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Abstract

In this paper I investigate the problem of de�ning a multivariate dependence or-

dering. First, I provide a characterization of the concordance dependence ordering

between multivariate random vectors with �xed margins. Central to the characteriza-

tion is a multivariate generalization of a well-known bivariate elementary dependence

increasing rearrangement. Second, to order multivariate random vectors with non-

�xed margins, I impose a scale invariance principle which leads to a copula-based

concordance dependence ordering. Finally, a wide family of copula-based measures

of dependence is characterized to which Spearman�s rank correlation coe¢ cient be-

longs.
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1 Introduction

A random vector is said to be dependent when its random variables tend to be large

or small simultaneously. Starting from this intuitive, but vague notion of dependence, I

follow an axiomatic procedure to provide a more precise answer to the question �when

is a multivariate random vector Y more dependent than random vector X?�1

In a wide range of economic problems the notion of multivariate dependence is of partic-

ular interest. In �nancial and actuarial analysis, the dependence between asset returns or

claims in a portfolio provides a measure of the degree of its diversi�cation and systemic

risk.2 In welfare economics, the notion of dependence between income distributions at

di¤erent points in time is inversely related to the (exchange) income mobility3, and the

dependence between pre- and post-tax income distributions measures horizontal equity

(Dardanoni and Lambert 2001). Atkinson and Bourguignon (1982) and Tsui (1999) have

argued that an ordering of multidimensional inequality should be dependence-sensitive.

Furthermore, the notion of dependence can be used to measure assortativeness in (many-

sided) matching problems, the homogeneity of skills in teams and agreement among

judges. Hennessy and Lapan (2003) and Meyer and Strulovici (2009) provide an exten-

sive overview of the use of dependence orderings in economic problems.

The question of how to de�ne an attractive dependence ordering has received earlier

attention from statisticians and economists. This paper provides a unifying framework

in which the earlier work from both disciplines �ts naturally. The central role in this

framework is played by the elementary rearrangement that leads to a more dependent

random vector. In the existing literature, the focus has been almost exclusively on partial

dependence orderings on the set of random vectors with �xed marginal distribution

functions, which are obtained from bivariate elementary rearrangements. This paper

generalizes beyond this particular case in the following three directions.

First, the paper proposes a multivariate generalization of the bivariate elementary re-

arrangement that has been used to study dependence (or correlation) (Hamada 1974, Ep-

stein and Tanny 1980, Tchen 1980, Atkinson and Bourguignon 1982). The bivariate

rearrangement shifts probability mass on the vertices of a rectangle, such that the prob-

ability mass on the realizations with both high or both low values is increased and the

probability mass on the realizations with one high and one low value is decreased. I show

1 In this research question the reader may hear an echo of the seminal paper of Rothschild and Stiglitz
(1970), who study the question �when is a random variable Y more variable than random variable X?�

2 See, respectively, Campbell et al. (1997) and Denuit et al. (2005) and the references therein.
3 Fields and Ok (1999) provide a survey of the literature on mobility measurement; see in particular

D�Agostino and Dardanoni (2009).
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that the geometric generalization of this elementary rearrangement which shifts proba-

bility mass on the vertices of a hyperbox (rather than a rectangle) leads to a random

vector which is more dependent according to the multivariate concordance dependence

ordering proposed by Joe (1990). Furthermore, I show that all expected utility maximiz-

ers with an even-increasing utility function prefer a random vector that is obtained by

a sequence of multivariate dependence-increasing rearrangements to the original random

vector. The class of the even-increasing utility functions is a subclass of the class of the

2-increasing (or supermodular or L-superadditive) utility functions.4

Second, the paper proposes an approach to extend the results beyond the case of multi-

variate random vectors with �xed marginal distributions. In many economic applications

one is interested in ordering random vectors with respect to their dependence even if the

marginal distributions are not �xed. I proceed by imposing a scale invariance princi-

ple, which requires that all increasing transformations of the random variables leave the

dependence between the random vector unchanged. This principle makes dependence a

purely ordinal concept and allows the de�nition of equivalence classes with respect to

the dependence ordering. Imposing this invariance principle, together with sensitivity

to the multivariate dependence-increasing rearrangements, leads to a testable criterion

in terms of the underlying copula functions of the random vectors. The copula function

has recently become increasingly popular as a practical and useful tool to decompose

the information in the joint distribution function in information about the distributional

pro�le within each dimension and the dependence structure between the dimensions. I

believe that the result of this paper provides further insights in the meaning and use of

the copula function in general.

Third, a wide family of multivariate dependence measures which are consistent with the

partial copula-based dependence orderings are characterized by imposing two additional

requirements to assure its additive representability. The family of measures derived from

the �concordance function�, as introduced by Nelsen (2002), belongs to this family. A

bivariate member of the family is Spearman�s rank correlation coe¢ cient. Recently, the

multivariate generalization of this measure and its statistical properties received attention

in the statistical literature (Nelsen 2006, Dolati and Úbeda-Flores 2006, Taylor 2007).

However, to the best of my knowledge, no axiomatic characterization of the overarching

family of dependence measures has been provided yet.

