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Abstract

I estimate a pure-characteristics discrete choice model of the demand for auto-
mobile engine and body style variants, using market-level data. Revealed prefer-
ence bounds and imposed bounds on the willingness to pay for characteristics as
a percentage of product price are sufficient to identify nonparametric taste distri-
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1 Introduction

I estimate a model of the demand for automobile variants based on the semiparamet-

ric pure characteristics model of Bajari and Benkard (2005), modified by imposing

bounds on consumers’ willingness to pay for a characteristic as a percentage of the

price of the product they purchased. As in the random-coefficients logit literature,

utility is linear in product characteristics and tastes for characteristics have a dis-

tribution in the population of consumers. The model differs from this literature

in two respects: (i) taste distributions are estimated nonparametrically, and (ii)

consumers do not have a taste for products (like the logit term) that is unrelated

to observable characteristics.

A first stage estimates a scalar unobservable product characteristic for each al-

ternative. A second stage finds the sets of coefficients that can rationalise the choice

of each product. Under utility maximisation, the choice of a given alternative im-

plies that this alternative’s utility is greater than those of all the other alternatives.

These inequalities imply bounds on the combinations of taste coefficients a con-

sumer may have given that he chose the given alternative. In principle, as the

number of products goes to infinity, the sets of implied taste coefficients for each

product should become singletons. In practice, only bounds for each alternative are

implied by the data. Bajari and Benkard (2005) proceed to aggregate the bounds

derived from individual choices to get bounds on the aggregate taste distributions.

Any product which has less of a given characteristic than the consumer’s chosen

product provides a lower bound on that consumer’s taste for the characteristic

(conditional on his tastes for the other characteristics). Vice versa, any product

with more of the characteristic provides an upper bound on the consumer’s taste.

Some characteristics take on only a few discrete values, and in many cases only

two: a 0 or 1. For instance a car either has automatic or manual transmission.
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For dummy (binary) variables we obtain either only lower bounds (if the chosen

product has a 1) or only upper bounds (if 0). This means that the set of taste

coefficients will not be closed.

Furthermore, since bounds on the taste for one characteristic depends on the

tastes for other characteristics, this results in less tight bounds for those character-

istics too. For instance, let product A be high in characteristic 1 and characteristic

2, where 2 is binary. If we have no upper bound on the taste for 2, a consumer may

choose A because of an extremely strong preference for 2 regardless of its value of

characteristic 1.

This problem can be mitigated by imposing conservative bounds on the distri-

butions of tastes.1 I propose to use bounds on the willingness-to-pay for charac-

teristics, expressed as a percentage of the product chosen. This provides a way of

choosing conservative bounds that are economically meaningful, and which vary

with preferences.

I estimate the model using data on sales of new car model variants in Norway

in 2004. I find that elasticities are unreasonably high. This confirms the finding

from Bajari and Benkard’s application to computer demand. Like them, I find

that elasticities become much more reasonable when the number of products in the

choice set is reduced. In this case there is an obvious way to do that, by removing

all but the bestselling variant of each model. This leaves a choice set with just

one set of characteristics for each model, like in BLP and most previous estimation

of demand for cars on market level data. Substitution patterns appear to be very

reasonable. Since I use a large number of product characteristics, whereas the

number is very limited in BLP for computational reasons, the model appears to

predict each product’s closest substitutes very well. The results for the full choice

1Bajari and Benkard briefly mention this in the NBER version of the paper, but to not discuss how
to obtain those bounds.
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set indicate that it there may be reasons to hold on to the idiosyncratic (logit) taste

term, contrary the commonly held view that tractability is the only reason to keep

it. This is an issue for further work.

The next section provides some background from the literature on demand esti-

mation for differentiated products. The third section sets out the theoretical model

and discusses identification. The fourth section explains the estimation procedure

and describes the data. The fifth section presents and discusses the results, while

the last section concludes.

2 Literature

This section reviews parts of the literature on estimation of demand systems for

differentiated products. Since the model in this paper can be viewed as a multi-

dimensional extension of the vertical differentiation mode of Bresnahan (1987) I

give and overview of that model. I then summarise a recent discussion about the

desirability of idiosyncratic (e.g. logit) taste terms in discrete-choice models.

2.1 Bresnahan’s model of vertical differentiation

Bresnahan (1987) estimates car demand using a vertical differentiation model like

those in Mussa and Rosen (1978) and Shaked and Sutton (1982). In this model a

consumer’s utility is

uij = xjβi − pj, (1)

where the characteristic, xj, is a scalar representing ”quality”.2 The taste parameter

β has an estimated density on a nonnegative support, so that all consumers have a

positive marginal valuation of the characteristic. Consumers make different choices

2Quality is an estimated function of characteristics. The important thing in this context is that all
consumers have positive marginal utility for the characteristic.
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because they have different valuations of the characteristic relative to price.

Utility for each product can be pictured as a linear function of β, where −pj

is the intercept with the vertical axis, and xj is the gradient. Each consumer is

located somewhere on the horizontal axis, and chooses the product with the utility

line that is highest at this β-value. For all products to have positive demand, it is

necessary that if one product has strictly lower quality than another, it must also

have a strictly lower price. It follows that the utility lines are ordered in a pattern

where the lowest-quality product has the highest-lying line close to the vertical axis,

because it has the highest vertical intercept (lowest price). At some point this line

is crossed by the product which is above it in the quality ranking (steeper slope).

For high enough βs, this line is superseded by the third-lowest quality product, and

so on. In general, the point where the utility lines for products j and j + 1 cross is

given by

βj,j+1 =
pj+1 − pj

xj+1 − xj
. (2)

If products are indexed in order of increasing quality, product j’s market share is

then

Fβ

(

βj,j+1

)

− Fβ

(

βj−1,j

)

, (3)

where Fβ is the cumulative distribution function of β. Bresnahan assumes a uniform

density for β.

Demand for a product is then proportional to the length of the interval on the

horizontal axis where this product’s utility line is the highest:

qj = δ · [βj,j+1 − βj−1,j] = δ ·

[

pj+1 − pj

xj+1 − xj
−
pj − pj−1

xj − xj−1

]

, (4)

where δ is the (constant) density function. The cross-price and own-price demand

derivatives are (δ/(xj+1 − xj)) and −(δ/(xj+1 − xj)) − (δ/(xj − xj−1)), so the
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more similar the products are in terms of quality, the higher the price elasticities.

Graphically, price substitution happens in the following way: When the price of

a product goes up, its utility line shifts down since the vertical intercept, −p, is

lower. This means that the point where it rises above the utility of the lower-quality

neighbour is shifted outwards, and the point where it is superseded by its higher-

quality neighbour is shifted inwards, shrinking the interval where it is above the

other lines.

2.2 Idiosyncratic tastes

Caplin and Nalebuff (1991) point out that including idiosyncratic error terms, like

the logit term, in utility is equivalent to including a dummy for every product,

and imposing draws from the extreme value distribution as the coefficients on these

dummy variables. This implies that the introduction of a new product adds one

dimension to unobserved characteristics space. Since the expected difference be-

tween the logit term of any two products is the same regardless of the number

of products, there is no congestion in unobserved characteristics space (Ackerberg

and Rysman 2005). This is counterintuitive in the sense that one would expect

products to become closer as their number increases, as in a Hotelling model. The

congestion does occur in the observed part of characteristics space, but the addi-

tional dimension of unobserved characteristics space allows every new product to

be differentiated in a new way. The lack of congestion appears to overestimate

the benefit of variety to consumers (Petrin 2002). One would expect that as the

number of products goes to infinity, every product should have a perfect substitute,

i.e. that every consumer could substitute to some other product with zero utility

loss. Bajari and Benkard (2003) show that in any logit model such utility losses

are bounded away from zero in the limit.
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Ackerberg and Rysman (2005) propose to let the distribution of the idiosyncratic

term change with the number of products in the choice set to allow for congestion

of product space. Berry and Pakes (2007) do away with the idiosyncratic term

altogether. In this paper I estimate a model based on the pure characteristics

model of Bajari and Benkard (2005). That model will be discussed in detail in the

next section.

A central question is whether it is desirable to dispense with the idiosyncratic

taste term. There is a feeling that the logit error lacks justification: ”these ap-

proaches [pure characteristics models] are intuitively very attractive in the sense

that there are no ad-hoc logit errors” (Ackerberg and Rysman 2005). Because the

existing estimation procedures do not allow much variation in specifications, ”it

is harder for the authors to provide a sense for how their various maintained as-

sumptions impact their results” (Reiss and Wolak 2006). This point holds for the

inclusion of the logit error, as well as the parametric assumptions on the taste dis-

tributions. While most IO applications do not have sufficient data to dispense with

functional form restrictions, recent work (Blow, Browning, and Crawford 2008) has

formalised the data requirements for nonparametric identification of characteristics

models.

3 Model and Identification

3.1 The model

There are J products defined as bundles of K characteristics (xj , ξj), where xj ∈

RK−1 is observed, and ξj ∈ R is not observed by the researcher. The unobserved

characteristic represents such things as style, quality and service, collapsed into

a scalar value. Each consumer chooses one product. This is the product which
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maximises his or her utility over the set of all products. Utility is a linear function

of the product characteristics and price. The fact that consumers choose different

products is uniquely accounted for by differences in their tastes for characteristics

and in their price sensitivity. The final goal of the analysis is to estimate the

joint distribution of the taste coefficients, i.e. the linear coefficients in the utility

function.

