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Abstract

Introducing school accountability may create incentives for e¢ ciency. However, if the per-

formance measure used does not correct for pupil characteristics, it will lead to an inequitable

treatment of schools and create perverse incentives for cream-skimming. We apply the theory

of fair allocation to show how to integrate empirical information about the educational produc-

tion function in a coherent theoretical framework. The requirements of rewarding performance

and correcting for pupil characteristics are incompatible if we want the funding scheme to be

applicable for all educational production functions. However, we characterize an attractive sub-

sidy scheme under speci�c restrictions on the educational production function. This subsidy

scheme uses only information which can be controlled easily by the regulator. We show with

Flemish data how the proposed funding scheme can be implemented. Correcting for pupil char-

acteristics has a strong impact on the subsidies (and on the underlying performance ranking)

of schools.
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1 Introduction

In many countries the funding of public schools used to be based largely on inputs. Local schools

were subject to strict quality regulation and they had little autonomy in how to organize themselves.

Moreover, parents had almost no freedom of choice. Consensus is growing that this archetypical

system of public school �nancing does not create su¢ cient incentives for e¢ ciency. Giving schools

more autonomy may motivate teachers and school administrators and improve performance. Yet,

increasing autonomy also means that one needs some standard for evaluating school performance.

The UK introduced quasi-markets for education. In principle parent choice then becomes the main

mechanism of control and report cards on school performance can give the parents useful information

to choose a school for their children. In the USA, the �No Child Left Behind Act of 2001�imposed

on the states the requirement to adopt an accountability system based on externally collected pupil

test scores. In response US states had to set up a report card-system by which the performance of

individual schools can be gauged against the performance of others. Some states went further and

introduced in their funding system bonuses (sanctions) for well (poorly) performing schools.

There is a growing amount of empirical evidence suggesting that introducing school account-

ability indeed improves the performance of the pupils in terms of measured test scores, although

it is still unclear whether explicit �nancial bonuses and penalties are necessary (Wössmann, 2003;

Hanushek and Raymond, 2004, 2005; Jacob, 2005; Figlio and Rouse, 2006; West and Peterson, 2006;

Burgess et al., 2007; Chiang, 2009). At the same time, it has also become clear that introducing ac-

countability may induce a set of potentially undesirable strategic reactions, such as teaching to the

rating, removal of low-achieving students from school, student retainment, even adapting the caloric

content of the school lunches at the testing date (Jacob, 2005; Figlio and Winicki, 2005; Burgess et

al., 2005; Reback, 2008). High powered incentives work, but their e¤ects may be unexpected and

depend on the speci�c design of the performance measurement scheme.

The design of an adequate performance measurement scheme therefore raises important concep-

tual issues. First, how to de�ne what is the relevant output? Focusing on cognitive outcomes may

lead to a relative neglect of non-cognitive factors. Focusing on one speci�c domain of knowledge

(math) may lead to a relative neglect of other, untested, domains (history). Using a speci�c test

may lead to schools preparing their pupils for this speci�c test to the detriment of the broader
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knowledge that one is really aiming at. Using as a criterion the number of students that pass a

prede�ned threshold level may lead to a concentration of e¤orts on those pupils that are at the

margin of passing and to the neglect of very poor or extremely good performers. All this suggests

that one should be explicit about the �nal objectives one wants to reach by introducing account-

ability and then adapt the measurement instruments to these objectives (Neal, 2008). Second, even

if one agrees about the output measure, there still is the issue of how to measure school perfor-

mance, i.e., the e¤ect of school policies on the chosen output indicator(s). Schools can only be

held responsible for those factors that are under their own control. In some cases their decision

freedom may be restricted by the regulator. More importantly, the average test scores obtained

heavily depend on the characteristics of their pupil population, both directly and indirectly through

the peer group e¤ect. Insu¢ ciently correcting for pupil characteristics may lead to a very biased

evaluation of school performance (Meyer, 1997; Ladd and Walsh, 2002; Hanushek and Raymond,

2003; Taylor and Nguyen, 2006; Neal, 2008). This biased evaluation may induce an inequitable and

ine¢ cient remuneration scheme. Moreover, it will give the schools incentives for cream skimming.

Cream skimming is possible as soon as the quality of the pupils is related to characteristics that

are observable for the school, such as socio-economic background or previous school results. By

attracting students that are easier to educate, schools can improve their measured performance

without increasing their real e¢ ciency. For some pupils it might then become di¢ cult to �nd an

adequate school.

In this paper we focus on that second issue. Is it possible to devise a funding scheme that

introduces incentives for better performance in terms of test scores without creating incentives

for cream-skimming? How to correct observed test scores for those determinants which are not

controlled by the schools themselves? To focus on this question, we take it for granted that the

de�nition of the relevant outputs has been settled before. We also neglect the practical implemen-

tation issues, that have been discussed in the literature. We assume that the phenomenon of pupils

moving from one school to another is taken into account in a satisfactory way. We neglect the fact

that the measurement scheme may yield unreliable (in the sense of highly volatile) results for small

schools, due to the limited number of observations (Kane and Staiger, 2002). Most importantly, we

assume that su¢ cient data are available to calculate value-added, i.e., the gain in test scores, at the
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level of the individual pupils. It is well known that informationally less demanding accountability

schemes (based on the level or the di¤erence in average test scores, or the gain in average scores

of a cohort) will never be su¢ cient to correct for di¤erences in the individual characteristics of the

pupils (Meyer, 1997; Hanushek and Raymond, 2003). Starting from the most favourable informa-

tional assumptions, i.e., assuming that individual score gains can be calculated, allows us to focus

on the basic conceptual issues.

Our model is formulated as a problem of how to link �nancial incentives to performance in

terms of test scores. Such high-stakes testing is only one possible interpretation of the model,

however, and our approach is also relevant in other settings. Consider an educational system

in which parents can basically choose any school within the public sector and school funding is

based on the number of pupils. This is more or less the system in countries like New Zealand and

Belgium. Schools will then try to improve their performance in order to attract more pupils and

report cards can improve market transparency. However, in this setting it is also easier for schools

to build up a better reputation if they attract stronger pupils and this tendency is reinforced by

peer e¤ects. There is therefore a danger of segregation. Even if explicit cream-skimming is legally

forbidden, it is not di¢ cult for schools to devise strategies that make themselves more attractive for

better students and less attractive for students from weaker socio-economic groups or from ethnic

minorities. Report cards designed to make the market more transparent, should then certainly

spread information about outcome measures with due correction for pupil characteristics. Or,

one could consider moving away from simple lump sum funding per pupil and introducing special

�nancing arrangements for weaker groups of pupils (Del Rey, 2004). The problem of formulating

such special �nancing arrangements is formally equivalent to our problem. Moreover, individualized

funding taking into pupil characteristics in a system of free school choice is formally equivalent to

the design of di¤erentiated voucher schemes (Epple and Romano, 2008), the only di¤erence being

that the voucher goes �directly�to the schools.