The paper is structured as follows. Section two introduces notation. Section three

surveys the existing literature on dependence orderings for bivariate random vectors with

4The reader �nds a detailed treatment on supermodularity by Topkis (1998) and one by Marshall and
Olkin (1979) on L-superadditivity.
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�xed marginal distribution functions. In section four the bivariate rearrangements are

generalized into the multivariate setting and I investigate the multivariate dependence

orderings which are consistent with these rearrangements. Section �ve introduces the

copula function to de�ne copula-based dependence orderings that allow the ordering

of random vectors when the marginal distributions are not �xed. Section six looks at

a class of additive dependence measures that are order-preserving with respect to the

dependence ordering and investigates the properties of one of its prominent members.

Section seven concludes and surveys some possibilities for further research.

2 Notation

Throughout the paper the following notational conventions are adopted. Let X =

(X1; : : : ; Xm) and Y = (Y1; : : : ; Ym) be two di¤erent m-dimensional random vectors

which have the �nite set S as support. The number of dimensions m is assumed to be

�xed with m � 2. The set of the discrete m-dimensional random vectors is denoted

X .5 The corresponding joint distribution function of X is FX so that FX(x1; : : : ; xm) =

Pr [X1 � x1 and : : : and Xm � xm] and the joint survival function FX is de�ned by

FX(x1; : : : ; xm) = Pr [X1 > x1 and : : : and Xm > xm] : The univariate marginal distri-

bution functions of FX are denoted by F1; : : : ; Fm:

I investigate a binary relation � on the set of the discrete random vectors X which is

assumed to be antisymmetric and transitive, hence it is a weak ordering in the sense

of Fishburn (1970). The binary relation � should be interpreted as meaning �is less

dependent than�and will be referred to as the �dependence ordering�in the following. The

equivalence dependence ordering is denoted �.

Following Joe (1997), the subset of the set of discrete random vectors X with given mar-

ginal distribution functions F1; : : : ; Fm is referred to as the Fréchet class F(F1; : : : ; Fm)
or by its shorthand F when there is no confusion about the underlying marginal distri-

bution functions. Fréchet classes are a natural environment to study dependence, since

their elements only di¤er in their dependence structure. Yet, an important goal of this

paper is to extend the results so that random vectors from di¤erent Fréchet classes can

also be compared with respect to their dependence.

In the following, the class of k-increasing functions will play an important role. To intro-

duce such a function, let xj < xj for all dimensions j = 1; : : : ;m and de�ne for an arbi-

5 In principle, I will only consider discrete random vectors with �nitely many realizations. However,
the results of this paper can be extended to arbitrary random vectors by limiting arguments as developed
by Rothschild and Stiglitz (1970, lemma 2).
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trary function U the �rst di¤erence operator of the jth component �xjxjU(x1; : : : ; xm) =

U(x1; : : : ; xj ; : : : xm) � U(x1; : : : ; xj ; : : : xm): A function U : Rm ! R is said to be k-

increasing if it holds that

�
xj1
xj1
: : :�

xjk
xjk
U(x1; : : : ; xm) > 0;

for all (x1; : : : ; xm) 2 Rm; and 1 � j1; : : : ; jk � m: A function U is said to be k-decreasing
if and only if �U is k-increasing. For any function U which is su¢ ciently di¤erentiable

and k-increasing, it holds that @kU(x)=@xj1 : : : @xjk > 0: A function which is 2-increasing

is also called supermodular (Topkis 1998) or L-superadditive (Marshall and Olkin 1979)

Finally, I de�ne two additional sets, the join-semilattice and meet-semilattice of the set of

realizations S: Consider Sn =
�
x1; : : : ; xn

	
a subset of S which consists of n realizations:

The join and meet operation are de�ned in the standard way. The join (component-

wise maximum) of Sn equals
�
max

�
x11; : : : ; x

n
1

	
; : : : ;max

�
x1m; : : : ; x

n
m

	�
and the meet

(component-wise minimum) equals
�
min

�
x11; : : : ; x

n
1

	
; : : : ;min

�
x1m; : : : ; x

n
m

	�
. The join-

semilattice J(S) of S is the smallest set containing S that is closed under the join

operation: It consists of the joins of all subsets of S: The meet semi-lattice M(S) of S is

the smallest set containing S that is closed under the meet operation: M(S) consists of

the meets of all subsets of S:

3 Bivariate dependence orderings on a Fréchet class

In this section I survey the existing literature on bivariate dependence orderings on

a Fréchet class. In a bivariate setting, it is intuitive to say that a random vector is

more dependent when its realizations are simultaneously high or low together in both

dimensions than when every realization is high in one dimension and low in the other

(Hamada 1974). To formalize this intuition, it is useful to de�ne �rst a positive 2-

rearrangement.

De�nition 1. Let X and Y be in X with support S. Consider a rectangle B2 =

[xj1 ; xj1 ] � [xj2 ; xj2 ] whose vertices are in S; with xj < xj for all j 2 fj1; j2g. If Y
can be obtained from X by adding a positive probability mass " to all vertices of the rec-

tangle B2 with an even6 number of components xj = xj and subtracting " from all vertices

of the rectangle B2 with an odd number of components xj = xj ; then Y is obtained from

X by a positive 2-rearrangement.
6 In the following, I adopt the convention that 0 is even.
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The probability mass " > 0 is assumed to be small enough so that the remaining proba-

bility mass is non-negative everywhere. The positive 2-rearrangement is also known as a

�correlation increasing transformation�(Epstein and Tanny 1980) or a �basic rearrange-

ment�(Boland and Proschan 1988). In the literature on mobility measurement it plays

an important role (Atkinson 1981, Dardanoni 1993, D�Agostino and Dardanoni 2009). A

negative 2-rearrangement is de�ned likewise as rearrangement of a negative probability

mass ": Observe that a 2-rearrangement a¤ects only two of the m dimensions.