A consumer’s ranking of products is unaffected by the scale of utility. Utility can

therefore be multiplied by an individual-specific constant, and an individual-specific

constant can be added to it, without changing the consumer’s utility maximising

product. The following normalisation is therefore permitted: All price coefficients

are set to −1 (multiply by individual-specific constant, the inverse of the price

coefficient), and utility for the outside good of not buying a car is set to 0 (adding

an individual-specific constant, minus the utility of the outside good). Utility is

then given by

uij = xjβi − pj, (5)

where i indexes individuals and j indexes products. For simplicity of notation, the

vector xj includes the unobserved characteristic as well as all the other character-

istics.

3.2 The hedonic price function

Using the assumption that utility is strictly increasing in the unobserved character-

istic ξ for all products and for all consumers (and two mild regularity conditions),

Bajari and Benkard (2005) show that for any two products j and j′ with strictly

positive demand, it must be true that

1. If xj = xj′ and ξj = ξj′ , then pj = pj′ .

2. If xj = xj′ and ξj > ξj′ , then pj > pj′ .
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3. |pj − pj′ | ≤M(|xj − xj′ | + |ξj − ξj′ |) for some M <∞.

Define a mapping from observed and unobserved characteristics to price. Because

of 1 the mapping is a function, since a point in the domain of the mapping maps

to a unique point in its image set. Because of 2 the mapping is strictly increasing

in the unobserved characteristic. Because of 3 the mapping defines a (Lipschitz)

continuous surface. The price surface is denoted p(x, ξ). In a logit demand model,

such a surface does not necessarily exist, since two products with the same charac-

teristics and different price both can have strictly positive demand because of the

idiosyncratic taste term. The price function depends on the nature of competition,

marginal costs, consumer preferences, and the products present in the market. If

any of these primitives change, the shape of the price surface is also likely to change.

The price function expresses the relationship between prices and characteristics in

equilibrium in a particular market. See Bajari and Benkard (2005) pp. 1247-8 for

a discussion of the price function.

3.3 Identification of the unobserved characteristic

The assumption used for identification is that the unobserved characteristic is inde-

pendent of the observed characteristics. This assumption is slightly stronger than

the mean independence assumption in BLP.3 The unobserved characteristic has no

inherent units, and so it is only identified up to a monotonic transformation. It

is therefore assumed that it has been normalised so the marginal distribution of ξ

is U(0, 1). Bajari and Benkard (2005) use the proof of identification provided by

Matzkin (2003). The identification result says that {ξj}j=1,...,J is identified when

the prices of many products are observed in a market, so that the joint distribution

3Manski (1994) discusses various orthogonality conditions.
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F (p, x) is known. The proof is:

Fp|x=xj
(pj) = Pr(p(x, ξ) ≤ pj|x = xj)

= Pr(ξ ≤ p−1(x, pj)|x = xj)

= Pr(ξ ≤ p−1(xj , pj)) (6)

= p−1(xj , pj)

= ξj

The second line holds since the price function has an inverse for a given x since it

is strictly increasing and continuous in ξ. The third line holds by the independence

between x and ξ. The fourth line holds because the q-quantile of U(0, 1) equals q.

3.4 Identification of the taste coefficients

In the second stage, the unobserved characteristic recovered in the first stage is a

given, and treated in the same way as the observed characteristics. It is therefore

simply included as one of the elements of the x-vector, for notational convenience.

For product j to maximise utility, it must be the case that

xjβ − pj ≥ xlβ − pl, ∀l 6= j. (7)

Let X̃j be the (J − 1) × K-matrix whose columns are the vectors xj − xl, l =

1, . . . , j − 1, j + 1, . . . , J , and let p̃j be the J − 1 vector with elements pj − pl,

running over the same indices as X̃j . Then the condition that product j maximise

utility can be written as a system of linear inequalities on standard matrix form.

The set of taste coefficients permitted by the revealed preference condition (7) for

product j is

Aj ≡ {β | X̃jβ ≤ p̃j}. (8)
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This means that if a consumer chooses product j, his or her vector of taste coef-

ficients must be inside the K-dimensional convex polyhedron Aj. Market share is

the share of the population with taste vectors falling within each of the polyhedra.

It is possible to proceed to construct a demand system without making any

further assumptions. Bajari and Benkard (2005) provide estimators for upper and

lower bounds on the cumulative distribution function of tastes. The advantage of

this approach is that features of demand functions can be estimated with only very

weak assumptions. It seems difficult to obtain useful bounds on price elasticities in

this way, however.

The alternative is to try to obtain a ”point estimate” of the aggregate taste

distribution. When there is only observations from one market, the distribution

of probability mass inside each A-set is not identified. However, when the number

of products goes to infinity in such a way that the A-sets are partioned ever more

finely, in the limit these sets will be points (see Bajari and Benkard (2005) for

a proof). Accordingly it can be expected that with a large number of products,

the distribution of probability mass inside these sets will not be important. The

estimation of the taste distribution can be regarded as entirely nonparametric, in

which case it is possibly not fully identified. Alternatively, it can be assumed that

the distribution is uniform over each A-set, but is otherwise unrestricted in the

estimation, in which case it is fully identified.

4 Estimation

4.1 First stage

The unobserved characteristic is given in (6) as a quantile of a conditional distri-

bution: Fp|x=xj
(pj). The nonparametric estimation of a conditional distribution
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functions and quantiles are well known problems. Matzkin (2003) suggests the

following estimator, based on Nadaraya (1964):

F̂p|x=xj
(pj) =

∑J
i=1 k̃1(

pj−pi

h
)k2(

xj−xi

h
)

∑J
i=1 k2(

xj−xi

h
)

, (9)

where k2(·) is a multidimensional kernel, k̃1(u) =
∫ u

−∞ k1(s)ds, and h is the band-

width.

My data have around 900 products and 30 characteristics. It is not possible

to estimate a quantile of a 30-dimensional density using just 900 data points. I

follow Bajari and Benkard (2005) in assuming that the price function is additively

separable in most of the characteristics, and then estimate the nonadditive part

nonparametrically after removing the linear effects of the other variables. The

price function is then p(x, ξ) = p(xA, ξ) + xBγ, where (xA, xB) is a partitioning of

the vector x.4 The γ was found by an OLS regression on the equation

pj = xA
j θ + xB

j γ, (10)

and the price data used for the nonparametric estimation of the unobserved char-

acteristic were

p̃j = pj − xB
j γ̂. (11)

I used Epanechnikov kernels for the estimator in (9) (see for instance Martinez and

Martinez (2002)):

k1(ψ) =
3

4
(1 − ψ2), −1 ≤ ψ ≤ 1 (12)

The bandwidths were chosen according to the Epanechnikov bandwidth rule (see

Azzalini (1981)) h = 1.3σ̂n−
1

3 , where n is the number of observations and σ̂ is the

4xA = (horsepower, cyl.vol., length).
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empirical standard deviation of the data.

4.2 Second stage

Many of the characteristics used in the estimation are indicator variables. The

revealed preference bounds in (7) give no upper bound on the coefficient for that

characteristic for the people who buy the product with the highest value of that

product, and conversely, no lower bound for the product with the lowest value

of a characteristic. This problem is limited in the case of continuous character-

istics, since there will usually only be one maximum and one minimum for each

characteristic. For indicator variables, however, all products are either the (weak)

maximum or (weak) minimum of that characteristic. This means that none of the

A-sets (sets of coefficients that rationalise a given choice) will be closed. Leav-

ing the coefficient for some characteristics unbounded also has repercussions in the

sense that an extreme value for one characteristic often must be matched by an

extreme value of another characteristic in order for the product to be the utility

maximiser. I therefore imposed some conservative bounds on the coefficients. Since

the price coefficient is normalised to -1, the coefficients of the characteristics have

the convenient interpretation of willingness-to-pay for a one unit increase in the

value of that characteristic. Accordingly, the bounds are formulated as bounds on

the willingness-to-pay for characteristics, given as a percentage of the price of the

product in question. (See table 3 for the bounds).

In the NBER version of their 2005 paper, Bajari and Benkard suggest a multi-

stage Gibbs sampler to take random draws from the A-sets. The Gibbs algorithm is

a general principle that can be used to draw from a multivariate density f(x) which

is difficult to draw from directly, but whose univariate conditional densities can be

drawn from. Take a starting value x(t), and generate X
(t+1)
1 ∼ f1(x1|x

(t)
2 . . . , x

(t)
K ),
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then X
(t+1)
2 ∼ f2(x2|x

(t+1)
1 , x

(t)
3 . . . , x

(t)
K ), and so on. This sequence converges to

f(x) (Robert and Casella 2004).

The revealed preference condition for the coefficient of characteristic 1 as given

in (7) can be rewritten as, for all l 6= j,

β1 ≥

∑

k 6=1 βk(xl,k − xj,k) − (pl − pj)

xj,1 − xl,1
if xj,1 > xl,1 (13)

β1 ≤

∑

k 6=1 βk(xl,k − xj,k) − (pl − pj)

xj,1 − xl,1
if xj,1 < xl,1, (14)

and similarly for the other coefficients. Denote the right hand side of the inequalities

above B(j, l, 1). This means that in general, for the product j, every other product

provides either an upper or a lower bound on the coefficient values which could lead

to the purchase of product j. The bounds based on willingness-to-pay, as described

above, denoted as b1 and b1, provide additional bounds.

