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Abstract. In ordering infinite utility streams, anonymity and Pareto are con-
sidered two basic principles. Anonymity is usually expressed by means of a
group of cyclic or Pareto-compatible permutations. Maximal (for inclusion)
groups of cyclic permutations involve free ultrafilters on the lattice of partitions
of positive integers and are therefore nonconstructible objects. This result is in
line with the conjecture of Fleurbaey and Michel (2003) and with the results
of Lauwers (2006) and Zame (2007).

1 Introduction

In the literature on ordering infinite utility streams, finite anonymity (ensuring equal treat-
ment of generations) and Pareto (ensuring sensitivity for the interests for each generation)
are considered two basic principles. Infinite versions of the utilitarian and of the lex-
imin ordering—e.g. Asheim and Tungodden (2004), Banerjee (2006), Basu and Mitra
(2007), Bossert, Sprumont, and Suzumura (2007), Asheim, d’Aspremont, and Banerjee
(2008), and Kamaga and Kojima (2009a,b)—do satisfy both basic principles. Also the
no-dictatorship axioms of Chichilnisky (2009) have some appeal to these principles. The
use of the Chichilnisky-criterion boils down to selecting a Pareto-efficient utility stream
under some (finite anonymous) constraint at infinity; see Chichilnisky (2009, Thm 3).

∗I thank Norbert Brunner, Graciela Chichilnisky, Koen Decancq, Marc Fleurbaey, Johan Quaegebeur,
and Luc Van Liedekerke for helpful conversations. A first version was presented at the workshop “Intergen-
erational equity in climate negotiations, overlapping generations and social welfare” organized by Claude
d’Aspremont and Thierry Bréchet (CORE, April 27-28, 2006). This text presents research results of the
Belgian Programme of Interuniversity Poles of Attraction initiated under the Science Policy Programmes
of the Prime Minister’s Office, Belgium. The scientific responsibility is assumed by its authors.
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The imposition of finite anonymity and Pareto, however, already limits the possibil-
ities to order the set of infinite utility streams. Lauwers (2006) and Zame (2007) show
the impossibility—as conjectured by Fleurbaey and Michel (2003)—to construct a finite
anonymous, Paretian, complete, and transitive binary relation on the set of infinite utility
streams.

This note investigates the boundaries of combining different anonymity principles (finite
anonymity, fixed step anonymity, ...) and different Pareto principles (weak Pareto, strong
Pareto, ...) without insisting on completeness. Furthermore, we restrict the attention to
the domain {0, 1}∞ of infinite utility streams made up out of zeros and ones.

The motivation to consider this particular domain lies within the finite analogue. Con-
sider the domain [0, 1]n of utility streams of length n. Here, the Pareto axiom has a power
equal to 21−n: the probability that the Pareto axiom is able to rank two randomly selected
(uniform distribution) vectors is equal to 21−n. The combination of anonymity and Pareto
has a power equal to 2/(n+1). However, when restricted to the set {0, 1}n of vectors made
up out of zeros and ones, the combination of anonymity and Pareto generates a complete
ranking. Indeed, the combination of anonymity and Pareto boils down to counting the
number of ones in such a vector. The higher this count, the higher the vector is ranked.
The utilitarian, the leximin ordering, or any other ordering on the set [0, 1]n that combines
Pareto and anonymity share a common trunk: when restricted to the set {0, 1}n they all
coincide with the counting procedure. The combination of anonymity and Pareto has a
full bite on the set {0, 1}n of 0-1-utility vectors.

Inspired by this finite setting, we consider the domain of infinite 0-1-utility streams
and focus on what different criteria may have in common. We obtain the following results.
First, we characterize cyclic permutations as those permutations that are compatible with
strong Pareto. Here, we strengthen a result by Mitra and Basu (2007). Second, we show
that a permutation is cyclic if and only if it does not conflict with either strong or weak
Pareto: if a particular anonymity-axiom is compatible with weak (resp. strong) Pareto, then
it is also compatible with strong (resp. weak) Pareto. Third, we tackle a question posed by
Mitra and Basu (2007) and we investigate maximal (for inclusion) groups within the set
of cyclic permutations. The strongest anonymity condition compatible with Pareto allows
for a complete ordering of the set {0, 1}∞ but involves the existence of an ultrafilter on the
lattice of partitions of the set of positive integers. Since ultrafilters are nonconstructible
objects, this result is in line with those obtained by Lauwers (2006) and Zame (2007).

The next section collects preliminaries on social welfare relations, cyclic permutations,
ultrafilters on sets, and ultrafilters on lattices. Lemma 1 and Corollary 1 in subsection
2.2 characterize Pareto-compatible permutations. Section 3 develops the main result: a
maximal anonymity condition involves an ultrafilter on the lattice of partitions. Section 4
concentrates on a particular set of permutations: the group of fixed step permutations in
the class of variable step permutations. Section 5 concludes.
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2 Preliminaries

We recall the notion of a social welfare relation and of a cyclic permutation. We mainly
follow Mitra and Basu (2007). Next, we recall the notions of ultrafilters on sets and on
lattices. Here, we follow Halbeisen and Löwe (2001).

