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Abstract 
 

In this paper, we develop an econometric model to estimate the impacts of Electronic Vehicle Management 
Systems (EVMS) on the load factor (LF) of heavy trucks using data at the operational level.  This technology is 
supposed to improve capacity utilization by reducing coordination costs between demand and supply.  The 
model is estimated on a subsample of the 1999 National Roadside Survey, covering heavy trucks travelling in 
the province of Quebec. The LF is explained as a function of truck, trip and carrier characteristics.  We show 
that the use of EVMS results in a 16 percentage points increase of LF on backhaul trips.  However, we also find 
that the LF of equipped trucks is reduced by about 7.6 percentage points on fronthaul movements. This last 
effect could be explained by a rebound effect: higher expected LF on the returns lead carriers to accept 
shipments with lower fronthaul LF.  Overall, we find that this technology has increased the tonne-kilometers 
transported of equipped trucks by 6.3% and their fuel efficiency by 5%.   
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Information Technology and Efficiency in Trucking 

 

1. Introduction 

The impact of Information and Communication Technologies (ICTs) on efficiency and productivity has 

been a central issue in economics for several decades.  Early studies undertaken in the seventies and 

eighties, have found very little impact of ICTs on productivity using aggregate data leading to the so-

called productivity paradox (for a review of these early studies see Brynjolsson and Shinku, 1996).  More 

recent studies have used data at the industry or firm level and have yielded more encouraging results (see 

Pilat, 2004 for a review).  In many cases ICTs appear to have a positive impact on productivity but the 

importance of the effect varies according to firm, market and economy characteristics.  In this paper, we 

contribute to this literature by empirically assessing the impact of ICTs on the trucking industry using data 

disaggregated at the operational level.   

Specifically, we measure the impact of new electronic vehicle management systems (EVMS) on 

capacity utilisation.  The trucking industry is facing a complex matching problem between demand and 

capacity.  A carrier needs to have the right truck at the right time and place in order to respond to a shipper 

demand.  This matching problem necessarily leads to some capacity under-utilization with trucks 

travelling empty or less than fully loaded.  According to the CCMTA (2002), about one out of three heavy 

trucks travelling on Canada’s major highways are empty and more than half of those with a charge are not 

100% full.  EVMS feature two functionalities that may lower coordination costs between capacity and 

demand: i) they provide real-time transmission of the exact positioning of each truck of a carrier’s fleet 

using GPS technology and ii) they enable dispatchers to initiate real-time communication with drivers via 

onboard computer.  With EVMS, dispatchers may therefore be able to coordinate vehicle activities in a 

more efficient manner, thereby increasing the trucks load factor (LF).  In fact, providers of this technology 

insist in their promotional material on the opportunities offered by EVMS to reduce empty backhauls.  We 

test the impact of this technology on the LF of heavy trucks using data colleted by the 1999 National 
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Roadside Survey (NRS99).  The survey involved more than 65,000 drivers interviewed randomly at 238 

roadside sites throughout the 25,200 kilometres of Canada’s main road network.  We use a sub-sample of 

NRS99 covering trucks that have travelled at least in part in the province of Quebec.  Beside the adoption 

of EVMS, our econometric model explaining LF includes variables characterizing the truck, trip and 

carrier.   

Our analysis is related to a recent study by Hubbard (2003), examining the impact of EVMS on the 

US trucking industry.  According to Hubbard, EVMS would have increased capacity utilization rates of 

equipped trucks by 13% leading to a 3% increase in the industry’s overall efficiency in 1997.  Besides 

focusing on the Canadian industry, our analysis diverges from Hubbard by using data disaggregatd at the 

operational level.  We observe the LF of trucks travelling on specific trips whereas Hubbard uses 

measures of capacity utilization at the truck level and aggregated over a one year period (i.e. loaded miles 

and the number of weeks the truck is in use).  Therefore, our data allows us to gain a better understanding 

of how EVMS affect LF depending upon the trip characteristics.  We test separately the effect of EVMS on 

“fronthaul” (F) and “backhaul” (B) trips.  Interestingly, we find that if EVMS increase LF on B trips by 

about 16 percentage points, this technology is also associated with a 7.6 percentage points reduction in F 

trips LF.  These results suggest that EVMS creates a sort of “rebound effect”.  By increasing the likelihood 

of finding a backhaul, the EVMS lower the unit cost of a delivery - fixed costs associated with the entire 

trip being spread over a larger total load – thereby promoting acceptance by the carrier of lighter F loads, 

or trips that require a longer initial empty runs (to go pick up the load).  Overall, our results suggest that 

this technology increases capacity utilization: we evaluate that tonne-kilometres (TKMs) transported 

would have increased by 6.5% for trucks equipped with this technology.  Taking into account the (low) 

adoption rate, this implies an industry-wide increase in TKM in the order of 0.83%.  Other significant 

factors positively affecting the LF on both types of trips include the truck size, the trip distance, the trailer 

versatility and the intensity of the economic relationship between the origin and destination.  On B trips, 

for-hire carriers and owner-operator appear to do better than private truckers.  Our main results are 

confirmed when EVMS is allowed to be endogenous.         
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These results are also important in the debate over the development of a durable transportation 

system.  Indeed, trucking activities are a significant source of environmental degradation.  They contribute 

to urban smog, noise pollution and greenhouse gas (GHG) emissions.  For example in Canada, while total 

GHG emissions have increased by 24% from 1990 to 2003, medium and heavy trucks emissions have 

jumped by 68.8% during the same period and now account for close to 6% of total emissions (see 

Environment Canada, 2005 and Natural Resources Canada, 2006).  Trucking does, however, also 

contribute positively to economic growth.  It is estimated that this industry generated in 2003 close to 50-

billions in revenues and employed some 320,000 full-time workers in Canada (see Transport Canada, 

2003).  More importantly, trucks are a vital input for most of the industries insuring the delivering of 

goods.  It is therefore important for public policy to promote the development of a trucking industry that is 

both efficient and sustainable.  Improvements in the load factor of trucks could provide a mean for 

achieving both objectives – a “win-win” solution à la Porter (see Porter and van der Linde, 1995).  Based 

on our results, it appears that EVMS have improved the energy efficiency of adopting trucks by about 5%.   

The rest of this paper is organized as follows.  In section 2, we provide a general overview of the 

functioning of the trucking industry and the challenges associated with matching capacities and demands.  

We also develop a simple theoretical model highlighting the potential effects of EVMS depending on the 

type of trips. In section 3, we describe the data, the empirical specification and the estimation techniques.  

