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Abstract

This paper o¤ers a stylized model in which an agency is in charge
of investing in road capacity and maintain it but cannot use the capital
market so that the only sources of funds are the toll revenues. We call
this the strict self-�nancing constraint in opposition to the traditional self
�nancing constraint where implicitly 100% of the investment needs can
be �nanced by loans. Two stylised problems are analysed: the one link
problem and the problem of two parallel links with one link untolled. The
numerical illustrations show the cost of the strict self-�nancing constraint
as a function of the importance of the initial infrastructure stock, the rate
of growth of demand, the price elasticity of demand and the �exibility in
the pricing instruments.
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1 Introduction

The objective of the paper is to better understand the growth of a transporta-
tion network, when it operates under "strict" self-�nancing constraints. By
"strict" self-�nancing constraint we understand a combination of two require-
ments. First that an agency, in charge of the maintenance and construction
of new infrastructure, cannot borrow on the capital market and has to �nance
maintenance and extensions out of current toll revenues. Second the agency
is also subject to an earmarking or hypothecation constraint as it is forced to
spend all the toll revenues on maintenance and construction of roads.
This is a polar case and in strong contrast to the traditional version of the

self-�nancing constraint. The traditional version is however also a polar case as
it implicitly assumes that the infrastructure agency can borrow the full amount
of the infrastructure cost and can also return any excess revenues to the rest of
the economy. In many countries (France, Japan, Germany, Norway, US ..), an
agency receives, at its creation, an initial infrastructure stock and corresponding
outstanding debt on which it has to pay interest. It also receives the right to toll
roads but it has to break even while its call upon the capital market is limited
and sometimes reduced to zero. Two examples: in France, the road agency
had to respect a debt to earnings ratio of 7, in the US the Federal Highway
Fund cannot borrow at all on the capital market. There are two reasons for this
limited borrowing capacity. First, as in the case of a private �rm, only part of
the total investment can be borrowed on the capital market as there remains a
risk for the lender. Second, in the case of a public agency, voters are reluctant to
give an independent agency the power to build up a parallel public debt without
their consent.

We consider the extreme case where the toll revenues can only be used to
pay the maintenance, to pay existing debts and to pay the investments in the
extension of the network. The main reasons for this earmarking practice and the
limited capacity to take loans are institutional (see [7]). Many road agencies are
created as a reaction to a period where the government messed up infrastructure
policy resulting in insu¢ cient and badly maintained road infrastructure. By
creating a separate, independent agency with its own sources of income that
cannot be diverted to the government, there is a guarantee that investments
are made in road infrastructure. The institutional details di¤er strongly among
countries. Raux et al (2007) [8] discuss the case of France where a Highway
fund was created in 1955 and where the use of the toll revenues was restricted
to maintenance and extensions. In France, like in many countries, tolling a road
is only possible if an untolled alternative is available. Doll et al (2007) [4] discuss
the recent German toll on highways and its best use in their Highway Fund. In
the US, the Highway Trust fund is fed by excise taxes on gasoline and the
resources of the Fund are in principle hypothecated to highway infrastructure.

The polar case we develop in this paper serves to illustrate what are the
e¤ects and costs of the two institutional restrictions on debt �nance and hy-
pothecation of funds we discussed. In order to gain insight we focus on the
explicit dynamic modelling of one link or at most two links (one tolled and one
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parallel untolled link), homogeneous users and a bottleneck representation of
congestion. One agency is responsible for maintenance, tolling and investment,
has to break even in every period, and cannot call on the capital market to
smoothen infrastructure decisions by taking on loans. The initial conditions of
infrastructure and debt are important for the outcome. Most agencies are cre-
ated when there is dissatisfaction about the level of infrastructure supply. For
this reason we will use as initial condition a level of infrastructure supply that
is smaller than the optimal level.
More speci�cally we address the following research questions. First what

type of capacity development can we expect on a single link when there is no
possibility to borrow on the capital market? What is the impact of the initial
conditions (i.e. the con�guration of the initial network) on the future network
growth? How many years does it take to reach the optimal capacity size? Does
the �ne toll, that is optimal in the static bottleneck model, lead to provision of
too much capacity or to too low capacity levels? How does this depend on the
type of tolling and on the growth rate and price elasticity of demand that are
in place? The same questions can be raised for the two link case where only one
link can be tolled and extended. The revenue capacity of the optimal second
best toll is now smaller and the potential for network extension is more limited.
We show that the smaller the initial infrastructure stock (relative to the �rst

