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Abstract

We study divisor methods, the primary class to solve apportionment problems, based upon

Stolarsky means S�;�. These encompass the �ve traditional methods. We disclose a one-to-one

relation between methods of the form S�;1 and aggregate measures of seat/vote disproportion-

ality of the generalized entropy family: using a divisor method based upon such a generalized

logarithmic mean coincides with minimizing a generalized entropy inequality measure. The

Balinski-Young �favoring small states�-ordering ranks the generalized entropy methods. This

framework improves upon an inconsistency in the traditional inequality approach to appor-

tionment problems, which we illustrate by showing that the major rationale of the �method

of equal proportions�is consistently preserved by a non-traditional method.

JEL Classi�cation Nrs: C61, D63, D72



1 Introduction

Throughout the world, di¤erent apportionment methods are used either to allocate seats to

parties in proportion to their respective vote totals, or to electoral districts in proportion

to their respective population sizes. The �one man, one vote� tenet summarizes the ideal

solution to these fair division problems, but in reality this ideal is only rarely achieved. Since

seats are indivisible goods, one normally has to round the ideal, i.e., perfectly proportional,

seat numbers to integer values. This rounding explains why in practice all methods entail a

residual degree of malapportionment. A second empirical regularity which is relevant to our

problem is that these methods, while all aspiring to the ideal of exact proportionality, may well

lead to di¤erent seat allocations. For example, based on the 2000 census �gures, the state of

California is theoretically entitled to about 52.45 of the 435 seats in the US House of Congress,

and as a result of the �method of equal proportions�used since 1940 has 53 representatives.

Yet even within the class of �weakly�proportional methods this number could have been as

low as 50 or as high as 55, depending on the speci�c apportionment method used.1

If proportional representation aims at �equity as near as may be� (cf. Young (1994), p.

42), and if weakly proportional methods may provide di¤erent solutions to the same problem,

it must be the case that these methods�underlying fairness conceptions are di¤erent. We

provide a systematic treatment of this intuition, as we analyse the connection between an

entire popular class of apportionment methods and an entire class of inequality measures.

Speci�cally, if minimizing unfairness means that individual voters�seat per vote ratio�s should

be as equal as possible, our main theorem asserts the following: if inequality so conceived is

measured by any member of the generalized entropy class with parameter �, then minimizing

voters�inequality is equivalent to applying a divisor method of apportionment that uses the

Stolarsky mean S�;1 with the same �-parameter to solve the integer rounding problem. We

discuss the broader relevance of this theorem in the next paragraphs.

The idea to couple entropy measures with the apportionment problem is not new. In fact,

Henri Theil (1969) introduced his measure in the political science literature immediately after

presenting it as an income inequality gauge. Furthermore, Cowell and Kuga (1981, p. 303)

concluded one of the seminal articles advocating generalized entropy for income inequality

measurement by suggesting that �our methodology may be more attractive in applications

[...] outside the Economics discipline � for example in the �eld of Political Science where one

derives so-called �Indices of Malapportionment�...�. With hindsight, one cannot but notice the

irony of that fairly defensive statement: the current status of generalized entropy measures

as mainstream tools for measuring income inequality starkly contrasts with their very rare

application to political representation inequality measurement. But the idea deserves to

be enlivened; as the equivalence relation of our main theorem illustrates, generalized entropy

1By a weakly proportional method we mean a method that would lead to perfect proportionality whenever

this is a feasible solution. See section 3 for a formal statement of this property.
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measures do occupy an important role in the analysis of proportional representation, extending

beyond the convenient (decomposability) properties that they anyhow possess for the positive

analysis of malapportionment.

We restrict the scope of our analysis to divisor methods, since these are primary instru-

ments to solve apportionment problems. As pointed out from the late 19th century onwards,

such methods prevent inconvenient results that could originate from changes in the variables

that constitute an apportionment problem. That is, they avoid the Alabama paradox (oc-

curing if the House size increases and a state/party loses a seat as a result), the population

paradox (occuring if one state/party grows at a faster rate than another but has to give in seats

to that other state/party), and the new state paradox (occuring when as a result of adding a

new state/party to the House the seat number of another state/party increases). Studying

their properties at a more fundamental level in many theoretical contributions, Balinski and

Young (as e.g. summarized in Balinski and Young, 2001) added to such practical concerns the

insight that divisor methods are consistent: any apportionment of seats that is judged to be

fair must remain unaltered if one would apply the same method, with the relevant variables,

to a subset of the states/parties concerned. Consistency thus embeds a concern for procedural

fairness into the fair division problem. As we will point out, consistency also is a necessary

condition to connect Stolarsky mean divisor methods with generalized entropy measures.

Given that the parameter � of our main theorem may take any real value, our approach

implies that we consider an in�nite number of apportionment methods. We thus �ll in a

signi�cant part of the research agenda set out by Grilli di Cortona et al. (1999, p. 87, 100),

who called for (i) unveiling the hidden fairness criteria behind any speci�c apportionment

method and (ii) �to design new electoral formulas corresponding to suitable measures of

disproportionality�.

Furthermore, our analysis bears on the mainstream scholarly debate as it developed over

the past century. Following Huntington (e.g., 1921, 1928) the general consensus is that only

�ve so-called traditional divisor methods are really worth considering. As far as the ap-

portionment problem of the US Congress is concerned this set has even been narrowed down

further to only two methods, viz., the Hill/Huntington �method of equal proportions�currently

used and Daniel Webster�s �method of major fractions�, intellectually restituted as being the

least biased divisor method by Balinski and Young in the 1980s. Within this debate, our

framework adds two points. First, these traditional methods all build on Stolarsky means.

Equity objectives with which they have previously been associated are (cardinally) equiva-

lent to the corresponding member of the generalized entropy class. In this sense, we o¤er

an encompassing framework to analyse the problem of inequality in political representation.

Secondly, using generalized entropy measures implies that our assessment of such inequality

fundamentally di¤ers from Huntington�s approach. The traditional methods were derived

from inequality tests that check whether a seat transfer between two states may decrease the
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di¤erence between these states� respective seat-to-vote ratio�s. The inequality measures we

put central consider instead the deviations of individual�s seat-to-vote ratio�s from the over-

all average, and de�ne representation inequality as a population weighted aggregate of such

deviations. Such an approach is logically more coherent than one based on state-wise compar-

isons of seat-to-vote ratio�s. To underscore this we will recast Huntington�s original concern

in our framework and derive a non-traditional divisor method that coherently accomodates

the Fundamental Principle which lead him to forward the method of equal proportions.

Related literature.