We introduce our theoretical framework in section 2. This framework is derived from the social

choice literature on fair allocations (Fleurbaey, 2008). We will argue that in general, i.e., for any

educational production function, there is a deep con�ict between creating incentives for e¢ ciency

and avoiding incentives for cream-skimming. However, in a special (not necessarily unrealistic case),
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the two can be reconciled. We characterize a funding scheme satisfying the two requirements.1 We

then illustrate our approach with Belgian data. In section 3, we take the �rst step of estimating

an educational production function with special attention for individual pupil characteristics. In

section 4 we show how to derive and interpret the resulting funding scheme. Section 5 concludes.

2 Reward without cream-skimming

We consider a set of at least two pupils, denoted by I. We assume that for the measurement of school

performance and accountability, agreement is reached about the use of a single-valued indicator of

output, say y 2 R. Output y is a function of (1) factors for which the school is not (held) accountable

(compensation factors collected in a set C), e.g., innate intelligence and social background of pupils,

and (2) factors for which the school is (held) accountable (responsibility factors collected in a set

R), e.g., the number of instruction hours in the di¤erent disciplines, the organization of the school

and the motivation of its teachers. Both factors together completely explain the performance of a

pupil and can be summarized by a vector x = (c; r) 2 D = RjCj+jRj. Typically, the compensation

factors are pupil level variables, while the responsibility factors are at the school level; therefore, we

will, loosely speaking, refer to c as the pupil type and to r as the school policy. We use f : D! R

to denote the function mapping pupil type and school policy into output, thus, y = f (x) = f (c; r).

The assumption that y is a scalar is not very restrictive, as y may be seen as a weighted

combination of several output indicators. Moreover, at this abstract level, y does not necessarily

refer to the score(s) on a cognitive test. It can be a non-linear transformation of such scores, it can

refer to the distance to a threshold level or even to the earnings potential of pupils as a result of

educational performance (as advocated by Cawley et al., 1999). Following the literature on value

added measures, y can also be interpreted as the individual gain in test scores during a given period.

We discuss some of these interpretations at the end of section 2.2, but, for convenience, we call y

here a simple test score. Initial test scores will enter our model as one of the pupil level variables

in C. Note that in this interpretation the function f is the standard explanatory model of test

scores as estimated in the educational literature; see, e.g., Hanushek (2006) for an overview. Such

1Our analysis in this paper is formally similar to the analysis of risk adjustment and cream-skimming in health

insurance in Schokkaert et al. (1998) and Schokkaert and Van de Voorde (2004).
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estimation will typically involve unobserved (�xed or random) e¤ects at the level of the pupil and

the school as well as idiosyncratic error terms. In the next sections we will discuss how to treat

these e¤ects in a practical application. For the theoretical analysis, however, we can consider these

unobserved e¤ects to be part of the characterization of pupils. Each speci�c e¤ect then has to be

assigned either to C or to R.

We de�ne a school funding scheme s : DjIj ! RjIj as a mapping of the pro�le x = (xi)i2I into

a subsidy vector s (x) = (si (x))i2I : For later use we can decompose pro�les x as (c; r). Of course,

since y = f(x), simple output-related subsidy schemes are one speci�c example of s(x). More

generally, however, we look for a funding scheme that does reward schools that are performing well,

but at the same time corrects for di¤erences in pupil characteristics. What form should s(x) then

take? To answer this question, we draw inspiration from the axiomatic social choice literature on fair

allocations (Fleurbaey, 2008) and we will formulate two formal axioms, capturing the requirements

of rewarding performance while avoiding cream-skimming.

First, we deal with reward for better performance. To remove the ambiguity due to di¤erences in

pupil characteristics, we focus on performance comparisons between pupils with the same character-

istics. Di¤erences in output between such pupils can only be due to di¤erences in school policy, and

a good funding scheme should reward the better performing schools. We formalize this requirement

as:

Reward: For all x in DjIj, there exists a proportionality factor � > 0 such that, for all i; j in I, if

ci = cj , then si (x)� sj (x) = � (yi � yj).

The �reward�axiom imposes that the subsidy di¤erence between the schools should be proportional

to the output di¤erence, if the latter cannot be explained by di¤erences in pupil characteristics.

The right-hand side of the reward equation consists of two parts, a parameter � and the output

di¤erence (yi � yj). The parameter � can be interpreted as a conversion factor transforming output

(e.g., test score results) into money. Its value will re�ect the importance attached to performance

incentives. Lowering � will allow to downplay the monetary consequences of test score results; we

will return to the choice of � later in this section. Next, reward requires the subsidy di¤erence to be

proportional to the output di¤erence, which seems at �rst sight rather restrictive. However, recall

that output y is not necessarily a raw test score, but could also be a non-linear transformation of
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such scores; we come back to this possibility later.

Second, since schools do not control the variables in C, output di¤erences that are only due to

di¤erences in pupil characteristics should not be rewarded in the funding scheme. Equivalently, two

schools that follow the same policy should be treated in the same way. We formalize this as

No cream-skimming 1 (NCS1): For all x in DjIj, for all i; j in I, if ri = rj , then si (x) = sj (x).

The basic idea of the axiom NCS1 is to link the subsidy scheme only to variables that are controlled

by the schools. This is a necessary condition to get an unbiased performance indicator and it can

also be seen as an equity requirement. For reasons explained in the introduction we use the term �no

cream skimming�. It is indeed obvious that incentives for cream skimming are removed in a subsidy

scheme satisfying NCS1, since there will be no reward for improving test scores by attracting better

pupils without changing policies.

The funding scheme s can be interpreted in di¤erent ways. In principle, we could think of a

system in which the subsidies have to cover all school expenditures. In most educational systems,

this is not very realistic however. It is therefore more relevant to interpret s(x) as a bonus scheme

that aims at rewarding better performing schools and comes on top of (a) a budget to cover the

�xed costs of the school, independent of the number of pupils, and/or (b) a basic �nancing scheme

consisting of a �xed amount per pupil. Of course, the requirements introduced in this section are

relevant in both interpretations. We will return to the budget constraint later in this section.

2.1 An impossibility result

If one wants to create incentives for better performance while at the same time correcting for the

e¤ect of pupil characteristics, both the reward and the NCS1-axioms seem eminently sensible. It

is therefore very striking that it is impossible to design a reward scheme that combines reward and

NCS1 for all possible output functions f . This result is well known (under many variants) in the

social choice literature (Fleurbaey, 2008), but to the best of our knowledge has until now remained

unnoticed in the literature on school accountability. For our purposes, it is su¢ cient to illustrate

the proof with a simple example.

Figure 1 about here
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Consider a continuous pupil type c, say socio-economic status, and two di¤erent school policies

denoted r1 and r2. Figure 1 presents output as a function of socio-economic status for both school

policies. Take now two speci�c levels of socio-economic status, denoted c1 and c2 and construct

the pro�le x = (xa; xb; xc; xd) = ((c1; r1) ; (c1; r2) ; (c2; r1); (c2; r2)). Applying reward tells us that b

should get a higher subsidy than a, i.e., sb (x) > sa (x), since both pupils a and b have the same

background, but school policy 2 succeeds in bringing pupil b at a higher output level. For the same

reasons sc (x) > sd (x). NCS1 imposes that sa (x) = sc (x) and that sb (x) = sd (x), as the same

school policies (r1 and r2 respectively) apply to both pupils. All things together we get a cycle.