2.1 Social welfare relations

Let N0 = {1, 2, 3, . . .} denote the set of positive integers, R the set of real numbers, and Q
the set of rational numbers. Let Y ⊆ R be the set of all possible utility levels. We follow
Basu and Mitra (2003) and assume that Y has at least two distinct elements, say, 0 and
1. The set X = Y N0 collects all possible utility streams and is called the domain. An
infinite utility stream x is a vector in X. Each x in X can be viewed as a map from N0 to
Y , associating with each t in N0 the element xt in Y . Each utility stream x in {0, 1}N0 is
identified with the subset { t |xt = 1 } of N0. Let S collect all subsets of N0. Due to the
identification of subsets of N0 with their indicator functions, we abuse language and say
that S is a subset of X. Vector inequalities are denoted ≤, <, and �. Set inclusions are
denoted ⊆ and ⊂.

A social welfare relation (SWR) is a reflexive and transitive binary relation in the
domain X. The symmetric and the asymmetric component of the SWR - are denoted by
∼ and ≺. The SWR -1 is a subrelation to a SWR -2 if for each x and y in X we have (i)
x -1 y implies x -2 y and (ii) x ≺1 y implies x ≺2 y.

A permutation π on N0 is a one-to-one map from N0 to N0. For each x in X, the
composite map x ◦ π is a map from N0 to Y and can be written as the infinite utility
stream

x ◦ π =
(
xπ(1), xπ(2), . . . , xπ(t), . . .

)
.

Let Sym(N0) collect all permutations on N0. The set Sym(N0) when equipped with the
composition operation becomes a group. The next definition collects three infinite versions
of the Pareto axiom and one concept related to permutations.

Definition.

• A SWR - satisfies the Pareto axiom if for each x and y in X we have that x < y
implies x ≺ y.

• A SWR - satisfies the weak Pareto axiom if for each x and y in X,

– we have that x ≤ y implies x - y,

– and that x� y implies x ≺ y.

• A SWR - satisfies the intermediate Pareto axiom if for each x and y in X,

– we have that x ≤ y implies x - y,

– and that x < y and xi < yi for infinitely many i in N0 implies x ≺ y.
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• Let Q be a class of permutations. A SWR - satisfies Q-anonymity if for each π in
Q and for each x in X we have x ∼ x ◦ π.

The Pareto axiom, also known as the strong Pareto axiom, postulates sensitivity in each
coordinate. The intermediate Pareto axiom postulates sensitivity in each infinite set of
coordinates. This intermediate version is useful when ranking subsets of N0, where the
imposition of weak Pareto only demands that the full set N0 is strictly larger than the
empty set ∅. The intermediate Pareto axiom occurs in Crespo et al (2009) as the infinite
Pareto principle. With respect to anonymity, we only consider classes of permutations
that include the group of finite permutations. Hereby, the permutation π is said to be
finite if there exists a T in N0 such that π(t) = t for each t ≥ T . Let Qfn collect all finite
permutations. A SWR is said to be finite anonymous if it satisfies Qfn-anonymity. Finally,
let (Q, ◦) be a group of permutations. The following relation is denoted by -Q. For each
x and y in X, we have

x -Q y if and only if there is a π in Q such that x ◦ π ≤ y.

This relation is Q-anonymous, reflexive (the identity permutation belongs to the group Q),
and transitive (the group Q is closed under composition).

2.2 Cyclic permutations

Let π be a permutation on the set N0. The vector (k, π(k), π2(k), π3(k), . . .) is said to be
the cycle generated by π on k. Each permutation can be written as a succession of cycles
on disjoint sets (Hall, 1976, Chapter 5). For example, the permutation

π1 = (1, 2)(3, 4)(5, 6) · · · (2n− 1, 2n) · · ·
switches the odd and even numbers, for each n in N0 the number 2n− 1 is mapped upon
2n and 2n is mapped upon 2n− 1. The final element in a cycle is mapped upon the first
element in that cycle. The permutation

π2 = (1)(2, 3)(4, 5) · · · (2n, 2n+ 1) · · ·
keeps the number 1 fixed and then switches the even and odd numbers. A permutation on
N0 might generate a cycle of infinite length. The permutation

π3 = (. . . , 9, 7, 5, 3, 1, 2, 4, 6, 8, . . .)

maps 1 upon 2. Furthermore, π3 maps an even number upon its even successor and an
odd number upon its odd predecessor, as such π3(123) = 121 and π3(100) = 102. We keep
the references π1, π2, and π3 throughout this note.