best optimal stock), the larger will be the welfare losses in the period where the
infrastructure stock is catching up but also the larger will be the welfare losses
once the optimal infrastructure stock has been reached because one ends up in
a regime with larger overinvestments in capacity. The numerical illustrations
show that the ine¢ ciency of the strict �nancing constraint is equivalent to an
increase of 5% to 120% of the capacity costs in the �rst best where the strict self-
�nancing constraint does not apply. This implies that only severe institutional
failures would make a strict self-�nancing constraint acceptable.
The link between tolling revenues and investment needs is a theme that

has been explored thoroughly in the literature. The "traditional" self-�nancing
theorem (see [6] , for a recent and comprehensive literature overview of self-
�nancing constraints see Verhoef and Mohring (2007) [9])) holds for our case
with one bottleneck link where there are constant returns to scale in congestion
technology and constant average costs of capacity extension. Toll revenues from
�ne tolling are su¢ cient to pay the rental cost of capacity. But the use of a
rental cost concept for capacity presupposes that a �nancial sector is ready to
pay for the investment in exchange for a share of the future toll revenues. Under
our strict self-�nancing constraint the rental cost of capacity loses its meaning
and the build up of new capacity is more di¢ cult. Verhoef and Mohring (2007)
[9] discuss the problem where one starts with an optimal capacity but where all
toll revenues have to be reinvested into new capacity. They call this the "naive
interpretation" of the self-�nancing theorem. In fact this can also be seen as
a re-investment rule. Our case is di¤erent and more realistic: we start from a
too low capacity, interest is paid on the initial capacity, there is ear-marking
of toll revenues for investments and we consider two-part toll as a way out for
excessive investments.
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Section 2 of this paper de�nes the one link model, the optimal �ne toll and
the optimal capacity in the absence of a strict self-�nancing constraint. Section
3 discusses the properties of the stationary state that results from �ne tolling
under a strict self-�nancing constraint and when demand is time independent
and price inelastic. In section 4 we consider the more general case of growing and
price elastic demand and analyze the case of a two-part toll consisting of a �ne
toll (toll varying within the day) and a �xed component that is independent
of the timing of his trip within the day. We show that this two-part toll can
bring large welfare gains. Section 5 presents the two link case where one link
is untolled. Section 6 presents numerical simulations to illustrate the orders of
magnitude associated to the strict self-�nancing constraint. Section 7 concludes.

2 The one link model

Consider a route, joining an origin to one destination. The capacity of this route
at the calendar time t is denoted by s(t). Capacity can be varied continuously.
We use the reduced form of a dynamic (bottleneck) model with homogenous

users, endogenous trip times and one desired arrival time (see [1]). In this model
identical individuals all want to arrive at the same desired arrival time but this
is impossible because the capacity of the bottleneck is too small. In the no-toll
solution, the Nash equilibrium implies that all users have the same total cost
that consists of the sum of travel cost, queueing cost and schedule delay cost.
The schedule delay cost consists of either the cost of being too late or the cost
of being too early. The optimal toll solution for given capacity consists of using
a �ne toll that varies over the day in function of the departure time. This type
of toll is capable of eliminating all queueing costs but the schedule delay costs
remain. In addition, because the average queueing cost is transformed into
average toll revenue, total demand is identical to the demand level without the
�ne toll. For given capacity and given demand function, the �ne toll is the most
e¢ cient way to deal with the intraday congestion problem. In this paper we are
mainly interested in the optimization of the capacity level and for that reason
we can leave the intraday dimension of the �ne toll implicit and concentrate
on the intertemporal evolution of the average revenue of the �ne toll, the total
demand per day and the capacity.
The elementary period t we consider is a day or a year in which the capacity

and demand conditions (with its intraday variations) can be considered constant.
In this equilibrium, the average (over the users within one day) of the cost
function during the time interval [t; t + dt) dt is (up to an additive constant
which equals the travel time at maximum speed, omitted):

C(t)dt = �
N (t)

s (t)
dt (1)

where � is a summary measure of the schedule delay costs � = �=(� + ), �
being the unit cost for early arrivals and  being the unit cost for late arrivals,
with typically � < . Eq(1) is the average cost in equilibrium where none of
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the users can reduce their travel cost (schedule delay and queueing) by choosing
another departure time within the day. Usage at time t is denoted by N(t),
that is growing over time: dN(t)=dt � 0; we assume �rst that demand is time
dependent but price inelastic. In the bottleneck model, half of this average travel
cost is due to schedule delay costs, while the other half are the queueing costs.
It is well known that the optimal toll is an intraday varying toll, called �ne
toll, that totally eliminates queueing. Alternatively, a coarse toll, with steps,
eliminates a smaller fraction of the total cost. As the number of steps goes to
in�nity, the solution converges towards the �ne toll. In the rest of the paper we
concentrate on the �ne toll.
Maintenance cost M(t)dt during the interval [t; t+ dt) is the sum of a term

which depends on usage, and a term which is independent of usage. The second
term depends on natural degradation, due for example to bad weather conditions
(induced potholes, cracks and the like) (see [5]). We have:

