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1 Introduction

Input-output linkages are a pervasive feature of modern economies. Intermediate goods used in

one sector are produced in other sectors, which in turn use the output from the �rst sector as an

input to their own production. Therefore there are complex circular networks of input-output

interactions that need to be taken into account. Neglecting them could lead to a signi�cant loss

in understanding the dynamics of the supply-side of an economy.

The presence of an intermediate input channel is emphasized by Hornstein and Praschnik

(1997) and recently analyzed in detail in Kim and Kim (2006). In this paper we explicitly

consider the empirical relevance of this channel. We study �uctuations at the sectoral and the

aggregate level and we show that it is important to model the interactions between sectors if

we want to fully understand the propagation of shocks across the economy. Typically, reduced

form time series methods, in conjunction with long run identifying assumptions, are used to

disentangle disturbances to an economy. With few exceptions, the literature has applied these

methods to aggregate time series. However, modelling aggregate time series directly implies

that sectors are relatively homogeneous and, most importantly, that interactions among sectors

are of second order importance for aggregate �uctuations.1

Following the pioneering work of Long and Plosser (1983), RBC models have been general-

ized into a multi-sectoral environment where industry speci�c shocks are propagated through

sectoral inter-dependencies arising from the input-output structure of the economy, which can

generate business cycle �uctuations. The idea was revitalized by Horvath (1998, 2000) and more

recently by Carvalho (2009). Also, Conley and Dupor (2003) and Shea (2002) emphasize sec-
toral complementarities as the main mechanism for propagating sectoral shocks at the aggregate

level, the main idea being intrinsically related to the original result of Jovanovic (1987).

We use a simpli�ed version of a multi-sectoral real business cycle model with factor demand

linkages to derive restrictions that allow us to understand how shocks in one sector can a¤ect

productivity in other sectors. We then make use of those long run restrictions to disentangle

technology and non-technology shocks in a structural VAR, for a panel of highly disaggregated

manufacturing sectors. The main novelty is that all sectors in the economy are related by factor

demand linkages captured by the input-output matrix. A sectoral VAR where all industries

are linked through the input-output matrix (SecVAR) is then constructed using the approach

of Pesaran, Schuermann, and Weiner (2004). This allows us to distinguish between the con-

tribution made by technology shocks to particular sectors and the overall e¤ect ampli�ed by

sectoral interactions. As a result, the shocks that we identify can explain industry and aggre-

gate �uctuations only if all sectors are analyzed contemporaneously, i.e. not in isolation. In this

setting, the intermediate input channel becomes crucial for propagating shocks to the aggregate

economy.

Furthermore, we consider the implications of our results for the relative roles played by tech-

nology and non-technology shocks in explaining aggregate �uctuations in manufacturing. Real

business cycle theory attributes the bulk of macroeconomic �uctuations to optimal responses

to technology shocks. This, in turn, implies that there is a positive correlation between hours

1See Dupor (1999) for a discussion of the theoretical conditions under which the latter hypothesis is veri�ed,
and Horvath (1998) and Carvalho (2009) for a critique.
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worked and labor productivity. The source of this correlation is a shift in the labor demand

curve, as a result of a technology shock, combined with an upward sloping labor supply curve.

There is, however, a substantial literature suggesting that this is inconsistent with the data.

Gali (1999) uses the identifying assumption that innovations to technology are the only type of

shock that have permanent e¤ects on labor productivity, and �nds that hours worked decline

after a positive technology shock. Furthermore, he �nds that technology shocks account for only

a minimal part of aggregate �uctuations. A number of studies have reported similar results (see

Gali and Rabanal, 2005, for a review), which if con�rmed would make a model of technology-

driven business cycles unattractive. This has led many to conclude that the technology driven

real business cycle hypothesis is "dead" (Francis and Ramey, 2005a). Gali (1999) suggests that

the paradigm needs to be changed in favor of a business cycle model driven by non-technology

shocks and featuring sticky prices.

Most of the empirical macroeconomic literature evaluating the e¤ect of technology shocks

focuses on the analysis of aggregate data, where sectoral interactions through factor demand

linkages do not matter. Chang and Hong (2006) and Kiley (1998) examine the technology-hours

question with sector level data, but they consider each sector as a separate unit in the economy.