Suppose the distribution of probability mass inside each A-set is uniform. Even

if this assumption is not maintained later, random draws under the assumption of

a uniform distribution will reveal the support of the random vector βj , and this

support is precisely the set Aj. Given a starting value, β
(0)
j , which is inside Aj , it

must be true that

βj,1|β
(0)
j,2 , . . . , β

(0)
j,K ∼ U(βj,1,min, βj,1,max), (15)

where the parameters of the univariate uniform depends on the conditioned-on

betas in the following way:

βj,1,min = max{bj,1 , max{B(j, l, 1) | l 6= j and xj,1 > xl,1}} (16)

βj,1,max = min{bj,1 , min{B(j, l, 1) | l 6= j and xj,1 < xl,1}}. (17)
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Given the starting value, β
(0)
j , the algorithm follows the Gibbs procedure described

above, with equations (15-17) describing the conditional densities that are drawn

from at each stage.

From a computational point of view, the Gibbs sampler is quick, taking about

a minute to generate 3000 31-dimensional draws. What proved to be the difficult

part was to find a starting point, i.e. any point satisfying (7). Bajari and Benkard

(2005) report that they used as starting values coefficients derived from first-order

conditions under the assumption that product space is filled up (so that consumers

can pick a product anywhere in characteristics space). This method did not work for

my data. The only method which turned out to be reliable was to use the centre

of the Chebyshev ball (the largest K-dimensional ball wich can be fit inside the

polyehedron), computed by Komei Fukuda’s cdd5 code, implemented for Matlab in

MPT 6.

To draw from the full joint distribution of the betas, I used ns = 1500 draws

for each product. The first 1500 of the 3000 draws are burn-in draws for the Gibbs

sampler. Each draw from Aj is weighted by the market share of product j. The

simulated market share, used to compute price elasticities, is

šj =

J
∑

l=1

sl

nsl

nsl
∑

i=1

1(cli = j), (18)

where sl is the observed market share of product l, i.e. the proportion of car buyers

whose coefficients are in the set Al. cli denotes the product which maximises utility

given the i-th draw of coefficient vector from Al. 1(·) is the indicator function.

5Komei Fukuda, http://www.ifor.math.ethz.ch/˜fukuda/cdd
¯
home/cdd.html

6M. Kvasnica, P. Grieder and M. Baotić, Multi-Parametric Toolbox (MPT),
http://control.ee.ethz.ch/˜mpt/
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4.3 Data

The data contain sales and product characteristics for all the 904 new car model

variants sold in Norway in 2004. Previous demand analyses for cars have always

treated a model (”name plate”) as one product, and have used the characteristics of

the cheapest or most sold (”baseline”) variant as the characteristics of the model. In

fact most models are marketed with a large number of different variants, varying in

bodytype, engine size, transmission, or fuel type. Table 1 shows the 21 best selling

models (arranged by price), some characteristics of the modal variant of each of

these models, along with the mean, minimum and maximum of the characteristics

across variants of this model. It also shows the number of variants of the model,

total sales of the model, sales of the modal variant, as well as the model’s rank in

total sales. Table 2 does the same for a range of models chosen to represent the

whole spectrum of car models, from the most expensive sports car through family

cars to the smallest hatchback. Prices are list prices. It is known that transaction

prices generally are lower than list prices, but these are not available apart from in

smaller surveys which cover only a few products. The tables include the unobserved

characteristic among the displayed characteristics. This will be discussed in the next

section.

Table 3 shows the 30 characteristics used for estimation, along with their mean

across available products, the sales weighted mean, and the minimum and max-

imum. It also shows the imposed bounds on the willingness to pay for one unit

more of the characteristic. For example, a consumer’s willingness-to-pay for an

additional metre of length of a car is bounded above at 100% of the price of the car

that the consumer actually bought. So if a consumer buys a car that costs 300.000

kroner (appr. £28,000), it is assumed that his willingness to pay for an additional

0.1 litre of cylinder volume on a car is bounded above to 30.000 kroner. For some
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characteristics it is assumed that willingness-to-pay is bounded below by zero, i.e.

that nobody would pay a positive amount of money to have less of these charac-

teristics. On the other hand, this possibility is allowed for many characteristics.

For instance, if somebody does not like German cars, he or she may be willing to

pay a little extra to have a car which is not German. The constraints are meant to

be conservative, and it appears unlikely that they should be violated by the true

distribution of taste coefficients. As discussed above, they can still contribute to

identification of the model.

5 Results

5.1 The unobserved characteristic

The estimated unobserved characteristic ranges from 0.07 to 0.99 and has a mean

of 0.52. Tables 1 and 2 show the value of the unobservable for the modal variant of

a selection of models, as well as its mean, minimum and maximum across variants

of each model. The unobserved characteristic is independent of all other charac-

teristics (not including price). Generally speaking, a product with a high price

relative to its characteristics will have a high value of the unobserved characteris-

tic, since high quality, style or prestige is required for it to have positive demand

in the presence of other, cheaper products with similar observed characteristics.

This is illustrated by table 4. All Mercedes E-class variants have high values of

the unobserved characteristic. This is consistent with the perception of Mercedes

as a prestigious brand. The Peugeot 607 is a comparable car to the Mercedes E

for similar engine sizes. A comparison reveals that the unobserved characteristic

is lower for the Peugeot for similar specifications, presumably reflecting the higher

prestige of the Mercedes. A similar pattern is found by comparing the Audi A4
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with the Skoda Octavia, two similar models where the first is regarded as more

prestigious than the second.

Variation within models is also illuminating. The low-end Mercedes E variants

have extremely high values for the unobserved characteristic, reflecting some fea-

ture which gives them positive demand in spite of their very high prices relative to

observed characteristics. It is pertinent to ask how the unobserved characteristic

can vary so much within a given model. If the unobserved characteristic is taken

to represent a specific feature, such as ”prestige”, it seems all Mercedes E should

have the same value, or that the variants with bigger engines should have higher

prestige. However, each variant is a package of characteristics, and the ”prestige”

derived from a big engine or a German manufacturer goes into those observed char-

acteristics. The unobserved characteristic can therefore not simply be interpreted

as ”prestige” or ”quality”, but rather as the amount of prestige or quality that the

car has beyond what is derived from its observed characteristics. Accordingly, a 5

litre top-of-the-range Mercedes E is indeed more prestigious than the bottom-of-the-

range 1.8 litre version, but it is already clear from its observed characteristics that

it is a very prestigious car. This is not the case with the 1.8 litre version however,

and the model therefore assigns it a higher unobserved characteristic. Compared

to a 2 litre Peugeot 607 which sells for 365,000 kroner, the 1.8 litre Mercedes must

have substantial unobserved merit in order to warrant its 512,000 kroner price tag.

5.2 Taste coefficients

The draws generated in the second stage of the estimation are uniformly distributed

inside the 30-dimensional revealed preference polyhedra. Figure 6 shows scatter

plots of the joint densities of the taste coefficients for length and cylinder volume of

consumers who buy three different variants of each of the models Audi A4, A6 and
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A8. The variants are the bottom-of-the-range, a middle-of-the-range, and the top-

of-the-range variants of each model in terms of price and engine size. The scatter

plots are the projections of points distributed in a 30-dimensional space onto a 2-

dimensional space. This explains why the sets do not look like polyhedra and the

points do not look like they are uniformly distributed.

Taste coefficients for length and cylinder volume are bounded below by zero and

above by the price of the product the consumer has chosen (cf. table 3). In the

justification of the bounds I said that they are meant to be conservative bounds,

and that they are unlikely to be violated by the true taste distribution in the

population. At the same time, the model is not identified without these bounds.

This means that the distribution of taste coefficient draws generated by the model

will be constrained by the bounds to varying degrees. It does not follow from this

that the bounds are too tight. Instead, this fact follows from the observation that

revealed preference conditions from a cross-section of data are not sufficient to fully

identify the taste distributions. The aim is to see whether the joint constraints

of revealed preference and bounds on the willingness-to-pay are sufficient to yield

useful predictions. It is clear that in the case of the top A8, the bounds severely

restricts the area within which the draws fall, as points accumulate close to the

upper bounds. Since the biggest A8 faces few or no competitors that are longer

or have a bigger engine, revealed preference does not constrain the draws at all

upwards. The mid A4, on the other hand, is located in a very densely occupied

area of characteristics space. The large number of close competitors means that

revealed preference provides upper constraints that are well below the upper bounds

on willingness-to-pay.

Comparing the top or mid A4 with the bottom and mid A6 reveals an interesting

pattern. The A4 is smaller than the A6, but otherwise the two models are similar
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with respect to design, quality and service. The different choices of buyers of the A4

and buyers of the A6, should therefore be due to a large extent to different tastes

for length. This is indeed confirmed. Mid A4 buyers have a similar distribution of

taste for volume to mid A6 buyers (cylinder volume being the same), but markedly

lower tastes for length. The reason to pay 30.000 kroner to get an A6 instead of

a very similar, but slightly shorter A4, is that the willingness-to-pay for length is

high. Consumers who buy the top A4 have extremely high willingness-to-pay for

cylinder volume, but do not care much about length. Conversely, bottom A6 buyers

care very little about engine size, but have a very strong taste for length. The same

pattern is confirmed by comparing the A6 and the A8.

To find the aggregate distribution of taste parameters, the draws for each of the

904 variants are aggregated, and weighted by the market share of each car, cor-

responding to the proportion of consumers represented by those particular draws.

Since probability mass is uniformly distributed inside each taste coefficient polyhe-

dron, it is essential for the approximation of the true aggregate taste distribution

that each polyhedron is small in some sense. As discussed in the identification

section, if the number of products goes to infinity in such a way that all poly-

hedra collapse to points, the distribution resulting from the model will equal the

true distribution in the limit. The scatter plots in figure 6 give the impression

that the polyhedra are quite chunky. However, if one imagines a 30-dimensional

rectangle with sides similar to those formed by the scatter plot of the top A8,

this 30-dimensional rectangle will contain all 904 taste coefficient polyhedra. These

polyhedra are disjoint, and so much smaller than the rectangle which contains them

all. Furthermore, most polyhedra are contained in a much smaller volume, with a

few fringe products like the top A8 having much larger polyhedra.