The decomposition of a permutation into pairwise disjoint cycles is unique, except
for the order in which the cycles are written, also within each cycle the numbers are
allowed to be permuted cyclically. For example, the permutations (1, 2)(3)(4, 5, 6, 7) and
(3)(1, 2)(5, 6, 7, 4) coincide.
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A permutation representable by an infinite sequence of finite cycles is said to be cyclic.
Alternatively (Mitra and Basu, 2007), the permutation π is cyclic if for each n in N0 there
exists a k in N0 such that

πk(n) = π ◦ π ◦ · · · ◦ π︸ ︷︷ ︸
k times

(n) = n.

The period k might be different for different values of n. Hence, a cyclic permutation π
is non-wandering in the sense that for each n in N0 the sequence π(n), π2(n), π3(n), . . .
returns to n after a finite numbers of iterations.

Each permutation partitions the set N0 : present the permutation as a juxta position
of cycles and replace the brackets ( and ) by { and }. Each cyclic permutation partitions
the set N0 into an infinite sequence of finite sets. For example, the partition induced by
the permutation π1 is equal to

Part(π1) =
{
{1, 2} , {3, 4} , . . . , {2n− 1, 2n} , . . .

}
.

The set of all cyclic permutations is denoted by P . Obviously, finite permutations are
cyclic. The next lemma highlights the main motivation to study cyclic permutations. The
lemma already appeared in Mitra and Basu (2007, Lemma 1). Their proof presupposes that
the domain X is sufficiently rich and uses coordinatewise convergent sequences of infinite
utility streams. The proof below only uses 0-1-utility streams and therefore strengthens
their result. Corollary 1 rephrases Lemma 1 in terms of subsets of N0.

Lemma 1. A permutation π is cyclic if and only if there is no x in X satisfying x < x ◦π.

Proof. The only-if-part is straightforward. If the permutation π is cyclic, then it can be
decomposed as an infinite juxta position of permutations on finite sets. Each permutation
on a finite set is unable to conflict with the Pareto principle.

The if-part (if there is no conflict with Pareto, then the permutation is cyclic) is done by
contraposition. Hence, consider a permutation π with an infinite cycle at m in N0:

(. . . , π−4(m), π−3(m), π−2(m), π−1(m),m, π1(m), π2(m), π3(m), π4(m), . . .).

Relabel this cycle (let 1 denote m) to obtain the cycle π3 and consider the following table:

π3 = (. . . , 9, 7, 5, 3, 1, 2, 4, 6, 8, . . .),

x = (. . . , 0, 0, 0, 0, 0, 1, 1, 1, 1, . . .),
y = x ◦ π3 = (. . . , 0, 0, 0, 0, 1, 1, 1, 1, 1, . . .).

The first line in this table is a cycle of infinite length. The second line presents an infinitely
long utility stream in X. This utility stream is made up of two sequences, a sequence of
‘ones’ is attached to the even positions (x2n = 1) and a sequence of zeros is attached to the
odd positions (x2n−1 = 0). The final line presents the permuted utility stream y = x ◦ π3

(recall that yi = xπ(i)). The utility stream y dominates x (indeed, x1 < y1). 2
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Corollary 1. A permutation π on N0 is cyclic if and only if there does not exist a subset
S of N0 satisfying the strict inclusion S ⊂ π(S).

In case the domain X = Y N0 is sufficiently rich (Q ∩ [ 0, 2 ] ⊆ Y ), the infinite cycle π3

generates a stronger domination result. There exists a stream z such that z � (z ◦ π3):

π3 = (. . . , 9, 7, 5, 3, 1, 2, 4, 6, 8, . . .),

z = (. . . , 1
9
, 1

7
, 1

5
, 1

3
, 1, 2-1

2
, 2-1

4
, 2-1

6
, 2-1

8
, . . .),

z ◦ π3 = (. . . , 1
7
, 1

5
, 1

3
, 1, 2-1

2
, 2-1

4
, 2-1

6
, 2-1

8
, 2- 1

10
, . . .).

Lemma 1, thus, holds when Pareto is weakened to intermediate Pareto or weak Pareto.

Corollary 2. Let Y include Q ∩ [ 0, 2 ]. A permutation π is cyclic if and only if there is
no utility stream x in X = Y N0 satisfying x� x ◦ π.

Lemma 1 and Corollary 2 indicate that each infinite cycle conflicts with the Pareto
axioms. We summarize. Let Y be sufficiently rich, let Q be a class of permutations, let -
be a SWR. Then,

Q-anonymity Q-anonymity the class Q
and Pareto ⇐⇒ and weak Pareto ⇐⇒ only contains
are compatible are compatible cyclic permutations.

Within the class of transitive and reflexive relations, there is no trade-off between the three
Pareto axioms and anonymity: if Q-anonymity is compatible with one infinite version of
the Pareto axiom, then it is compatible with all three infinite versions of Pareto (as listed
in Subsection 2.1, Definition). Furthermore, if Q is a group of cyclic permutations, then
the social welfare relation -Q satisfies

• x ∼Q y if and only if there exists a π in Q such that x ◦ π = y, and

• x ≺Q y if and only if there exists a π in Q such that x ◦ π < y.