It is not di¢ cult to grasp the intuition behind this impossibility result. School policy r1 is

apparently more e¤ective for pupils with a higher level of socio-economic status, school policy r2

is more e¤ective for pupils with a lower socio-economic status. In this situation it is obviously

impossible to reward better performance without at the same time giving incentives to attract

speci�c types of students. In some sense, with the educational production technology of Figure 1,

segregation (and cream-skimming) lead to a better overall performance. If one wants to reward

performance, one will have to violate NCS1 and one will have to tolerate segregation. If one wants

to avoid segregation, one will have to give up reward. In the social choice literature intermediate

schemes have been formulated that satisfy weakened versions of the axioms (Fleurbaey, 2008).

However, there is also another way out of the incompatability. This is to restrict the domain of

admissible output functions f(x). As an example, note that the incompatibility disappears in Figure

1 if the lines for r1 and r2 are parallel to each other. We will follow the latter route in the next

subsection.

2.2 Characterization of a subsidy scheme

In this section we will derive a funding scheme that satis�es reward and NCS1. However, to get a full

characterization result, we introduce a multi-pro�le version of the no cream-skimming condition,

stating that changes in the overall pupil population, without any change in the school policies,

should not a¤ect the distribution of the subsidies.

No cream-skimming 2 (NCS2): For all x;x0 in DjIj, if ri = r0i for all i in I, then si (x) = si (x0)

for all i in I.
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Note that NCS2 does not imply NCS1. However, imposing NCS2 together with reward does

imply NCS1. To see this consider an arbitrary pro�le x = (c; r) in DjIj. Construct a new pro�le

x0 in DjIj with x0 = (c0; r0) = ((c; c; : : : ; c) ; r) : NCS2 requires that si (x) = si (x
0) for all i in I.

Reward implies that for all i; j in I; si (x0) � sj (x0) = � [f(c; ri)� f(c; rj)]. Combining the two

results yields that for all i; j in I; si (x) � sj (x) = � [f(c; ri)� f(c; rj)], and thus, for all i; j in I

with ri = rj , si (x) = sj (x). This is condition NCS1.

Given the impossibility result in the previous subsection, we will therefore have to restrict

ourselves to speci�c output functions if we want a funding scheme to satisfy reward and NCS2.

How do this subset of �compatible�output functions and the resulting subsidy scheme look like? The

next proposition gives a de�nite answer: the output function f(c; r) has to be additively separable

between pupil type and school policy variables and the subsidy should be an a¢ ne transformation

of the output part which is explained by school policy.

Proposition 1. Let f : D ! R be a function mapping types x = (c; r) into output y = f (x). A

subsidy scheme s : DjIj ! RjIj satis�es reward and no cream-skimming 2 if and only if there

exist

1. functions g : RjCj ! R and h : RjRj ! R, with f (c; r) = g (c) + h (r) for all x = (c; r) in D,

2. functions a : RjRj�jIj ! R and � : RjRj�jIj ! R,

such that for all x in DjIj and for all i in I, we have

si (x) = a (r) + � (r)h (ri) ; (1)

with � (r) > 0.

The proof is given in the Appendix. The funding scheme (1) allows the decision-maker to choose

freely the parameters a (r) and � (r). We add two simple requirements:

Budget balance: There exists an amount B � 0 such that, for all x in DjIj, we have
P

i2I si (x) =

B.

Non-negativity: For all x in DjIj, for all i in I, si (x) � 0.
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Imposing a budget constraint for the regulator is certainly a reasonable thing to do. Fixing the

budget B de�nes the �rst unknown a (r) : The relevancy of the non-negativity condition depends on

the interpretation given to the funding scheme. If we take s(x) to be the only �nancing source for the

schools, it certainly is highly recommendable that subsidies cannot be negative. The situation is less

extreme when s(x) only refers to a bonus scheme (on top of other �nancing sources). However, while

in this case it is in principle possible to have negative �subsidies�(�nes) as a kind of sanctions, it is

more likely that the regulator would prefer to award only positive bonuses. In fact, non-negativity

is not very demanding as it only imposes an upper bound on �(r):

Proposition 2 follows directly from proposition 1, with a(r) de�ned by the budget constraint

and � (r) restricted by non-negativity. Let � be the mean-operator, i.e., � [z] = 1
jIj
P

i2I zi for an

arbitrary vector z = (zi)i2I .

Proposition 2. Let f : D ! R be a function mapping types x = (c; r) into output y = f (x). A

subsidy scheme s : DjIj ! RjIj satis�es reward, no cream-skimming 2, budget balance and

non-negativity if and only if there exist

1. functions g : RjCj ! R and h : RjRj ! R, with f (c; r) = g (c) + h (r) for all x = (c; r) in D

and

2. a function � : RjRj�jIj ! R,

such that, for all x in DjIj and for all i in I, we have

si (x) =
B

jIj + � (r) fh (ri)� � [h (ri)]g ; (2)

with � (r) > 0, and, in case � [h (ri)] 6= mini2I h (ri), also � (r) � B=jIj
�[h(ri)]�mini2I h(ri) .

The subsidy that a school obtains for one of its pupils equals a per-capita share of the total budget

B=jIj plus a correction factor based on the di¤erence between the output part of that pupil for

which the school is responsible and the average �responsible�output part (averaged over all pupils).

Given the additively separable speci�cation of f(c; r), equation (2) can be rewritten as

si (x) =
B

jIj + � (r) f(yi � � [yi])� (g (ci)� � [g (ci)])g ; (3)
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showing that the subsidy for a given pupil is equal to a �xed lump-sum amount B= jIj plus a fraction

(depending on �) of (1) her relative performance (the di¤erence between her individual performance

yi and the average overall performance � [yi]) plus (2) a correction for her characteristics, which will

be positive (negative) if g(ci) < (>)� [g (ci)]. Of course, in practice the funding will be calculated

at the level of the school.

To implement the funding scheme (3), we have to know how the educational production function

f and its components g and h look like. A necessary condition is that the function f be additively

separable between compensation and responsibility variables. If we interpret y as a test score and

f(c; r) as an educational production function, this is an empirical question. We can statistically

test whether the additively separable speci�cation is an acceptable approximation of the true data

generating process. This approach will be followed in the next sections.

Finally, as mentioned before, it is not necessary to interpret y as a raw test score. First,

suppose test scores t = f 0(c; r) and output y = m(t), a non-linear transformation of these scores.