Results are presented and discussed in section 4.  We conclude in section 5.  

 

2. Capacity management in the trucking industry 

The trucking industry is composed of two main segments: i) for-hire companies which transport the 

freight of others for compensation and ii) private trucking that involves carrying the company’s goods.  In 

dollar terms, it is estimated that private trucking accounts for about one half of the Canadian industry 

(Nix, 2003).  Besides these two segments, there are also owner-operators who own and drive their trucks 

and work on contract either for-hire or private activities. 
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 The productive capacity of a carrier depends upon its fleet size and structure.  Each truck offers a 

capacity that can be constrained either by the shipment weight or volume.  Moreover, some shipments 

require specialized trailers such as tanks for carrying liquids.  The rate of capacity utilization is determined 

by the portion of time trucks that are on the road (i.e. in use) and their LF.  Our analysis specifically 

focuses on the latter aspect.  Considering only the weight constraint, LF can be defined as: 

100(%) x
MCW
CWLF =   [1] 

with CW the cargo weight and MCW the maximal cargo weight a truck can carry.  It is easy to understand 

that LF is a key determinant of a carrier’s competitiveness.  Indeed, the cost per tonne carried clearly 

declines with LF, as several cost components are either fixed (for example the driver salary) or vary less 

than proportionally with LF (e.g. fuel costs). 

 It is also a key determinant of a carrier’s energy efficiency.  The energy efficiency associated with 

carrying a shipment weighting CW, over a distance D, using a truck with capacity MCW can be defined as: 

Energy
DxLFxMCW

Energy
DxCW

Energy
TKMEffiencyEnergy )100/(

===       [2]. 

It is the ratio of the output measured by the tonne-kilometres carried (TKM) and the energy consumed.  By 

definition, TKM is the product of the cargo weight and the distance over which it is shipped.  Using [1], 

we immediately obtain that the level of production is directly proportional to LF.  By contrast, the level of 

energy required to carry a shipment over distance D increases much less than proportionally.  Indeed, it is 

estimated that a truck fully loaded only consumes about 20% more fuel than if it is empty (see 

Bridgestone/Firestone, 2006). 

 However, optimizing LF is made complicated by the fact that both demand and capacity are time, 

location and equipment specific.  This complex matching problem necessarily leads to some under-

utilization of capacity, taking the form of either empty-runs or less than fully loaded trips.  Carriers can 

reduce these inefficiencies by trying to find complementary demands.   
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To illustrate these matching activities, let’s consider the following simple example: a carrier 

located in A is contacted to transport a load from A to B (see figure 1).  To optimize its LF on the whole 

journey (ABA), the carrier may engage in costly search for complementary demands.1  First, the shipment 

initiating the fronthaul trip from A to B – which we will refer as the F trip - may not fully load a truck, in 

which case the carrier may want to “group” various shipments.  Second, as the demand from a client is 

rarely bi-directional, the carrier needs to find a returning load if it wants to avoid an empty backhaul trip 

from B to A (from now on referred as B trip).  Another source of inefficiency exists when the truck base is 

not close to the shipment origin requiring an initial empty run.  Similarly, on return, a truck may be 

deviated in order to pick up a backload. Various market intermediaries (brokers, web load matching sites) 

play a role in coordinating demands with capacities.  At a carrier level, dispatchers are in charge of 

optimizing capacity utilization (see Hubbard, 2003 for a description of the dispatcher role).  Obviously, 

their work involves trading off search costs with the opportunity cost associated with a less than full load 

trip. 

In the above example, the truck journey is initiated by the fronthaul shipment.  In reality, there 

may be cases where the journey is initiated by a shipment to be carried from B to A, in which case the AB 

trip is the joint product for which the carrier needs to find a complementary demand.  Ideally, we would 

like to know which trip (F or B) has initiated the journey and which one is the joint product.  

Unfortunately, the data does not allow us to distinguish between these two cases.  However, B trips (BA in 

our example) are certainly more likely to be joint products.  Indeed, carriers most often initiate trips in 

response to local demands.  For example, carriers located in A are more likely to be contacted by shippers 

in A than in B.  Indeed, shippers located in A probably have better information on carriers located in A 

than in B.  Moreover, dealing with carriers located in A may involve longer delivery delay as trucks should 

first be sent from A to B before being able to pick the load.  Obviously, this is not to say that this type of 

situations does not occur, but simply that it is less likely and will usually involved specialized equipments. 

                                                 
1 Search costs not only include the cost associated with identifying complementary demands but also the cost of 
having a truck unused during the search process. 
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 The level of effort for finding complementary demands and probability of success will depend 

upon the truck, load, carrier, trip and market characteristics.  As mentioned above, it is certainly much 

more difficult to find complementary demands for a load that requires very specialized equipments.  Since 

for-hire companies are specializing in transportation activities, they may have lower search costs and thus 

could be more successful in avoiding empty or less-than full runs.  Moreover, private companies face legal 

and insurance constraints that may limit their ability to serve external demands.   The size of companies 

may also positively affect their abilities to find complementary demands.  The distance between A and B is 

certainly a significant factor affecting the level of effort a company will invest for finding a load on the 

return trip.  Indeed, the opportunity costs associated with returning empty is certainly increasing with 

distance.  The demand for transport also depends upon the intensity of the social and economic 

relationships that exist between both of the trip extremities.            

 New satellite-based communication and localization technologies may also help increase the LF 

by reducing coordination costs between demands and supplies.  As described by Hubbard (2003), 

traditionally carriers have relied on a system of “check-and-call”, where drivers periodically phone their 

dispatcher in order to provide information on their localization.  Cell phones now also allow dispatchers to 

initiate the communication.  However, since the late eighties, EVMS are combining GPS technologies with 

on-board computers.  These systems therefore allow precise real-time localization of all a carrier’s 

vehicles as well as direct communication with the drivers.  Moreover, the information provided by EVMS 

may feed software that support dispatching decisions (e.g. rerouting trucks).  Manufacturers of these 

technologies argue that they are particularly useful to reduce empty backhauls.2  For F movements, the 

impact of EVMS is less obvious.  First, it is rare that trucks partially loaded are re-directed in F 

movements, unless this has been decided in advance (see Hubbard, 2003).3  Second, by increasing the 

                                                 
2 For example, the web site of Shaw tracking reports the following customer testimonial: "Shaw Tracking allows us 
to reduce our empty miles considerably." 
(http://www.cancomtracking.ca/pages/about_testimonial_details.asp?TestimonialID=1) 
3 Various shipments should indeed be loaded in the truck in a specific order taking into account their respective 
destination as well as the weight distribution.   
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probability of finding a backhaul load, EVMS may generate a sort of “rebound effect” as illustrated by the 

simple model below.4   

Let’s suppose that a carrier receives orders for shipments from A to B.  Each order is characterized 

by a weight (or volume) that leads to a specific load factor ABLF .  To keep the analysis simple, we assume 

that ABLF  is uniformly distributed on [0,1].  On the returning trip BA, potential shipments are also 

distributed so that the resulting load factor BALF  is uniformly distributed on [0,1].  However, as argued 

above, finding an adequate backhaul load may not be automatic or may require some waiting time.  We 

therefore assume that the probability of getting an order on the return trip is 1<ν .  We further suppose 

that the price of a shipment depends upon its weight (or load factor) and that the carrier is a price taker.  