Let us verify the first item. Suppose that both x -Q y and y -Q x hold. Then there exist
two permutations π and σ in Q such that x ◦ π ≤ y and y ◦ σ ≤ x. Therefore,

x ◦ π ◦ σ ≤ y ◦ σ ≤ x.

Since the permutation π ◦ σ is cyclic, the inequalities become equalities and y ◦ σ = x.
Finally, there exist evaluations on the set of infinite utility streams that combine mono-

tonicity and Sym(N0)-anonymity. For example, the map

lim inf : Y −→ R : x 7−→ lim inf(x)

is Sym(N0)-anonymous and monotonic (if x ≤ y, then lim inf(x) ≤ lim inf(y)). This map
looks for the smallest accumulation point within a utility stream and—hence—violates
Pareto: the utility streams x = (0, 0, . . . , 0, . . .) and y = (1, 1/2, . . . , 1/k, . . .) both converge
to zero, while x � y. Also lim sup is monotonic and Sym(N0)-anonymous. Chambers
(2009) provides a characterization of lim inf and of lim sup.
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2.3 Filters on sets

Let S be a set. A filter on S is a nonempty family F of subsets of S that satisfies

• ∅ is not in F ,

• if A and B are in F , then A ∩B is in F ,

• if A is in F and A ⊆ B, then B is in F .

If, in addition,

• for each A ⊆ S, either A ∈ F or S − A ∈ F ,

then F is an ultrafilter. An ultrafilter is a filter that is maximal for inclusion. For example,
the family of all cofinite subsets of S (i.e. those subsets of S whose complements are finite)
is a filter on S. The family of all subsets of S that contain a given element s of S is an
ultrafilter on S and is said to be principal. An ultrafilter is principal as soon it contains a
finite set. An ultrafilter that is not principal is said to be free. The intersection ∩FA of a
free ultrafilter F is the empty set.

A family F of subsets of S satisfies the finite intersection property if A1, A2, . . . , An ∈ F0

implies A1 ∩ A2 ∩ . . . ∩ An ∈ F0. If one adds to F0 all the sets B ⊆ S that contain finite
intersections A1 ∩A2 ∩ . . . ∩An of elements of F0, then one obtains a filter F1. By Zorn’s
lemma (which is equivalent to the Axiom of Choice) there exists a maximal filter F on S
that includes F1. This maximal filter F is an ultrafilter on S. The nonconstructiveness of
free ultrafilters is well known. Jehne and Klinge (1977, p209), for example, state that free
ultrafilters on the set of positive integers are so highly unconstructive that they cannot be
distinguished from one another.

Let F be a filter on N0 and let each element in F be infinite. Consider the following
relation -F on the collection S of subsets of N0. For each S and T in S we have

S -F T if and only if
{
t ∈ N0

∣∣∣ |S ∩ {1, 2, . . . , t} | ≤ |T ∩ {1, 2, . . . , t} |
}
∈ F . 1

This relation is reflexive, transitive, and Paretian. In addition, this relation satisfies an
anonymity principle that is stronger than finite anonymity. In case F is a free ultrafilter,
then the relation -F on S is complete.

2.4 Filters on the lattice of partitions

The notion of a filter on sets extends to a filter on a lattice of partitions. We follow
Halbeisen and Löwe (2001) and recall the definitions and some results.

A partition of N0 is a family of pairwise disjoint nonempty sets such that their union
coincides with N0. If A and B are two partitions of N0, we say that A is coarser than B
(or that B is finer than A) and we write A v B if each piece in A is a union of pieces of B.

1The cardinality of a set S is denoted by |S|.
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The coarsest partition of N0 (everything in one piece) is denoted by 0 = {N0}, the finest
partition (all pieces of which are singletons) by 1. Each partition is in between 0 and 1.

Let Ω0 collect those partitions of N0 that consist out of infinitely many finite pieces.
Partitions containing one (or more) infinite piece(s) are not distinguished, they are denoted
by 0. We endow the class Ω = Ω0∪{0} with two operations ∪ and ∩. The partition A∪B
is the coarsest partition in Ω that refines A and B, and the partition A ∩ B is the finest
partition in Ω that is coarser than A and B. In case the partition A∩B contains an infinite
piece, we put A ∩B equal to 0. As such (Ω,v) is a lattice.

A filter on the lattice (Ω,v) is a collection F of members of Ω that satisfies

• 0 is not in F ,

• if both A and B are in F , then A ∩B is in F ,

• if B is in F and B v A (with A in Ω), then A is in F .