Then the function f(c; r) = m(f 0(c; r)) has to be additively separable in c and r, and this can

be true even if the original educational production function f 0(c; r) is not separable. Of course,

this approach is not a panacea, since m(:) has normative implications and cannot be adapted

freely. Second, value added can be written as �yi = yi � yi;0, with yi;0 the initial test score

of individual i. If the initial test score belongs to the compensation factors in C, we can de�ne

�yi = f (ci; ri)� yi;0 = g (ci)� yi;0 + h (ri) = g0 (ci) + h (ri). The subsidy scheme now becomes

si (x) =
B

jIj + � (r) f(�yi � � [�yi])� (g
0 (ci)� � [g0 (ci)])g :

2.3 From �rst best to second best?

It is worthwhile re�ecting about the normative status of the axioms that have been introduced in

the previous sections. In some sense they can be seen as partial objectives of the regulator, but we

did not introduce explicitly a fully speci�ed objective function; see, e.g., Fleurbaey and Maniquet

(2008). Moreover, the axioms are not formulated in terms of the �nal outcomes to be achieved,

but rather as restrictions on the instruments (the subsidies) that can be used. The propositions

then show that these restrictions completely �x the resulting funding scheme (and in the general

case are even incompatible). On the other hand, the restrictions re�ected in the axioms do capture
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normative desiderata. This is certainly true for NCS1. It is also true for reward, however, and here

the choice of y o¤ers a degree of freedom to the regulator. We mentioned already that y can be a

function of the performance in di¤erent domains. Moreover, non-linear transformations of the raw

test scores o¤er scope for introducing elitist or egalitarian considerations.

Another striking feature of our approach is that we did not include an explicit behavioral model

of the school; see Barlevy and Neal (2009) who analyze incentive pay schemes in a model with

teacher behavior. We did not describe how the allocation of subsidies a¤ects the choices made by

the school (nor, for that matter, by the pupils). One can therefore interpret the previous analysis

as essentially �rst-best. In our approach, the function f(c; r) should be seen as a reduced form

equation and we implicitly assumed that it does not change if additional bonuses are awarded. This

restriction is less severe than it may seem. First, there is a growing amount of empirical evidence that

increasing �nancial resources of schools has at best a very limited e¤ect on performance (Hanushek,

2006; Wössmann, 2003). It is true that giving bonuses and/or sanctions could motivate schools

to organize themselves in a more e¢ cient way, and this more e¢ cient organization may improve

results. However, that e¤ect is captured in our framework by changes in the chosen vector r,

without changing the educational production function f(c; r). Second, the scheme that follows from

Proposition 2 is incentive compatible. If the schools manage to improve performance (to increase

y) while keeping pupil characteristics constant, they will be rewarded. Note, moreover, that while

the formulation in equation (2) seems to o¤er scope for strategic behaviour (e.g. diminishing class

size without any real results) or even creates incentives for open misreporting of e¤orts, this is more

di¢ cult in the reformulated equation (3). Test scores are collected in a standardized way and the

c-variables refer to pupil characteristics that cannot be changed by the schools and can be controlled

easily by the regulator.

2.4 An alternative interpretation: performance measures

We have interpreted our axioms and results in terms of a funding scheme. This is not the only

possible interpretation, however. One could as well argue that s(x) represents only a performance

measure. Both the axioms reward and NCS1 remain valid in this measurement interpretation.

(Reward could be rebaptized as �performance sensitivity�, NCS1 as �correction for pupil charac-
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teristics�.) The impossibility result also remains relevant. However, the additional requirements of

budget balance and non-negativity make much less sense, so that we should probably stick to the

result in Proposition 1. The fact that a(r) and �(r) can be freely chosen then indicates that our

measurement of school performance is at the interval level, and the choice of parameter values boils

down to an arbitrary standardization.

3 Empirical illustration, step one: explaining test scores

We now turn to one speci�c illustration of the general framework. For this illustration we assume

that y is one-dimensional and only includes scores on a mathematics test. Our data are from

Flanders, which is the biggest region in Belgium, with a separate educational policy. In this section

we focus on the estimation of the function f(c; r). We �rst describe the data and then turn to the

estimation results. We will test for the additive separability of f(c; r). The consequences for the

school funding scheme are discussed in the next section.

3.1 The data

The data comes from the SiBO-project, whose aim is to describe and explain di¤erences in the

primary school curriculum of Flemish pupils. We look at test score results in mathematics, socio-

economic background variables, and classroom data for a cohort of pupils during the �rst two

grades (at the normal age of 6 and 7), corresponding with school years 2003-2004 and 2004-2005

respectively.

At the beginning of the �rst grade (September-October 2003), and at the end of the �rst and the

second grade (around May-June of 2004 and 2005, respectively), pupils were tested in mathematics.

The math tests consist of between 40 and 80 questions (depending on the grade), grouped into

di¤erent topics. Two small remarks: (1) we do not have test scores at the beginning of grade 2, and

(2) the tests contain di¤erent questions (di¤erent di¢ culty levels), which explains why test score

results decline over time. Figure 2 presents a kernel density estimate of the math scores, rescaled

into percentages.

Figure 2 about here
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The distributions are reasonably well-behaved, showing no �oor and only limited ceiling ef-

fects. Besides test scores, we also have socio-economic background variables and class-related data,

summarized in Tables 1 and 2 respectively. The former include gender and age of the pupil, and

education level and mother tongue of both parents. From the pupil�s age, we constructed a dummy

variable indicating whether the pupil is behind or ahead of age, and we distinguished the cases

where this is due to a decision by the school itself or rather was already a fact at the moment the

pupil entered the school. The class-related data include the total experience of the teacher, the

class size, the common instruction time for math (in hours per week) and whether two teachers are

teaching the class together or not. We also construct a peer-e¤ect variable as the average initial

test score (begin grade 1) of all pupils in a certain grade at school.

Tables 1 and 2 about here

Observations on pupils can be missing for two reasons: missing test scores at the end of a grade

and/or missing covariates. Table 3 summarizes these reasons per grade, together with the number

of pupils involved (n) and the average initial math test score result for the subgroup (y0).
2 Note

that there is a di¤erence in average initial test scores between the tested and non-tested pupils,

while this di¤erence is less clear between pupils with and without missing covariates.3 We have

6373 pupil-time observations in total, with 2315 pupils appearing in both grades (4630 pupil-time

observations), 658 only in grade 1, and 1085 only in grade 2. These pupils are distributed over 121

di¤erent schools.4

Table 3 about here
2We use a Heckman selection model to impute initial test scores at the beginning of the �rst grade for 484 pupils.

The estimation is based on the pupils�background characteristics, and� for the selection equation only� we exploit

the fact that some schools agreed to participate in the SiBO-project, but not every year, which we consider to be an

appropriate instrument.
3The value for the non-tested pupils in grade 2 is unreliable due to the very low number of observations with

incomplete covariates.
4To limit the reduction in total sample size, and, given that missing covariates is not systematically linked with

lower (initial) test score results in Table 3, we add an additional classi�cation �missing�to the covariate dummies; we

do not report the corresponding estimates which are, as expected, all insigni�cant.
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3.2 Empirical model and results

Let yijt be a single-valued test score of pupil i at school j at time t and zijt a vector of observable

regressors. We use a basic linear panel model

yijt = �
0zijt + ui + vjt + wijt; (4)

with � a vector of marginal e¤ects and with the overall error term decomposed into a time-invariant

pupil-level e¤ect ui, a school-grade level e¤ect vjt and an idiosyncratic error term wijt. Since the

mobility of pupils over schools is very limited in the sample, we assume conditional mean inde-

pendence, i.e., E [uijvjt] = 0, to separate the unobserved pupil-level e¤ect ui from the unobserved

school-grade level vjt.