Consider random vectors Y and X, such that Y can be obtained from X by a positive 2-

rearrangement. Since any 2-rearrangement leaves the marginal distributions unchanged,

X and Y belong to the same Fréchet class. A 2-rearrangement only a¤ects the dependence

structure between the random variables. More precisely, the following principle requires

the dependence ordering to increase after a positive 2-rearrangement.

2-Dependence Principle (2DEP). Let X and Y be in X . If Y can be obtained from

X by a �nite sequence of positive 2-rearrangements, then X � Y:

Epstein and Tanny (1980) and Tchen (1980) have independently shown the following

equivalences.

Proposition 1. Let X and Y be in F with support S and suppose m = 2: The dependence

ordering � on F satis�es 2DEP if and only if X � Y is equivalent to:

1.
R
U(x1; : : : ; xm)dFX(x1; : : : ; xm) �

R
U(x1; : : : ; xm)dFY (x1; : : : ; xm)

for all 2�increasing utility functions U ,

2. FX(x1; : : : ; xm) � FY (x1; : : : ; xm) for all (x1; : : : ; xm) in J(S),

3. FX(x1; : : : ; xm) � F Y (x1; : : : ; xm) for all (x1; : : : ; xm) in M(S):

Proof: The equivalence between the dependence ordering satisfying 2DEP and condition

1 is proven by Epstein and Tanny (1980, theorem 6). Epstein and Tanny (1980, theorem

1) show equivalence between condition 1 and FX(x1; : : : ; xm) � FY (x1; : : : ; xm) for all

(x1; : : : ; xm) in Rm with m = 2. Dyckerho¤ and Mosler (1997, theorem 1) show that

is su¢ ces to check the inequality for all (x1; : : : ; xm) in J(S): The equivalence between

condition 2 and 3 is proven by Epstein and Tanny (1980, theorem 3). Dyckerho¤ and

Mosler (1997, theorem 3) show that checking for all (x1; : : : ; xm) in M(S) in this case

also su¢ ces. �

Note that the equivalence only applies to bivariate random vectors which belong to the

same Fréchet class. This result adds three equivalent conditions to the statement that Y
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is more dependent than X according to a dependence ordering � which satis�es 2DEP.
Each of these conditions provides an alternative perspective on the dependence ordering.

The integral in the �rst condition can be interpreted as a von Neumann-Morgenstern

utility function, so that the condition requires unanimous agreement by all expected

utility maximizers with a 2-increasing or supermodular utility function. A utility function

is 2-increasing if its arguments are complements in the Auspitz-Lieben-Edgeworth-Pareto

(ALEP) sense (Kannai 1980), or in case of a di¤erentiable utility function, if the marginal

utility of a dimension is increasing in the level of any other dimension. Richard (1975)

refers to a decision maker with a supermodular (and di¤erentiable) utility function as

�multivariate risk seeking�and Epstein and Tanny (1980) call such a utility function a

�correlation-a¢ ne�utility function. In many applications it may seem more natural to

consider 2-decreasing (or multivariate risk averse) utility functions instead, in which case

the direction of the inequality in condition one reverses. In the statistical literature,

the dependence ordering that satis�es the �rst condition is known as the supermodular

dependence ordering (see, for instance, Joe (1990), Müller and Scarsini (2000) and Denuit

et al. (2005)).

The second condition is a test of bivariate �rst-order stochastic dominance as studied by

Hadar and Russel (1974) and Atkinson and Bourguignon (1982) who show equivalence

between condition one and two under the additional assumption of di¤erentiability of

the utility function. The second condition de�nes the lower orthant dependence ordering

in the statistical literature.7 Condition three presents its mirror-image and de�nes the

upper orthant dependence ordering. Note that the sets J(S) andM(S) are �nite sets, so

that condition two and three are testable in practice. If we deal with a �nite sample from

an underlying population, many procedures are developed to test these inequalities in

a statistical signi�cant way (see, for instance, Dardanoni and Forcina (1998), Davidson

and Duclos (2000) and Cebrián et al. (2004)).

4 Multivariate dependence orderings on a Fréchet class

To study multivariate dependence orderings, I investigate in a �rst step the multivariate

dependence ordering which satis�es the 2-rearrangement principle between any pair of

dimensions. This dependence ordering seems a natural extension of the bivariate de-

pendence ordering. It can be shown to be equivalent to the multivariate supermodular

7 The second condition o¤ers an additional interpretation of the dependence ordering as an ordering
of �more vector dominance�. For any possible realization x in S, a randomly chosen realization from Y is
more likely to be vector dominated by x than a randomly chosen realization from X.
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dependence ordering which has been studied by Müller and Scarsini (2000) among others

(see Denuit et al. (2005, chapter 6) for a survey).

Proposition 2. Let X and Y be in F with support S and suppose m � 2: The dependence
ordering � on F satis�es 2DEP if and only if X � Y is equivalent to

1.
R
U(x1; : : : ; xm)dFX(x1; : : : ; xm) �

R
U(x1; : : : ; xm)dFY (x1; : : : ; xm)

for all 2�increasing utility functions U .