M(t)dt = a(Q)N(t)dt+ b(Q)s(t)dt;with a(Q) > 0; b(Q) > 0 (2)

where Q is the quality of the road. In the sequel, we will omit the quality depen-
dency. The optimal level of the toll (in fact an average over the day), computed
on a marginal cost pricing principle, is the sum of the optimal congestion charge
and the maintenance cost due to usage:

�(t) = �
N (t)

2s (t)
+ a: (3)

This is the toll that optimizes the welfare for a given capacity. Total toll revenue
collected during [t; t+ dt) is:

TR(t)dt =

�
�
N (t)

2s (t)
+ a

�
N(t)dt: (4)

Without a strict �nancial constraint, the �rst best capacity s (t) is the capacity
that minimizes total costs which are (assuming optimal tolling), the sum of the
total scheduled delay costs, the rental cost of capacity and the maintenance
costs:

Total Costs = �
N (t)

2s (t)
N (t) + i�s (t) + aN (t) + bs (t) (5)

where i is the interest rate and � is the unit construction cost of new capacity.
We assume constant returns to scale for road construction. With constant input
prices, this implies that the construction cost of a unit of capacity ds is �ds.
Capacity, once constructed, has an in�nite lifetime. This implies that only
interest is due. The absence of a strict �nancial constraint means that in every
period, capacity can be adapted optimally in function of demand at a rental
price equal to the interest rate.
Solving the �rst order condition yields the �rst best capacity:

sopt (t) = N (t)

s
�

2 (i�+ b)
: (6)
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Optimal capacity is an increasing function of the number of users and the sched-
uled delay cost but a decreasing function of the cost of installing and maintaining
capacity.

3 Fine tolling and the strict self-�nancing con-
straint

Although the toll given in eq(3) optimizes the welfare for a given capacity, it
is not necessarily the toll that maximizes welfare under a strict self-�nancing
constraint. The strict self-�nancing constraint considered in this paper re-
quires that the total toll revenue collected during the in�nitesimal time interval
[t; t + dt) is used for maintenance, for payment of the annual interest on the
initial capacity (s0) and for construction of new capacity. We have therefore the
following accounting balance:�

�
N (t)

2s (t)
+ a

�
N(t)dt = aN(t)dt+ bs(t)dt+ i�s0dt+ �ds; or

�
[N (t)]

2

2s (t)
dt = bs(t)dt+ i�s0dt+ � (ds) : (7)

We assume that the sum raised by the toll is large enough to cover the mainte-
nance cost, so that the residual is used to build extra capacity. In the limiting
case, the amount raised is exactly equal to the maintenance cost. It may be the
case that when the government wishes to start with an autonomous agency and
a strict self-�nancing constraint, the �xed maintenance cost is larger than the
toll revenue. Such situations are not impossible, but disregarded here.
Expression (7) is a di¤erential equation, which can be written as:

ds

dt
=
�

�

[N (t)]
2

2s (t)
� b

�
s(t)� is0: (8)

We have assumed that the initial capacity (at t = 0) is small enough (or main-
tenance cost b is small enough), so that ds=dt > 0, i.e.

s0 < N (0)

s
�

2 (i�+ b)
: (9)

Note that the left hand side of the inequality is just the �rst best capacity at
t = 0 (see eq(6)).

For time-dependent demand functions we have to rely on numerical simulations,
but when demand is constant over time and inelastic

�
N (t) = �N

�
we have a

stationary state for eq(8):
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Proposition 1 For time independent and inelastic demand �N and if the usage
independent maintenance costs b = 0; the stationary state bs is given by

bs = (sopt)
2

s0
; (10)

if b 6= 0 then

bs = �i�s0 +
r
(i�)

2
�
s20 � (sopt)

2
�
+ (i�+ 2b)

2
(sopt)

2

2b
(11)

where sopt is given by eq(6) where N (t) = �N:
Proof. If b = 0 : the stationary state is the solution of following equation

ds

dt
= 0) �

�

�N2

2
� is0bs = 0

solving for bs we get
bs = �N2 �

2i�s0
=
(sopt)

2

s0

It is obvious that bs > sopt if s0 < sopt:
To �nd the stationary state for b 6= 0 we need to solve

bbs2 + i�s0bs� � �N2

2
= 0

and

bs = �i�s0 +
q
(i�s0)