The rare appearances of entropy measures in the setting at hand have been partly con�ned

to the problem of assessing the degree of malapportionment (or �distortion�in the terminology

of Scho�eld, 1982) in a given dataset. Using them as such was justi�ed by refering to their

decomposability properties (see Monroe, 1984), or, in the speci�c case of Theil�s original

measure, because it is a neutral index, i.e. an index �which [is] not embodied in any of the

traditional proportional representation methods�(Pennisi, 1998).2

As our equivalence result is all about non-neutrality, it �ts instead within the formal,

normative tradition that links apportionment methods to their respective equity-maximizing

objective functions. This tradition, with a history going back at least to Sainte Laguë (1910),

notably includes Huntington�s aforementioned analyses as well as his protracted debates with

Willcox (1954) about the best method for the US House of Representatives. As far as we know,

Theil (1969), Theil and Schrage (1977) and, very recently, Agnew (2008) are the only articles

in which an entropy measure appears in this normative fashion. Theil (1969) introduced a

proportionality independence requirement � the number of seats assigned to a party i relative

to those of another party j should uniquely be determined by these two parties� relative

vote ratio� and then connected this prerequisite with entropy as a measure for aggregate

disproportionality. Although he remained silent on the rounding problem, we build on the

same connection in our generalized analysis. An apparently less well-known article of Theil

and Schrage (1977) bears an even closer resemblance to the current paper. As we will point

out below, these authors both introduced one speci�c entropy measure of malapportionment

and its associated apportionment method, albeit without identifying the latter as a genuine

divisor method.3 (That method, based on logarithmic-mean rounding, was re-introduced by

2The search for such a neutral index is valuable in itself, precisely because conventional malapportion-

ment indices implicitly endorse a speci�c apportionment method, which renders the empirical search for the

most proportional apportionment method into a tautological exercise. Evidently, as di¤erent apportionment

methods are used in reality, this implicit bias carries over to comparative studies that assess the degree of

proportionality of, say, various national parliaments.
3This method was in fact introduced in one of the appendices to their article. Indeed, a major di¤erence

between our paper and Theil�s work is that we focus on �one man, one vote� proportional representation

whereas Theil (1969) was primarily concerned with justifying systems in which seats are proportional to

either the square or the square root of the number of votes. Subsequent contributions (Theil, 1971; Theil and

Schrage, 1977) further reveal his strong normative interest in the square root representation system. Section
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Agnew (2008), together with a second one based on the identric mean. Both are limiting

cases of our theorem as we will indicate in corrolary 1.) Speci�cally, Theil and Schrage

tackled the rounding issue by embedding their objective of inequality minimization in an

integer programming problem. We proceed likewise for the generalized entropy class, and in

doing so seek to convey that this is actually a natural family of inequality measures for the

apportionment problem.

Ultimately, that claim rests on two well-documented facts which, curiously enough, have

not been linked explicitly yet. First, divisor methods constitute an algorithm to rank vote-seat

pairs in a priority order and then distribute seats according to this priority untill all available

seats are apportioned. This essentially explains the equivalence with solving an integer

programming problem with an additively separable objective function. Young (1994, p. 188-

189) shows that rank-index methods, which include divisor methods, emerge from a suitably

formulated problem of maximizing a sum of �priorities�. Balinski and Ramirez (1999) consider

a family of additive functions that measure the deviation of a state�s seat number to its ideal,

and link them with stationary signpost divisor methods.4 Grilli di Cortona et al. (1999,

p. 93-97) discuss voter-oriented inequality minimization problems with additively separable

objective functions, and point at the strong resemblance between their �greedy algorithms�

and (the traditional) divisor methods (our Proposition 2 identi�es an additional condition for

their equivalence). A second fact was, however, overlooked in previous analyses, although it is

a central result in the income inequality literature: if one wants this objective function to be

a regular relative inequality measure, then additive separablity narrows down the spectrum of

eligible functions to the generalized entropy class (see e.g. Chakravarty, 1999).5 In this sense,

our central claim is both obvious and compelling.

The rest of this paper unfolds as follows. Section 2 introduces notation, recalls some

essential features of divisor methods and the de�nition of Stolarsky means, and investigates

within the class of Stolarsky divisor methods the relation �favoring small states�. Section

3 addresses the issues sketched in this Introduction in a formal framework and provides our

main theorem. Section 4 re-examines the traditional inequality analysis of divisor methods,

and provides a non-traditional alternative for the method of equal proportions. Section 5

gathers some additional comments. Most of the proofs are collected in an appendix.

5 returns to this observation.
4In the notation of section 2, stationary signpost divisor methods use signposts d(k) = k + c, where c is

a constant such that 0 � c � 1. This class contains three of the �ve traditional methods, viz. Je¤erson,

Webster, and Adams.
5Following Chakravarty (1999), we call a measure a regular inequality measure when it is (a) anonymous,

(b) obeys Dalton�s transfer principle, (c) obeys the Population principle, and (d) is normalized such that

perfect equality yields a zero value for the inequality measure. A relative inequality measure is such that its

value is una¤ected by equiproportional changes in the equalisandum. In a proportional representation-context

this is a natural requirement.
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2 Divisor methods and Stolarsky means

A speci�c problem of apportionment is an (n + 1)-tuple (p;H) with p = (p1; p2; : : : ; pn) an

n-tuple of populations (e.g. counts of population in n states, counts of votes for n parties,

...) and H an integer size of the house. Let Pn collect all apportionment problems. Let N =
f0; 1; 2; : : :g collect the natural numbers. An apportionment method M is a correspondence

M : Pn �!! Nn : (p;H) 7�!M(p;H);

enforcing the condition a1 + a2 + � � �+ an = H for each a in M(p;H).

The proportionality requirement invokes the need for specifying desirable properties ofM .

For the literature on fair apportionment the monograph by Balinski and Young (2001) is the

basic reference. As stated in the Introduction, one of their major conclusions is that divisor

methods form the primary class of apportionment methods. Such a divisor method is de�ned

through a sequence d : N ! R : k 7! d(k) of signposts. The signpost d(k) belongs to the

closed interval [k; k + 1] and splits the interval into a left part where numbers are rounded

down to k, and a right part where numbers are rounded up to k + 1. For d(k) itself, there is

the option to round down to k or to round up to k+1, thus possibly generating multiplicities.

In other words, the d-rounded number [y]d with y in R+ is equal to k in N, in case

k � y � d(k) � k + 1 or k � 1 � d(k � 1) � y � k:

The divisor method based upon the sequence d � denoted Dd� solves the problem (p;H) by

looking for a common divisor x that forces the rounded quotients [pi=x]d to add up to the

number H. Equivalently, a belongs to Dd(p;H) if and only if there exists an x in R+ such
that for each i we have either �ai > 0 and pi=d(ai � 1) � x � pi=d(ai)�, or �ai = 0 and

x � pi=d(ai)�. This leads to the following Balinski-Young characterization:

Dd(p; h) =

�
a : min

ai>0

pi
d(ai � 1)

� max
aj�0

pj
d(aj)

and
nP
i

ai = H

�
; (1)

where one assumes that pi > pj implies pi=0 > pj=0 > pi. The characterization (1) of divisor

methods conveys that the transfer of the ai-th seat from i to j is unfair in view of the priority

standard p=d(ai). Thus, party i gets exactly ai seats because it �deserves�the ai-th seat before

party j deserves its (aj + 1)-th seat (for each j 6= i). The priority standard also constitutes
an algorithmic representation of the divisor method Dd: starting from Dd(p; 0) = (0; 0; :::; 0),

each transition from Dd(p;H
0) to Dd(p;H

0 + 1) involves giving that seat to party k with

pk=d(ak) = maxi pi=d(ai), untill the H seats have been allocated.

Five methods belonging to this class are often grouped together as the ��ve traditional

methods�. The Je¤erson method rounds down all quotients, hence employing d(k) = k + 1.