Proof: The ) part of the proof follows straight from the de�nition of a 2�increasing
function. Boland and Proshan (1988) have proven the complete proposition in their

proposition 2.5 (b). Recently, Meyer and Strulovici (2009, theorem 1) have provided a

shorter proof using arguments from lattice theory. �

It is well known that the equivalences between the supermodular ordering and the orthant

dependence orderings no longer hold once m > 2. (For counterexamples, see Joe (1990)

in case m � 4 and Müller and Scarsini (2000) for m = 3):

The supermodular dependence ordering has two drawbacks. First, from a practical

perspective, it is di¢ cult to test since it involves a procedure which tests all possible

supermodular utility functions.8 Second and more substantially, there seems to be no a

priori reason to con�ne our attention in a multivariate setting to rearrangements which

a¤ect only two of them dimensions. An interesting geometric multivariate generalization

of the 2-rearrangements seems therefore to consider the rearrangement of probability

mass on the vertices of a k-dimensional hyperbox instead of considering only the vertices

of a 2-dimensional rectangle.

De�nition 2. Let X and Y be in X with support S and suppose m � k � 2. Consider
a hyperbox Bk = [xj1 ; xj1 ]� � � � � [xjk ; xjk ] whose vertices are in S; with xj < xj for all
j 2 fj1; : : : ; jkg. If Y can be obtained from X by adding positive probability mass " to all

vertices of the rectangle Bk with an even number of components xj = xj and subtracting

" from all vertices of the rectangle Bk with an odd number of components xj = xj, then

Y is obtained from X by a positive k-rearrangement.

To the best of my knowledge, the properties of this type of rearrangements have never

been studied before. Observe that a k-rearrangement a¤ects k of the m dimensions. For

k = 2, the de�nition of a positive 2-rearrangement is obtained, so that indeed de�nition

2 generalizes de�nition 1.9

8 See, however, Athey (2000) who shows that class of supermodular functions may be constructed
from a �nite �test function set�.

9 Note that any positive k-rearrangement can also be de�ned recursively as a combination of two
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Depending on whether k is even or odd two di¤erent cases can be distinguished. For

notational simplicity, I therefore refer to an even-rearrangement, when k is an even

number, and otherwise to an odd-rearrangement. From the de�nition it follows that a

positive even-rearrangement shifts probability mass to the vertex with all high values

(xj1 ; : : : ; xjk) as well to the vertex with all low values (xj1 ; : : : ; xjk). According to the

intuitive starting point of the paper, dependence increases. Things become more intricate

for a positive odd-rearrangement: probability mass is shifted to the vertex with all high

values, but it is shifted away from the vertex with all low values. A priori it seems hard to

say whether dependence increased or decreased after such-rearrangement. Therefore, two

di¤erent multivariate dependence principles can be imposed to the dependence ordering.

Both principles agree that a positive even-rearrangement increases dependence, but they

re�ect a di¤erent position when k is odd. The �rst principle requires the dependence

ordering to be increasing after a positive odd-rearrangement and the second (denoted

with an asterisk), requires the dependence ordering to be decreasing after a positive

odd-rearrangement.

k-Dependence Principle (kDEP). Let X and Y be in X and suppose m � k � 2. If
Y can be obtained from X by a �nite sequence of positive k-rearrangements, then X � Y:

k-Dependence Principle� (kDEP�). Let X and Y be in X and suppose m � k � 2.
If Y can be obtained from X by a a �nite sequence of positive even-rearrangements or

an elementary negative odd-rearrangements, then X � Y:

The next proposition shows that imposing both principles leads to di¤erent equivalence

results.

Proposition 3. Let X and Y be in F with support S and suppose m � 2:

The dependence ordering � on F satis�es kDEP if and only if X � Y is equivalent to:

1.
R
U(x1; : : : ; xm)dFX(x1; : : : ; xm) �

R
U(x1; : : : ; xm)dFY (x1; : : : ; xm);

for all k�increasing utility functions U;

2. FX(x1; : : : ; xm) � F Y (x1; : : : ; xm) for all (x1; : : : ; xm) in M(S).

The dependence ordering � on F satis�es kDEP� if and only if X � Y is equivalent to:

(k � 1)�rearrangements. In particular, for any k with m � k > 2, a positive k-rearrangement is
a composite rearrangement of a negative and positive (k � 1)�rearrangement on the vertices of two
hyperboxes Bk�1 = [xj1 ; xj1 ] � � � � � [xjk�1 ; xjk�1 ] and B

0
k�1 = [x0j1 ; x

0
j1 ] � � � � � [x

0
jk�1

; x0jk�1 ]; which
coincide for all entries except for the jk�th, so that xjk < x0jk : From this alternative recursive de�nition,
it is clear that there is no positive k-rearrangement which can be obtained as a sequence of only positive
(k � 1)-rearrangements.
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1.
R
U(x1; : : : ; xm)dFX(x1; : : : ; xm) �

R
U(x1; : : : ; xm)dFY (x1; : : : ; xm);

for all even-increasing and odd-decreasing utility functions U;

2. FX(x1; : : : ; xm) � FY (x1; : : : ; xm) for all (x1; : : : ; xm) in J(S).

Proof: The proof of both parts of the proposition is very similar, so here I only focus on

the �rst part involving kDEP only. The equivalence between the statements is proven

by a cycle of implications. The proof proceeds in three steps.