Specifically, we assume that the carrier receives α LF  per shipments.  When receiving a new order from 

A to B, the carrier has to decide whether to accept or refuse it depending upon the whole journey expected 

profit (π ).  Assuming risk neutrality, it will accept if: 

0)]|[(][ ≥−≥+−−= cLFLFLFEdcLFE BA
m

BABAAB αναπ   [3] 

with []E  representing the expectation, c  the costs directly associated with a shipment (i.e. the loading and 

unloading costs, the extra fuel cost required to carry the load, etc.) and d  the fixed cost generated by the 

round trip journey (i.e. the trucker’s wage, the fuel needed for moving the empty truck, etc.) and BA
mLF  is 

the minimal returning LF that is accepted by the carrier.  In fact, on the B trip, the carrier will accept any 

load such that 0≥− cLF BAα  so that 
α
cLF BA

m = .  This implies that 

α
α

2
]|[ cLFLFLFE BA

m
BABA +

=≥   [4]. 

Replacing [4] in [3] determines the minimum acceptable load factor on the F trip: 

 

                                                 
4 This effect is indeed analogous to the well known rebound effect in the energy efficiency literature (see Greening et 
al., 2000).  For example, improvements in the fuel efficiency of cars lower operating costs which in turn stimulate 
driving.  This effect partially counteracts the fuel consumption reduction associated with better fuel rating.  
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α
αν

α 2
)( cdcLF AB

m
−

−
+

=   [5]. 

To be acceptable, the fronthaul shipment revenues should cover the fixed roundtrip costs, plus the F 

segment costs minus the expected net revenues generated by the B segment.  The expected load factor on 

AB is therefore going to be: 

2
1]|[

AB
mAB

m
ABAB LFLFLFLFE +

=≥  [6]. 

It is immediate from [5] and [6] that the expected load factor observed on F trips is declining with ν .  If 

EVMS do increase ν , we could therefore very well observe that equipped trucks have lower average LF 

on F trips.  Interestingly, our data set offers a unique opportunity to test for this possibility.5       

    

3. The Empirical Analysis 

 

3.1 The Data 

Our empirical analysis uses data collected during the 1999 National Roadside Survey coordinated by the 

Canadian Council of Motor Transport Administrators.  The main objective of this survey was to draw a 

picture of heavy trucks activities in Canada.  More than 65 000 truck drivers were randomly selected and 

interviewed at 238 survey roadside sites throughout the 25,200 kilometres (km) of Canada’s main road 

network.  Data was collected during representative weeks in the summer and fall of 1999.  The 

questionnaire included two parts; one compulsory and the other optional. About 88% of the drivers 

accepted to respond to both parts of the survey. 

In this study, we exploit a sub-sample of the NRS99 covering heavy trucks surveyed at one of the 

51 roadside checkpoints in the province of Quebec, along with trucks surveyed elsewhere in Canada, but 

having travelled part of their trip in Quebec.6  The sample is restricted to long distance trips as defined as 

                                                 
5 Note that the backhaul average load factor which is ]|[ BA

m
BABA LFLFLFE ≥ν should increase with EVMS if this 

technology does indeed help coordinate demand and supply. 
6 Administrative and confidentially policies prevented us to get access to the whole data set.   
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trips of at least 80 km or those connecting two different “regions”.7  The Quebec Ministry of Transport 

granted us access to this sub-sample.  The main advantage of using this sub-sample is that it underwent 

extensive consistency checks by the Ministry (see Ministère des Transports du Québec, 2003). 

Each observation corresponds to a truck on a specific trip and contains a rich set of information on 

the truck, its load and the type of company for which the truck operates.  One significant shortcoming is 

that it does not contain any information on the carrier size.  We are therefore unable to control for this 

factor.  This could create spurious correlation between LF and EVMS if, for example, larger carriers are 

more likely to adopt this technology and are also more efficient.  We tackle this issue in section 4.3 where 

EVMS is allowed to be endogenous.  Beside the information collected during the interviews, a traffic 

count was realized at each site in order to obtain a representative picture of the whole population.  Trucks 

were classified according to their type (straight truck, tractor-trailers etc.) and the day and time of their 

passing through the survey sites.  Based on these counts, expansion factors (i.e. the inverse of the 

sampling weights) were associated to all observations. 

A trip, as defined by the NRS99, is ‘a continuous move by a truck to haul cargo.  The trip starts 

when the first cargo shipment on-board is picked-up and ends when the last cargo shipment on-board is 

delivered….An empty truck is also on a trip, and that trip lasts as long as the truck is empty’.  It is 

therefore important to underline that we do not observe the truck complete roundtrip itinerary.  The 

observed segment may also not fully represent a complete F or B trip.  Indeed, suppose a carrier sends its 

truck from its base in Montreal to pick up a load in Ottawa to be delivered in Vancouver.  While 

conceptually this could be viewed as one F trip with two segments, the NRS99 reports two different trips 

depending upon where the truck is intercepted between Montreal and Ottawa, or between Ottawa and 

Vancouver (the loading condition changes in Ottawa).  Despite these limitations, the data base still offers 

an opportunity to distinguish between F and B segments.            

                                                 
7 For Quebec, a “region” corresponds to an administrative region or a metropolitan census region.  For the rest of 
Canada and the U.S., a region is either a province or a state. 
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From the Quebec Ministry of Transport’s data set, we have applied several additional criteria to 

construct our own sample.  For example, we eliminated observations for which information on the 

analysis variables was missing, or corresponding to truck configurations not specifically designed for 

transportation activities (e.g. garbage trucks, tractor without trailer).  The detailed description of the 

exclusion criteria are described in appendix 1.  Our final sample includes 9091 observations (4,532 F trips 

and 4,559 B trips) down from an initial 20,101 sample size.  These observations correspond to a total of 

87,702 trips when taking into account the expansion factors.  Next, we describe the empirical 

specification. 