The Webster method employs standard rounding with the arithmetic mean of k and k + 1
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de�ning the dividing point. The rounding-up rule d(k) = k is associated with the Adams

method. The two other traditional methods are those of Dean and the Hill/Huntington

method of Equal Proportions, which respectively use the harmonic mean and the geometric

mean to split the closed interval [k; k + 1]-interval. A divisor method for which d(0) = 0, as

e.g., Adams, Dean, and Hill, allocates at least one seat to each party if n � H, otherwise (if
H < n) the seats are allocated to the H largest populations.

The important position of these �ve methods in many apportionment debates notwith-

standing, it is evident from the foregoing that the class of divisor methods is in�nitely large.

Given this abundance one is invited to bring in some structure. Balinski and Young proposed

to compare di¤erent methods according to whether they favor small states, and obtain the

next result.

Theorem 1 (Balinski and Young, 2001, Thm 5.1). Let Dd0 and Dd be two divisor methods.

Let d0(a)=d0(b) > d(a)=d(b) for all a and b in N with a > b. Then, Dd0 favors small states

relative to Dd, that is, for each apportionment problem (p;H) in Pn, for each a in Dd(p;H),

and for each a0 in Dd0(p;H), we have

pi < pj implies either a0i � ai or a0j � aj :

Equivalently, using the terminology of Marshall, Olkin, and Pükelsheim (2002), Theorem 1

identi�es the condition for the fact that method Dd0 �is majorized by�method Dd.

We now turn to divisor methods based upon Stolarsky means (named after Kenneth B.

Stolarsky, 1975):

S�;� : R+ � R+ �! R+ : (x; y) 7�!
�
�

�
� x

� � y�
x� � y�

�1=(���)
; (2)

with � and � in R. These means were introduced for � 6= � 6= 0 and continuously extended
to all pairs � and � in R. The values

S�;0(x; y) =

�
x� � y�

� (lnx� ln y)

�1=�
and S�;�(x; y) = exp

�
� 1
�
+
x� lnx� y� ln y

x� � y�

�
are known as the logarithmic and the identric mean of order �, respectively.

The value S�;�(x; y) �ts the de�nition of a mean. Stolarsky (1975) pointed out that

lim�!0 S�;1(x; y) is the logarithmic mean, and introduced the identric mean as lim�!1 S�;1(x; y).

Importantly, this family also comprises the means that underlie the traditional divisor meth-

ods. Indeed, consider the divisor sequence

d�;� : N �! R : k 7�! S�;�(k + 1; k);

and denote by D�;� the corresponding divisor method. Table 1 represents the �ve traditional

divisor methods (Adams, Dean, Hill, Webster, and Je¤erson) in terms of Stolarsky methods.

For later reference, the methods D0;1; D 1
2
;1 and D1;1 are also included.
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Within the class of Stolarsky divisor methods the following relationships hold.

Lemma 1. Let � � �0. Then, the divisor method D�0;1 favors small states relative to the

divisor method D�;1.

Proof. If � = �0, then D�;1 = D�0;1. Hence, let � > �0. We show that the sequence

k 7! f(k) = S�0;1(k + 1; k)=S�;1(k + 1; k) is strictly increasing in k. Apply the logarithm to

f(k) =

h
(k+1)�

0 � k�0

�0

i1=(�0�1)
h
(k+1)�� k�

�

i1=(��1)
and di¤erentiate with respect to k (we extend the domain of f to R+). Conclude that f is
strictly increasing if

�0

�0 � 1
(k + 1)�

0�1 � k�0�1
(k + 1)�0 � k�0 � �

�� 1
(k + 1)��1 � k��1
(k + 1)� � k� > 0:

This inequality holds if

�0

�

(k + 1)� � k�
(k + 1)�0 � k�0 >

�0 � 1
�� 1

(k + 1)��1 � k��1
(k + 1)�0�1 � k�0�1 :

If � > �0, then the map x 7! x1=(���
0) is strictly increasing, and the previous inequality is

ful�lled if and only if

S�;�0(k + 1; k) > S��1;�0�1(k + 1; k):

Since S�;�(x; y) is strictly increasing in both � and � (Stolarsky, 1975), the latter inequality

indeed holds and the result follows. �

Lemma 1 is restricted to divisor methods based upon Stolarsky means S�;1. These will

be assigned a prominent role in the next sections. However, we point out that the result in

Lemma 1 extends.

Proposition 1. Let � � �0 and � � �0. Then,

� the method D�0;� favors small states relative to the method D�;� (where � 6= 0),
� the method D�;�0 favors small states relative to the method D�;� (where � 6= 0).

Proof. See Appendix.

Marshall et al (2002, Proposition 2) order divisor methods based upon the signpost se-

quence S2�;�(k+1; k) of power means. Proposition 1 accommodates their result. Furthermore,
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the power mean S2�;�(a+ 1; a) converges to a as � goes to �1. Hence, Table 1 provides the
following extension of the traditional sequence

Adams > Dean > Hill > D0;1 > D 1
2
;1 > D1;1 > Webster > Je�erson;

where the symbol �>� stands for �favors small states relative to�. Table 2 illustrates the

position of the methods D0;1, D 1
2
;1, and D1;1 as compared to the �ve traditional methods, for

a problem in which n = 10;
Pn

i pi = 100 725; and H = 100.

3 Generalized entropy and Stolarsky divisor methods

We now recast the central issues of this paper in a formal framework. Consider an appor-

tionment problem (p;H) and let p1 + p2 + � � � + pn = P . The �ideal allocation�is described
by

q = (p1H=P; p2H=P; : : : ; pnH=P ) :

The value qi = piH=P is customarily referred to as the quota of state i. Let M be an

apportionment method. It is desirable that each allocation a in M(p;H) is close to the

allocation q. In particular, the method should be weakly proportional : if q happens to be an

n-tuple of natural numbers, then M(p;H) = fqg and the n-tuples

a=H = (a1=H; a2=H; : : : ; an=H) and p=P = (p1=P ; p2=P ; : : : ; pn=P )

coincide.6 In most cases, however, the constraints ai 2 N force a gap between a=H and p=P .

We propose to use a map � : Qn�Qn0 ! R to measure the inequality between a=H and p=P

and to select inequality minimizing allocations. Obviously, for each y in Qn the value �(x; y)
is minimal for x = y.7 In particular, the value �(x; p=P ) is minimal for x = q=H.

Let us �rst spell out the procedural consequences of imposing additional structure on M

and �. We require that the method M is anonymous8 and that the measure � is additively

separable:

� (a=H; p=P ) = ' (a1=H; p1=P ) + ' (a2=H; p2=P ) + � � �+ ' (an=H; pn=P ) ;
6This notion of weak proportionality follows Balinski and Young (2001). A di¤erent version, proposed by

Theil (1969), will be labelled �proportionality independence�.
7A shift in the map � might result in �(x; x) = 0:
8Hence, permuting the populations of the states permutes the allocated seats in the same way. As a

consequence, the measure � should be anonymous in the quali�ed sense of Cowell (1980): the couples (ai; pi)

i = 1; 2; :::; n may be re-ordered without changing the total value of the measure, but the components of a

and p cannot be permuted independently. Measure (4) lives up to this requirement.
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Table 1: Eight Stolarsky Mean Divisor Methods