Step 1. If the dependence ordering � satis�es kDEP, then condition 1 holds:

If Y is obtained from X by a positive k-rearrangement, we can writeZ
U(x1; : : : ; xm)d [FX(x1; : : : ; xm)� FY (x1; : : : ; xm)] =

"
h
�
xj1
xj1
: : :�

xjk
xjk
U(x1; : : : ; xm)

i
:

Since " > 0;
R
U(x1; : : : ; xm)d [FX(x1; : : : ; xm)� FY (x1; : : : ; xm)] � 0 if and only if

�
xj1
xj1
: : :�

xjk
xjk
U(x1; : : : ; xm) � 0:

Step 2. If condition 1 holds; then condition 2 holds.

Rüschendorf (1980) proves the bi-implication between condition 1 and 2 for k-increasing

functions de�ned on the unit hypercube. The implication needed here can easily be

proven by selecting an appropriate function. The indicator function of the upper orthant

of the point (x1; : : : ; xm); denoted I(z1 > x1; : : : ; zm > xm); returns 1 if the logical

condition (z1 > x1; : : : ; zm > xm) is ful�lled and 0 otherwise. For all (x1; : : : ; xm) in Rm

this indicator function is a k-increasing function (for all m � k � 2), so that it holds

thatZ
I(z1 > x1; : : : ; zm > xm)dFX(z1; : : : ; zm) �

Z
I(z1 > x1; : : : ; zm > xm)dFY (z1; : : : ; zm);

and hence also that

FX(x1; : : : ; xm) � F Y (x1; : : : ; xm) for all (x1; : : : ; xm) in M(S):

Step 3. If condition 2 holds, then � satis�es kDEP.

I provide a constructive proof. The joint survival functions FX and F Y are discrete

survival functions, so that R = F Y � FX is a multivariate step-function. It can be

written as

R(x1; : : : ; xm) =

nX
i=1

R
i
(x1; : : : ; xm);
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whereby every R
i
is a function which returns a constant value "i on the interior of

a hyperbox (Bk)
i and 0 otherwise. These functions R

i
are obtained from a positive

k�rearrangement as follows. A positive k-rearrangement i on the vertices of hyperbox

(Bk)
i can be summarized by its joint rearrangement function R

i
: S !

�
0; "i

	
which is

the integral of the rearranged probability mass ri for every point from the support S :

R
i
(x1; : : : ; xm) =

R1
x ri(z1; : : : ; zm)d(z1; : : : ; zm), so that R

i
(x1; : : : ; xm) = "i if x is in

the interior of (Bk)
i and 0 otherwise. Hence F Y = FX +

Pn
i=1R

i
(x1; : : : ; xm) so that Y

can be reached from X by at most n positive k�rearrangements. �

The respective second conditions of the above equivalences are commonly used to de-

�ne the multivariate upper orthant and lower orthant dependence ordering. The above

proposition connects them to the expected utility literature. Under the additional as-

sumption of di¤erentiability, the equivalence between condition 1 and 2 of the second

part of the proposition goes back to the early work on multivariate stochastic domi-

nance by Hadar and Russel (1974). The authors show equivalence between multivariate

�rst-order stochastic dominance and unanimity within the class of utility functions with

alternating signs of their cross derivatives. Scarsini (1988) calls such a utility function

an m-variate risk averse utility function, thereby generalizing the earlier work of Richard

(1975). Furthermore, the proposition identi�es the underlying multivariate elementary

rearrangements of both orthant dependence orderings. A priori there seems no reason to

prioritize kDEP� to kDEP; yet most economic results on multivariate stochastic dom-

inance focus exclusively on the results obtained by imposing kDEP�: Given the hard

choice between both principles, a natural approach seems to impose only what both

principles agree about, being that positive even-rearrangements increase dependence.

This leads to the following principle.

Even-Dependence Principle (eDEP). Let X and Y be in X and suppose m � k � 2.
If Y can be obtained from X by a �nite sequence of positive even-rearrangements, then

X � Y:

Imposing the even-dependence principle leads to the following result.

Corollary 1. Let X and Y be in F with support S and suppose m � 2: The dependence
ordering � on F satis�es eDEP if and only if X � Y is equivalent to:

1.
R
U(x1; : : : ; xm)dFX(x1; : : : ; xm) �

R
U(x1; : : : ; xm)dFY (x1; : : : ; xm);

for all even-increasing utility functions U;
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2. FX(x1; : : : ; xm) � FY (x1; : : : ; xm) and FX(x1; : : : ; xm) � F Y (x1; : : : ; xm) for all
(x1; : : : ; xm) in M(S) [ J(S).

Proof: This result follows from the previous one and its proof is omitted. �

The second part of the result shows that a dependence ordering which satis�es eDEP

is equivalent to a double test of multivariate stochastic dominance in terms of the joint

distribution function and the joint survival function. Joe (1990) uses the double test to

de�ne the so-called concordance dependence ordering.

In comparison to the supermodular dependence ordering, the concordance dependence

ordering has the practical advantage that testing for it can be done by looking at a �nite

number of inequalities. It is clear however, that in terms of underlying rearrangements,

the supermodular dependence ordering and the concordance dependence ordering are

very di¤erent. The supermodular dependence ordering focuses on elementary rearrange-

ments which involve only a pair of dimensions (or four realizations). This restriction

seems arbitrary. The concordance dependence ordering builds on a wider class of re-

arrangements, but this might be less appealing to one�s intuitions since these rearrange-

ments involve 2k realizations at the same time. In terms of the class of utility functions

involved, the conditions on the even cross-derivatives seem rather demanding and may

be di¢ cult to interpret economically.