 

3.2 The Empirical specification 

The general structure of our empirical model is as follows: 

),,(, CIUfLF iu =   [7] 

iuLF ,  is the load factor of truck u on trip i.  It is explained as a function of variables characterizing the 

truck (U), trip (I) and carrier (C).  The selected explanatory variables are expected to affect a carrier’s 

ability or its level of effort for finding complementary demands.  We estimate model [7] separately on the 

sub-samples of observations corresponding to F and B segments.  As explained above, the issue of finding 

complementary demands is likely to be more acute on B trips.  To classify an observation as F or B, we 

compare the relative position of the truck’s base with the trip origin and destination.  If the distance 

between the truck’s base and the trip origin is less than half the distance between the base and the trip 

destination, we classify the observation as a F segment – the truck is indeed clearly moving away from its 

base.  Correspondingly, B segments are those for which the distance base-destination is less than half the 

distance base-origin (i.e. the truck is getting closer to its base). We eliminate observations for which the 

two distances are not very different, since it is much more perilous to classify those as either a F or B 

segment.      

 



 11

3.2.1 The Load Factor 

We use as dependent variable the evaluation of LF provided by the driver during the interview.  Five 

responses are possible, namely: 0%, 25%, 50%, 75% and 100%.  Moreover, if the response is 100%, a 

follow up question asks if the truck is full in weight or volume.  This measure of LF has therefore the 

advantage of taking into account both capacity constraints.  Obviously, this measure is an approximation 

of the true LF, that we denote LF* to mean that it is unobserved (latent).     

 

3.2.2 The explanatory variables 

Table 1 briefly describes the explanatory variables included in our analysis.  As already mentioned, we are 

particularly interested in the impact of EVMS – a dummy variable set to one if the truck has an on-board 

computer and a satellite dish.  If these systems reduce coordination costs, we would expect the variable 

EVMS to have a positive effect on LF on backhaul.  In fronthaul segments, the effect could be somewhat 

different as already explained.   

The truck size is captured by the number of axles (AXLES).  Since it is likely that the opportunity 

cost associated with driving empty increases with the truck size, we would expect this variable to have a 

positive impact on LF.  We also control for the truck base localization, distinguishing truck based in the 

province of Quebec, the rest of Canada (ROC) and the US.  Given that the structure of our sample only 

includes trucks having travelled in Quebec, it is possible that Quebec carriers dispose of an advantage in 

terms of market knowledge.  Also, US trucks are very likely to carry goods between the US and Canada 

and should therefore be affected by the trade imbalance that exists between the two countries.     

The type of trailers has an impact on the nature of the cargo that can be transported.  The 

possibilities for pooling several shipments, as well as the probability of finding complementary return 

loads, are more limited for specialized equipment.  Table 1 presents the classification we use in this study, 

and that is partially based on Hubbard (2003). 

We also control for the nature of the carrier operations (for-hire versus private trucking), as well 

as if the driver is an owner-operator.  Once again, for-hire carrier and owner-operator may have more 
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incentive and flexibility for finding complementary demands than private carriers for which transport 

activities are only an input in their production process.  However, it is worth mentioning that owner-

operators usually operate small companies (on average seven employees, see Nix, 2003) and therefore 

may have less capabilities for finding complementary demands.   

As the opportunity cost of driving empty increases with DISTANCE, we expect LF to be 

positively correlated with this variable.  We also include in our model two variables measuring the 

importance of economic relationships between the regions of origin and destination of the trip.  The 

variable POPULATION represents, using a gravitational formulation, the potential interaction force 

between the populations at the origin and destination.  For Canada, the population data are collected at the 

level of the census division and in the US at the county level.  The variable INCOME corresponds to the 

average of the median household income at the origin and destination.8    

 

3.2.3 The estimation method 

By definition, LF is bounded between 0% and 100% and takes discrete values that are naturally ordered.  

For these reasons, we estimate a multinomial ordered probit (MNOP) model (see for example Wooldridge, 

2001).  The latent response *
iLF  for observation i is determined according to: 

iiii uEVMSxLF ++= θβ'*   [8] 

with '
ix  representing the vector of the control variables, β being a parameter vector, and θ the parameter 

associated with the EVMS indicator.  The observed responses are linked to the latent variable by the 

following threshold model: 

 

                                                 
8 For Canada, the data are once again gathered at the census division level.  For the US, we use the county data for 
Quebec neighbouring States and State level data for the rest of the US.   
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with 1α to 4α being threshold parameters to be estimated jointly with β and θ. 

We assume that the error terms iu  are independently normally distributed.  The sampling 

structure is taken into account by weighting each observation by the inverse of the expansion factor when 

constructing the log-likelihood function (see Wooldridge 1999 and 2001).9  Another econometric concern 

is the potential correlation between the error term and EVMS, which would bias our results.  Unobservable 

factors (such as the carrier size) could indeed affect both LF and the adoption of EVMS.  Trucks with this 

technology could also be assigned to roads where it is more difficult to find a backload.  We address this 

issue in section 4.3.  

        

4. The Empirical Results 

 

4.1 Preliminary evidence 

Before presenting the econometric results, it is useful to examine some basic descriptive statistics.  Table 

2 reports the means and standard deviations for the variables computed over our sample.  Clearly, the 

average LF is higher on F trips than on B trips, thereby supporting our hypothesis that trucks movements 

are most often initiated by local demands.  In fact, the difference in the percentage of empty trucks 

explains that this difference for the average LF of loaded trucks is very similar on both type of trips at 

about 90%.  The adoption rates of EVMS are quite limited, but recall that the data dates back to 1999.  The 

                                                 
9 If the sampling structure is exogenous, the unweighted results are consistent and generally more efficient than the 
weighted results.  However, if the sampling structure is endogenous, the unweighted results are not consistent while 
the weighted results are.  In our setting, trucks were randomly chosen at each data collecting site.  However, the 
localisation of these sites was dictated by several considerations (representation of each province, site convenience, 
importance of the traffic flow etc.) which may lead to an endogenous sampling structure.          
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intercepted trucks are mostly based in Quebec which is hardly surprising given our sample structure.  

Vans dominate in terms of truck trailer type.  Only about 20% of the observations relates to private 

trucking.  This can be explained by the fact that the survey targets long distance trips, while private 

trucking mostly specializes in local freight transportation.   The average trip distance is about 450 km.      