Divisor Method d(a) S�;�

Adams a �! �1 � = 1

Dean a(a+ 1)=(a+ 0:5) � = �2 � = �1
Hill

p
a(a+ 1) � = �1 � = 1

D0;1
1

ln(a+1)�ln a � = 0 � = 1

D 1
2
;1

�p
a+1�

p
a

1=2

��2
� = 1=2 � = 1

D1;1

�
1
e
(a+1)a+1

aa

��1
� = 1 � = 1

Webster a+ 1
2

� = 2 � = 1

Je¤erson a+ 1 �!1 � = 1

Table 2: Stolarsky Divisor Methods in the �favoring small states�-ordering

Voters (ideal) Adams Dean Hill D0;1 D 1
2
;1 D1;1 Webster Je¤erson

42,659 (42.35) 40 42 42 42 42 43 43 44

13,048 (12.95) 13 13 13 13 13 13 13 13

10,879 (10.80) 11 11 11 11 11 11 11 11

10,535 (10.46) 10 10 10 10 11 10 11 10

9,700 (9.63) 10 9 10 10 10 10 10 10

6,500 (6.45) 7 6 6 6 6 6 6 6

2,502 (2.48) 3 3 2 3 3 3 2 2

1,991 (1.98) 2 2 2 2 2 2 2 2

1,461 (1.45) 2 2 2 2 1 1 1 1

1,450 (1.44) 2 2 2 1 1 1 1 1

100,725 100 100 100 100 100 100 100 100
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with ' a map from Q � Q0 to R. Furthermore, in order to focus on relative inequality, we
require M to be homogeneous: M(p;H) = M(�p;H) for each � in R++. In terms of � we
require that, for each t and s in N and each x and y in Qn, the value �(t x; s y) is a positive
a¢ ne transformation of �(x; y), that is, �(t x; s y) = �(t; s) �(x; y) + �(t; s) for some �(t; s)

in R++ and �(t; s) in R. As a consequence, the notation slightly simpli�es. In sum, we will
solve the problem (p;H) through the next optimization exercise:

minimize �(a; p) = '(a1; p1) + '(a2; p2) + � � �+ '(an; pn);
with respect to a1; a2; : : : ; an in N, and

subject to a1 + a2 + � � �+ an = H.
(P)

We use the term disproportionality method and the notation I' as a reference for the appor-

tionment method obtained by minimizing inequality as described by the optimization problem

(P). If the house happens to be less than the number of states, the optimal allocation provides

one seat for the larger states. In view of this requirement the assumption (or convention) that

'(1; 0)� '(0; q) is strictly decreasing in q is necessary.

The additive separability of � is crucial. When measuring income inequality this functional

form ensures that the e¤ect on total inequality of a transfer between two individuals depends

on (the distance between) their respective income levels only (e.g. Cowell and Kuga, 1981).

In the malapportionment framework it likewise implies that one can isolate the e¤ect of a

seat transfer between two states. It also implies that the ideal solutions themselves can

be considered at a disaggregate level, as notably done by Theil (1969) when introducing

the proportionality independence condition (ai=aj) = (pi=pj) for all i; j = 1; 2; :::; n. Put

otherwise, using an additive separable disproportionality measure � forces the method I' to

be consistent (i.e., �uniform�as de�ned by Balinski and Young, 2001, p. 141). Consistency as

applied upon the states i and j precisely asserts that (ai; aj) belongs to I'(pi; pj; ai + aj) in

case a belongs to I'(p;H).

Divisor methods do satisfy consistency. On the other hand, the class of consistent methods

is larger than the class of divisor methods. Essentially, divisor methods satisfy weak population

monotonicity: pi > pj implies ai � aj. Referring to Theorem 8.4 in Balinski and Young

(2001), this property completes the list of �ve necessary conditions for a divisor method (as

we have already incorporated symmetry, weak proportionality, homogeneity and consistency).

The next proposition lists further restrictions on ' in order to guarantee that I' is a divisor

method.

Proposition 2. Let I' be the disproportionality method associated with the objective '.
Let the di¤erence

�'(b; q) = '(b+ 1; q)� '(b; q)

be strictly decreasing in q, for each b in N; and strictly increasing in b, for each q in N0. Then,
the disproportionality method I' is a divisor method.

10



Proof. See Appendix.

The di¤erences �'(b; q) allow to decompose the value '(b; q):

'(b; q) = '(0; q) + �'(0; q) + �'(1; q) + �'(2; q) + � � �+�'(b� 1; q):

The following recursively de�ned apportionment algorithm solves the integer optimization

problem (P):

� I'(p; 0) = (0; 0; : : : ; 0)9

� if a 2 I'(p;H) and �'(ai; pi) � �'(aj; pj) for each j, and ei = (0; 0; : : : ;
i
#
1; : : : ; 0); then

a+ ei belongs to I'(p;H + 1).

In words, in allocating the seats one by one, the party with the lowest marginal dispro-

portionality receives the next seat. The next equilibrium condition translates this algorithm.

The allocation a solves problem (P) if and only if

max
ijai>0

f�'(ai � 1; pi)g � min
j
f�'(aj; pj)g : (3)

Indeed, the inequality �'(ai�1; pi) > �'(aj; pj) occurs for some i and j if and only if a shift
of one seat from i towards j lowers the disproportionality. The restriction that �'(b; q) is

decreasing in q and increasing in b guarantees that the optimal allocations are stable against

a move of two (or more) seats. The equilibrium described in (3) is similar to the rank-index

equilibrium of Balinski and Young (2001, p. 142). According to a rank-index method, the

party with the highest value of the rank-index has the priority of receiving the next seat.

As a consequence, the results of Balinski and Young (2001, Thm 8.3, Corr 8.3.1) on rank-

index methods can be translated: the disproportionality method is consistent and avoids the

Alabama paradox. Grilli di Cortona et al. (1999, Lemma 6.3, Thm 6.1) obtain similar results

using a disproportionality measure of the form �(a) = �(a1) + �(a2) + � � �+ �(an).

We now present a particular class of regular relative disproportionality measures, viz.

those in which the objective � is taken from the generalized entropy family. Consider hence

J� : Nn � Nn0 �! R : (a; p) 7�! 1

�(�� 1)

nX
i=1

��ai
H

�� �pi
P

�1��
� 1
�
; (4)

with � a real number di¤erent from 0 and 1,
P
pi = P , and

P
ai = H. The value J�(a; p)

can be rewritten as

J�(a; p) =
1

n�(�� 1)

nX
i=1

pi
�p

��
ai=�a
pi=�p

��
� 1
�
; (5)

9In case '(0; q) =1 and H � n; then the algorithm should start with �I'(p; n) = (1; 1; : : : ; 1)�. We refer

to the appendix for details.
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with �a the average seat share H=n, and �p the average population share P=n. The objective

functions J� have been given di¤erent interpretations. Cowell (1980) introduced them as

measures of distributional change, a description that is adequate in the current context as

well: they capture the average degree by which (�prior�/�reference�) vote shares di¤er from

their respective (�posterior�/�actual�) seat shares. Jenkins and O�Higgins (1989) used them

to measure income inequality with �norm incomes�serving as the reference point. The role

of the norm income is here assumed by the overall average H=P . As such, they do have a

straighforward interpretation in terms of aggregate malapportionment inequality, measuring

how much seat-to-vote ratio�s ai=pi di¤er from the equality benchmark H=P .