The linear panel speci�cation satis�es the additive separability condition (as de�ned in proposi-

tions 1 and 2), independent of how the right-hand variables will be classi�ed into compensation and

responsibility factors. The question remains however whether it is a reasonable speci�cation for the

data. To test linearity, we performed a Box-Cox regression on the pooled data; see, e.g., Cameron

and Trivedi (2005). To be more precise, three models were tested: a Box-Cox transformation of the

dependent variable only, say y� = �0z, the same Box-Cox transformation for the dependent and the

(continuous) covariates (y� = �0z�, with � = �), and a �exible speci�cation (y� = �0z�).5 Table 4

presents, for each model, the 95% con�dence interval for � (and possibly, �), as well as �likelihood

ratio�-test results (the �2-value and the corresponding p-value) for the linear, loglinear or inverse

hypothesis.

Table 4 about here

Note that the estimate for � is close to 1 in all three cases, though statistically rejected in the

reported likelihood ratio-tests. Still, it is clear that the linear speci�cation fares much better com-

pared to the log-linear or inverse speci�cation, suggesting that a linear speci�cation is a reasonable

approximation. To test for separability, we do have to classify the right-hand variables as either

5Two additional remarks. First, since the dependent variable and some of the continuous covariates (like initial

test score) are equal to zero for some observations, we added a very small amount to it; we obtain similar results

by dropping these observations. Second, since separability between (some of) the covariates has not been tested yet,

we reestimated these three Box-Cox regression models, while including all interaction e¤ects between the covariates;

this inclusion of interactions did not change the conclusion of a �mild�rejection of additivity.
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compensation or responsibility factors. For the intermediate benchmark case� loosely speaking,

pupil level variables/e¤ects are compensation factors, while school level e¤ects are responsibility

factors (see later, for a more precise description)� , we test separability by testing the hypothesis

that all interaction e¤ects between compensation and responsibility factors are equal to zero. The

null hypothesis is statistically rejected (F (104; 656) = 11:77 with p = 0:000). However, since we are

interested in predicting output (see later), it is important to note that the mean absolute deviation

between the predicted output in both cases (resp. without and with interactions) is small (2.1%)

compared to the average standard errors of the predictions (resp. 1.3% and 2.4%).

Tables 5 and 6 about here

Table 5 provides a description of the variables used in the estimations, while Table 6 summarizes

the results. As was to be expected, the initial test score plays an important role in all models. Its

coe¢ cient is rather robust and smaller than 1, indicating that the added value, i.e., the gain in

test scores, is larger for pupils with a lower initial test score.6 The background variables play a

more modest role and their e¤ects depend on whether or not the initial test score is taken up as

a covariate. In model (c) without initial test score, boys do better than girls, being ahead of age

is not signi�cant while lagging behind is correlated with a lower math performance, having Dutch-

speaking and better educated parents improve test scores and these e¤ects are stronger and more

signi�cant for mothers compared to fathers. In model (d) with initial test scores as an additional

regressor, the estimated coe¢ cients for the background variables change in magnitude and even

in sign. We provide two striking examples. First, once we correct for initial test scores, having

Dutch-speaking parents gets a negative coe¢ cient. Indeed, pupils with non-Dutch speaking parents

have (on average) a worse preparation before starting primary education. Therefore their initial

test score underestimates their potential, leading to a catching-up e¤ect in the �rst grades. Second,

the e¤ect of father education is now stronger than that of mother education. One hypothesis could

be that mothers have a larger e¤ect on initial test scores (during the pre-primary education period),

while fathers have a larger e¤ect on the primary education growth of their children. Comparing

model (d) and (e), adding class data does not change the coe¢ cient estimates for the individual-

6Subtracting the initial test score y0 from both sides of a regression equation yt = �y0 + � � � + � leads to value

added yt � y0 on the left-hand side and (� � 1) y0 on the right-hand side.
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speci�c variables very much. Among the class variables, only instruction time and the peer e¤ect

play a signi�cant and positive role.

Before proceeding, recall Table 3. Because of the high number of missing observations due to

missing test score results in one of the periods, we did not check and/or correct for selection bias.

To check for selection bias we use a variable addition test; see Verbeek and Nijman (1992) and

Wooldridge (1995). More precisely, we add two dummies to the covariates indicating whether the

pupil is tested at the end of period 1 (respectively period 2) or not. The results indicate that

missingness might be informative, but only for the pupils who drop out after grade 1. To check

whether selection correction in�uences our estimation results, we added a selection equation to each

period in the spirit of Hausman andWise (1979), allowing for correlation between the individual level

e¤ects in the selection and output equation. However, the corrected estimates do not statistically

di¤er from the uncorrected estimates.7 Finally, note that Ladd and Walsh (2002) have shown that

a failure to correct for measurement error in the initial test scores may lead to a bias against low-

performing students. We do not dispose of good instruments to tackle the problem and we have

therefore neglected it. In fact, our empirical application is only meant to be an illustration of how

the theoretical concepts introduced in the previous section can be implemented.

4 Empirical illustration, step 2: �nancing schools

The next step is to use the results from estimating equation (4) to calculate the school subsidies

following expressions (2) or (3). We have shown in the previous section that the assumption

of additive separability is an acceptable approximation in our data. Two further issues remain.

First, we must classify the right-hand side variables (zijt; ui; vjt; wijt) as either compensation or

responsibility factors. Second, (some of) the unobserved components have to be predicted. We

discuss these methodological issues in greater detail in the next subsection. We then discuss how

the funding scheme would look like for the Flemish schools in our sample.

7The reported selection correction model assumed random (rather than �xed) school e¤ects, resulting in a so-

called multi-level model. An attempt with �xed school e¤ects did not converge, probably due to the high number of

school-time dummies in the selection equation.
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4.1 Implementation

The partitioning of x in c and r is in the �rst place a normative exercise. The regulator has to

decide about for which factors he wants to hold the schools responsible and for which factors he is

willing to compensate. The procedure we have proposed will work for all possible partitionings of

x. For illustrative reasons, we will focus on what we consider to be the most relevant benchmark

case, in which we split up all observable factors zijt into

1. compensation factors (denoted zc;ijt): these include the peer e¤ect, the time e¤ect and all

pupil-related variables, except the �ahead and behind age�-dummies when the decision about

retainment or skipping a class is taken by the school itself.

2. responsibility factors (denoted zr;ijt): these include the school-grade level variables except for

the peer e¤ect, as well as the variables ahead and behind age, when the decision is taken by

the school.

Note that it does not matter where the constant term is assigned to. With respect to the unobserv-

ables, we assume schools to be responsible for the unobserved school-grade e¤ect vjt, but not for

the pupil e¤ect ui and the idiosyncratic error term wijt.