Table 3 illustrates the relationship between LF, the adoption rate of EVMS and some key 

explanatory factors.  Higher LFs are associated with EVMS, larger trucks, for-hire operations, owner-

operators and distance traveled.  Moreover, Quebec-based trucks and US trucks would have lower LFs 

than trucks from the ROC.  EVMS appears to be mostly installed on for-hire van-type trucks travelling on 

long distances.  US and ROC based trucks are also more likely to use this technology.  Looking more 

closely at the impact of EVMS by trip distance classes, Table 4 suggests that this technology is associated 

with improved capacity utilization on B trips.  On F segments, however, the relationship is less obvious, as 

it appears that equipped trucks have slightly lower LFs and are less likely to be fully loaded on longer 

roads.  This result is consistent with a rebound effect.  Obviously, it is dangerous to conclude from these 

partial correlations.  We therefore turn next to the econometric results.   

 

4.2 The econometric results 

Table 5 presents the econometric results associated with the F and B trips.  We report the results obtained 

by simple OLS and by MNOP.  Since the impacts of the explanatory variables may vary with the type of 

trucks, we also report the results obtained using only observations pertaining to van tractor-trailer (MNOP 

Van).  From these results, we can assess which factors have a significant positive or negative impact on 

LF.  In order to evaluate the magnitude of the effects, we also present in figure 2, the result of a simulation 
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based on the MNOP results.10  This figure illustrates the change in the LF resulting from changes in the 

various explanatory with respect to a reference case.11 

From these tables and figures, we can draw the following conclusions.  EMVS is indeed associated 

with a reduction of LF on F trips in the order of 7.6 percentage point.  On B-trips, EMVS has a positive 

and significant effect on LF.  Our simulation indicates that trucks equipped with EVMS would have LF 

about 16 percentage points higher than non-equipped trucks.  Thus, if this technology actually increases 

LFs on B trips, it also seems to incite carriers to accept lower LF on F trips.  The impact appears 

somewhat more pronounced when estimating the model with the van subsample.  In this case, the 

technology increase backhaul LF by 22.5 percentage points and reduces fronthaul LF by 14.4 percentage 

points.     

As expected, the LF is positively affected by the truck size, particularly on F trips.  For example, a 

truck with seven axles has on average a 15.7 percentage point higher LF than a five axles truck.  While 

trucks from the ROC do not appear to have very different LF than Quebec trucks, US trucks have lower 

LFs on F trips.  Trade imbalance between the US and Canada may explain this result.  As expected, more 

specialized trailers have lower LFs.  Private carriers have LFs that are about 5% lower on average than 

for-hire truckers in B trips.  Interestingly, owner-operators have somewhat higher backhaul LF.  As 

expected, distance is a major factor affecting LFs on both types of segments. A 1000 km (resp. 2000 km) 

trip has on average a load factor higher by 14 (25) percentage points compared to a truck travelling on a 

450 km journey.  INCOME has a positive impact on F trips while POPULATION positively affects 

backhaul LF.   

In order to better assess the overall impact of EVMS, we simulate the change in the TKMs 

transported associated with this technology.  To that end, we estimate the TKMs for each of the 

                                                 
10 Except for the OLS model, the magnitude of the effects cannot be directly inferred from the value of the estimated 
coefficients.   
11 The reference case corresponds to an “average” trip of 450 km, between two areas of 226,000 habitants each with 
median income of 45,000$.  The reference truck has five axles, no EVMS, is a van based in Quebec and is operated 
by a for-hire carrier.   
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observations in our sample using the results of our econometric model, and then re-compute the TKMs 

that would have been carried if no truck was equipped with EVMS.12  We find that this technology has 

allowed adopting trucks to increase their output by 6.3%, holding constant the supplied capacity.  This 

implies an overall increase in the industry capacity utilization of about 0.83%.  Our results are somewhat 

smaller than those reported by Hubbard (2003).  Indeed, recall that Hubbard finds that adopting trucks 

increase their output by 13%, which translates into a 3% industry-wide capacity utilization improvement.  

The larger overall impact is obviously partially explained by the higher adoption rate in the US (25% of 

equipped trucks in Hubbard data versus 10% in ours).  A higher adoption rate may also lead to higher 

benefits if there are learning and network effects.  In fact, Hubbard’s analysis suggests that benefits in the 

US were larger in 1997 than in 1992 when the adoption rate was lower.  Finally, we can translate our 

results in terms of energy efficiency gains; EVMS would have increased fuel efficiency of adopters by 

close to 5% and by 0.66% at the industry level.13  The importance of this effect should, however, be 

contrasted with the 40% improvement in energy efficiency that the Canadian trucking industry has 

experienced since 1990 (see Natural Resources Canada, 2006).  

Several alternative specifications were tested, leading to results that were very much in line with 

those reported in table 4.14  First, the model was estimated with a measure of LF based on the cargo weight 

and the maximum loading capacity of the truck rather than the driver estimate.  Besides not taking into 

account the volume constraint, this variable is also an approximation since the maximal loading capacity 

of the truck is not directly measured, but rather it is inferred based on the truck characteristics.15  In any 

case, the correlation between both measures of LF is close to 0.8 and the econometric results lead to 

similar conclusions.  Second, the model was estimated without accounting for the sampling weights.  

While the estimated coefficients are statistically different (thereby suggesting that the unweighted results 

                                                 
12 See the numerator of [2] for the formulation used to compute TKM. 
13 We assume that a 1% increase in LF leads to a 0.2% increase in fuel consumption. 
14 All results are available from the corresponding author upon request. 
15 It is computed as the difference between the weight of the truck full and empty.  The former is evaluated as the 
number of axles times 8 500 kg (i.e. the maximal weight per axles authorized by the Canadian regulation), the latter 
is based on the weight of empty trucks in the current survey and in the similar survey realized in 1995. 
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are not consistent), the sign and statistical significance of the variables of interest are similar.  Third, the 

model was re-estimated using only trips with a distance superior to 450 km.  Once again, our main 

conclusions remain unchanged and the estimated coefficient on EVMS is very similar.  Fourth, we 

introduced for each “commercial axis” fixed effects to make sure that our variables are not capturing the 

impact of unobservable factors.16  The estimated coefficients for EVMS are very similar in both 

specifications.17  Fifth, the effects are comparable when estimating a model, explaining the probability of a 

truck being full or having a load (i.e. estimating a probit model with FULL or LOADED as dependant 

variables).  Finally, EVMS may be endogenous.  We tackle this concern in the next sub-section.                     