2
+ 2b� �N2

2b

From eq(6) we get that � �N2 = 2 (i�+ b) (sopt)
2
; substituting this into the pre-

vious equation and after some rearrangement of the terms we get eq(11).
To prove bs > sopt if s0 < sopt rewrite the inequality as

bs > sopt ,q
(i�s0)

2
+ 2b� �N2 > 2bsopt + i�s0

squaring both sides and substituting � �N2 this is equivalent with

(i�s0)
2
+ 4b (i�+ b)

�
sopt

�2
> 4b2

�
sopt

�2
+ (i�s0)

2
+ 4bi�s0s

opt

which reduces to

4bi�
�
sopt

�2
> 4bi�s0s

opt

sopt > s0

which is true by assumption.
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To understand the intuition of this result, assume �rst s0 = sopt and re-
member that the level of congestion determines the level of the toll revenues,
then no capacity additions are needed and all toll revenue is used to pay for
the initial capacity stock at a cost i�s0. In this case one stays at the optimum
capacity. Take now a somewhat smaller initial capacity. The budget surplus
that remains after paying for the initial capacity is reinvested every year even
when the optimal capacity is reached. The capacity keeps growing until the
capacity is so large that the �ne toll revenues equal the cost of paying for the
initial infrastructure. Take now a very low initial capacity. This implies that
the yearly cost of this initial capacity is also very low. The �ne toll now leaves
a larger budget surplus for investments and capacity extension can go on for
much longer. The resulting steady state infrastructure stock implies a much
more excessive capacity level.
So the initial capacity plays a double role. First a higher initial capacity

allows to reach the optimal capacity more quickly as the need for investments in
the short run is more limited. Second, and this is less obvious, it limits the sur-
plus available for capacity extension and this helps to limit the construction of
excessive capacity in the long run. As we will later demonstrate numerically, us-
ing price elastic demands, this insight has important policy implications. Tolling
is often introduced when capacity is much too small and then an agency is often
created with a strict self-�nancing constraint and a low initial debt in order
to guarantee a quick build up of capacity. However, it is precisely under these
conditions that the costs of overinvestment will be largest.
One could think of other initial conditions for the infrastructure capacity.

Given that the agency receives the power to toll it is logical to require it to pay
the cost of the initially received infrastructure under the form of interest. One
alternative assumption is that the agency starts with no infrastructure at all
but then the model is no longer de�ned. Another alternative is that the agency
receives for free a small initial infrastructure. Then the strict self-�nancing
constraint would generate even more extreme results.

4 One Mode with two-part tolling and �nancing
constraint

The �ne toll is not necessarily the toll that maximizes welfare under a strict self-
�nancing constraint. It is obvious that the introduction of an additional �xed
term, not varying within the day, could bring in extra �nancial resources or
allows to decrease toll revenues when they are not longer needed. The optimal
�xed term is di¢ cult to determine but one can state that it will always be
optimal to charge the �ne toll in order to eliminate the queuing and convert
the queuing into toll revenues. We therefore consider a two-part toll whose �rst
part consists of the �ne toll ��ne (t) and a second part that is a �xed part or
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"base toll" F (t) (see de Palma, Lindsey (2000) [3]). :

toll (t) = ��ne (t) + F (t) : (12)

The �xed part F (t) can be negative or positive and allows to either raise
more revenue when large investments are needed or to limit revenue raising once
the optimal capacity is reached. We need to distinguish the case of price inelastic
and price elastic demand.
When demand is inelastic and varying over time, the optimal tolling and

investment regimes can be achieved as follows: if we start with a capacity s0
with s0 < sopt then invest in �rst period sopt (t)�s0: This investment is �nanced
by a �ne toll plus a �at toll:�

F (t) + ��ne (t)
�
N (t) � i�s0 (t) +

�
sopt (t)� s0

�
�+ bsopt (t) ; (13)

in the second period, when the �rst best capacity is reached the �at toll becomes
a subsidy

F (t)N (t) = ���ne (t)N (t) + bsopt (t) + i�s0: (14)

Because demand is inelastic the �at part of the toll allows to overcome the
strict self-�nancing constraint by simply charging all users the sums necessary
to reach optimal capacity and by redistributing the surplus once the optimal
capacity is reached. We assumed implicitly that the �xed part of the toll does
not exceed the income of the representative consumer, if this would be the case,
one has to proceed more gradually.
When demand is elastic and time-dependent, �nding the optimal two-part

tari¤ is a di¢ cult optimal control problem. We limit ourselves here to a heuristic
approach for case where demand is elastic but time-independent . The search for
the optimal structure of the �xed part of the toll (F (t)) relies on two principles.
First, the �xed part of the toll can be used to raise more revenues and increase
the rate of the investments; we will assume the �xed part to be proportional
to the di¤erence between the actual capacity and some capacity (s� (t)) which
we will call third-best capacity for reasons that will become clear later. Second,
once the third best level of capacity (s� (t)) is reached, we would like to stay at
that level and not invest anymore; the �xed part of the toll can then be used
to set the level of the total toll revenues equal to the cost of the initial capacity
and the maintenance cost so that no residual toll revenues are left . To be more
precise, F (t) is of the form:

F (t)N (t) =

�
�� (s� (t)� s (t)) if s (t) < s� (t)
���ne (t)N (t) + i�s0 + bs� (t) if s (t) = s� (t)

�
: (15)

The �rst best capacity derived in eq(6) is the capacity that maximizes welfare
given that the toll equals the �ne toll and that there is no strict �nancing
constraint. In our case, however, the toll is not equal to the �ne toll so the
"optimal" capacity level can be di¤erent from the �rst best capacity derived in
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eq(6)). The capacity s� (t) is the capacity that maximizes welfare given that
the toll is equal to i�s0 :

W =

Z 1

p

N (p0) dp0 � i�s� bs: (16)

Proposition 2 If demand is elastic N (p) = p��; then the optimal capacity
s� (t) given a toll equal to the sum of the �ne toll and F (t) given in (15) is
larger (or smaller) than the �rst best capacity, if � < 1 (� > 1) : More precisely:

s� (t) = N (t)

s
�

2 (1 + �) (i�+ b)
: (17)

This capacity level is third-best because three constraints are present: �rst
there is the strict �nancial constraint, second the initial capacity is assumed to
be ine¢ ciently low and third it maximizes welfare in a myopic way.

5 Two Modes: the untolled alternative

Consider the case of two parallel modes connecting an origin O to a destination
D. Suppose one mode is untolled and has a �xed capacity (sU ). The second
mode, on the other hand, can be tolled and has a capacity sT : Consider any
period t so that we can save on notation by dropping the time index. Assume
both alternatives to be perfect substitutes so that in equilibrium both modes
will have equal generalized prices:

pU (NU ) = pT (NT ) ; (18)

where the total demand for trips from O to D is N = NU +NT . From de Palma
and Lindsey [3] we know that the second-best toll is the �ne toll to eliminate
queueing on mode T corrected by a term (the �at toll �T ) to control the number
of users on route T :

�T = �
jpN j

jpN j+ pUN
pUNNU ; (19)

where pUN = @pU (NU )
@NU

and pN = @p
@N :The intuition for the use of a �ne toll

structure on mode T is easy: a �ne toll makes sure the queueing costs of the
existing users is transformed into toll revenue without any change in total use
of mode T . The average �ne toll has to be smaller than in the one link case
because this way one can attract users of the other (congested and ine¢ ciently
managed) mode U to the better managed mode T .
If �T = 0 so that there is only a �ne toll on mode T , then

NT =
sT

sT + sU
N: (20)

Since the fraction sT
sT+sU

< 1; this is always smaller then the demand on a single
mode with the same total capacity.

10



Toll revenues will also be smaller by a fraction
�

sT
sT+sU

� 2
1+�

. For a given

capacity sT ; it is thus clear that toll revenues in the single mode case will always
exceed toll revenues in the parallel case. We therefore expect the capacity build
up over time under the strict �nancial constraint to give a similar pattern in
both cases but capacity in the parallel case will increase more slowly. If the
second best toll is charged, we see that demand and thus toll revenues and
investments will be even smaller for mode T .
In the two modes case it is di¢ cult to get analytical results and we therefore

refer to the simulation results.

6 Numerical simulations

For the numerical simulations in the single mode case we assume the following
functional form for the demand function

N (p (t)) = (1 + t)�p (t)
��
; (21)

where � and � are positive. The generalized price is equal to the time cost plus
the toll

p (t) =
�N (p (t))

2s (t)
+ ��ne (t) + F (t) ; (22)

with

��ne (t) =
�N (p (t))

2s (t)
: (23)

In the numerical simulations we assume that maintenance costs are zero (a = b = 0) :
Welfare TW (t) is the discounted integral over time of the sum of the con-

sumer surplus (CS (t)) and the toll revenues (TR (t)) minus the cost of capacity
(CC (t)) at a given time t: Since the last two are constrained to be equal we end
up with

TW =

Z 1

0

W (s (t)) e�itdt (24)

where

W (s (t)) = CS (s (t)) =

Z 1

p(t)

N (p0 (t)) dp0: (25)