Let us consider problem (P) with � = J�. The corresponding �'-map�is a positive a¢ ne

transform of

�� : N� N0 �! R : (b; q) 7�! b�q1��= �(�� 1):

For each b in N, the sign of (b+1) � b is well de�ned and equal to the sign of . Therefore,
the di¤erence

��(b; q) = ���(b; q) = [(b+ 1)� � b�] q1��=�(�� 1) (6)

is strictly decreasing in q and strictly increasing in b. In conclusion, if � =2 f0; 1g, then the
disproportionality method I� = I�� is a divisor method. Theorem 2 investigates the divisor

sequence d� behind I�.

Theorem 2. Let � be in R, let J� be the entropy measure as de�ned by (4), and let S�;1
refer to the Stolarsky mean. Then, the disproportionality method I� and the divisor method

D�;1 coincide.

Proof. See appendix.

The limiting behavior �! 0 and �! 1 of (4) is well documented. These are interesting

insofar they refer to the two original entropy measures as introduced by Theil. Furthermore,

I0 and I1 satisfy the conditions of Proposition 2 and are divisor methods. We highlight the

corresponding results in a separate corollary.

Corollary 1. The divisor method I0 uses the logarithmic mean S0;1(a + 1; a) as signpost
sequence to minimize proportional representation inequality as measured by

J0(a; p) =

nX
i=1

pi
P
ln

�
pi
ai

H

P

�
: (7)

The divisor method I1 uses the identric mean S1;1(a+1; a) as signpost sequence to minimize

proportional representation inequality as measured by

J1(a; p) =
nX
i=1

ai
H
ln

�
ai
pi

P

H

�
: (8)
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Proof. See appendix.

While both �non-traditional�, I0 and I1 have been considered earlier. Theil (1969) dis-

cussed (8) without however addressing the integer rounding problem. On the other hand,

Theil and Schrage (1977, p. 262) did solve the problem (P) for (7) and showed that the

corresponding seat distribution algorithm hinges on consecutive application of the priority

rule

max
i
pi (ln(ai + 1)� ln(ai)) ;

which can be recognized as a limiting case of the more general rule (6). Here we complement

their original formulation by emphasising that it constitutes the genuine divisor method I0.

Recently, Agnew (2008) also considered both logarithmic mean rounding and identric mean

rounding divisor methods, and linked them respectively to the objective functions
P
qi(ln qi�

ln ai) and
P
ai(ln ai � ln qi).10 Recalling that qi = piH=P , both are easily recognized as (7)

resp. (8) up to a multiplicative constant. Conceptually, of course, Agnew�s objective functions

are geared towards measuring the weighted deviation of seats from their ideal quota. In fact,

an appealing feature of Theorem 2 is that it encompasses many previous speci�c (�case-by-

case�) results regarding the link between additively separable disproportionality measures and

methods of apportionment. For instance, Sainte Laguë (1910) originally retrieved Webster�s

rule as the solution to the least square problem minai �pi(
ai
pi
� H

P
)2. The latter function is a

positive a¢ ne transformation of J2(a; p). Similarly, Grilli di Cortona et al. (1999) associate

the method of equal proportions with the objective function �pi(
pi
ai
� P

H
), which boils down to

J�1(a; p). The fact that Je¤erson�s method minimizes maxi ai=pi is also consistent with the

interpretation of J+1, etc.

To end this section, recall from table 1 that the method of Dean is based upon the

harmonic mean S�2;�1(a; a + 1). Hence it is not covered by Theorem 2, and therefore there

is no member of the generalized entropy class (4) behind Dean�s method. It is worthwhile to

indicate the intuition behind this negative result. As pointed out by Cowell (1980), measure

(4) [or (5)] assigns the role of (prior) reference distribution to the pi�s and that of the posterior

distribution to the ai�s. However, Dean�s method intrinsically follows a reverse logic, given

that it seeks to equivalise the number of voters per representative. In that sense, it is not

surprising that Dean�s method does minimize a �reverse�objective akin to (5), viz.

~J2(p; a) =
1

2n

nX
i=1

ai
�a

"�
pi=�p
ai=�a

�2
� 1
#
:

The question whether the n-tuple a or p should be chosen as the reference distribution returns

in the next section.
10On the connection between (7) and the objective function

P
qi(ln qi � ln ai), see also Te Riele (1978).
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4 A revision of Huntington�s approach

The prominent status of the �ve traditional divisor methods is largely due to Huntington,

who recognized that any apportionment as a rule violates the ideal ai=pi = aj=pj for all states

i; j, and then focused on the quintessential idea that

�in any practical case, the inequality between these two numbers � that is,

the inequality between the two congressional districts A=a and B=b [ai=pi and

aj=pj in our notation]� may be taken as a measure of the �amount of inequality�

between the two states A and B. If this inequality can be reduced by a transfer of

a representative from one state to the other, then, according to this �rst criterion,

the transfer should be made. The rather vague concept of the inequality between

two states is thus reduced to the more de�nite concept of the inequality between

two numbers. The question then comes down to this: what shall be meant by the

inequality between these two numbers?" (Huntington, 1928, p. 86; italics added)

To illustrate his core idea, assume that there is a pair of states i; j such that ai=pi > aj=pj.

One can then check whether ai=pi�aj=pj ? (aj+1)=pj�(ai�1)=pi, and transfer a seat from i
to j if the righthand side turns out to be smaller. Huntington called an apportionment method

workable if it is always possible to arrive at a �nal apportionment by successively applying such

a pairwise test. Within this framework two problems remain. First, why focus on the number

of seats per voter ai=pi and aj=pj? Huntington in fact also considered a second criterion, based

on the fractions pi=ai and pj=aj (the �number of people per representative�; �the size of a

congressional district�). Second, there is the problem of the exact speci�cation of the pairwise

inequality tests. These can be based on absolute di¤erences as above (e.g. ai=pi � aj=pj, or
pi=ai�pj=aj if one looks at the second criterion), on relative di¤erences (((ai=pi)=(aj=pj))�1),
and the various ways in which such di¤erences can be rewritten. Huntington�s (1928) major

contribution was to prove that only the �ve traditional divisor methods emerge as workable.

Moreover, the exact speci�cation of the pairwise inequality test drives the choice between

these methods; using ai=pi � aj=pj implies Webster�s method, pi=ai � pj=aj implies Dean�s
method, ((ai=pi)=(aj=pj))� 1 implies the method of equal proportions, etc. See e.g. Balinski
and Young (2001, p. 102) for a further discussion of this issue.

The above approach served as the analytical background for much of the debates on the

most appropriate apportionment method for the US House of Representatives. One feature

has apparently been overlooked in these discussions, although it constitutes the achilles heel

of the approach. Both the above quote and the pairwise inequality tests make clear that a

Huntington type of analysis compares seat-to-vote ratio�s (or their inverses) between states.

The number of voters appears in the ratio to be equivalised, but the state-wise inequality

comparisons subsequently neglect that di¤erent numbers of voters are in�uenced by a seat
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transfer between their respective states. Precisely in this respect, the generalized entropy

inequality framework is fundamentally di¤erent. A measure like (5) basically works in two

stages. First, if the seats per voter in state i deviate from the ideal, then
h�

ai=�a
pi=�p

��
� 1
i
gets

a non-zero value. Second, an aggregate value of malapportionment is obtained by weighting

(and summing) these state-speci�c deviations by their voter share. Thus, while the traditional

methods also emerge from our framework � together with many other methods that are all

�workable�in the alternative sense of being compatible with Theorem 2� the nature of their

constituent inequality tests in the generalized entropy framework is voter-oriented rather than

state-oriented (see appendix B for a further discussion of this issue).