 

4.3 Endogeneity of EVMS adoption 

EVMS could be correlated with the error term, thereby biasing in our results.  This correlation could result 

from missing variables that are affecting both LF and EVMS such as for example the carrier size.  It may 

also be that carriers assign their equipped trucks to roads depending LF.  Dealing with this issue is made 

difficult by the fact that the adoption rate is low (it is more difficult to predict a rare event).  Moreover, 

both LF and EVMS are discrete variables which require estimating an endogenous switching model.  In 

fact, we add to the latent LF response model [8] and [9], the following latent model for explaining EVMS 

adoption:   

iii zEVMS υγ += '*     [10] 

⎪⎩

⎪
⎨
⎧ ≥

=
otherwise

EVMSifEVMS i
i 1

00 *
   [11] 

 

                                                 
16 Ideally, we would want to define these axes as precisely as possible, however, for statistical reasons, we need to 
have enough observations per axis.  For this reason, we define a commercial axis based on the region of origin and 
destination.  The regions are defined as follows: i) the province of Quebec is divided in four sectors using a division 
defined in the NRS99; ii) the rest of Canada is divided in three parts: the province of Ontario (i.e. Quebec’s main 
economic partner in Canada), the West (British Columbia, Alberta, Saskatchewan, Manitoba and the North Western 
Territories) and the Atlantic provinces iii) the US is divided in two: the North-East is separated from the rest of the 
US. 
17 Obviously, as expected, the estimated coefficients associated with variables that vary little across commercial axes 
were affected by the introduction of the fixed effects.  
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with '
iz  the vector of explanatory variables.  Furthermore, it is assumed that a shared random effect 

induces dependence between the error terms in [8] and [10]: 

iii

iiiu
ζευ
τλε

+=
+=

 

where iε , iτ  and iζ  are independently normally distributed with mean 0 and variance 1 and λ  is a free 

parameter.  In this model, the correlation between the two latent equation error terms is given by: 

)1(2 2 +
=

λ

λρ . 

EVMS is exogenous if 0=ρ .18   If the model can be estimated without any instruments it is, however, 

recommended to specify some exclusion restrictions (i.e. variables affecting EVMS but not LF).  We 

propose using as instruments variables indicating if the truck is equipped with: i) an electronic drive log 

that automatically records the hours of operation (LOG); ii) an electronic vehicle identification tag that can 

be read by equipment located in the roadway (TAG); iii) a tripmaster providing information about the best 

route (TRIPMASTER).  These electronic equipments are not designed to have an impact on LF but they 

are likely to be positively correlated with the adoption of EVMS.  We also use a variable indicating if the 

truck has anti-lock brakes (ANTI).  Indeed, this variable should provide an indication of the truck age.19  

Newer trucks are certainly more likely to be equipped with new up-to-date technologies such as EVMS.  

Finally, we also use a binary variable set to one if the driver has received at least a one day training course 

on the usage of electronic equipments in the last three years (TRAINING).   

The results are reported in Table 6.  For both F and B trips, we cannot reject the hypothesis 

that 0=ρ  at any significance level.  The estimated coefficients are fairly close to those estimated in Table 

5, except, however, for the coefficient associated with EVMS.  For F trips, the negative effect is somewhat 

larger but becomes statistically not significant.  For B trips, it is positive significant and much larger than 

                                                 
18 The model is estimated by maximum likelihood using the ssm “wrapper” program in Stata created by Miranda and 
Rabe-Hesketh (2006). 
19 In the US antilock brakes become mandatory on heavy trucks in 1997. 
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in table 5 (1.16 versus 0.421).  Note, however, that the EVMS model has difficulty to correctly predict 

adoption.  Indeed, the model only predicts a probability of adoption higher than 0.5 for 63 B observations 

while there are 467 equipped trucks.  In fact, the average predicted probability of adoption computed over 

the sample of equipped trucks on B trips is only 0.24.  Thus the average impact of EVMS in this model is 

likely to be best evaluated by considering a change in the predicted LF for EVMS increasing from 0 to 

0.24 (rather than from 0 to 1).  In this case, the impact is relatively comparable to the one measured in 

Table 5.  

 Looking at the adoption results, we find that the probability of having an EVMS is positively and 

statistically linked to all our instruments.  It also increases with the trip distance.  Private carriers and 

owner-operators are less likely to adopt this technology.  The probability of adoption is also lower for 

specialized trailers.  These results are in line with Hubbard (2000).  Trucks from the ROC are more likely 

to have this technology than Quebec trucks.  For US trucks, the evidence is less clear: on F trips they have 

a much higher probability, while on B trips it seems to be the opposite.  

 

5. Conclusion 

Using data disaggregated at the operational level, we have shown that ICT improves capacity utilization in 

the trucking industry.  While the overall impact is relatively limited due to a low adoption rate, the effect 

on adopters is not negligible.  Since it is possible that benefits are increasing over time with learning and 

diffusion, it would be interesting to reevaluate the effect of EVMS using more recent data.  Our results also 

illustrate, once again, the difficulty in measuring the impact of ICT on aggregate productivity measures.  

Indeed, we have found evidence that while the technology improves capacity utilization on backhaul, it 

also leads carriers to accept fronthaul shipments that may not have been accepted without this technology.  

This could be viewed as an improvement in the quality of the services offered.  Obviously, this “rebound 

effect” limits the positive environmental consequences of this technology.   

 In future research, it would be worthwhile to further test this rebound effect using a more 

structural approach, where the fronthaul load factor directly depends upon the expected load factor on the 
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return.  This approach would, however, require observing the complete truck journey rather than only one 

segment, as in our data.  Finding a proper source of identification would also be a challenge.  
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Appendix 1. Criteria used to select the observations in the sample   
 

From the initial data set provided by the Quebec Ministry of Transport, we eliminate observations 

corresponding to: 

• Small trucks (i.e. trucks with less than five axles) which are more likely to be affected by local 

transportation activities.  We also eliminate non standard truck configuration (i.e. one tractor with 

more than one trailer) which is likely to face different operational constraints.  

• Courier and less-than-truckload services (as well as peddle run).  Contrary to full truckload 

companies, courier and less-than-truckload (LTL) carriers are specialized in relatively small 

freight, and usually operate within a hub-and-spoke network: freights from various clients are first 

shipped into a terminal before being dispatched to other terminals and then delivered to their final 

destination.  For these types of services, optimizing LF is somewhat less important than providing 

frequent and on-time deliveries.  The impact of various explanatory variables on their activities is 

therefore likely to be different than on those of full truckload carriers.  Moreover, since relatively 

few observations were related to courier and LTL operations in our dataset, it was not possible to 

estimate the model separately for these observations. 