Figure 6 shows kernel smoothed graphs of the aggregate marginal densities of
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some taste coefficients. Compared to the scatter plots in Figure 6, where points

look almost uniformly distributed, these densities have much more probability mass

concentrated at certain (low) levels. The products with high sales are concentrated

in certain areas of characteristics space. In practice that means that many people

have tastes leading them to prefer products in those areas. For the purposes of

this discussion, that in turn means that draws in those areas are given much larger

(market share) weights. All the marginal densities have peaks close to zero. This

is most marked in the cases of length and cylinder volume. These coefficients are

well constrained by revealed preference, because the corresponding characteristics

are continuous and exhibit large variation in the data. The marginal densities for

some dummy variables have less sharp peaks, because their taste coefficients are

not identified as well by revealed preference, and therefore are more spread out.

The BLP model assumed independence between the taste coefficients for dif-

ferent characteristics. This assumption was made for reasons of feasibility in the

estimation. Figure 3 shows kernel smoothed pairwise joint aggregate densities for

some taste coefficients. The graphs exhibit some interesting examples of depen-

dence between taste parameters that would be ruled out by BLP’s assumption.

First, there is a substantial proportion of the population with a relatively high

taste for both cylinder volume and length, whereas very few people have that high

tastes for only one of these characteristics and not the other. Secondly, there are

many consumers with strong preferences for both four-wheel drive and a SUV body

type. This is not surprising, but nevertheless a fact that should not be ruled out by

distributional assumptions. Thirdly, an inverse relationship exists between taste for

cylinder volume and disutility of fuel costs. Again a substantial group of consumers

have a very low disutility of fuel costs and at the same time a very high preference

for cylinder volume, whereas hardly anyone has such high tastes for cylinder volume
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while at the same time disliking fuel costs very much. Finally, the perhaps most

interesting example shows that there is a strong inverse relationship between tastes

for German cars and tastes for Japanese or Korean cars. Especially, consumers who

have a high willingness to pay for their car being German, get a high disutility from

an Asian car. Also, many consumers who value Asian cars dislike German cars. All

these examples are intuitively appealing, and support the case that independence

between taste parameters is an undesirable assumption.

5.3 Elasticities

Elasticities were computed by finding the numerical derivative of the simulated

market shares given by (18) w.r.t. each product. I did this in two ways. Method I

let consumers face a choice set containing all variants of every model, leaving them

with 904 choices. Derivatives were computed with finite differences by letting the

price increase for all variants of the relevant model, and then looking at how the

joint market share of all variants of the model changed. To turn the derivatives into

elasticities, they where multiplied by the price of the modal variant, and divided by

the original joint market share. In method II, I simply removed all variants apart

from the modal variant of each model from the choice set, and simulated demands

with this new choice set.

The median own price elasticity from method I was -35, and -13 in method II.

BLP report own price elasticities that mostly range from -3 to -6, and say that

General Motors’ own economists found these estimates plausible. Table 5 shows

the own price elasticities, markups (price minus marginal cost) and markups as

a percentage of price for the 50 best selling products in the market, computed

using method II and the assumption of a Nash equilibrium in prices, with profit

maximising entities being the 16 car manufacturing companies which produce the
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197 products on the market. Table 6 reproduces implied percentage markups for a

sample of products reported in BLP. BLP’s markups are higher, although they only

report a few examples. Their overall mean percentage markup is 23.9, compared

to 11.4 in my results. I have not been able to find any accounting numbers on

markups so far, but a mean of 11.4% is most likely too low. The executive/big

family type cars at the top of Table 5 (Mercedes E to Saab 9.5) all have relatively

high markups, ranging from 19 to 32%. This is consistent with the observation that

these models are in a niche with few competitors of similar regard. Further down

the list markups are generally lower, consistent with the fact that characteristics

space is more crowded in that area.

In Tables 7-10 each row shows the elasticites for a car with respect to the price

of the cars in each column, for the same sample of cars used previously to represent

the spectrum of choices in the market. Tables 7 and 8 are elasticities computed

with method I, and Tables 9 and 10 are elasticities computed with method II. In

Tables 7 and 9, the models displayed are the ones used previously to represent the

spectrum of choices in the market, while Tables 8 and 10 display the top selling 21

cars. Broadly the cars have been arranged with the most expensive in the top-left

corner, and the cheapest in the bottom-right corner.

The elasticities for the representative sample of cars in Table 7 exhibit a pattern

where cross-price elasticities of cars that are far away from each other are zero or

very low. Accordingly the areas furthest away from the diagonal mostly mostly

consist of zeros. On the diagonal are own-price elasticities, and broadly speaking,

as one moves further away from the diagonal, one gets to cross elasticities with

products that are more different. In the top left and the bottom right areas of the

matrix, the belt of positive cross elasticities around the diagonal is thin. Since these

extreme areas represent products at the fringes of characteristics space, they have
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fewer substitutes. Moving towards the middle of the matrix, where characteristics

space is more densely filled with products, the belt around the diagonal gets thicker,

since products have more substitutes. Moving away from the diagonal, it is gener-

ally true that cross elasticities gradually get lower, as they represent products that

are gradually more different from the product at the diagonal. Cross elasticities

higher than one are normally only found for adjacent or almost adjacent products.

In Table 8 the belt around the diagonal is much thicker. The products in this

matrix are the best selling cars, and are located at the centre of characteristics space,

which is where they appeal to the largest number of consumers. These products

are therefore closer substitutes than those in the previous table, which included

the models at the fringes of characteristics space. Accordingly, cross elasticities are

positive for almost all products. It is still true, however, that elasticities are lower

the further away they are from the diagonal.

Overall, the substitution patterns resulting from method I seem very reasonable.

The size of the substitution effects is clearly too high, however. Implied markups

from these elasticities are almost all well below one percent of price, many virtually

zero. Bajari and Benkard (2005) also find that elasticities are unreasonably high in

their application to demand for personal computers. They suggest that the result

is due to the assumption of perfect information about all products on the part of

consumers, and conclude that this is unlikely to hold with a choice set containing

700 products. To mitigate this problem they remove from the choice set any product

with a market share of less than 0.75%. This left them with only 24 products, and

median own price elasticity fell from -100 to -11. I follow their choice, but in way

that is less ad-hoc. By removing all but the modal variants of each model, the

choice set becomes that used by the previous literature, including BLP. All models

are still included. The last column of Table 5 shows that the modal variant usually

24



represents a very large proportion of the total sales of the model. I also tried to

remove all models with market shares of less than 0.5%, leaving 40 products. This

gave a median own price elasticity of -5, but the market share threshold is hard to

justify.

As expected, elasticities are much lower with method II. This also means that

many more cross elasticities are zero. In Table 9, the belt of positive cross elasticities

around the diagonal is much narrower than in Table 7. Removing all but the modal

variant of each model removes a model from areas of characteristics space which

it does in fact cover, but which are not covered by the modal variant. In these

areas of characteristics space it may be close neighbours with other models whose

modal variants are quite different from its own modal variant. In this way, products

which are in fact substitutes in variant-space (which is what the consumer faces)

are not in model-space. The general features of the substitution patterns remain

unchanged when moving from method I to method II. In table 9, products in the

middle of the matrix have more substutes than the ones on the fringes, and the high

selling products in Table 10 have many more substitutes than the ones in Table

9. The size of the elasticities is now much more reasonable, with all but three of

the own elasticities being single digit for the top selling products. It appears that

low market share products are more likely to have strangely high elasticities, such

as the Mercedes S-class in Table 9, with -51. This is possibly because reavealed

preference conditions constrain taste parameters less for special (low market share)

products than for products in the more densely populated parts of characteristics

space, leading to bad estimates of these consumers’ preferences. For the higher-

selling products, elasticities largely appear reasonable. Some examples of seemingly

reasonable high cross elasticities between similar products are the two SUVs, Range

Rover and VW Touareg (1.28 and 0.34) or Ford Mondeo and VW Passat (0.96 and
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3.04).

The question of how a model’s location in characteristics space when it changes

from a set of points (many variants) to one point (only modal variant) affects the

predicted best substitutes is important. Table 11 shows the ten best substitutes

for four randomly chosen high-selling products in a densely populated area of char-

acteristics space. The substitutes are ranked according to their elasticities with

respect to the price of the sample car. (I also tried to rank substitutes using deriva-

tives or displacement ratios, but this did not make much of a difference.) To the

left are best substitutes for one-variant case and to the right is the many-variants

case. The number of substitutes that are commmon to the two cases is 6 out of

10 for the VW Golf, 5 for the Toyota Avensis, 3 for the Ford Focus, and 2 for the

Audi A4. As expected, the inclusion of all variants appears to make a difference.