From the logical implications between the dependence principles, it follows that the

concordance dependence ordering implies both orthant dependence orderings and is itself

implied by the supermodular dependence ordering once m > 2 (see also Joe (1990),

Müller and Scarsini (2000)).

5 Copula-based multivariate dependence orderings

In this section I investigate how the dependence orderings can be extended to order ran-

dom vectors that belong to di¤erent Fréchet classes. I proceed by imposing an additional

principle to the dependence ordering that requires that the dependence of a random vec-

tor remains invariant when its random variables are transformed by a strictly increasing

transformation function.

Scale Invariance Principle (INV). Let X and Y be in X and let T1; : : : ; Tm be strictly

increasing transformation functions. If Y = (T1 (X1) ; : : : ; Tm (Xm)) ; then X � Y:

12



This principle goes back to the early work of Hoe¤ding (1940, 1941) who has studied

scale invariant measures of dependence (for more recent references, see Scarsini (1984)

and Embrechts et al. (2000)). The principle de�nes an equivalence relation on the set

of random vectors and partitions it in various equivalence classes. All random vectors

belonging to the same equivalence class are judged to be equally dependent. Scale in-

variance is a strong principle and imposing it makes the notion of dependence a purely

ordinal one. Schweizer and Wol¤ (1981) note: �: : : it is precisely the copula which

captures those properties of the joint distribution which are invariant under strictly in-

creasing transformations�. Such a copula function can be de�ned as follows (Schweizer

and Sklar 1983, Nelsen 2006).

De�nition 3. A copula function is any function C : [0; 1]m ! [0; 1] which has the

following properties:

1. C(p1; : : : ; pm) = 0 if at least one of its components pj = 0:

2. C(1; : : : ; 1; pj ; 1; : : : ; 1) = pj for all j = 1; : : : ;m:

3. C is a weakly m-increasing function.

Alternatively, a copula function C can be de�ned as a joint distribution function of a

random vector with standard uniform marginal distribution functions (see Embrechts et

al. (2000) and Nelsen (2006) for the equivalence between both de�nitions). Similarly, C

can be de�ned as a joint survival function with standard uniform marginal distribution

functions.

In an important theorem, Sklar (1959) has shown that each joint distribution function

FX can be written as a function of its m one-dimensional marginal distribution functions

Fj and a copula function CX : For all x in Rm; we have:

FX(x1; : : : ; xm) = CX (F1 (x1) ; : : : ; Fm (xm)) :

If the marginal distribution functions are all continuous, CX is uniquely de�ned. Oth-

erwise, CX is de�ned uniquely on I = Range(F1) � � � � � Range(Fm) (Nelsen 2006).
When it is uniquely de�ned, we refer to CX as the copula function of random vector

X: Sklar�s result permits a decomposition of the information in the joint distribution

function FX in information about the distributional pro�les within each dimension (cap-

tured by the marginal distributions F1; : : : ; Fm) and information about the dependence

structure between the dimensions (captured by the copula CX). Two important copulas

are the independence copula C?(p1; : : : ; pm) = p1 � � � � � pm and the comonotonic copula
C+(p1; : : : ; pm) = min fp1; : : : ; pmg ; which re�ect respectively the dependence structure
in case of no dependence and maximal dependence.
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For the purpose of this paper, we are interested in ordering the dependence of random

vectors belonging to di¤erent Fréchet classes. We are, in other words, interested in the

dependence structure of a random vector, irrespective of its marginal distributions. An

analysis of dependence based on its copula function, rather than on its joint distribution

function, seems therefore a natural approach. The following proposition shows that

imposing INV in addition to eDEP leads exactly to such a copula-based concordance

dependence ordering.

Proposition 4. Let X and Y be in X with support S and supposem � 2: The dependence
ordering � on X with support S satis�es eDEP and INV if and only if X � Y is

equivalent to:

1.
R
U(p1; : : : ; pm)dCX(p1; : : : ; pm) �

R
U(p1; : : : ; pm)dCY (p1; : : : ; pm);

for all even-increasing utility functions U;

2. CX(p1; : : : ; pm) � CY (p1; : : : ; pm) and CX(p1; : : : ; pm) � CY (p1; : : : ; pm) for all

(p1; : : : ; pm) in M(I) [ J(I).

Proof: The proof proceeds in three steps.

Step 1. If the dependence ordering � satis�es eDEP and INV, then condition 1 holds.

Let X and Y have di¤erent marginal distribution functions F1; : : : ; Fm and F 01; : : : ; F
0
m

respectively. De�ne

P = (F1 (X1) ; : : : ; Fm (Xm)) and P 0 =
�
F 01 (Y1) ; : : : ; F

0
m (Ym)

�
;

so that by INV: P � P 0 , X � Y: The random vectors P and P 0 have standard

uniformly distributed (discrete) random variables (by the probability integral transform)

and hence they belong to the same Fréchet class. Corollary 1 applies, so that by eDEP

its condition 1 holds. Observe that FP and FP 0 , the joint distribution functions of P and

P 0; can be written as CX and CY (by the de�nition of the copula function).

Step 2. If condition 1 holds; then condition 2 holds.

This implication follows from the equivalence between condition 1 and 2 of corollary 1

which applies to all joint distribution functions/joint survival functions with the same

marginal distribution functions, hence also to joint distribution functions/joint survival

functions which have standard uniform marginal distribution functions (i.e. to copulas).