Importantly, choosing between these orientations is not a mere question of preference

between two possibly relevant units of account. In fact, if the premise is that seat�to-vote

ratio�s should be as equal as possible, then comparing equally weighted seat-to-vote ratio�s

�ts uneasily with the benchmark role of H=P . Since 1
n

Pn
i=1

ai
pi
6= H

P
, fair (re-)distribution

of seats requires taking into account the appropriate relative frequencies in order to restitute

the desired equality between the benchmark and the average seat-to-vote ratio. A voter-

oriented concern thus logically follows from the choice to equivalise these ratio�s, which in

turn instigates to obey the elementary �bookkeeping�equation

nX
i=1

pi
P

ai
pi
=
H

P
: (9)

Intuitively, if one takes it that the equality target is H=P , then the recipients of ultimate

relevance logically are the P individuals. Conversely, the problem of dividing H seats over

P individuals is indeed one of distributing seat-to-vote ratio�s, a result that again directly

follows from (9) (on this issue, see also Van Puyenbroeck, forthc.). In that sense, taking �the

inequality between the two congressional districts [ai=pi and aj=pj; hence, seats per voter ] as

a measure of the �amount of inequality�between the two states�is a non-starter.

Let us use our framework to re-address the additional reasons leading Huntington to

single out the method of equal proportions as the best possible method. His case rested

on two points, viz. (i) that this method was not systematically biased in favor of either

the smaller or the larger states, and (ii) that relative di¤erences are more appropriate than

absolute di¤erences to measure pairwise inequality.11 Part of Balinski and Young�s work

11The interpretation of that quality has been somewhat dubious. In the main text we connect it with the

reference-distribution neutrality property of relative di¤erences, as expressed by the Fundamental Principle.

A second interpretation, that relative di¤erences are somehow intrinsically better, is far more controversial.

Huntington and others sometimes o¤ered misleading justi�cations for it, by making such claims as �if the size

of the congressional districts is large, say 250,000 in one state and 250,005 in the other, then the di¤erence of

�ve people is of little consequence in so large a number. But if the districts were themselves very small, say

10 and 15, then the same di¤erence becomes important; 15, we say, is larger than 10 by �fty per cent, while

250,005 is larger than 250,000 by only (1/500)th of 1 per cent.� (Huntington, 1928, p. 86) Such examples
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can be taken as a falsi�cation of the �rst claim; it is indeed generally acknowledged today

that the method of equal proportions has a built-in bias towards the smaller states, and

that Webster�s method is unbiased towards states. His second point rested on a symmetry

consideration, as is apparent from his Fundamental Principle that (in our notation) �in a

satisfactory apportionment between two states i and j, we shall agree that ai=pi and aj=pj
should be as near as possible; also pi=ai and pj=aj; also ai=aj and pi=pj; also aj=ai and pj=pi.�

(Huntington, 1921, p. 124). Starting from this Fundamental Principle, Huntington pointed at

two operationalizations � the absolute di¤erence between such quantities is nearly zero, the

ratio between them is nearly one� , and then observed that absolute di¤erence tests are non-

neutral in this respect. (recall e.g. that Dean�s method and Webster�s method both originate

from a similar test, but with the roles of seats and votes reversed). An explicit choice of

reference is avoided with relative di¤erences and, moreover, all such relative di¤erence tests

yield the method of equal proportions.

While the thrust of the Fundamental Principle is appealing, it is not incorporated by the

method of equal proportions in a voter-oriented framework. As indicated in the previous

section, a concern for the roles played by seats and voters appears as the choice between

either J�(a; p) or J�(p; a). In this respect, it is immediate from (4) that all generalized

entropy measures have the property that J�(a; p) = J1��(p; a). It is hence also immediate

that there is only one Stolarsky-mean divisor method that is neutral with respect to taking

voters or seats as the reference point, and that this is not the method of equal proportions

I�1. Only when � = 1=2 one obtains the symmetry property. Stated otherwise, only the

Stolarsky-mean divisor method I1=2 resurrects the Fundamental Principle in an internally

consistent manner, so avoiding a choice between maximal equality in terms seats per voter or

maximal equality in terms of electoral district sizes/voters per representative. This clearly is

a non-traditional method, which to the best of our knowledge has not been discussed earlier

in the literature.12 Setting � = 1=2 (and � = 1) in (2) clari�es that this method uses the

rounding rule �p
a+ 1�

p
a

1=2

��2
=

�
1

2

�p
a+ 1 +

p
a
��2

=M 1
2
(a+ 1; a)

have been emerging ever since, but they neglect that the relevant analysis pertains to absolute or relative

di¤erences between seat-to-vote ratio�s, rather than between district sizes. In the proportional representation

context, absolute measures essentially ask how much di¤erence there is between seat-to-vote ratio�s whereas

relative di¤erences measure how many times a state�s ratio is bigger or smaller than that of another state.

On this account, an intrinsic preference for either of the two types is di¢ cult to state.
12Interestingly, the reference-distribution neutrality property has never been directly contested by the critics

of the method of equal proportions, despite the fact that it was a Fundamental Principle for by Huntington.

On the contrary, proponents of Webster�s method have either built their case on its (statewise) unbiased

character or, notably, on an explicit endorsement of the idea that voters rather than representatives are the

natural references. Agnew (2008, p. 302) basically uses a similar �voters-as-reference�argument to prefer J1
(identric mean-rounding) over J0 (logarithmic mean-rounding).
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where M 1
2
(a+1; a) denotes the mean of order 1=2. We recall from Lemma 1 that this divisor

method is situated in between the logarithmic mean rounding and the identric mean rounding

method in the favoring small states ordering and, a fortiori, in between the method of equal

proportions and Webster�s method. For completeness, we note further that there is a second

sense in which it can be regarded as a speci�c compromise between these last two methods,

since its rounding rule can be expressed as the arithmetic average of their rounding rules.

That is:
�
1
2

�p
a+ 1 +

p
a
��2

= 1
2

�
(a+ 1

2
) +

p
a(a+ 1)

�
:

5 Concluding comments

The �one man, one vote�-principle is an ideal of representational equality with the practical

implication that voters should be given a most equal share of seats. We addressed in a

general way the fundamental relation between the substantive meaning of �most equal�and the

choice among apportionment methods. We have focused indeed on the structural optimality

properties of a class of (Stolarsky mean) divisor methods, rather than on the speci�c properties

of one of its members. Such a general approach allows to obtain related results easily. For

instance, the close connection of a subset of the generalized entropy family with Atkinson�s

(1970) welfare-based inequality measure can directly be exploited. In particular, Borooah�s

(2002) descriptive model of electoral welfare/electoral inequality can readily be extended by

unveiling the links between members of the Atkinson class and divisor methods. Or, one could

look at the connections between methods of apportionment and other families of objective

functions, not necessarily grounded in a voter-oriented inequality assessment framework (see

e.g. Balinski and Ramirez (1999), the �error functions�surveyed by Niemeyer and Niemeyer

(2008), or the multiplicative objective functions considered by Ga¤ke and Pükelsheim (2008).

Such a general perspective could be criticized. As its very aim is to disclose the association

between di¤erent equality objectives and their respective apportionment methods, one may

dislike its ultimate relativism. Except for a brief digression at the end of section 4, we

have refrained from entering a discussion that ultimately bears on conceptions of equality.