A family B ⊆ Ω is said to be a filter base if (i) 0 /∈ B, and (ii) for each A1 and A2 in
B, there is a B in B such that B v A1 ∩ A2. In case B is a filter base, then the family
B+ = {A ∈ Ω| there is a B in B such that B v A} is a filter on the lattice (Ω,v). The
filter B+ coincides with the intersection of all filters that include B.

A filter that is maximal for inclusion is said to be an ultrafilter. Each ultrafilter F on
(Ω,v) is free, i.e.

⋂ {A |A ∈ F } = 0. We recall two facts on ultrafilters (Facts 2.1-2 in
Halbeisen and Löwe, 2001, p321).

• A family F is an ultrafilter on (Ω,v) if and only if for each A in Ω either A ∈ F or
there is a B in F such that A ∩B = 0 (the ‘either-or’ being exclusive).

• If F is a family of elements of Ω with the finite intersection property (for each finite
subfamily {A1, A2, . . . , An } ⊆ F we have A1 ∩ A2 ∩ . . . ∩ An 6= 0), then there is an
ultrafilter F on (Ω,v) with F ⊆ F .

The second fact is implied by Zorn’s lemma. Similar to the existence of a free ultrafilter on
a set, also the existence of an ultrafilter on the lattice of partitions involves the use of the
Axiom of Choice in set theory. The notion “ultrafilter on a lattice” generalizes the notion
“free ultrafilter on a set”. The next example clarifies this statement.

Example. Each infinite subset S = {n1, n2, . . . , nk, . . .} of N0 induces a partition VS in Ω
as follows:

VS =
{

[1, n1] , [n1 + 1, n2] , . . . , [nk + 1, nk+1] , . . .
}
,

where [i, j] with i ≤ j is a shorthand for the set {i, i+ 1, . . . , j − 1, j} ⊂ N0. Now, let FN0

be a free filter on the set N0. Then, the family

FΩ =
{
VS ∈ Ω

∣∣∣ S ∈ FN0

}

is a filter on the lattice (Ω,v). Moreover, FΩ is an ultrafilter on the lattice (Ω,v) if and
only if FN0 is a free ultrafilter on the set N0.
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3 Maximal anonymity

This section develops the main result. We start with some additional notation. Let the
partition A = {N1, N2, . . . , Nk, . . . } belong to Ω0. We will refer to

Sym(A) = Sym(N1)× Sym(N2)× · · · × Sym(Nk)× · · · ,
with Sym(Nk) the group of all permutations on the finite set Nk, as the symmetric group
of the partition A. The group Sym(A) stabilizes the partition A, i.e. this group collects all
the permutations with an induced partition that is equal to or finer than A. We shorten
Sym(Part(π)) to Sym(π). A group Q of permutations that includes Sym(π) for each π in
Q is said to be a partition group.

Let π belong to a partition group Q of cyclic permutations, then Q-anonymity imposes
indifference between a utility stream x, the permuted stream y = x◦π, and all the streams
obtained from x through rearrangements within the cycles of π. For example, the partition
group Sym(π1) contains each permutation of the form

(1, 2)k1 (3, 4)k2 · · · (2n− 1, 2n)kn · · ·
with ki either 1 or 0 (where (a, b)1 = (a, b) and (a, b)0 = (a)(b)). Therefore, if we impose
Sym(π1)-anonymity, then the utility streams

x = 1, 0︸︷︷︸ , 1, 0︸︷︷︸ , . . . , 1, 0︸︷︷︸ , . . . and y = 0, 1︸︷︷︸ , 0, 1︸︷︷︸ , . . . , 0, 1︸︷︷︸ , . . . ,

become equally good. In addition, for each subset S of N0, the utility stream xS obtained
from x by switching the utilities in two subsequent positions 2n − 1 and 2n for each n in
S, is equally good as x (and y). The move from x to xS involves ‘less’ switches than the
move from x towards y. In this case, indifference between x and xS can be interpreted
as a ‘weaker’ demand than indifference between x and y. The next lemma indicates that
partition groups allow us to shift the focus from permutations towards partitions.

Lemma 2. Let σA and σB be two cyclic permutations on N0. Then, Sym(σB) contains a
permutation ρ such that ρ ◦ σA generates the partition Part(σA) ∩ Part(σB).

Proof. Denote A = Part(σA) and B = Part(σB). We prove the lemma in case C = A ∩ B
consists out of an infinite number of finite sets. In case the partition C contains an infinite
piece, the same ideas apply.

Without loss (otherwise re-enumerate N0), we assume the existence of an increasing se-
quence n1, n2, . . . , nk, . . . in N0 such that the partition C can be written as

C =
{

[1, n1]︸ ︷︷ ︸
S

, [n1 + 1, n2] , . . . , [nk + 1, nk+1] , . . .
}
.

Both A and B are finer than C. We focus on one of the pieces in C, say S = [1, n1]. Again,
without loss, we assume that the restriction of σA to S is as follows

σA|S = (1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k2) · · · (km−1 + 1, km−1 + 2, . . . , n1).
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Denote the partition classes by S1 = [1, k1], S2 = [k1 + 1, k2], . . . , Sm = [km−1 + 1, n1].