Step 3. If condition 2 holds, then � satis�es eDEP and INV.
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The dependence ordering � satis�es eDEP by corollary 1. The fact that � satis�es

INV follows from the scale invariance property of the copula function (Schweizer and

Wol¤ 1981, theorem 2). �

Alternatively, the reader may want to impose 2DEP or one of the k-dimensional depen-

dence principles (kDEP or kDEP�). The results are in line with the investigations in the

previous section and are not reported for reasons of brevity.

The second condition of the Proposition, the double test of multivariate stochastic dom-

inance in terms of the copula function C and joint survival function C, has recently been

proposed by Nelsen (2002, 2006) as an alternative de�nition of the concordance depen-

dence ordering. The powerful idea of ordering random vectors from di¤erent Fréchet

classes by investigating stochastic dominance in terms of their underlying copula func-

tions, goes back to Scarsini (1984).10 The above Proposition crystallizes the implicit

assumptions imposed on the dependence ordering to do so (being eDEP and INV). Fur-

thermore, the �rst condition provides a wide class of functions which are order-preserving

of the dependence ordering, an observation which will become useful in the next section.

6 Measures of multivariate dependence

The dependence orderings de�ned in the preceding sections are incomplete. Some pairs

of random vectors can be ordered, but for some other pairs the dependence ordering

is �indecisive�. Although the indecisiveness might be informative in its own right, in

many situations one may prefer a measure of multivariate dependence which leads to

a complete dependence ordering so that all pairs of random vectors can be ordered.

To obtain a family of measures with an attractive and tractable general structure, I

impose the following two principles to the dependence ordering. The �rst adds a �avor

of continuity and imposes that if X � Y � Z holds, then there exists at least one linear
convex combination of X and Z that is ordered on either side of Y .

Continuity Principle (CONT). For all X;Y and Z in X ; if X � Z � Y; then there
exist an � and � in (0; 1); such that �X + (1� �)Y � Z and Z � �X + (1� �)Y:

The continuity principle is also known as the �Archimedean Axiom�. The second principle

10 Dardanoni and Lambert (2001) use a similar copula-based partial dependence ordering to compare
pre and post tax income distributions with respect to their horizontal inequity. The rank-based mobility
orderings proposed by D�Agostino and Dardanoni (2009) are implicitly copula-based and Decancq (2009)
provides another application, by looking at dependence orderings between the dimensions of well-being
in contemporaneous Russia.
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imposes that the dependence ordering of two random vectors � is consistent with the

dependence ordering of the random vectors after a linear convex combination is taken

with a common random vector Z:

Independence Principle (IND). For all X;Y and Z in X ; if X � Y and � in (0; 1);
then �X + (1� �)Z � �Y + (1� �)Z:11

These two principles together imply additive representability. Furthermore, the pre-

viously introduced multivariate dependence principle (eDEP) and the scale invariance

principle (INV) will be imposed to come to an additive representation of the copula-based

dependence ordering.

Proposition 5. Let X and Y be in X and suppose m � 2: The dependence ordering

� on X satis�es CONT, IND, eDEP and INV if and only if there exist a real-valued

even-increasing utility function U such that X � Y , Dm(X) < Dm(Y ) with

Dm(X) =

Z
U(p1; : : : ; pm)dCX(p1; : : : ; pm): (1)

Proof: It can be veri�ed that the proposed function Dm satis�es all principles. I only

prove necessity. The dependence ordering is a weak order in the sense of Fishburn (1970).

According to theorem 8.2 of Fishburn (1970), any weak order on the set of discrete

random vectors X which satis�es CONT and IND can be represented by Dm(X) =R
U(x1; : : : ; xm)dFX(x1; : : : ; xm) with U a real-valued function:

By Proposition 4 it follows that imposing eDEP restricts the real-valued function U

to be even-increasing and that imposing INV leads to a copula-based representation

Dm(X) =
R
U(p1; : : : ; pm)dCX(p1; : : : ; pm): �

Any of the functions Dm is order-preserving of the (concordance) dependence ordering,

which makes them very suitable as measures of dependence. Therefore I will refer to

Dm as a measure of dependence in the remainder of the paper.12 The above proposition

determines the functional form of the dependence measure up to an increasing trans-

formation of Dm. For practical purposes it is convenient that the dependence of the

benchmark random vectors X? (with independent dimensions and copula C?) and X+
11The meaning of �independence�in this principle is di¤erent from the meaning of �dependence�used in

the rest of the paper, yet, I prefer to stick to the standard terminology for this principle in the literature
on utility theory.
12Observe that this axiomatic characterization of a dependence measure di¤ers from the axiomatic

approach followed in mathematical statistics by Scarsini (1984), Joe (1997), Dolati and Úbeda-Flores
(2006) and Taylor (2007), who check a series of attractive statistical properties for a given class of
dependence measures.
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(with comonotonic dimensions and copula C+) is normalized to 0 and 1 respectively. To

achieve that, a linear normalization of Dm can be employed. This leads to the normalized

dependence measure eDm :
eDm(X) = Dm(X)�Dm(X?)

Dm(X+)�Dm(X?)
:

The normalized dependence measure eDm can be interpreted as the relative position

between the benchmarks of independence X? and maximal dependence X+:13 Observe

that the dependence eDm can take negative values as well, for instance in the bivariate

countermonotonic case where high values in one dimension tend to come with low values

in the other dimension.