We call this the "real" welfare, i.e. the welfare under the strict �nancial con-
straint. As a benchmark or reference we use the �rst best welfare (i.e. the
welfare if there is no �nancial constraint, the toll equals the �ne toll and capac-
ity is always at its �rst best level given in eq(6)):

TW opt =

Z 1

0

W opt
�
sopt (t)

�
e�itdt (26)

W opt
�
sopt (t)

�
= CSopt (t) + TRopt (t)� CCopt (t) : (27)
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In order to compare the welfare in both cases, we normalize the welfare loss by
the cost of capacity in the �rst best. For some factor �cs the �rst best welfare
will become equal to the "real" welfare:

CSopt
�
sopt (t)

�
+ TRopt

�
sopt (t)

�
� �csCCopt

�
sopt (t)

�
= CS (s (t)) : (28)

Using TRopt (sopt (t)) = CCopt (sopt (t)), the equation can be rewritten as:

CSopt (t)� CS (t) = CCopt (t) (�cs � 1) (29)

and

�cs � 1 =
CSopt (t)� CS (t)

CCopt (t)
: (30)

De�ne

�CS � i
Z 1

0

CSopt (t)� CS (t)
CCopt (t)

e�itdt+ 1 (31)

We use this index �CS as a measure of the welfare loss when the strict �nancial
constraint is imposed and one starts with a suboptimal level of capacity. To
understand better the meaning of �CS consider �rst �CS = 1; then there is no
welfare loss, if �CS = 2; this means that if in the �rst best, capacity costs were
doubled, one ends up with the same level of welfare as in the case with strict
�nancial constraint. Or put di¤erently; the fact that one starts with a sub-
optimal level of capacity and there is a strict self-�nancing rule, is equivalent to
a doubling of the cost of capacity if �CS = 2.
For the case with two perfectly substitutable modes, we assume similar ex-

pressions for the demand function. The generalized prices for the tolled and
untolled mode are respectively:

pT (NT ) =
�NT
2sT

+ ��neT + �T ; (32)

pU (NU ) =
�NU
sU

(33)

where

��neT =
�NT
2sT

: (34)

The welfare is now the sum of the consumer surplus on both modes, the toll
revenues

�
TRT

�
on the tolled mode and the investment cost of the tolled mode

(we again neglect maintenance costs):

SS =

Z N

0

p (n) dn� pT (NT )NT � pU (NU )NU + TRT � i�sT (35)

where the toll revenues are

TRT = �TNT +
�N2

T

2sT
: (36)
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Substituting this expression in SS :

SS =

Z N

0

p (n) dn� �N
2
T

2sT
� �N

2
U

sU
� i�sT (37)

The index which gives us a measure of the welfare loss is now de�ned as

�SS � i
Z 1

0

SSopt (t)� SS (t)
CCopt (t)

e�itdt+ 1 (38)

where SS (t) is given by eq(35) with SSopt (t) = SS
�
s = soptT

�
and CCopt (t) =

i�soptT .
We discuss �rst the case of a single link with a �ne toll and a two-part toll.

We continue with the case of two parallel modes where one mode is untolled.

6.1 Numerical simulations for the single link and �ne toll

In order to make the simulation one needs some assumptions on the values of the
parameters. We continue to assume maintenance costs equal to zero: a = b = 0.
The value of the parameter � is based on the value found in [1] and is: � = 2:427:
For the costs of capacity we assume i� = 15:157; where i is the interest rate
and is equal to 5%. The initial capacity s0 is taken to be a percentage of the
�rst best capacity at t = 0. We will take 20%, 50% and 80%. Finally, the time
horizon is 50 years.

First we consider the case where demand is time-independent (� = 0) and
inelastic (� = 0) ; with other words; demand is �xed and normalized to one.
The evolution of the capacity level (vertical axis) over time (horizontal axis)

for di¤erent initial capacities is given in the Figure 6.1. The dotted horizontal
line is the optimal capacity, the full lines represent capacity extensions when
initial capacity is 20, 50 and 80% of the optimal capacity.
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Figure 6.1: The one mode capacity evolution with �ne toll for di¤erent initial
capacities when � = � = 0:

The �rst-best capacity (sopt = 0:283) will be reached more or less after the same
period (t s 10) in the three cases. The steady state levels (ŝ) are, however very
di¤erent. For initial capacities of respectively 20%; 50% and 80% of the optimal
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capacity level, the steady states are ŝ = 1:41; ŝ = 0:56 and ŝ = 0:35: These
values are consistent with eq(10). For example, for an initial capacity equal to
20% of the �rst best capacity the steady state will according to eq(10) be equal

to; ŝ = (sopt)
2

s0
=
(sopt)

2

0:2sopt = 5s
opt = 1:41.