We construct a permutation ρ in Sym(B|S) by induction. The partition A ∩ B—when
restricted to S—is equal to S. Hence, there exists a couple (`1, `

1) in S1 × (S − S1) both
belonging to one piece of B. Put ρ(`1) = (`1). Let `1 belong to S1 = Si. Move on to the
set S2 = S1 ∪ S1. Again, there exists a couple (`2, `

2) in S2× (S − S2) that both belong to
one piece of B. Put ρ(`2) = `2. This procedure ends after m steps. Put the permutation
ρ equal to (`1, `

1)(`2, `
2) · · · (`m, `m), elements of S that are not listed remain fixed.

The permutation ρ ◦ σA generates the cycle S in one piece. Repeat the whole construction
for the other pieces in C and paste together the corresponding permutations to obtain the
result. 2

In general, only the relation Part(σ1)∩ Part(σ2) v Part(σ1 ◦ σ2) holds. For example,
consider the following cyclic permutations:

σ1 = (1)(2, 3, 5, 6, 7, 4)(8, 11, 13, 14, 15, 12, 10, 9)(16, 19, 21, 22, 23, 20, 18, 17) · · ·,
σ2 = (1, 2, 3)(4, 8, 10, 11, 7, 5)(6)(9)(12, 16, 18, 19, 15, 13)(14)(17)(20, 24, 26, 27, 23, 21)(22)(25) · · ·.

The representation continues by repeating the underlined cycles taking into account a shift
of +8. Here, Part(σ1) ∩ Part(σ2) = N0 while both compositions σ2 ◦ σ1 and σ1 ◦ σ2 are
cyclic:

σ2 ◦ σ1 = π1 = (1, 2)(3, 4)(5, 6)(7, 8) · · ·, and

σ1 ◦ σ2 = (1, 3)(2, 5)(4, 11)(6, 7)(8, 9)(10, 13)(12, 19)(14, 15)(16, 17)(18, 21) · · ·.

We continue with some further notation. Let B be a family of partitions in Ω. Let

{
π
∣∣∣ there is a B in B such that B v Part(π)

}

be the set of all permutations that stabilize an element of B. Denote by QB the smallest
partition group that includes this set of stabilizers. If B is a filter base, then QB and QB+

coincide. Furthermore, we use -B as a shorthand for the social welfare relation -QB .

Proposition 1. Let B be a family of partitions in Ω. Then, QB is a maximal group of
cyclic permutations if and only if B+ is an ultrafilter.

Proof. The if-part. Let B+ be a filter. Then, 0 /∈ B, and QB only contains cyclic permuta-
tions. If π and ρ belong to QB, then Part(π)∩Part(ρ) belongs to B+. Hence, QB is closed
for composition. Next, observe that the partition induced by a permutation coincides with
the partition induced by its inverse permutation. Therefore, QB is a (partition) group of
cyclic permutations.

Now, suppose that B+ is an ultrafilter. We have to show that QB is maximal. Therefore,
assume that the cyclic permutation π is not in QB. The induced partition A = Part(π)
does not belong to the ultrafilter B+. Hence, there is a B in B+ such that A ∩ B = 0.
Lemma 2 implies the existence of a permutation in Sym(B) such that the composition with
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π induces the partition 0. This composed permutation has an infinite cycle. Therefore, the
permutation π cannot be added to QF to generate a larger group of cyclic permutations.

The only-if-part. Let QB be a maximal subgroup of cyclic permutations. We have to show
that B+ is an ultrafilter. Since only cyclic permutations are involved, 0 /∈ B. Next, assume
that the partition A is not in B+. A permutation π that induces A does not belong to QB.
Since the group QB is maximal, there is a σ in QB such that π ◦ σ is not cyclic. Conclude
that A ∩ Part(σ) v Part(π ◦ σ) = 0 with Part(σ) in B+. 2

Each partition group G of cyclic permutations defines a social welfare relation -G. The
other way around, each social welfare relation defines a partition group. The definition is
as follows. Let - be a SWR in S. The set of permissible partitions is defined as

Π(-) =
{
A ∈ Ω

∣∣∣ for each π in Sym(A) and for each S in S we have π(S) ∼ S
}
.

If the SWR -1 is a subrelation to the Paretian SWR -2, then Π(-1) ⊆ Π(-2). The next
proposition investigates this link between partition groups and permissible permutations.

Proposition 2. Let the family B of partitions in Ω be a filter base. Then, the relation
-B is reflexive, transitive, Paretian, and B-anonymous. Furthermore, the set Π(-B) of
permissible partitions coincides with the filter B+.