To summarize, we interpret equation (4) as

yijt =
�b�0czc;ijt + ui + wijt�| {z }

g(cijt)

+
�b�0rzr;ijt + vjt�| {z }

h(rijt)

(5)

Plugging this expression in the subsidy scheme (2) and using � [vjt] = 0, we get8

sijt (x) =
B

jIj + �
nb�0r (zr;ijt � � [zr;ijt]) + vjto : (6)

The subsidy formula depends on the observed responsibility factors zr;ijt and on the unobserved

school-grade e¤ect vjt. The latter must still be predicted. There are basically two ways to proceed

from here (see, e.g., Longford, 1994, for a detailed discussion). One possibility is to use the posterior

mean to predict vjt. This estimator is stable in small samples, but it is biased. We opted for using

the unbiased OLS estimate, although this may be less stable. Note however that, with our data,

the di¤erences between both methods are extremely small: the correlation between the resulting

8Since we focus on a �xed pro�le, we replace � (r) by �.
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subsidy schemes is 0.999. In addition, the OLS-estimate has a decisive theoretical advantage, in

that it allows us to express the total subsidy for a school� the sum of the subsidies for its pupils�

as a function of school output and observable compensation factors, i.e., to implement scheme (3).

We argued in section 2 why this implementation is less vulnerable for manipulation and strategic

gaming.

The OLS estimator equals

bvjt = �jt [yijt]� b�0�jt [zijt]
= �jt [yijt]� b�0c�jt [zc;ijt]� b�0r�jt [zr;ijt] ;

with (for an arbitrary vector a) �jt [aijt] =
P

i aijtdijt=
P

i dijt and dijt is a dummy-indicator,

indicating whether pupil i has a test score at school j at time t (dijt = 1) or not (dijt = 0).

Plugging this estimate into equation (6), and using the expression (capturing the assumption of

additive separability) b�0r� [zr;ijt] = � [yijt]� b�0c� [zc;ijt], we get
sijt (x) =

B

jIj + �
nb�0r �zr;ijt � �jt [zr;ijt]�+ ��jt [yijt]� � [yijt]�� b�0c ��jt [zc;ijt]� � [zc;ijt]�o :

This expression is still at the individual level. In practice funding will be at the level of the

school. Calculating the average school subsidy for school j, the �rst term between curly brackets

averages out, and we are left with

sj (x) = �j [sijt (x)] =
B

jIj + �
n�
�j [yijt]� � [yijt]

�
� b�0c ��j [zc;ijt]� � [zc;ijt]�o ; (7)

with �j [aijt] =
P

it aijtdijt=
P

it dijt. This empirical counterpart of equation (3) is the basic ex-

pression that we use to calculate school subsidies in the next subsection. The average subsidy a

school receives is equal to the per-capita share B= jIj plus a fraction (depending on �) of (1) the

relative school performance (the di¤erence between the average school performance �j [yijt] and

average overall performance � [yijt]) minus (2) the relative school pro�le (the di¤erence between the

predicted average school performance on the basis of the compensation factors b�0c�j [zc;ijt] and the
predicted average overall performance b�0c� [zc;ijt]). Eq. (7) does not include any responsibility vari-
ables. Moreover, the unobservable pupil-level variables ui and wijt are averaged out at the school

level, as a result of our identifying mean independence assumption. To calculate the subsidies, we

only need information about average test scores, average observable pupil characteristics at the

school level, and the estimates for �c.
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This benchmark case is only one (albeit in our view the most attractive) possibility to implement

our theoretical framework. Other normative choices are possible, e.g. one could have doubts about

our classi�cation of the variables �ahead and behind age as chosen by the school�as a responsibility

variable (is this a real choice?), or of the peer group-e¤ect as a compensation variable (can it not

be controlled to some extent by the schools when they decide about the composition of their

classes?). To illustrate the implications of di¤erent normative choices, we compare our benchmark

case with two extreme cases. One is the �traditional� system without school accountability. In

our theoretical framework, this means that all variables are in C. As equation (2) shows this

leads to identical subsidies for all pupils and hence to a school funding system which only takes into

account the number of pupils. This funding scheme does not give any �nancial incentives to improve

performance in terms of test scores. A second extreme case is the simple accountability-approach

in which there is no correction for pupil characteristics at all. In our framework, this means that all

determinants are in R: Equation (3) then shows that school funding will be based on uncorrected

output scores. As argued before, these are a biased indicator of school performance and using them

for calculating the subsidies creates incentives for cream-skimming.

4.2 Results

Let us now look at the results for a selection of 58 schools (out of the 121 in our sample) where a

su¢ cient number of pupils have been tested, i.e., more than 30 pupils and more than 80% of the

relevant pupil population at the school. As an innocuous normalization, we take B = jIj, which

means that schools would receive 1 unit per pupil if they were not held accountable at all.

Figure 3 plots the relative school performance (�j [yijt]�� [yijt]) versus the relative school pro-

�le (b�0c ��j [zc;ijt]� � [zc;ijt]�) Each dot in the �gure corresponds to the position of one school.

Using a simple performance measure, i.e., using only information about test scores, the higher a

school is, the better it is considered to be. However, if we correct for pupil characteristics, a school

will be considered better the further it is above and away from the diagonal line (containing the

points with �j [yijt] � � [yijt] = b�0c ��j [zc;ijt]� � [zc;ijt]�). The di¤erences are striking. There are
14 false negatives (FN), i.e., schools which would be considered to be poor performers in a primitive

accountability scheme, but become good performers once we introduce a correction for pupil char-
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acteristics. Analogously, there are 21 false positives (FP). On the other hand, information about

performance is important. Suppose we evaluated schools only in terms of their pupil characteristics.

Then all schools to the left of the vertical axis would be considered to be relatively �disadvantaged�,

while all schools to the right of the vertical axis have a relatively �advantaged�pupil population.

Note that, even after correction, some of the former are poor performers, while some of the latter

do even better than what could have been expected on the basis of their population. Still, there are

more schools in the zones FN and FP than in the zones denoted A and B. This means that schools

with a disadvantaged population are performing relatively well, while schools with an advantaged

population are doing relatively poorly. This is not di¢ cult to explain in a setting where there is

regulation through the imposition of minimal output norms. To reach the minimum performance

level, �disadvantaged�schools must strive harder. In that sense, imposing minimal quality norms

without su¢ ciently correcting for pupil characteristics, generates inequity between schools.

Figure 3 about here

Of course, a similar picture emerges when we calculate the school subsidies (per pupil). Results

are shown in Figure 4 for � = 1=30.9 �Corrected�subsidies refer to the funding scheme (7) of our

benchmark case. The extreme accountability case with funding based on output scores only, boils

down to an application of equation (7), but leaving out the correction term�b�0c ��j [zc;ijt]� � [zc;ijt]�.
This yields the �uncorrected�subsidies in Figure 4. Finally, funding per pupil without school ac-

countability, would put all the schools in the center (1,1) of the Figure. The false negative (FN)

schools are in the bottom-right, receiving less than their per-capita share if subsidies are uncor-

rected, but more than the per-capita share if corrected; the opposite happens for the false positives

in the top left corner.