Bajari and Benkard’s pure characteristics model results in elasticities that are

too high. This is confirmed by my results. Their suggestion is that consumers

cannot perfectly process or obtain the information on all available products when

their number is very high. It appears that in most cases this problem cannot re-

ally be solved by simply dropping products, since the researcher has to guess what

products consumers actually do consider. Leaving out secondary variants of each

model like here is one way to proceed, but clearly not ideal. To the argument

about imperfect information, it could also be countered that consumers only need

to collect detailed information on a relatively small number of products, since they

can ascertain at almost no cost that most products are out of the question any-

way. Another explanation for the high elasticities would be that consumers have

idiosyncratic tastes for products. This would imply that after a given price change

for product A, many people who originally would choose product A, still choose

it even if there is a product B which is extremely similar in all objective respects,
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simply because there is a subjective reason that they find A better than B. Other

consumers may feel the same way about B. This type of effect cannot be captured by

unobserved characteristics like the one estimated in this model, because two prod-

ucts with similar characteristics and similar price also will have similar estimated

unobserved characteristic. Finding a way of estimating a multidimensional unob-

served characteristic could possibly go some way towards mitigating the problem.

The objections to logit models discussed above have in common that they claim

that characteristics space expands too much with the logit error, making products

look more different than they really are. Possibly, though, it expands too little in

a pure characteristics model.

6 Conclusion

I estimate the Bajari-Benkard model on recent car data from Norway, whereas

previous applications of this model have been to personal computers and housing

(Bajari and Kahn 2005). The model has several advantages over the BLP model. It

can be estimated with data from one time period and one market, unlike BLP which

requires many markets for identification. It can also accomodate data with a much

larger number of characteristics than what is possible in BLP. I used 30, whereas

the numerical properties of BLP are unstable even with a much smaller number.

BLP assumes that taste coefficients are independently normally distributed. The

Bajari-Benkard model makes no parametric assumptions on the taste distributions,

and allows for dependence between the distributions. In BLP, simulation error

becomes a big problem when the number of products is very large (Berry, Linton,

and Pakes 2004). In the Bajari-Benkard model, a large number of products is an

advantage for the estimation of taste distributions, although it appears that the

number needs to be reduced afterwards to avoid excessive substitution effects.
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Although the model as used here seems practically useful, especially since it only

requires one cross section of data, the procedure of removing variants cannot be

defended theoretically. Ideally the model should give reasonable elasticities with all

variants left in, since this is the choice set actually faced by consumers. The cause of

this problem is not known. Bajari and Benkard’s argument of imperfect information

is not fully satisfactory, especially as long as there are alternative explanations of the

problem that are equally consistent with the observed facts, such as an idiosyncratic

taste term in the true utility functions.

There is no conclusive evidence to suggest that the Bajari-Benkard style pure

characteristics model employed in this paper is inferior to the BLP as a way to

estimate demand for car models on market level data. There are also several regards

in which this model appears to be superior to BLP. On the downside, however,

this model does not seem to fulfill its promise of being able to estimate demand

systems for a very large number of differentiated products. The need to reduce the

number of products in the choice set, although defensible from a practical viewpoint,

is ad-hoc and theoretically unsatisfactory. There is an unexplained problem of

elasticities that are too high in this model, as this and the original application

show. Further work should investigate whether that is a feature that is driven by

the pure characteristics assumption.
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Table 1: Product characteristics of best-selling products

Unobs.
Bodytype No. of Price Length Cyl. vol. char. Sales Rank in

modal var. variants (mode) (mean) (min) (max) (mode) (mode) (mean) (min) (max) (modal var.) (total) total sales
Volvo V70 station 6 5.26 5.06 4.32 5.81 4.71 2.40 0.70 0.51 0.90 887 2349 13

Nissan X-Trail SUV 4 3.90 3.89 3.55 4.33 4.46 2.18 0.64 0.46 0.81 1647 2039 15
Honda CR-V SUV 1 3.55 3.55 3.55 3.55 4.64 2.00 0.25 0.25 0.25 1914 1914 18
Toyota RAV4 SUV 3 3.46 3.29 3.02 3.46 4.20 2.00 0.66 0.56 0.83 1305 2609 11

Subaru Forester station 1 3.36 3.36 3.36 3.36 4.45 1.99 0.74 0.74 0.74 1978 1978 16
VW Touran minivan 5 3.17 3.25 2.95 3.63 4.39 1.90 0.35 0.26 0.52 2015 3303 6
VW Passat station 13 3.12 3.47 2.50 5.58 4.68 1.90 0.30 0.18 0.44 1525 3501 5

Ford Mondeo station 16 3.12 3.63 2.50 5.42 4.80 2.00 0.42 0.21 0.62 1710 3239 7
Audi A4 station 24 3.01 4.55 2.93 10.34 4.58 1.60 0.60 0.27 0.81 639 2411 12

Toyota Avensis station 17 3.00 3.29 2.44 4.30 4.70 1.79 0.54 0.35 0.73 2049 6301 1
Opel Vectra station 17 2.78 3.28 2.45 3.72 4.82 1.80 0.52 0.40 0.68 1629 2996 8

Renault Megane minivan 21 2.55 2.58 1.95 3.42 4.25 1.60 0.45 0.31 0.70 595 1884 20
Mazda 6 station 12 2.54 3.11 2.51 4.00 4.70 1.80 0.33 0.25 0.46 994 2205 14

Skoda Octavia station 11 2.49 2.59 1.91 3.27 4.51 1.90 0.36 0.07 0.58 547 1866 21
Volvo S40 station 12 2.37 3.11 2.37 5.09 4.51 1.59 0.53 0.27 0.69 1161 1939 17

Toyota Corolla hatchback 19 2.30 2.55 2.10 3.40 4.18 1.60 0.51 0.26 0.77 1787 5205 3
Ford Focus station 21 2.30 2.70 1.79 3.18 4.45 1.60 0.65 0.36 0.77 917 2712 10

VW Golf hatchback 14 2.29 2.65 2.01 3.06 4.20 1.60 0.39 0.17 0.62 2697 5662 2
Peugeot 307 hatchback 17 2.25 2.75 1.96 4.32 4.20 1.59 0.41 0.15 0.55 1272 4454 4

VW Polo hatchback 5 1.78 2.01 1.78 2.34 3.90 1.20 0.49 0.31 0.76 1483 1901 19
Toyota Yaris hatchback 9 1.60 1.91 1.60 2.13 3.61 1.00 0.54 0.43 0.67 1363 2914 9
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Table 2: Product characteristics of sample products

Unobs.
Bodytype No. of Price Length Cyl. vol. char. Sales Rank in

modal var. variants (mode) (mean) (min) (max) (mode) (mode) (mean) (min) (max) (modal var.) (total) total sales
Porsche 911 coup 3 12.70 13.65 12.70 14.75 4.43 3.60 0.80 0.73 0.90 4 6 172

Ast. Martin DB9 coup 1 21.36 21.36 21.36 21.36 4.71 5.93 0.54 0.54 0.54 2 2 185
Range Rover SUV 2 9.49 11.26 9.49 13.03 4.95 2.93 0.74 0.51 0.98 41 46 132
VW Touareg SUV 4 7.12 9.28 7.12 11.47 4.75 2.46 0.40 0.07 0.94 84 116 99

Audi A8 sedan 5 9.30 12.86 9.30 18.15 5.05 2.97 0.69 0.55 0.89 13 37 137
Mercedes S-class sedan 5 9.80 12.33 9.80 14.80 5.04 3.22 0.79 0.60 0.94 6 15 157
Mercedes E-class sedan 21 5.41 8.47 5.12 16.88 4.82 2.15 0.71 0.38 0.97 607 1571 25

BMW 5-series sedan 14 4.71 6.77 4.09 10.84 4.84 2.17 0.50 0.20 0.78 545 1049 39
Audi A4 station 24 3.01 4.55 2.93 10.34 4.58 1.60 0.60 0.27 0.81 639 2411 12

BMW 3-series station 28 3.22 4.87 2.95 10.37 4.48 1.80 0.45 0.08 0.71 649 1569 26
Ford Mondeo station 16 3.12 3.63 2.50 5.42 4.80 2.00 0.42 0.21 0.62 1710 3239 7

VW Passat station 13 3.12 3.47 2.50 5.58 4.68 1.90 0.30 0.18 0.44 1525 3501 5
Volvo S40 station 12 2.37 3.11 2.37 5.09 4.51 1.59 0.53 0.27 0.69 1161 1939 17
Citron C5 station 11 2.90 3.63 2.85 5.49 4.84 1.75 0.47 0.16 0.89 341 968 41

Toyota Avensis station 17 3.00 3.29 2.44 4.30 4.70 1.79 0.54 0.35 0.73 2049 6301 1
VW Golf hatch-back 14 2.29 2.65 2.01 3.06 4.20 1.60 0.39 0.17 0.62 2697 5662 2

Opel Astra hatch-back 21 2.10 2.44 1.95 3.66 4.25 1.60 0.51 0.16 0.92 731 1756 22
Toyota Yaris hatch-back 9 1.60 1.91 1.60 2.13 3.61 1.00 0.54 0.43 0.67 1363 2914 9
Peugeot 206 hatch-back 12 1.52 2.13 1.52 3.20 3.83 1.12 0.50 0.27 0.72 636 1724 23
Fiat Punto hatch-back 1 1.39 1.39 1.39 1.39 3.80 1.24 0.51 0.51 0.51 82 82 111

Daewoo Matiz hatch-back 1 1.15 1.15 1.15 1.15 3.49 0.80 0.58 0.58 0.58 63 63 120
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Table 3: Summary statistics