Proof. The conditions imposed upon B turn QB into a partition group of cyclic permu-
tations. This group QB coincides with QB+ . Mitra and Basu (2007, Proposition 3) show
that for each group G of cyclic permutations, the relation -G is reflexive, transitive, Pare-
tian, and G-anonymous. Apply their result for G = QB and conclude that -B satisfies the
properties as listed.

Let us now verify that Π(-B) coincides with B+. The inclusion B+ ⊆ Π(-B) is immediate.
In case B+ is an ultrafilter also the reverse inclusion holds (otherwise there exists a cyclic
permutation π outside the group QB that keeps the indifference relation; as QB is maximal
QB ∪ {π} generates noncyclic permutations and a contradiction is obtained).

There remains one single statement to be proved: the inclusion Π(-B) ⊆ B+ under the
assumption that B+ is not an ultrafilter. We show this inclusion by contradiction and
assume A /∈ B+. There exists an ultrafilter F that extends B and does not contain A (in
the family A of all filters which do not contain A each chain has a maximal element, so by
Zorn’s lemma A has a maximal element that appears to be an ultrafilter). The relation
-B is a subrelation to -F , and A /∈ Π(-F). Hence, A does not belong to Π(-B). 2

Theorem. Let B be a family of subsets in Ω. If the relation -B in S is complete and
Paretian, then B+ is an ultrafilter on (Ω,v).

Proof. By definition, the relation -B is transitive and finite anonymous. If the relation -B
is also complete and Paretian, then the collection B+ contains the partition 1 (reflexivity), is
closed for intersection (transitivity), and does not contain the partition 0 (Pareto). Hence,
B+ is a filter and QB is a partition group of cyclic permutations.

11



As -B is complete, the group QB is maximal in P . Indeed, otherwise there is a (partition)
group Q such that QB ⊂ Q ⊂ P . The relation -Q is reflexive, transitive, Paretian, and
strictly extends the relation -B (here, we use the statement on permissible partitions in
Proposition 2). As the social welfare relation -B is assumed to be complete we arrive at a
contradiction. Hence, the group QB is maximal. From Proposition 1 we learn that B+ is
an ultrafilter. 2

In a finite setting the counting procedure is well defined and is generated by the com-
bination of Pareto and anonymity. The above theorem shows that this counting procedure
fails when moving towards the infinite set N0. An anonymity condition strong enough to
generate (in combination with Pareto) a complete ‘counting’ relation, involves the exis-
tence of a free ultrafilter on the lattice (Ω,v) and hence involves nonconstructive methods.
Alternatively, consider a social welfare relation in a set X of infinite utility streams such
that its restriction to the set S is generated by the Pareto axiom in combination with an
anonymity axiom (based upon a partition group). Then, this restricted relation either is
incomplete or it generates a free ultrafilter on the lattice (Ω,v) in which case there is no
explicit description available.

4 Fixed and variable step permutations

Mitra and Basu (2007, Section 5) argue in favor of a particular group of cyclic permutations,
to wit, the group of fixed step permutations.2 This section considers the group of fixed
step permutations within the set of variable step permutations and rephrases the previous
results towards this particular setting.

For each n in N0, the partition

Fn =
{

[1, n] , [n+ 1, 2n] , . . . , [kn+ 1, (k + 1)n] , . . .
}

is said to be fixed step. A permutation π for which the partition Part(π) is finer than Fn
(i.e. Fn v Part(π)), for some n, is said to be fixed step. The partition group Qfx of fixed
step permutations is not maximal and the corresponding social welfare relation -fx=-Qfx

on S is not complete. For example, -fx is unable to compare the sets {1, 6, 15, 28, . . .} and
{3, 10, 21, 36, . . .}.

For each infinite subset S = {n1, n2, . . . , nk, . . .} of N0, the partition

VS =
{

[1, n1] , [n1 + 1, n2] , . . . , [nk + 1, nk+1] , . . .
}

is said to be variable step. A fixed step partition Fn is a particular example of a variable
step partition. A permutation that generates a variable step partition is said to be variable
step. Let the set Qvar collect all variable step permutations. Finite permutations are fixed
step, fixed step permutations are variable step, and variable step permutations are cyclic;

2Fixed step permutations have been proposed by Lauwers (1997) and by Fleurbaey and Michel (2003).
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Qfn ⊂ Qfx ⊂ Qvar ⊂ P . On the other hand, the next lemma reveals that Qvar is not a
group. Nevertheless, Lemmas 3 and 4 provide further arguments in favor of the set of
variable step permutations.

Lemma 3. The set Qvar of variable step permutations generates the group Sym(N0) of all
permutations on N0. In particular, each permutation in N0 can be decomposed into two
variable step permutations.

Proof. Let π : N0 → N0 be a permutation. We construct two variable step permutations
σ and τ such that π = σ ◦ τ . The construction is done via subsequent extensions of two
permutations on finite sets of increasing length.