We see that starting with a very low capacity (20% of the optimal capacity)
generates more revenues (higher congestion and lower interest payments) and
the �rst best level of capacity will therefore be reached more quickly. The low
cost of the initial capacity will, however, lead to a larger toll revenue surplus
when optimal capacity is reached which generates a larger overinvestment in the
long run.
Values of �CS for di¤erent combinations of growth (�) and price elasticity (�)
are provided in Table 1:

(�; �) (0; 0) (0:1; 0) (0:2; 0) (0:5; 0)
0:2sopt 1:46 1:61 1:75 2:17
0:5sopt 1:18 1:3 1:43 1:81
0:8sopt 1:05 1:14 1:25 1:61
(�;�) (0; 0:5) (0; 1) (0; 2)
0:2sopt 1:42 1:39 1:33
0:5sopt 1:18 1:17 1:16
0:8sopt 1:05 1:05 1:05
(�; �) (0:2; 0:5) (0:2; 1) (0:5; 0:5) (0:5; 1)
0:2sopt 1:64 1:56 1:93 1:79
0:5sopt 1:39 1:35 1:68 1:59
0:8sopt 1:23 1:22 1:53 1:46

Table1: Relative e¢ ciency losses of a strict �nancing constraint for
di¤erent initial capacities, di¤erent growth rates of demand (�) and di¤erent

price elasticities (�)

From the table we see that starting with a capacity level which is only 20%
of the optimal capacity level and imposing a strict self-�nancing constraint is
equivalent with increasing the capacity costs by 40%�120%. Starting with half
of the optimal level reduces this to 20%�80%: Larger initial capacity (80%) will
create only small welfare losses (around 5�60%). Larger growth in demand will
increase the welfare loss. A higher price elasticity, however, will correspond to
slightly lower values for �cs: This can be expected as the higher price elasticity
means better substitutes in case of sub-optimal capacity levels.
The lower the initial capacity, the larger will be the excessive capacity in the long
run: There are, however, no general statements to be made about the moment
that capacity reaches sopt : de�ning tp as the time where the capacity reaches
the �rst best level starting from an initial capacity s0 = p � sopt, we have; if
� = 0:2; � = 0:2 : then t0:2 = 17; while t0:8 = 21; the lower the initial capacity
the quicker the �rst best level is reached: For the same growth parameter but
an elasticity of � = 4; the opposite is true t0:2 = 42; while t0:8 = 41:
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6.2 Simulation results for the two-part toll

In the following simulations the �xed part of the toll, F (t) is di¤erent from zero
and is given by eq(15). First we consider the case without growth (� = 0) ; as
price elasticity we take � = 0:5 and the initial capacity is 20% of the �rst best
capacity: s0 = 0:2 � sopt; where sopt = 0:096: The third best capacity as de�ned
in eq(17) is for these parameter values equal to s� = 0:1: We see that this is
higher than the �rst best capacity.
We �rst assume that we have �ne tolling until the third best capacity is

reached followed by a �xed toll that returns all surplus toll revenues under the
form of a �at subsidy per trip (� = 0 in eq(15)). In this case the capacity will
reach the third best level at t = 18: The value of �CS is now 1:32 which is
only a very slight improvement compared to the case where we had �ne tolling
and we allowed the capacity to continue to increase above the optimal level
(�CS = 1:42). Things can be improved by allowing � to be di¤erent from zero.
The best performing � turns out to be � = 0:07. For this value of �, �CS is
equal to 1:3: As can be seen in Figure 6.2 (where the dotted line corresponds
to � = 0; and the dashed line to � = 0:07) the extra �xed toll can be used to
reach the third best capacity at an earlier point in time (t = 13).
As a second illustration we take the same parameter values as above but

now � = 0:2 instead of 0:5. Again we compare the case when � = 0 (no �xed
part) with the best performing �: When � = 0; �CS = 1:32 (compared to 1:44
in the case with only �ne tolling). After 15 periods the third best capacity level
is reached (dotted line in Figure 6.3). The best performing � = 0:19 yields a
�CS = 1:26 which is a 10% improvement compared to � = 0, the evolution of
the capacity in this case is given by the dashed line in Figure 6.3 (where again
the dotted line corresponds to � = 0; and the full line to � = 0:19):
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Figure 6.2: The one mode capacity
evolution with two part toll for di¤erent
values of � when � = 0 and � = 0:5 :
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Figure 6.3: The one mode capacity
evolution with two part toll for di¤erent
values of � when � = 0 and � = 0:2 :

Concluding the numerical simulations of the two-part toll we see that when
demand is price elastic, a two-part toll is a limited instrument to reduce the
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welfare losses associated to the strict self-�nancing constraint. The main reason
is that the �xed toll (or subsidy) can only transform the e¢ ciency loss associated
to an excessive investment into an ine¢ cient pricing regime as user prices will
be di¤erent from marginal social costs.