Variable Unit Mean Sales Min Max Lower Upper
bound bound

mean -weighted on coef- on coef-
mean on ficient on ficient

in % of in % of
price price

length metres 4.44 4.4 3.49 5.19 0 100
cylinder volume litres 2.1 1.76 0.8 6 0 100

fuel costs kroner/km 0.68 0.63 0.27 1.42 -40 0
diesel dummy 0.3 0.28 0 1 -20 60

kw*diesel kw*dummy 0.28 0.24 0 2.3 0 100
kw*petrol kw*dummy 0.78 0.61 0 3.68 0 100

doors squared count/10 1.99 2.26 0.4 3.6 -60 60
doors count 4.37 4.72 2 6 0 60

seats squared count/10 2.54 2.65 0.4 8.1 -60 60
seats count 4.97 5.11 2 9 0 60

air bags count 5.29 5.44 0 9 0 20
4WD count 0.19 0.21 0 1 -20 40

automatic count 0.42 0.35 0 1 -20 60
weight 1000 kilogr. 1.4 1.32 0.78 2.52 -60 60

cylinders count 4.53 4.06 2 12 -20 20
gears*automatic count*dummy 2.13 1.78 0 7 0 40

gears*manual count*dummy 3.05 3.36 0 6 0 40
new model this year dummy 0.03 0.03 0 1 0 20

changed model this year dummy 0.05 0.05 0 1 0 20
german dummy 0.29 0.24 0 1 -20 20
french dummy 0.15 0.12 0 1 -20 20
asian dummy 0.21 0.34 0 1 -20 20

american dummy 0.15 0.13 0 1 -20 20
swedish dummy 0.06 0.08 0 1 -20 20

sedan dummy 0.24 0.11 0 1 -40 40
hatch-back dummy 0.23 0.29 0 1 -40 40

station wagon dummy 0.25 0.37 0 1 -40 40
multi-purpose/minivan dummy 0.11 0.11 0 1 -40 40

off-road/SUV dummy 0.07 0.11 0 1 -40 40
convertible dummy 0.06 0.01 0 1 -40 40

unobserved (estimated) - 0.51 0.52 0.07 0.99 0 100

price 100.000 kroner 4.08 2.96 1.15 21.36 Coef-
-ficient

fixed
at -1
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Table 4: Unobserved characteristics for sample models with variants

Unobs.
Make Model Cyl.vol. Length Price Bodytype char.

’Mercedes-Benz E 1.8 4.8 5.12 sedan 0.90
’Mercedes-Benz E 1.8 4.8 5.60 station 0.96
’Mercedes-Benz E 2.2 4.8 5.41 sedan 0.95
’Mercedes-Benz E 2.2 4.8 5.94 station 0.97
’Mercedes-Benz E 2.6 4.8 6.03 sedan 0.69
’Mercedes-Benz E 2.6 4.8 6.40 sedan 0.78
’Mercedes-Benz E 2.6 4.8 6.30 sedan 0.79
’Mercedes-Benz E 2.6 4.8 6.50 station 0.77
’Mercedes-Benz E 2.6 4.8 6.90 station 0.85
’Mercedes-Benz E 2.6 4.8 6.81 station 0.85
’Mercedes-Benz E 3.2 4.8 7.52 sedan 0.62
’Mercedes-Benz E 3.2 4.8 7.87 sedan 0.72
’Mercedes-Benz E 3.2 4.8 7.35 sedan 0.65
’Mercedes-Benz E 3.2 4.8 8.35 station 0.78
’Mercedes-Benz E 3.2 4.8 7.84 station 0.74
’Mercedes-Benz E 4.0 4.8 10.07 sedan 0.38
’Mercedes-Benz E 5.0 4.8 11.17 sedan 0.39
’Mercedes-Benz E 5.0 4.8 11.50 sedan 0.44
’Mercedes-Benz E 5.0 4.8 11.93 station 0.47
’Mercedes-Benz E 5.4 4.8 16.30 sedan 0.60
’Mercedes-Benz E 5.4 4.8 16.88 station 0.63

’Peugeot 607 2.0 4.8 3.65 sedan 0.59
’Peugeot 607 2.0 4.8 3.85 sedan 0.76
’Peugeot 607 2.2 4.8 4.25 sedan 0.66
’Peugeot 607 2.2 4.8 4.45 sedan 0.81
’Peugeot 607 3.0 4.8 5.85 sedan 0.22

’Audi A4 1.6 4.6 2.93 sedan 0.62
’Audi A4 1.6 4.6 3.01 station 0.65
’Audi A4 1.8 4.6 3.80 sedan 0.51
’Audi A4 1.8 4.6 4.00 sedan 0.53
’Audi A4 1.8 4.6 3.33 sedan 0.43
’Audi A4 1.8 4.6 3.81 sedan 0.66
’Audi A4 1.8 4.6 3.98 station 0.62
’Audi A4 1.8 4.6 4.19 station 0.63
’Audi A4 1.8 4.6 3.52 station 0.53
’Audi A4 1.8 4.6 4.00 station 0.75
’Audi A4 2 4.6 3.39 sedan 0.63
’Audi A4 2 4.6 4.76 sedan 0.59
’Audi A4 2 4.6 3.81 sedan 0.73
’Audi A4 2 4.6 3.54 station 0.70
’Audi A4 2 4.6 4.76 station 0.66
’Audi A4 2 4.6 4.01 station 0.81

’Skoda OCTAVIA 1.4 4.6 1.91 hatchback 0.43
’Skoda OCTAVIA 1.4 4.6 1.91 station 0.47
’Skoda OCTAVIA 1.6 4.6 2.25 hatchback 0.29
’Skoda OCTAVIA 1.6 4.6 2.28 station 0.43
’Skoda OCTAVIA 1.8 4.6 2.71 hatchback 0.45
’Skoda OCTAVIA 1.8 4.6 3.20 station 0.07
’Skoda OCTAVIA 1.8 4.6 3.27 station 0.34
’Skoda OCTAVIA 1.8 4.6 2.49 station 0.40
’Skoda OCTAVIA 1.8 4.6 2.90 station 0.58
’Skoda OCTAVIA 2.0 4.6 2.49 hatchback 0.28
’Skoda OCTAVIA 2.0 4.6 3.07 hatchback 0.24
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Table 5: Markups for best-selling products ordered by price

Make Model Cyl. Price Markup Markup Own Units Units Sales
vol. as price sold sold modal

(P-MC) % of elast- modal total % of
price icity var. total

’Mercedes-Benz E 2.2 5.4 1.1 21 -5.4 607 1571 39
’Volvo V70 2.4 5.3 1.1 21 -5.8 887 2349 38
’Bmw 5 2.2 4.7 1.5 32 -3.2 545 1049 52
’Audi A6 1.8 4.4 0.8 19 -7.5 470 1614 29
’Saab 9.5 2.0 4.1 1.1 26 -3.8 812 1406 58

’Nissan X-TRAIL 2.2 3.9 0.5 12 -9.0 1647 2039 81
’Mercedes-Benz C 1.8 3.7 0.3 7 -14.9 515 1160 44

’Honda CR-V 2.0 3.5 1.3 36 -3.0 1914 1914 100
’Subaru LEGACY 2.0 3.5 0.3 9 -19.5 639 1050 61
’Toyota RAV4 2.0 3.5 0.4 12 -8.5 1305 2609 50

’Mitsubishi OUTLANDER 2.0 3.4 0.5 15 -7.1 721 1106 65
’Subaru FORESTER 2.0 3.4 0.3 10 -10.6 1978 1978 100

’Bmw 3 1.8 3.2 0.2 7 -13.5 649 1569 41
’Volkswagen TOURAN 1.8 3.2 1.0 32 -3.9 2015 3303 61

’Suzuki VITARA 2.0 3.1 0.2 6 -16.4 1040 1365 76
’Saab 9.3 1.8 3.1 0.4 14 -7.2 736 1478 50

’Volkswagen PASSAT 1.8 3.1 0.6 20 -5.1 1525 3501 44
’Ford MONDEO 2.0 3.1 0.6 19 -5.2 1710 3239 53

’Peugeot 407 1.6 3.0 0.5 17 -9.9 355 953 37
’Audi A4 1.6 3.0 0.3 10 -15.3 639 2411 27

’Toyota AVENSIS 1.8 3.0 0.8 25 -4.8 2049 6301 33
’Citroen C5 1.8 2.9 0.2 6 -22.6 341 968 35

’Volvo V50 1.8 2.9 0.4 13 -15.6 705 1247 57
’Opel ZAFIRA 1.8 2.8 0.7 26 -3.9 360 885 41
’Opel VECTRA 1.8 2.8 0.5 19 -5.4 1629 2996 54

’Renault MEGANE 1.6 2.5 0.6 25 -4.4 595 1884 32
’Mazda 6 1.8 2.5 0.2 7 -13.6 994 2205 45

’Audi A3 1.6 2.5 0.1 5 -22.8 1009 1286 78
’Nissan PRIMERA 1.6 2.5 0.1 5 -46.7 217 1025 21

’Renault LAGUNA 1.6 2.5 0.2 8 -17.1 487 827 59
’Skoda OCTAVIA 1.8 2.5 0.3 13 -7.8 547 1866 29
’Suzuki LIANA 1.6 2.4 0.6 25 -5.1 1439 1446 100
’Volvo S40 1.6 2.4 0.8 35 -3.7 1161 1939 60

’Citroen XSARA 1.6 2.3 0.2 10 -10.3 225 768 29
’Toyota COROLLA 1.6 2.3 0.6 25 -4.4 1787 5205 34

’Ford FOCUS 1.6 2.3 0.3 14 -7.7 917 2712 34
’Mitsubishi LANCER 1.6 2.3 0.1 6 -22.8 372 609 61

’Volkswagen GOLF 1.6 2.3 0.1 6 -19.5 2697 5662 48
’Peugeot 307 1.6 2.2 0.5 22 -4.6 1272 4454 29
’Mazda 3 1.6 2.2 0.1 3 -56.1 576 841 68