Put σ(1) = π(1) and τ(1) = 1. Let t1 > π(1) and extend σ to a permutation on the set
T1 = [1, t1]. Define τ on the set T1 such that σ ◦ τ coincides with π (when restricted to
the domain of the currently defined composition σ ◦ τ). Let t2 > max {ρ−1(T1) ∪ τ(T1)}
and extend τ to a permutation on the set T2 = [1, t2]. Then extend σ to the set T2 such
that σ ◦ τ coincides with π. Let t3 > max σ(T2) and extend σ to a permutation on the set
T3 = [1, t3], and so forth.

The permutation σ satisfies σ(T2k+1) = T2k+1 for each k in N0. Similarly, the permutation
τ satisfies τ(1) = 1 and τ(T2k) = T2k for each k in N0. Therefore the permutations σ and
τ both belong to Qvar. 2

Hence, combining variable step anonymity and transitivity upon a relation implies the
imposition of Sym(N0)-anonymity. To illustrate this lemma further, we mention that the
infinite cycle π3 coincides with π1 ◦ π2. Therefore, a partition group of cyclic permutations
cannot contain both π1 and π2. Each anonymity condition based upon a group of variable
step permutations, strong enough to generate a complete ranking on S, and weak enough
to allow for Pareto, should impose either π1-anonymity or π2-anonymity (the either-or
being exclusive). Next, we show that each cyclic permutation can be rewritten (after a
re-numbering of N0) as a variable step permutation.

Lemma 4. Each cyclic permutation is conjugated to a variable step permutation.

Proof. Let π be in P . We have to find a permutation π̃ in Qvar and a permutation σ of
the set N0, such that π = σ−1 ◦ π̃ ◦ σ. Present π as a product of cycles:

π = (a11, . . . , a1k1)(a21, . . . , a2k2) · · · (an1, . . . , ankn) · · · .
Then, it suffices to check the identity π̃ = σ ◦ π ◦ σ−1 with

π̃ = (1, . . . , k1)(k1 + 1, . . . , k2) · · · (kn−1 + 1, . . . , kn) · · · ,
and σ : aij 7→ ki−1 + j with i = 1, 2, . . . and j = 1, 2, . . . , ki − ki−1. We put k0 = 0. 2

Both lemmas attract the focus upon extensions of the group Qfx of fixed step permu-
tations within the set Qvar of variable step permutations. Consider a family F of infinite
subsets of N0. Define the following set of variable step permutations:

QF =
{
π
∣∣∣ there is a S in F such that VS v Part(π)

}
.
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We now reformulate the results of the previous section in terms of filters on N0.

Proposition 3.3 Let F be a family of subsets of N0. The set QF is a maximal (partition)
group of cyclic permutations if and only if the smallest filter F+ that includes the family
F is a free ultrafilter on the set N0.

In case the family F contains the sets {n, 2n, . . . , kn, . . .} for each n in N0, then QF
includes the set Qfx of fixed step permutations and the social welfare relation -QF on S is
fixed step anonymous.

Recall the social welfare relation -F on S with F a free ultrafilter on N0 defined by

S -F T if and only if
{
t ∈ N0

∣∣∣ |S ∩ {1, 2, . . . , t} | ≤ |T ∩ {1, 2, . . . , t} |
}
∈ F .

The relation -F coincides with -QF . Hence, in terms of social welfare relations we obtain:

Corollary 3. Let F be a family of subsets of N0. Then, the relation -QF on S is complete
and Paretian if and only if F+ is a free ultrafilter on N0.

Conclusion

Anonymity and Pareto are two important principles. In a finite context, these principles
induce the counting procedure. Infinite versions of these principles that are strong enough
to allow for comparing the “sizes” of different sets, unavoidably involve nonconstructive
objects. This negative result obviously persists when ranking infinite utility streams rather
than subsets of N0. The larger part of the recent literature on the ranking of infinite
utility streams starts from this kind of impossibilities and looks for incomplete criteria
with appealing properties.

The negative results and the (highly) incomplete criteria indicate the limitations of
combining appealing properties in “one single” criterion and imply an invitation to look
for new procedures to rank infinite utility streams. Inspired by the result of Chichilnisky
(2009, Thm 3), I propose a two-step procedure (obviously, further research is needed). In
a first step, the focus is on completeness and on anonymity. Here, the Pareto condition
is weakened to a monotonicity condition which requires that x ≤ y implies x - y. This
monotonicity condition is compatible with completeness, constructibility, and (any form of)
anonymity. A typical criterion would consider the limiting behavior of the utility streams.
In a second step, one further investigates the set of “optimal” utility streams obtained in
the first step. On this restricted domain, a stronger Pareto principle should be employed.

The ultimate goal of a social welfare relation on the set of infinite utility streams is its
application in policies that involve the very long run. A two-step procedure as described
above takes care of this very long run without ignoring the short run.

3Marc Fleurbaey (2006) establishes the result mentioned in this corollary.
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