• Trips for which it was difficult to determine if it was a fronthaul or backhaul trip.  Specifically, we 

eliminate trips for which the distance truck base-origin and truck base-destination were relatively 

similar.  Indeed, it is hazardous to classify these trips as fronthaul and backhaul. 

• Trips with a distance less than 80 km.   



 22

Table 1. Variable Definition. 
 

Variable Description 
   LF Load factor of the truck as evaluated by the driver.  Five responses are 

possible: 0%, 25%, 50%, 75% and 100%.   
   FULL Binary variable sets to 1 if LF=100% and 0 otherwise.   
   LOADED Binary variable sets to 1 if LF≠ 0 and 0 otherwise.   
Truck characteristics 
   EVMS Binary variable sets to 1 if the truck is equipped with an on-board 

computer and a satellite dish. 
   AXLES Number of axles. 
Truck’s base  
   QUEBEC Binary variable sets to 1 if the truck is registered in the province of 

Quebec. 
   ROC Binary variable sets to 1 if the truck is registered in the rest of Canada. 
   USA Binary variable sets to 1 if the truck is registered in the U.S. 
Type of trailer  
   VAN Binary variable sets to 1 for van type trailer. 
   CONTAINER Binary variable sets to 1 for container type trailer. 
   REFRI Binary variable sets to 1 for refrigerated van type trailer. 
   LOGGING Binary variable sets to 1 for trailer designed to carry logs. 
   SPECIALIZED Binary variable sets to 1 if the trailer is a platform, a hopper, a dump or a 

tank. 
II. Carrier’s Characteristics 
FOR-HIRE Binary variable sets to 1 for-hire carrier. 
PRIVATE Binary variable sets to 1 if private carrier. 
OWNER-OP Binary variable sets to 1 the truck is driven by an owner-operator. 
II. Trip’s Characteristics 
DISTANCE Total trip distance. It is the shorter distance (“as-the-crow-flies) between 

the origin and destination based on these two points’ longitude and 
latitude.  

POPULATION Population in the area of origin times the population in the area of 
destination divided the square of the trip distance.  Sources: for Canada 
Statcan, for the US, US Census Bureau. 

INCOME Average of the origin and destination household median incomes.  
Sources: for Canada Statcan, for the US, US Census Bureau. 
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Table 2. Sample Characteristics 
Variables Mean  (std) (*) 

LF (%) 
   B & F trips 
 

   F trips 
 
  

   B trips 

 
64.4 

(44.0) 
75.4 
(38.3) 
 
54.8 
(46.4) 

FULL (%) 
   B & F trips 
 

   B trips 
 
  

   F trips 

 
54.3 

(49.8) 
64.0 
(47.9) 
 
45.9 
(49.8) 

LOADED (%) 
   B & F trips 
 

   B trips 
 
  

   F trips 

 
71.7 

(45.0) 
83.1 
(37.4) 
 
61.7 
(48.5) 

EVMS (%) 8.4 
(27.7) 

AXLES  5.6 
(0.81) 

QUEBEC (%) 78.9 
(40.7) 

ROC (%) 17.1 
(37.7) 

US (%) 3.8 
(19.2) 

VAN (%) 48.0 
(49.9) 

CONTAINER (%) 3.9 
(19.5) 

REFRI (%) 10.3 
(30.4) 

LOGGING (%) 3.5 
(18.3) 

SPECIALIZED (%) 33.9 
(47.3) 

FOR-HIRE (%) 78.2 
(41.2) 

PRIVATE (%) 21.7 
(41.2) 

OWNER-OP  (%) 20.0 
(40.0) 

DISTANCE (km) 442.0 
(480.9) 

POPULATION 2.4 x 106 

(5.2 x 106) 
INCOME (en mil. CA$)  45.5 

(9.4) 
NUMBER OF TRIPS 87 702 
(*) : The expansion factor is used to weight each observation. 
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Table 3. Average LF and EVMS Adoption Rate as a Function of Key Variables 

Variables Average LF (*) (%) EVMS adoption rate (*) 
EVMS 
         Yes 
         No 

 
77.2 
63.2 

 
-- 

 
         QUEBEC 
         ROC 
         US 

 
63.1 
72.0 
58.1 

 
6.8 

15.1 
10.4 

VAN 
          Yes 
          No 

 
70.4 
58.9 

 
12.6 
4.4 

FOR-HIRE 
          Yes 
          No 

 
66.8 
55.9 

 
9.2 
5.5 

OWNER-OP 
          Yes 
          No 

 
68.9 
63.3 

 
5.5 
9.1 

DISTANCE 
          < 450 km 
          > 450 km 

 
54.9 
80.2 

 
5.2 

13.6 
(*) : The expansion factor is used to weight each observation. 
 

 

Table 4. Impact of EVMS on Capacity Utilization 

 
 LF FULL LOADED 
 EVMS EVMS EVMS 
 No Yes No Yes No Yes 

F trips       
Distance<450 66.6 66.9 55.3 55.4 74.4 74.8 
Distance>450 88.9 84.4 77.9 70.8 95.5 97.5 

B trips       
Distance<450 44.3 64.7 36.4 61.2 50.5 68.7 
Distance>450 69.9 84.9 58.4 75.2 78.2 91.6 
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Table 5. Estimation results (standard error)  
 F trips 

 
B trips 

Variable OLS MNOP MNOP 
Vans 

OLS MNOP MNOP 
Vans 

EVMS -0.040 
(0.031) 

-0.186* 
(0.108) 

-0.362*** 
(0.133) 

0.132*** 
(0.02) 

 

0.406*** 
(0.09) 

0.584*** 
(0.124) 

AXLES 0.073*** 
(0.011) 

0.231*** 
(0.045) 

0.244*** 
(0.085) 

0.009 
(0.015) 

0.029 
(0.041) 

0.061 
(0.062) 

QUEBEC Reference Reference Reference Reference Reference Reference 
ROC -0.029 

(0.021) 
-0.113 
(0.077) 

0.028 
(0.106) 

-0.012 
(0.025) 

-0.066 
(0.069) 

-0.018 
(0.101) 

USA -0.145*** 
(0.04) 

-0.467*** 
(0.123) 

-0.687*** 
(0.195) 

0.059 
(0.058) 

0.130 
(0.150) 

-0.08 
(0.279) 

VAN Reference Reference -- Reference Reference Reference 
CONTAINER -0.033 

(0.050) 
-0.215 
(0.171) 

-- -0.068 
(0.054) 

-0.218 
(0.149) 

-- 

REFRI -0.081** 
(0.028) 

-0.319*** 
(0.095) 