It is clear that within the generalized entropy framework such discussions revolve around

the choice of � (and/or the choice the reference distribution). While the inequality-aversion

interpretation of � is well-established in the income inequality literature, a further clari�cation

of this issue within the malapportionment context constitutes another interesting avenue for

further research.

Conversely, one could consider the scope of our analysis too limited. Our focus on (weakly)

proportional representation neglects some positive as well as normative concerns that are not

without relevance. As regards the former, we have for instance ruled out existent scenario�s

with legal vote minimum tresholds, prede�ned seat maxima, or minimum representation re-
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quirements.13 Whether such constraints can be embedded in an electoral inequality analysis

other than in an ad hoc fashion is an open question at this stage. The normative concerns

relate to the deeper question whether seats should ideally be linearly proportional to the

number of voters. It has primarily been raised in conjunction with the notion of voting

power in representative democracies. Starting with Penrose (1946), this strand of literature

alternatively argues that equality of ex ante voting power is achieved by allocating seats pro-

portional to the square root of the underlying vote numbers, a recommendation that still

pops up repeatedly (e.g. in recent political discussions regarding the apportionment of the

enlarged European Parliament). The notion of voting power (as usually measured by the

Banzhaf index) nowhere appears in our analysis. This notion requires additional information

about the majority size required for decision making and about the probability distribution

of individual voters�decisions. Introducing it without altering the main points of our paper

is possible by assuming that voters of a speci�c constituency consistently act as a bloc in

their voting decisions, thus replacing the random individual voting assumption upon which

the square root rule is founded. This �microcosm�interpretation of proportional representa-

tion has been sustained normatively by Thomas Paine, but seems empirically too rigid. On

the other hand, the square root rule is controversial as well. Theoretically, Felsenthal and

Machover (1999) pointed out that equality of voting power (in conjunction with the random

voting assumption) requires the voting powers rather than the seat sizes to be proportional

to the square roots of the constituency sizes. More generally, the usefulness of the a priori

decision making power framework has been challenged by coalition formation models that

use non-cooperative game theory (see e.g. Snyder et al. 2005). In addition, after empirically

verifying the random voter hypothesis itself, Gelman et al. (2004) argue that equality of ex

ante voter power often is better served by the linear proportionality ideal that we have put

central. Last but not least, if one still would prefer the square root proportionality ideal,

this still leaves open the practical problem of rounding ideals to integers. Ironically, that �

rather than proportional representation� was precisely the problem addressed by Theil and

Schrage. The framework of the current paper is, hence, readily amenable to such extensions.

A Proofs

Proof of Proposition 1. Since D�;� and D�;� coincide, we concentrate on the �rst claim. Let

� 6= 0 and let k 2 N. Start from the identity

S�;�(k + 1; k) =

�
�

�

(k + 1)� � k�
(k + 1)� � k�

�1=(���)
=
�
S�
�
;1((k + 1)

�; k�)
�1=�

:

13Still, it should be recalled that all disproportionality methods I� with � � 0 guarantee that each state

gets at least one seat (provided n � H).
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Let a > b in N. We have to compare the fractions

f(�0; �; a; b) =

0@S�0
�
;1
((a+ 1)�; a�)

S�0
�
;1
((b+ 1)�; b�)

1A1=�

and f(�; �; a; b) =

 
S�
�
;1((a+ 1)

�; a�)

S�
�
;1((b+ 1)�; b�)

!1=�
:

In case � > 0, then �=� > �0=� and the map x 7! x1=� is strictly increasing. Lemma 1 implies

that f(�0� > f(�; �; a; b)�. Hence, f(�0; �; a; b) > f(�; �; a; b). Therefore, D�0;� favors small

states relative to D�;�.

In case � < 0, then �=� < �0=� and the map x 7! x1=� is strictly decreasing. Lemma 1

implies that f(�0� < f(�; �; a; b)�. Hence, f(�0; �; a; b) > f(�; �; a; b). Therefore, D�0;� favors

small states relative to D�;�. �

Proof of Proposition 2. The method I' satis�es weak proportionality (equal or proportional

distributions minimize �) and consistency (due to additive separability). In view of Balinski

and Young (2001, Thm 8.4), it is su¢ cient to check that I' is weakly population monotone,

that is, for each problem (p;H) and each allocation a in I'(p;H), the strict inequality pi > pj
implies a weak inequality ai � aj. Since the disproportionality method is consistent, the

couple (ai; aj) solves the apportionment problem (pi; pj; ai + aj). The inequality pi > pj

implies '(b; pi) < '(b; pj). Since the di¤erences �'(b; q) are increasing in b and decreasing in

q, the conclusion ai � aj follows. �

Proof of Theorem 2. We distinguish three cases.

Case 1. � < 0.

We ignore the positive factor �(��1) and we write ��(b; q) = [(b+ 1)� � b�] q1��. Plug
in this expression in equilibrium condition (3) and obtain

max
ijai>0

�
[(ai)

� � (ai � 1)�] p1��i

	
� min

j

�
[(aj + 1)

� � (aj)�] p1��j

	
:

Of course, this equilibrium condition is invariant for strictly increasing transformations of

the values ��(ai; pi). We bring in a minus sign (max/min becomes min/max), we divide by

�� > 0, and we apply the monotone transformation x 7! x1=(1��). We obtain, subsequently,

min
ijai>0

�
pi
1�� [(ai � 1)� � (ai)�]

	
� max

j

�
pj
1�� [(ai)

� � (ai + 1)�]
	
;

and

min
ijai>0

8><>: pih
(ai)�� (ai�1)�

�

i1=(��1)
9>=>; � max

j

8><>: pjh
(ai+1)�� (ai)�

�

i1=(��1)
9>=>; : (10)

The divisor sequence d� behind I� becomes visible: for each a in N

a � d�(a) = f[(a+ 1)� � a�] =�g1=(��1) � a+ 1:
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We recognize the Stolarsky mean S�;1(a+1; a) as the signpost d�(a). The convention �pi > pj

implies pi=0 > pj=0 > pi� translates towards �pi > pj implies �1 � pi < �1 � pj�and
guarantees that the larger parties receive one seat in case H < n.

Case 2. � > 1.

Start from the equilibrium condition (3) and substitute the above (case 1) expression for

��(b; q): Divide by � and apply the monotone decreasing transformation x 7! x1=(1��). Again,

one obtains condition (10). The divisor sequence coincides with S�;1.

Case 3. 0 < � < 1.

Now �(�� 1) < 0:We write ��(b; q) = �b�q1��. Start from the equilibrium condition (3),
bring in a minus sign, divide by � > 0, and apply the monotone transformation x 7! x1=(1��).

Obtain condition (10). The divisor sequence coincides with S�;1. �

Proof of Corrolary 1.

Case 1. � = 0.

We refer to Theil and Schrage (1977). They indicate that minimizing J0(a; p) boils down

to the rank-index method (or priority rule) induced by S0;1.

Case 2. � = 1.