Every even-increasing utility function U in Proposition 5 leads to a new dependence mea-

sure eDm. In his pioneering contribution to the copula-based measurement of dependence,
Nelsen (1991) focuses on �concordance functions�, which are the normalized dependence

measures for which the utility function U can be expressed as the sum of a copula function

and joint survival function of a reference random vector. By de�nition all these utility

functions are multivariate even-increasing. In particular, the properties of one depen-

dence measure have been studied in detail. This dependence measure is denoted eD?m(X)
and is obtained by selecting the reference random vector to be one with independent

marginal distributions (and hence with copula function C? and joint survival function

C?), so that (after some algebraic manipulations) one obtains:

eD?m(X) = (m+ 1)
�
2m�1

R �
C? (p) + C? (p)

�
dCX(p)� 1

�
2m � (m+ 1) :

Interestingly, the bivariate eD?2 equals the Spearman rank correlation coe¢ cient �. The
measure eD?m is the mean of the two multidimensional rank correlation coe¢ cients which
are discussed in Joe (1990), and its properties have been studied by Nelsen (1991, 2002),

Dolati and Úbeda-Flores (2006), Schmid and Schmidt (2006, 2007) and Taylor (2007).14

13 Note that also the normalized dependence measures are order-preserving of the (concordance) de-
pendence ordering, since it holds that Dm(X?) = Dm(Y?) and Dm(X+) = Dm(Y+):
14Some other multivariate generalizations of well-known bivariate dependence measures also belong to

this family. If U in expression (1) is set equal to the sum of the copula function and joint survival function
of the random vector X itself, the normalized dependence measure eDm turns out to be a multidimensional
generalization of the Kendall�s bivariate measure of association � . A multivariate version of Spearman�s
footrule coe¢ cient can be derived when selecting the reference random vector equal to the comonotonic
random vector X+ (Úbeda Flores 2005). A multivariate version of Blomqvist�s � is obtained by making
use of a utility function U which is the sum of the indicator-functions of the lower and upper orthant of
the point (1=2; : : : ; 1=2) (see Úbeda Flores (2005) for details). Behboodian et al. (2007) derive another
weakly even-increasing utility function U from the average of the copula of the comonotonic random vector
X+ and the function describing the countermonotinic random vector X�, which leads to a multivariate
generalization of Gini�s measure of association .
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Finally, the principle eDEP could be replaced by the more standard 2-rearrangement

principle 2DEP in the statement of proposition 5. Following a similar argument, one

can show that the complete dependence ordering can be represented by an additive

dependence measure based on a 2-increasing utility function, which I denote by D0m.

Hence, for any of the m(m� 1)=2 pairs of dimensions j1 and j2 with 1 � j1 < j2 � m, it
holds that fD02 (Xj1 ; Xj2) � fD02 (Yj1 ; Yj2) ; when Y is obtained from X by a positive 2-

rearrangement. The average of the fD02�s of all bivariate pairs of dimensions will evaluate
Y to be more dependent than X; so that

2

m(m� 1)
X

1�j1<j2�m

fD02 (Xj1 ; Xj2) < 2

m(m� 1)
X

1�j1<j2�m

fD02 (Yj1 ; Yj2) : (2)

This observation provides an axiomatic justi�cation for the approach taken by many

practitioners who compute the average of all pair wise bivariate dependence measures

(such as Spearman�s rank correlation coe¢ cient) rather than to compute a �genuine�

multivariate dependence measure eDm. It is clear that by construction such an approach
can only be sensitive to 2-rearrangements and not to its multivariate generalizations:

Again, the choice of the most appropriate rearrangement principle for the dependence

ordering drives the choice between a �genuine�multivariate dependence measure eDm or
an average pair wise bivariate measure as given in expression (2) :

7 Conclusion

In this paper the existing results on dependence orderings based on elementary bivariate

dependence increasing rearrangements, as studied by Epstein and Tanny (1980) and

many others, are extended in three directions.

First, I have argued that in a multivariate setting it is interesting to move beyond a sole

focus on rearrangements involving only two dimensions simultaneously. I propose a geo-

metric multivariate generalization of the bivariate dependence increasing rearrangements

and show how they are underlying the orthant and concordance dependence orderings.

This provides new insights in these orderings. In the statistical literature a plethora of

alternative dependence orderings exists (see Joe (1997) and Colangelo et al. (2006) for

extensive surveys), and it remains an open question for further research to de�ne the

rearrangements that are underlying these alternative dependence orderings.

Second, I showed how a scale invariance principle naturally leads to the copula-based

dependence orderings. Copula functions are becoming increasingly popular as a tool to

measure and model dependence. Yet, the (implicit) assumption of scale invariance is
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a strong one, since it makes the dependence concept a purely ordinal one. An avenue

for further research is to consider possible weakenings of this principle (as is standard

in Arrovian social choice theory, see d�Aspremont and Gevers (2002) and Bossert and

Weymark (2004) for detailed overviews).

Third, I characterized a wide family of dependence measures consistent with the partial

dependence orderings. Thereby I addressed an open question raised by Dardanoni and

Lambert (2001): �The interesting question, to identify the class of copula-based indices

which accord with our [concordance] partial ordering, remains open and is clearly an

important one for future research.�Interestingly, this family contains some multivariate

generalizations of existing bivariate measures. From a practical perspective, however, the

family of dependence measures still remains wide. There seems room for some additional

attractive principles to narrow down the family further.
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