Figure 4 about here

Additional insights are obtained by looking at schools that are top receivers (>80%-tile), middle

receivers (in between 40%-tile and 60%-tile) and low receivers (<20%tile) for both the uncorrected

and corrected subsidy scheme. Recall equation (7) and the decomposition of the proportionality part

9The value � = 1=30 guarantees non-negativity of the subsidies. Further decreasing � would only bring the

subsidies closer together on both axes.
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into relative performance minus relative pro�le. Table 7 presents the average relative performance

(perf.) and the average relative pro�le (prof.) for these groups in each of the subsidy schemes. The

uncorrected (simple accountability) approach allocates large subsidies to the good performers, with

a very strong bias in favour of schools with an advantaged pro�le of pupil characteristics. Once we

turn to the corrected (benchmark) case, however, mean performance is about the same for bottom,

middle and top receivers. Top receivers are now mainly schools with a disadvantaged population,

low receivers are schools with an advantaged pupil population. Note that this does not mean that

relative performance does not play a role in the funding scheme, as equation (7) testi�es. It re�ects

that di¤erences in performance are more strongly linked to pupil characteristics than to observable

school variables, and that, in the present Flemish system of quality regulation, schools with more

disadvantaged pupils (have to) perform better.

Table 7 about here

5 Conclusion

Recent experiences have shown that introducing school accountability may create incentives for

e¢ ciency. However, it is necessary to correct for individual pupil characteristics. Otherwise the

performance measures are biased, creating perverse incentives for cream-skimming and leading to

an inequitable treatment of schools with a disadvantaged pupil population. To calculate these

corrections, one needs information on educational production functions. We have shown how this

empirical information from the educational literature can be integrated in a coherent normative

framework inspired by the growing non-welfarist literature on fair allocations.

We borrowed from this literature the insight that the requirements of rewarding performance

and avoiding incentives for cream-skimming are incompatible on the general domain of educational

production functions. However, restricting ourselves to educational production functions that are

separable in pupil characteristics and in school policy variables, we characterized an attractive

funding scheme that satis�es both requirements. This funding scheme uses only easily controllable

information on average test scores and average pupil characteristics at the school level. Once one

has an estimate of the educational production function, it can be easily implemented, and the

separability assumption can be tested on the data.
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Our application to Flemish schools shows that correcting for individual pupil characteristics

leads to a substantial change in the performance measures, and hence in the subsidies allocated

to the di¤erent schools. Moreover it revealed the interesting insight that a system with quality

regulation without compensations for pupil characteristics forces only schools with a disadvantaged

pupil population to perform relatively better in order to satisfy the quality norms. Even if the

regulator is not willing to introduce �nancial accountability in the system (which may be the case

in many European countries), it should then consider compensations for schools with a socially

disadvantaged population. The only coherent way of calculating these compensations is to base

them precisely on the additional e¤ort needed to reach the quality norms, i.e., to improve the

scores for pupils that are more di¢ cult to educate. The information needed to calculate these

compensations is then very similar to the information needed to implement our full funding scheme.

As we wanted to focus on the problem of correcting for pupil characteristics, we neglected a

host of strategic and practical issues that have been documented in the empirical literature (such

as teaching to the rating, selective retainment, measurement error, instability of the funding for

smaller schools). Taking these into account in a satisfactory way would necessitate introducing a

model of school (and pupil) behaviour into our theoretical setting. We then have to go beyond the

enumeration of requirements that a good funding scheme has to satisfy and we have to specify a

complete fair social ordering (Fleurbaey and Maniquet, 2008). A �rst step in the direction of a more

complete speci�cation of social objectives would be to extend our approach to multidimensional

outcome measures (including also non-cognitive abilities) and to look at the potential implications

of working with non-linear transformations of test scores to capture di¤erent egalitarian or elitist

intuitions.
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Proof of proposition 1

It is easy to verify that, if the output function f is additively separable � i.e., there exist functions

g : RjCj ! R and h : RjRj ! R such that f (c; r) = g (c) + h (r) for all x = (c; r) in D� , and if the

subsidy scheme can be written (for all x in DjIj and for all i in I) as si (x) = a (r) +� (r)h (ri), for

some constants a (r) and � (r) > 0, then it satis�es reward and no cream-skimming. We prove the

opposite.

Step 1. If a subsidy scheme satis�es reward and no cream-skimming then the output function has

to be additively separable between compensation and responsibility factors.

Note �rst that no cream-skimming requires subsidies to be a function of the responsibility pro�le

r only, thus there exist a list of functions (�i)i2I , such that, for all x in DjIj and for all i in

I, si (x) = �i (r). Now, consider arbitrary c; c
0 in RjCj and r; r0 in RjRj and construct pro�les

x = (xa; xb) ;x
0 = (x0a; x

0
b) in D2 such that (xa; xb) = ((c; r) ; (c; r0)) and (x0a; x0b) = ((c0; r) ; (c0; r0)).

Note that r = r0. Reward allows the proportionality factor to be pro�le-dependent, so, if we apply

reward to pro�le x, we get

sa (x)� sb (x) = e� (x) (f (c; r)� f (c; r0)) ;
with e� (x) > 0. Using no cream-skimming (and functions �a and �b), we must have

�a (r)� �b (r) = � (r) (f (c; r)� f (c; r0)) ;

with � (r) > 0. Similarly, if we apply reward to pro�le x0 we get

�a (r
0)� �b (r0) = � (r0) (f (c0; r)� f (c0; r0)) ;

or, given that r = r0,

�a (r)� �b (r) = � (r) (f (c0; r)� f (c0; r0)) :

Combining both results, we must have

f (c; r)� f (c; r0) = f (c0; r)� f (c0; r0) ;

which, recall, has to be true for arbitrary c; c0 in RjCj and r; r0 in RjRj. Fixing c0 in RjCj and r0 in
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RjRj, and de�ning

g : RjCj ! R : c 7! g (c) := f (c; r0)

h : RjRj ! R : r 7! h (r) := f (c0; r)� f (c0; r0)

we obtain

f (c; r) = f (c; r0) + f (c0; r)� f (c0; r0)

= g (c) + h (r) ;

for arbitrary (c; r) in D, as required.

Step 2. If a subsidy scheme satis�es reward and no cream-skimming, then the subsidy scheme can

be written (for all x in DjIj and for all i in I) as si (x) = a (r) + � (r)h (ri), for some constants

a (r) and � (r) > 0 and with h de�ned in step 1.