The corresponding �'-map�is a positive a¢ ne transform of

�1 : N� N0 �! R : (b; q) 7�! b ln(b=q):

The di¤erence �1(b; q) = (b+1) ln(b+1)�b ln(b)� ln(q) is strictly decreasing in q and strictly
increasing in b. Plug the identity

�1(b; q) = ln
(b+ 1)b+1

bb q
;

in the equilibrium condition (3), bring in a minus sign, apply the monotone transformation

�exp�, and multiply by e. The equilibrium condition

max
i

�
ln

aaii
(ai � 1)ai�1 pi

�
� min

j

(
ln
(aj + 1)

aj+1

a
aj
j pj

)

transforms into

min
i

8<: pi
1
e

a
ai
i

(ai�1)ai�1

9=; � max
j

8><>: pj
1
e

(aj+1)
aj+1

a
aj
j

9>=>; :
Conclude that the divisor sequence d1 coincides with the identric mean S1;1. �
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B Inequality tests and divisor methods

We demonstrate the di¤erent nature of Huntington�s unweighted state-wise inequality tests

and those emerging from our framework for Webster�s method, i.e. the divisor method based

on arithmetic mean rounding. The min-max inequality (1) for this method takes the form

pi
ai � 1

2

� pj
aj +

1
2

: (11)

Huntington retrieves (11) from the absolute di¤erence test

ai=pi � aj=pj ? (aj + 1)=pj � (ai � 1)=pi: (12)

Clearly, in (12), whether a seat transfer would bring the states�seat-to-vote ratio�s nearer to

each other does not take into account how many voters would be a¤ected. In the generalized

entropy framework, a similar test for Webster�s method amounts to checking whether J2
increases if we transfer a seat between states i and j, i.e. (using (5)):

1

2P

 
pi

"�
ai=�a
pi=�p

�2
� 1
#
+ pj

"�
aj=�a
pj=�p

�2
� 1
#!

(13)

� 1

2P

 
pi

"�
(ai � 1) =�a
pi=�p

�2
� 1
#
+ pj

"�
(aj + 1) =�a
pj=�p

�2
� 1
#!

:

It is easy to check that this test (13) eventually can be rewritten as (11). Note further that J2,

unlike (12), addresses the same voter-oriented problem that Sainte Laguë (1910) originally

considered. That is, �rst measuring to what extent seats-per-voter di¤er from the overall

average, where Saint Laguë proposed to measure such deviations by squaring the di¤erences,

and next weighting the individual malapportionments by the corresponding number of voters

a¤ected to arrive at an aggregate objective function.

References

[1] Agnew, R.A. (2008), Optimal Congressional Apportionment, American Mathematical

Monthly 115, 297-303.

[2] Balinski, M. and V. Ramirez (1999), Parametric Methods of Apportionment, Rounding

and Production, Mathematical Social Sciences 37, 107-122.

[3] Balinski, M.L. and H. P. Young (2001), Fair Representation: Meeting the Ideal of One

Man, One Vote (2nd ed.), Washington D.C., Brookings Institution Press.

[4] Borooah, V. (2002), The Proportionality of Electoral Systems: Electoral Welfare and

Electoral Inequality, Economics and Politics 14, 83-98.

21



[5] Chakravarty, S. (1999), Measuring Inequality: The Axiomatic Approach, in Silber, J.

(ed.), Handbook on Inequality Measurement, Boston, Kluwer Academic.

[6] Cowell, F. (1980), Generalized Entropy and the Measurement of Distributional Change,

European Economic Review 13, 147-159.

[7] Cowell, F. and K. Kuga (1981), Inequality Measurement: an Axiomatic Approach, Eu-

ropean Economic Review 15, 287-305.

[8] Felsenthal, D.S. and M. Machover (1999), Minimizing the Mean Majority De�cit: The

Second Square-Root Rule, Mathematical Social Sciences 37, 25-37.

[9] Ga¤ke, N. and F. Pukelsheim (2008), Divisor Methods for Proportional Representation

Systems: An Optimization Approach to Vector and Matrix Problems, forthcoming in

Mathematical Social Sciences (available online; doi:10.1016/j.mathsocsci.2008.01.004) .

[10] Gelman, A., Katz, J.N. and J. Bafumi (2004), Standard Voting Power Indexes Do Not

Work: An Empirical Analysis, British Journal of Political Science 34, 657-674.

[11] Grilli di Cortona, P., Manzi, C., Pennisi, A., Ricca, F. and B. Simeone (1999), Evaluation

and Optimization of Electoral Systems, Philadelphia, SIAM Monographs on Discrete

Mathematics.

[12] Huntington, E.V. (1921), The Mathematical Theory of the Apportionment of Represen-

tatives, Proceedings of the National Academy of Sciences 7, 123-127.

[13] Huntington, E.V. (1928), The Apportionment of Representatives in Congress, Transac-

tions of the American Mathematical Society 30, 85-110.

[14] Jenkins, S. and M. O�Higgins (1989), Inequality Measurement Using �Norm Incomes�:

Were Garvy and Paglin Onto Something After All?, Review of Income and Wealth 35,
265-282.

[15] Marshall, A.W., Olkin I. and F. Pukelsheim (2002), A Majorization Comparison of Ap-

portionment Methods in Proportional Representation, Social Choice and Welfare 19,
885-900.

[16] Monroe, B. (1994), Disproportionality Indexes and Malapportionment: Measuring Elec-

toral Inequity, Electoral Studies 13, 132-149.

[17] Niemeyer, H.F. and A.C. Niemeyer (2008), Apportionment Methods, forthcoming in

Mathematical Social Sciences (available online; doi:10.1016/j.mathsocsci.2008.03.003)

[18] Pennisi, A. (1998), Disproportionality Indexes and Robustness of Proportional Allocation

Methods, Electoral Studies 17, 3-19.

22



[19] Penrose, L.S. (1946), The Elementary Statistics of Majority Voting, Journal of the Royal

Statistical Society 109, 53-57.

[20] Sainte Laguë, M. A. (1910), La Représentation Proportionelle et la Méthode des Moindres

Carrés, Annales Scienti�ques de l�École Normale Supérieure 3, 529-54.

[21] Scho�eld, N. (1982), The Relationship Between Voting and Party Strength in an Electoral

System, in M. Holler (ed.), Power, Voting, and Voting Power, Berlin, Physica-Verlag, p.

121-134.

[22] Snyder, J.M., M.M. Ting, and S. Ansolohabere (2005), Legislative Bargaining under

Weighted Voting, American Economuc Review 95, 981-1004.

[23] Stolarsky, K. (1975), Generalizations of the Logarithmic Mean, Mathematics Magazine

48, 87-92.

[24] Te Riele, H.J.J. (1978), The Proportional Representation Problem in the Second Cham-

ber: an Approach via Minimal Distances, Statistica Neerlandica 32, 163-179.

[25] Theil, H. (1969), The Desired Political Entropy, American Political Science Review 63,
521-525.

[26] Theil, H. (1971), The Allocation of Power that Minimizes Tension, Operations Research

19, 977-982.

[27] Theil, H., and Schrage, L. (1977), The Apportionment Problem and the European Par-

liament, European Economic Review 9, 247-263.

[28] Young, H.P. (1994), Equity in Theory and Practice, Princeton NJ, Princeton University

Press.

[29] Van Puyenbroeck, T. (forthc.), Proportional Representation, Gini Coe¢ cients, and the

Principle of Transfers, Journal of Theoretical Politics 20.

[30] Willcox, W.F. (1954), Methods of Apportioning Seats in the House of Representatives,

Journal of the American Statistical Association 49, 685-695.

23