’Opel ASTRA 1.6 2.1 0.2 10 -10.4 731 1756 42
’Opel MERIVA 1.6 2.1 0.6 28 -3.7 603 1107 54

’Suzuki IGNIS 1.4 1.9 0.2 12 -9.1 474 932 51
’Citroen C3 1.4 1.9 0.0 2 -51.1 254 623 41

’Volkswagen POLO 1.2 1.8 0.6 33 -3.3 1483 1901 78
’Ford FIESTA 1.4 1.8 0.1 5 -21.5 508 641 79

’Hyundai GETZ 1.4 1.6 0.2 9 -11.1 1106 1284 86
’Toyota YARIS 1.0 1.6 0.4 24 -4.2 1363 2914 47
’Skoda FABIA 1.2 1.6 0.2 10 -10.7 519 1106 47
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Table 6: Sample markups from BLP reproduced
Make Model Markup as

% of price
BMW 7 29.27
Lexus LS 32.78

Cadillac Seville 30.8
Lincoln Town Car 26.13
Acura Legend 24.66
Nissan Maxima 21.04
Buick Century 23.87
Ford Taurus 26.65

Honda Accord 21.44
Chevy Cavalier 22.46

Ford Escort 19.02
Nissan Sentra 15.54
Mazda 323 15.86
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Table 7: Model price elasticities of sample products, computed with all variants 904 products

Porsche 911 -5 0.1 0.0 0.0 0.5 0.0 0.1 0.0 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ast. Martin DB9 0.1 -15 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Range Rover 0.0 0.0 -12 3.2 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VW Touareg 0.0 0.0 1.5 -60 0.3 0.0 0.4 0.9 0.5 0.0 0.9 0.5 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0

Audi A8 0.1 0.1 0.4 0.6 -84 1.7 20 3.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mercedes S-class 0.0 0.0 0.0 0.0 4.5 -88 40 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Mercedes E-class 0.0 0.0 0.0 0.1 0.9 0.7 -19 1.8 4.4 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

BMW 5-series 0.0 0.0 0.0 0.2 0.3 0.0 2.9 -34 4.6 0.3 0.1 0.1 0.4 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
Audi A4 0.0 0.0 0.0 0.1 0.0 0.0 4.8 2.4 -57 4.3 0.8 3.4 0.6 0.2 1.3 1.4 0.4 0.3 0.1 0.0 0.0

BMW 3-series 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 11 -34 0.8 4.7 1.0 0.0 3.1 3.9 0.6 0.0 0.0 0.0 0.0
Ford Mondeo 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.7 0.2 -43 1.7 0.3 0.9 1.1 0.3 0.9 0.0 0.0 0.0 0.0

VW Passat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.0 1.2 2.5 -17 0.2 0.2 0.6 1.0 0.2 0.0 0.0 0.0 0.0
Volvo S40 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 1.1 0.5 0.6 0.2 -21 0.1 1.4 0.2 0.4 0.0 0.1 0.0 0.0
Citron C5 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.8 0.0 2.7 0.4 0.1 -32 1.0 0.0 0.2 0.0 0.1 0.0 0.0

Toyota Avensis 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.6 0.5 0.6 0.2 0.3 0.1 -37 1.7 0.4 0.0 0.1 0.0 0.0
VW Golf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.8 0.4 0.5 0.1 0.0 4.1 -27 2.6 0.3 0.8 0.0 0.0

Opel Astra 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.5 2.2 0.2 0.4 0.1 2.3 6.8 -71 0.3 0.8 0.0 0.0
Toyota Yaris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.0 0.0 0.0 0.1 1.2 0.3 -12 0.3 0.0 0.0
Peugeot 206 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 1.0 2.4 1.1 0.5 -40 0.1 0.2
Fiat Punto 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.4 3.7 -14 1.0

Daewoo Matiz 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.3 0.0 4.0 0.6 -42
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Table 8: Model price elasticities of best-selling products, computed with all variants 904 products

Volvo V70 -14 0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.7 0.3 0.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nissan X-Trail 0.0 -22 0.3 2.3 0.1 0.0 0.1 0.6 0.3 0.1 0.1 0.2 0.0 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.0
Honda CR-V 0.0 0.4 -9 2.2 0.0 0.0 0.0 0.0 0.3 1.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toyota RAV4 0.1 2.2 1.6 -12 0.1 0.0 0.0 0.0 0.4 1.0 0.2 0.3 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Subaru Forester 0.6 0.1 0.0 0.2 -15 0.0 0.0 0.0 2.6 0.1 0.0 0.1 0.3 0.3 0.0 0.0 0.8 0.1 0.0 0.0 0.0
VW Touran 0.0 0.0 0.0 0.0 0.0 -12 0.1 0.1 0.8 1.2 0.3 0.2 0.0 0.1 0.1 0.2 0.2 0.6 0.7 0.0 0.0
VW Passat 0.0 0.1 0.0 0.0 0.0 0.2 -17 2.5 4.0 0.6 1.5 0.1 0.2 1.7 0.2 0.1 0.0 1.0 0.0 0.0 0.0

Ford Mondeo 0.1 0.5 0.0 0.0 0.0 0.1 1.7 -43 0.7 1.1 24 0.1 0.7 0.6 0.3 0.0 0.7 0.3 0.1 0.0 0.0
Audi A4 0.8 0.2 0.2 0.4 1.3 0.9 3.4 0.8 -57 1.3 1.1 0.1 0.2 1.1 0.6 0.7 0.8 1.4 0.2 0.0 0.3

Toyota Avensis 0.2 0.0 0.3 0.4 0.0 0.5 0.2 0.6 0.6 -37 1.1 0.2 2.8 0.2 0.3 2.0 0.1 1.7 0.4 0.0 0.0
Opel Vectra 0.6 0.1 0.0 0.1 0.0 0.2 0.9 26 1.2 2.9 -50 0.1 0.6 0.4 0.4 0.1 1.1 0.6 0.1 0.0 0.0

Renault Megane 0.0 0.3 0.0 0.5 0.1 0.6 0.1 0.2 0.3 1.2 0.1 -56 0.1 0.8 0.2 0.3 1.7 2.2 18 0.2 0.0
Mazda 6 0.0 0.0 0.0 0.0 0.1 0.0 0.3 1.8 0.4 11.2 1.5 0.1 -29 0.4 0.1 0.1 0.0 0.1 0.0 0.0 0.0

Skoda Octavia 0.2 0.3 0.1 0.1 0.2 0.3 2.9 1.5 2.6 1.6 1.0 0.4 0.6 -34 0.2 0.7 0.4 2.4 0.5 0.0 0.2
Volvo S40 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.6 1.1 1.4 0.9 0.2 0.1 0.2 -21 0.2 1.0 0.2 0.1 0.0 0.0

Toyota Corolla 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.7 4.9 0.1 0.2 0.0 0.3 0.2 -18 0.7 1.2 0.4 0.1 1.5
Ford Focus 0.0 0.1 0.0 0.1 0.6 0.3 0.0 0.7 1.3 0.4 1.2 0.9 0.0 0.5 0.6 0.5 -30 0.1 0.1 0.0 0.2

VW Golf 0.0 0.1 0.0 0.1 0.0 0.7 0.5 0.4 0.9 4.1 0.5 1.1 0.0 1.1 0.1 0.6 0.1 -27 0.2 0.6 0.3
Peugeot 307 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.2 0.8 0.1 7.4 0.0 0.3 0.0 0.5 0.1 0.3 -17 0.0 0.0

VW Polo 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.1 0.0 0.4 0.0 0.1 0.0 0.1 0.1 2.8 0.1 -12 0.4
Toyota Yaris 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.8 0.1 0.0 0.0 0.0 0.2 0.0 3.1 0.3 1.2 0.0 0.2 -12
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Table 9: Price elasticities of sample products, computed with modal variants only, 199 products

Porsche 911 -6.1 0.07 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ast. Martin DB9 0.04 -5.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Range Rover 0.00 0.00 -6.4 1.28 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VW Touareg 0.00 0.00 0.34 -12.0 0.27 0.02 0.51 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Audi A8 0.01 0.00 0.04 0.28 -16.6 0.18 2.68 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Mercedes S-class 0.00 0.00 0.00 0.07 1.60 -51.5 23.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mercedes E-class 0.00 0.00 0.00 0.13 1.21 1.06 -5.4 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BMW 5-series 0.00 0.00 0.00 0.02 0.03 0.00 0.03 -3.2 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Audi A4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -15.3 5.34 0.52 0.19 0.13 0.32 0.52 0.10 0.00 0.00 0.00 0.00 0.00

BMW 3-series 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.5 -13.5 0.00 0.00 0.00 0.00 2.06 0.03 0.00 0.00 0.00 0.00 0.00
Ford Mondeo 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.09 0.00 -5.2 0.96 0.01 0.02 0.26 0.00 0.00 0.00 0.00 0.00 0.00

VW Passat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 3.04 -5.1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Volvo S40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.07 0.01 -3.7 0.04 0.37 0.00 0.00 0.00 0.00 0.00 0.00
Citron C5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.20 0.00 0.10 -22.6 0.83 0.00 0.03 0.00 0.00 0.00 0.00

Toyota Avensis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.24 0.25 0.00 0.07 0.09 -4.8 0.00 0.01 0.00 0.00 0.00 0.00
VW Golf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 -19.5 0.06 0.00 0.00 0.00 0.00

Opel Astra 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.10 -10.3 0.04 0.00 0.00 0.00
Toyota Yaris 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 -4.2 0.15 0.01 0.00
Peugeot 206 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.36 -6.7 0.23 0.30
Fiat Punto 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.25 1.66 -11.9 0.69