6.3 Simulation results for two modes

We take the same parameter values for �; � and i as previously. We restrict
ourselves to the case without growth (� = 0) and � = 0:5 and where the initial
capacity of the tolled mode is half of the optimal level:
The results will depend on the characteristics of the untolled alternative,

more precisely on the relative importance of the untolled capacity compared to
the tolled initial capacity. In Table 2 we summarize the results for di¤erent
capacities of the untolled mode and for the case where only the �ne toll can be
used on the tolled link (�xed part=0):

sU soptT s0 �SS
0:0001 0:0966 0:0483 1:18
0:01 0:0956 0:0481 1:67
0:04 0:086 0:043 1:58
0:07 0:0713 0:0365 1:31

Table 2: Relative e¢ ciency losses of a strict self-�nancing constraint in the
two mode case for di¤erent initial capacities of the tolled mode and

di¤erent capacities of the untolled mode when the toll is equal to the �ne
toll.

In the second column we report the optimal capacity of the tolled mode given
the capacity of the untolled mode and given that the toll equals the �ne toll.
Column three gives the di¤erent initial capacities of the tolled mode and the
last column gives the values of the e¢ ciency parameter �SS . We see that when
capacity of the untolled mode increases, the welfare loss increases until a certain
point where it decreases again.

If instead of the �ne toll one charges the second best toll that takes into account
the existence of an untolled alternative (see eq(19)) we get the results reported
in Table 3:

sU soptT �T �SS
0:01 0:094 �1:084 1:15
0:04 0:082 �2:207 1:12
0:07 0:068 �2:67 1:28

Table 3: Relative e¢ ciency losses of a strict self-�nancing constraint in the
two mode case for di¤erent initial capacities of the tolled mode and
di¤erent capacities of the untolled mode for the second best toll.
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Here the second column corresponds to the optimal capacity for the tolled mode
given that this mode applies the second best tolling. From Table 2 and 3 we
see that the optimal capacities are slightly smaller and the welfare losses are
smaller with second best tolling than with �ne tolling only. Simple �ne tolling
with an untolled alternative has the following drawbacks in comparison to the
second best toll. First, the second best toll can be set at a lower value in
order to attract more users to the tolled alternative that has better congestion
management. Moreover, the second best toll produces less toll revenues so that
there are less excessive investments.

7 Conclusions

This paper has analyzed analytically and numerically the e¤ect of a strict self-
�nancing constraint on the development of a network of the bottleneck type
consisting of one link or one link plus an untolled alternative. Tolls are either
�ne tolls or a two-part toll consisting of a �ne toll plus a �xed part. The strict
self-�nancing constraint forces the operator to spend the surplus revenues on new
capacities. We �nd that the ratio between the initial infrastructure capacity and
the optimal capacity is the dominant factor to explain the ine¢ ciency associated
to the strict self-�nancing constraint. There are two reasons for this. First
starting with a very low capacity makes it more di¢ cult to reach the optimal
capacity. Second, a very low initial capacity means that the toll surplus will be
larger and that investments continue until capacity is really excessive. The use
of a two-part toll where a �xed part can help to build capacity more quickly and
to return excessive toll revenues once optimal capacity is reached can in theory
reduce these ine¢ ciencies. Numerical simulations show that the advantage of
this more complex tolling regime is limited and that the additional cost of the
strict self-�nancing constraint can be reduced of the order of 20 to 100% of
the cost of capacity. When there is an untolled alternative in place, the strict
self-�nancing constraint is a handicap when one starts with a too low capacity
as the optimal �ne toll generates less revenues and it therefore takes more time
to reach the optimal capacity. On the other hand it limits excessive capacities
as revenues are more limited.
Our paper is limited to the analysis of simple one or two link cases. In the

real world, agencies have often the responsibility of a complex network. If the
complex network is an aggregate of one link problems with identical structure
our results continue to apply. Things would be di¤erent if part of the network is
close to optimal capacity while another part requires large investments. In this
case, the pooling of revenues over links relaxes the strict self-�nancing constraint.
A second limitation of our analysis is that the strict self-�nancing constraint is
exogenous. The strict self-�nancing constraint is the result of a principal agent
problem between voters, politicians and agencies (see [2]). One of the results of
our paper, the e¢ ciency loss of this constraint, is then an important input for
the principal agency game.
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