-- -0.048 
(0.042) 

-0.132 
(0.117) 

-- 

LOGGING -0.039 
(0.073) 

-0.182 
(0.220) 

-- -0.020 
(0.058) 

-0.072 
(0.160) 

-- 

SPECIALIZED -0.09*** 
(0.021) 

-0.381*** 
(0.073) 

-- -0.125*** 
(0.025) 

-0.381*** 
(0.068) 

-- 

FOR-HIRE Reference Reference Reference Reference Reference Reference 
PRIVATE -0.000 

(0.024) 
0.016 

(0.081) 
0.058 

(0.121) 
-0.048* 
(0.027) 

-0.130* 
(0.075) 

0.050 
(0.009) 

OWNER-OP. -0.028 
(0.025) 

-0.093 
(0.086) 

-0.073 
(0.116) 

0.050* 
(0.026) 

0.118* 
(0.071) 

0.122 
(0.09) 

Log(DISTANCE) 0.163*** 
(0.016) 

0.538*** 
(0.048) 

0.619*** 
(0.074) 

0.170*** 
(0.015) 

0.466*** 
(0.043) 

0.631*** 
(0.062) 

Log(POPULATION) 0.001 
(0.003) 

0.001 
(0.013) 

0.030 
(0.019) 

0.009** 
(0.004) 

0.027** 
(0.011) 

0.059*** 
(0.017) 

Log(INCOME) 0.09*** 
(0.036) 

0.351*** 
(0.133) 

0.07 
(0.175) 

0.031 
(0.049) 

0.111 
(0.135) 

-0.228 
(0.179) 

1α  

2α  

3α  

4α  
 

 4.480 
(0.713) 

4.64 
(0.711) 

4.79 
(0.712) 

5.14 
(0.711) 

4.25 
(1.09) 
4.49 

(1.08) 
4.65 

(1.09) 
4.94 

(1.08) 

 3.12 
(0.68) 
3.25 

(0.68) 
3.34 

(0.68) 
3.57 

(0.68) 

3.39 
(0.92) 
3.55 

(0.92) 
3.67 

(0.92) 
3.87 

(0.92) 
Log-
pseudolikelihood 

 -4603 -2021  -5052 -2404 

Wald Test   )13(2χ =241 )9(2χ =109  )13(2χ =272 )9(2χ =154 
R-squared  0.135   0.13   
Pseudo R-squared 
(McFadden) 

 0.063 0.07  0.06 0.07 

Numb.. obs. 4532 4532 2224 4559 4559 2239 
* : significant at 10%, ** : significant at 5%, *** : significant at 1% 
In parenthesis, robust standard errors (Hubber and White estimators). 

1α , 2α , 3α , 4α  represent the threshold parameters 
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Table 6. Estimation results with endogenous EVMS adoption. 
 F trips B trips 

Variable LF eq. EVMS eq. LF eq. EVMS eq. 
EVMS -0.302 

(0.531) 
-- 1.160*** 

(0.382) 
-- 

AXLES 0.234*** 
(0.04) 

-0.148** 
(0.072) 

0.033 
(0.042) 

-0.08 
(0.068) 

QUEBEC Reference Reference Reference Reference 
ROC -0.09 

(0.08) 
0.364*** 
(0.100) 

-0.092 
(0.070) 

0.214*** 
(0.111) 

USA -0.458*** 
(0.141) 

0.563*** 
(0.171) 

0.118 
(0.155) 

-0.357** 
(0.189) 

VAN Reference Reference Reference Reference 
CONTAINER -0.218 

(0.178) 
-0.482*** 

(0.250) 
-0.185 
(0.155) 

0.239 
(0.241) 

REFRI -0.333*** 
(0.09) 

0.049 
(0.172) 

-0.074 
(0.129) 

-0.640*** 
(0.126) 

LOGGING -0.199 
(0.228) 

-0.211 
(0.443) 

-0.021 
(0.169) 

-0.633*** 
(0.225) 

SPECIALIZED -0.391*** 
(0.082) 

-0.464*** 
(0.124) 

-0.309*** 
(0.087) 

-0.671*** 
(0.131) 

FOR-HIRE Reference Reference Reference Reference 
PRIVATE 0.018 

(0.084) 
-0.200 
(0.136) 

-0.117 
(0.07) 

-0.169 
(0.146) 

OWNER-OP. -0.100 
(0.084) 

-0.156 
(0.113) 

0.164** 
(0.078) 

-0.490*** 
(0.120) 

Log(DISTANCE) 0.549*** 
(0.053) 

0.303*** 
(0.061) 

0.422*** 
(0.055) 

0.261*** 
(0.06) 

Log(POPULATION) 0.001 
(0.014) 

0.046** 
(0.018) 

0.025** 
(0.011) 

-0.001 
(0.01) 

Log(INCOME) 0.363*** 
(0.139) 

0.245 
(0.191) 

0.105 
(0.140) 

0.08 
(0.193) 

LOG -- 0.692*** 
(0.146) 

-- 0.575*** 
(0.134) 

TAG -- 0.241 
(0.164) 

-- 0.378*** 
(0.134) 

TRIPMASTER -- 1.13*** 
(0.236) 

-- 0.505*** 
(0.223) 

ANTI -- 0.331*** 
(0.110) 

-- 0.528*** 
(0.102) 

TRAINING -- 0.669*** 
(0.146) 

-- 0.657*** 
(0.090) 

CONST. -- -4.45*** 
(1.02) 

-- -3.15*** 
(0.949) 

1α  4.58*** 
(0.75) 

 2.96*** 
(0.71) 

 

2α  4.75*** 
(0.75) 

 3.08*** 
(0.71) 

 

3α  5.89*** 
(0.75) 

 3.17*** 
(0.71) 

 

4α  5.25*** 
(0.75) 

 3.39*** 
(0.71) 

 

Log-pseudolikelihood -47510 -59227 
Wald chi2 (30) 588 658 

Table 6. Estimation results with endogenous EVMS adoption (cont.). 
ρ  0.06 -0.45 

LHR test for ρ =0 0)1(2 =χ  0)1(2 =χ  

Standard deviation in parenthesis. * : significant at 10%, ** : significant at 5%, *** : significant at 1% 
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 Figure 1. 
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Figure 2. Simulation results using column (2) estimates from Tables 4.  
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 The impacts are computed with respect to an “average” reference trip of 450 km, between two area of 226,000 

habitants each with median income of 45,000$.  The reference truck has five axles, no EVMS, is a van registered in 

Quebec and is operated by a for-hire carrier.   
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