Daewoo Matiz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.80 0.27 -12.3
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Table 10: Price elasticities of best-selling products, computed with modal variants only, 199 products

Volvo V70 -5.8 0.10 0.08 0.06 0.17 0.00 0.00 0.32 0.00 0.04 0.00 0.00 0.00 0.21 0.00 0.01 0.04 0.00 0.00 0.00 0.00
Nissan X-Trail 0.16 -9.0 0.05 0.92 0.00 0.05 0.00 0.60 0.00 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Honda CR-V 0.09 0.04 -3.0 0.05 0.03 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.01 0.04 0.00 0.04 0.01 0.00 0.00 0.00 0.00
Toyota RAV4 0.20 1.64 0.12 -8.5 0.00 0.02 0.00 0.11 0.00 0.07 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Subaru Forester 0.61 0.00 0.03 0.00 -10.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.77 0.00 0.00 0.00 0.00
VW Touran 0.00 0.05 0.00 0.02 0.00 -3.9 0.09 0.14 0.01 0.05 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00
VW Passat 0.00 0.00 0.00 0.00 0.00 0.16 -5.1 3.04 0.10 0.00 0.00 0.00 0.00 0.64 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Ford Mondeo 0.32 0.34 0.00 0.04 0.00 0.09 0.96 -5.2 0.09 0.26 0.44 0.00 0.07 0.16 0.01 0.00 0.03 0.00 0.00 0.00 0.00
Audi A4 0.01 0.00 0.00 0.00 0.01 0.04 0.19 0.52 -15.3 0.52 0.50 0.00 0.18 0.02 0.13 0.00 0.02 0.10 0.00 0.00 0.00

Toyota Avensis 0.04 0.03 0.04 0.02 0.00 0.03 0.00 0.25 0.09 -4.8 0.26 0.02 0.83 0.01 0.07 0.00 0.01 0.00 0.00 0.00 0.00
Opel Vectra 0.01 0.00 0.00 0.00 0.00 0.01 0.00 1.02 0.20 0.70 -5.4 0.01 0.05 0.00 0.07 0.00 0.03 0.00 0.00 0.00 0.00

Renault Megane 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.03 0.00 0.18 0.04 -4.4 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00
Mazda 6 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.26 0.13 3.84 0.13 0.00 -13.6 0.04 0.02 0.00 0.02 0.00 0.00 0.00 0.00

Skoda Octavia 0.87 0.01 0.08 0.06 0.14 0.02 0.70 0.61 0.01 0.04 0.00 0.00 0.04 -7.8 0.01 0.07 0.79 0.00 0.00 0.00 0.00
Volvo S40 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.07 0.08 0.37 0.12 0.00 0.02 0.01 -3.7 0.01 0.02 0.00 0.00 0.00 0.00

Toyota Corolla 0.03 0.00 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.07 0.00 -4.4 0.01 0.00 0.00 0.09 0.68
Ford Focus 0.15 0.00 0.03 0.00 1.13 0.00 0.00 0.11 0.02 0.07 0.11 0.00 0.01 0.85 0.02 0.01 -7.7 0.00 0.00 0.00 0.01

VW Golf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -19.5 0.01 0.02 0.00
Peugeot 307 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.01 -4.6 0.00 0.00

VW Polo 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.03 0.00 -3.2 0.00
Toyota Yaris 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.26 0.01 0.00 0.00 0.00 -4.2
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Figure 1: Scatter plots of joint densities of taste coefficients for sample products.
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Table 11: Closest substitutes for four sample products, computed using highest cross-
elasticities w.r.t. the sample products, when choice set has modal variant only

Make Model ltr m pri Bodytype

Volkswagen GOLF 1.6 4.2 2.3 hatchback

’Bmw 1 1.6 4.2 2.5 hatchback
’Audi A3 1.6 4.2 2.5 hatchback
’Kia CERATO 1.6 4.4 2.2 hatchback

’Daewoo KALOS 1.2 3.8 1.3 hatchback
’Subaru JUSTY 1.4 3.8 2.0 hatchback
’Daewoo LACETTI 1.4 4.4 1.6 hatchback

’Audi A2 1.4 3.8 2.3 MPV/minivan
’Subaru IMPREZA 1.6 4.4 2.5 station
’Skoda FABIA 1.2 4.2 1.6 station
’Volvo V50 1.8 4.6 2.9 station

Toyota AVENSIS 1.8 4.8 3.0 station

’Mazda 6 1.8 4.8 2.5 station
’Fiat STILO 1.6 4.6 2.1 station

’Mitsubishi LANCER 1.6 4.4 2.3 station
’Bmw 3 1.8 4.4 3.2 station

’Nissan 350Z 3.4 4.4 7.9 coup
’Volvo V50 1.8 4.6 2.9 station
’Audi A6 1.8 4.8 4.4 station
’Kia CERATO 1.6 4.4 2.2 hatchback
’Kia CARENS 1.6 4.4 2.1 MPV/minivan

’Citroen C5 1.8 4.8 2.9 station

Ford FOCUS 1.6 4.4 2.3 station

’Mitsubishi SPACE 1.6 4 2.2 station
’Chrysler PT 1.6 4.2 2.6 station

’Opel AGILA 1 3.6 1.5 station
’Hyundai ACCENT 1.4 4.2 1.7 hatchback

’Skoda OCTAVIA 1.8 4.6 2.5 station
’Subaru FORESTER 2 4.4 3.4 station
’Subaru LEGACY 2 4.8 3.5 station

’Hyundai ATOS 1 3.6 1.3 hatchback
’Opel MERIVA 1.6 4 2.1 MPV/minivan
’Ford FIESTA 1.4 4 1.8 hatchback

Audi A4 1.6 4.6 3.0 station

’Bmw 3 1.8 4.4 3.2 station
’Volkswagen CADDY 1.4 4.4 2.1 station

’Daewoo NUBIRA 1.6 4.6 2.0 station
’Fiat STILO 1.6 4.6 2.1 station
’Fiat MAREA 1.6 4.4 2.2 station
’Audi A3 1.6 4.2 2.5 hatchback
’Volvo V50 1.8 4.6 2.9 station
’Skoda FABIA 1.2 4.2 1.6 station

’Fiat DOBLO 1.6 4.2 2.1 station
’Audi A2 1.4 3.8 2.3 MPV/minivan
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Table 12: Closest substitutes for four sample products, computed using highest cross-
elasticities w.r.t. the sample products, when choice set has all variants

Make Model ltr m pri Bodytype

Volkswagen GOLF 1.6 4.2 2.3 hatchback

’Kia CERATO 1.6 4.4 2.2 hatchback
’Daewoo LACETTI 1.4 4.4 1.6 hatchback
’Daewoo KALOS 1.2 3.8 1.3 hatchback

’Bmw 1 1.6 4.2 2.5 hatchback
’Fiat STILO 1.6 4.6 2.1 station
’Audi A3 1.6 4.2 2.5 hatchback

’Volkswagen CADDY 1.4 4.4 2.1 station
’Audi A2 1.4 3.8 2.3 MPV/minivan
’Opel ASTRA 1.6 4.2 2.1 hatchback
’Jeep WRANGLER 2.4 3.8 3.9 Off-road/SUV

Toyota AVENSIS 1.8 4.8 3.0 station

’Mazda 3 1.6 4.4 2.2 hatchback
’Mitsubishi CARISMA 1.6 4.4 2.3 hatchback

’Kia CERATO 1.6 4.4 2.2 hatchback
’Fiat STILO 1.6 4.6 2.1 station

’Nissan 350Z 3.4 4.4 7.9 coup
’Mitsubishi LANCER 1.6 4.4 2.3 station

’Alfa Romeo 156 1.8 4.4 3.0 sedan
’Renault LAGUNA 1.6 4.8 2.5 station
’Honda CIVIC 1.6 4.2 2.3 hatchback
’Mazda 6 1.8 4.8 2.5 station

Ford FOCUS 1.6 4.4 2.3 station

’Fiat MAREA 1.6 4.4 2.2 station
’Alfa Romeo 147 1.6 4.2 2.6 hatchback

’Chrysler PT 1.6 4.2 2.6 station
’Nissan PATROL 3 5 7.1 Off-road/SUV

’Opel ASTRA 1.6 4.2 2.1 hatchback
’Opel AGILA 1 3.6 1.5 station
’Ford FUSION 1.4 4 2.0 MPV/minivan
’Ford FIESTA 1.4 4 1.8 hatchback
’Seat LEON 1.6 4.2 2.1 hatchback

’Nissan MICRA 1.2 3.8 1.7 hatchback

Audi A4 1.6 4.6 3.0 station

’Alfa Romeo 166 2 4.8 4.5 sedan
’Nissan PATROL 3 5 7.1 Off-road/SUV

’Jeep WRANGLER 2.4 3.8 3.9 Off-road/SUV
’Bmw 3 1.8 4.4 3.2 station

’Volkswagen BORA 1.6 4.4 2.5 sedan
’Volkswagen CADDY 1.4 4.4 2.1 station

’Seat TOLEDO 1.6 4.4 2.3 sed
’Bmw 5 2.2 4.8 4.7 sedan

’Mercedes-Benz C 1.8 4.6 3.7 sedan
’Mercedes-Benz E 2.2 4.8 5.4 sedan
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Figure 2: Aggregate (smoothed) marginal densities of some taste coefficients .
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Figure 3: Aggregate (smoothed) pairwise joint densities of some taste coefficients .
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