Consider an arbitrary pro�le x in DjIj. Construct a new pro�le x0 in DjIj with x0 = (c0; r0) =

((c; c; : : : ; c) ; r) for some arbitrary c in RjCj. Recall that no cream-skimming requires subsidies to

be a function of the responsibility pro�le r only, thus there exist a list of functions (�i)i2I , such

that, for all x in DjIj and for all i in I, si (x) = �i (r); note that si (x) = �i (r) = �i (r0) = si (x0)

for all i in I. Since all pupils in x0 have the same compensation vector c, reward applied to pro�le

x0 tells us that, for all i; j in I we have

si (x
0)� sj (x0) = e� (x0) �f (c; r0i)� f �c; r0j�� ;

with e� (x0) > 0. Using no cream-skimming, additive separability of f (from step 1) and the fact

that r = r0 we get for all i; j in I

�i (r)� �j (r) = � (r) (h (ri)� h (rj)) ;

with � (r) > 0. Finally, de�ning k = argmini2I h (ri) we get for all i in I that

�i (r) = �k (r) + � (r) (h (ri)� h (rk))

= �k (r)� � (r)min
i2I

h (ri)| {z }
a(r)

+ � (r)h (ri) :

Fixing the minimal subsidy sk (x) = �k (r), and de�ning a (r) = �k (r)� � (r)mini2I h (ri), we get

the desired representation si (x) = a (r) + � (r)h (ri), with � (r) > 0, as required.
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Figures and tables

Figure 1: Impossibility to satisfy reward and no cream-skimming.
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Figure 2: Kernel density estimates of math scores at di¤erent moments in time.
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Figure 3: School performance versus school pro�le.
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Figure 4: Uncorrected versus corrected school subsidies.
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Table 1: Summary statistics for the pupil variables

initial math score mean st.dev. 5%-ile 95%-ile

grade 1 69.25 19.62 29.73 94.59

grade 2 70.01 18.19 35.14 94.59

sex boy girl

grade 1 0.50 0.50

grade 2 0.49 0.51

language mother = dutch 6= dutch

grade 1 0.91 0.09

grade 2 0.90 0.10

language father = dutch 6= dutch

grade 1 0.89 0.11

grade 2 0.89 0.11

age behind at age ahead

grade 1 0.12 0.87 0.01

grade 2 0.16 0.83 0.01

mother�s highest

degree

<secondary secondary tertiary

( 6=univ.)

tertiary

(=univ.)

grade 1 0.22 0.37 0.32 0.09

grade 2 0.19 0.37 0.33 0.11

father�s highest

degree

<secondary secondary tertiary

( 6=univ.)

tertiary

(=univ.)

grade 1 0.22 0.40 0.24 0.14

grade 2 0.20 0.40 0.25 0.15
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Table 2. Summary statistics for class variables

# of teachers 1 2

grade 1 0.89 0.11

grade 2 0.87 0.13

instruction time mean std. dev. 5%-ile 95%-ile

grade 1 6.16 0.86 5 7

grade 2 6.31 0.86 5 7.5

total experience mean std. dev. 5%-ile 95%-ile

grade 1 15.15 8.92 3 30

grade 2 17.42 9.52 3 30

class size mean std. dev. 5%-ile 95%-ile

grade 1 20.05 3.86 14 26

grade 2 20.12 4.29 14 27

peer e¤ect mean std. dev. 5%-ile 95%-ile

grade 1 55.82 2.96 50.32 59.37

grade 2 55.64 3.05 50.46 59.56
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Table 3: Selection of pupils over time.

complete incomplete

grade 1 n y0 n y0

tested 2973 69.25 874 67.78

not tested 65 52.08 105 50.86

grade 2 n y0 n y0

tested 3400 70.01 344 70.85

not tested 47 57.49 2 83.79
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Table 4: Box-Cox regression results to test for additivity

� � = � � �

estimate 1.05 1.14 1.12 1.98

standard error 0.02 0.02 0.02 0.10

H0 �2 p �2 p �2 p

linear: � = 1 (= �) 5.72 0.017 36.07 0.000 138.00 0.000

log-linear: � = 0 (= �) 12775.25 0.000 12889.59 0.000 12991.53 0.000

inverse: � = �1 (= �) 2.9e+05 0.000 2.9e+05 0.000 2.9e+05 0.000
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Table 5: Abbreviation and description of the covariates

time2 = 1 if pupil is currently in second grade, 0 otherwise (thus 0 = in �rst grade)

math0 initial test score result in mathematics when entering grade 1

girl = 1 if girl, 0 otherwise

ahead_c = 1 if pupil is 1 or more years ahead of age not due to school decision, 0 otherwise

behind_c = 1 if pupil is 1 or more years behind age not due to school decision, 0 otherwise

ahead_r = 1 if pupil is 1 or more years ahead of age due to school decision, 0 otherwise

behind_r = 1 if pupil is 1 or more years behind of age due to school decision, 0 otherwise

m_dutch=f_dutch = 1 if mother/father speaks dutch, 0 otherwise

m_edu_sec=f_edu_sec = 1 if mother/father has a secondary education degree, 0 otherwise

m_edu_high=f_edu_high = 1 if mother/father has a tertiary (short type) education degree, 0 otherwise

m_edu_uni=f_edu_uni = 1 if mother/father has a tertiary (long type) education degree, 0 otherwise

duo = 1 if there are two teachers, 0 otherwise

peer average initial test score of all pupils in the same grade at school

it_math number of hours per week of mathematics instruction in the classroom

experience total number of years experience with teaching

class_size number of pupils in the classroom
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Table 6: Estimation results

math score model a model b model c model d model e

coe¤. p coe¤. p coe¤. p coe¤. p. coe¤. p.

constant 60.86 0.000 60.86 0.000 51.88 0.000 66.00 0.000 66.49 0.000

time2 0.14 0.866 0.14 0.866 0.14 0.866 0.14 0.866 -0.21 0.793

math0 0.77 0.000 0.74 0.000 0.74 0.000

girl -5.21 0.000 -4.91 0.000 -4.92 0.000

ahead_c 4.63 0.210 7.15 0.036 6.92 0.037

behind_c -4.66 0.000 -4.66 0.000 -4.61 0.000

ahead_r -1.20 0.782 0.52 0.879 0.63 0.856

behind_r -10.81 0.000 -4.96 0.003 -4.84 0.005

m_dutch 3.33 0.014 -3.64 0.006 -3.79 0.004

f_dutch 2.46 0.079 -1.31 0.288 -1.31 0.292

m_edu_sec 3.40 0.000 -0.49 0.492 -0.49 0.497

m_edu_high 9.72 0.000 1.60 0.047 1.67 0.041

m_edu_uni 11.58 0.000 3.25 0.016 3.25 0.018

f_edu_sec 1.37 0.138 1.18 0.096 1.19 0.099

f_edu_high 5.20 0.000 3.16 0.000 3.18 0.000

f_edu_uni 6.81 0.000 4.76 0.000 4.74 0.000

duo -1.85 0.321

peer 1.09 0.007

it_math 2.07 0.035

experience 0.03 0.552

class_size 0.31 0.146

�u 19.24 14.32 17.88 13.78 13.81

�v 9.60 6.48 7.94 6.25 11.03

�w 6.78 6.78 6.78 6.78 6.63
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Table 7: Relative performance and relative pro�le

low middle top

perf. prof. perf. prof. perf. prof.

uncorrected -13.85 -17.70 2.59 7.87 10.47 11.72

corrected -2.16 11.05 1.76 2.24 -2.49 -14.80
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