � K̂ = 2�N

L ; then rail will serve the whole market and
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nr = N . Welfare is in this case equal to

WH = LN � �N
2

K
� kK �KF (42)

The �rst order condition for an optimal choice of capacity is:

@W 2

@K
=
�N2

K2
� k = 0 (43)

We now see that the marginal bene�t of an increase in capacity
�
= �N2

K2

�
de-

creases with capacity while the marginal cost (k) is constant.
Optimal capacity is

K� =

r
�

k
N (44)

The condition that it is bene�cial to continue to invest beyond the minimum
level to have the whole market (K� > K̂) is:

K� =

r
�

k
N > K̂ =

2�N

L
, k <

L2

4�
(45)

which is ful�lled whenever the social planner chooses to invest. Substituting the
expression for K� in the welfare function, we see that it will only be positive if
the �xed cost is not too high:

KF <
�
L� 2

p
�k
�
N (46)

C Conditions on capacity cost and �xed cost

The social planner will invest in rail only if two conditions are ful�lled. The
�rst condition requires that the marginal bene�ts of a capacity expansion should
exceed the marginal costs (MB > MC). The second condition implies that
the planner will only invest if the welfare is positive (W > 0). While the �rst
condition can be translated into a condition on the capacity cost k; the second
condition gives us a condition on the �xed cost KF :
The marginal bene�ts of a capacity expansion are di¤erent depending on whether
or not rail serves the whole market, and can be derived from the welfares given
in (39) and (42):

MBP =
L2

4�
; MBW =

�N2

K2
:

Using these we can derive the marginal bene�ts in the three di¤erent regimes:

MBI =
L2

4�
;

MBII = P � (N
+)

2

K2
+ (1� P) L

2

4�
;

MBIII =
�

K2

h
P
�
N��2 + (1� P) �N+

�2i
:
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The marginal costs of a capacity expansion are the same for all three regimes:MC =
k.
Knowing that in order to invest we need the marginal bene�ts to be larger than
the marginal costs. We see that if

k >
L2

4�
;

the marginal bene�ts will always be inferior to the marginal costs and it will
never be interesting to invest in rail. If

MBIII
�
K̂+

�
< k <

L2

4�
;

then it will never be bene�cial to invest in a capacity that exceeds K̂+; in other
words the social planner will not invest as to ensure full coverage of the market
in the case of high demand. Finally, if

k > MBIII
�
K̂+

�
=
L2

4�

h
P (N�)

2
+ (1� P) (N+)

2
i

(N+)
2 ;

then it is so cheap to invest that the social planner will have an interest to invest
in rail so that it will always serve the whole market. These conditions are in
so far that the welfare is positive, for this to be true the �xed costs may not be
too large. The conditions on the �xed cost KF are:

EW III (K�
III) > 0, KF < L �N � 2

r
�k
h
P (N�)

2
+ (1� P) (N+)

2
i

(47)

EW II (K�
II) > 0, KF < PLN�: (48)
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