Instead, in this paper, we explicitly consider the implications of factor demand linkages for the

econometric analysis of the e¤ect of technology shocks on hours. We show that a contempo-

raneous technology shock to all sectors in manufacturing implies a positive aggregate response

in both output and hours, and this is directly related to the role of factor demand linkages in

the transmission of shocks. When sectoral interactions are ignored we �nd a negative correla-

tion as with much of the literature. The input-output channel can not only be qualitatively,

but also quantitatively important for the transmission of shocks. Indeed, sectoral interactions

prove to be an important ampli�er of sector-speci�c and aggregate shocks. The incorporation

of factor demand linkages appears to revive the importance of technology shocks as drivers of

the aggregate business cycle. In fact, technology shocks appear to account for a large share

of sectoral �uctuations; most signi�cantly, shocks to other sectors (transmitted though sectoral

interactions) are fundamental for tracking individual sectoral cycles. Our analysis suggests that,

once sectoral interactions are accounted for, technology and non-technology shocks seem to be

equally important in explaining aggregate economic �uctuations in US manufacturing. Inter-

estingly, our results tend to show that the role of technology shocks has gained in importance

since the mid 1980s.

The remainder of the paper is organized as follows. In section 2, we employ a basic multi-

sectoral RBC model to derive long run restrictions which we then use in the empirical analysis.

In section 3 we show how to identify technology and non-technology shocks in a way consistent

with the restrictions of the multi-sectoral model, employing a structural VAR but applied to

industrial sectors. We describe the data in Section 4. In section 5, we report our �ndings. In
Section 6, we consider some robustness checks. Finally, section 7 contains concluding remarks.
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2 A simple multi-sectoral growth model

The purpose of the simpli�ed model of this section is to derive the structural restrictions that

will allow us to identify the di¤erent shocks that a¤ect the economy at the sectoral level.

Furthermore, this simpli�ed model will allow us to shed light on the way shocks are propagated

through the economy in a model that explicitly takes into account factor demand linkages among

sectors. The focus is on the long run properties of the model that are useful for structural

identi�cation. In order to simplify the discussion we focus on an economy only bu¤eted by

sector speci�c shocks.

The model economy consists of N sectors, indexed by i. Households allocate labor to

all sectors, and make consumption-saving decisions. The representative household maximizes

discounted expected utility

E0

TX
t=0

�t flogCt + �V (Lt)g ;

subject to the usual intertemporal budget constraint. Here E0 is the expectation operator

conditional on time t = 0; � is the discount factor; V (Lt) is a twice di¤erentiable concave

function that captures the disutility of supplying labor. The log utility speci�cation is consistent

with aggregate balanced growth and structural change at the sectoral level, as discussed in

Ngai and Pissarides (2007). With perfect labor mobility across sectors the leisure index is

Lt = 1 � Ht = 1 �
P
iHit: The aggregate consumption index is Ct =

Q
i �
��i
i
eC�iit ; where

�i 2 [0; 1] are aggregation weights that satisfy
P
i �i = 1. In order to allow for possible shocks

to preferences as well as to technologies the consumption bundle is subject to a preference shock

of the form: eCit = Cit

ZPit
:

The shocks to preferences are exogenous and are assumed to follow an autoregressive process of

the form ZPit =
�
ZPit�1

�%
exp [�pi (L)"

p
it] where j%j � 1, �

p
i (L) = (1� �iL)

�1 is a square summable

polynomial in the lag operator (j�ij < 1) and "
p
it is white noise.

2

On the supply side, the goods market operates under perfect competition and besides labor,

production of each good also uses inputs from other sectors. The production function is a

Cobb-Douglas with constant return to scale

Yit = ZitM
�i
it H

1��i
it ;

where intermediate inputs, Mit, are aggregated as

Mit =
Q
j2Si 


�
ij
ij M


ij
ijt ;

Mijt is the intermediate input j used in the production of good i; Si is the set of supplier sectors

of sector i, 
ij the share of the intermediate input j in sector i and
P
j 
ij = 1. The technology

shock of each sector is also assumed to follow an autoregressive stochastic process of the form

Zit = (Zit�1) exp [�zi +�
z
i (L)"

z
it] where �

z
i is a constant drift, and �

z
i (L) = (1� �iL)�1 is

2 It is convenient to assume that the shocks are normalized such that
Q
i

�
ZPit
��i = 1; i.e. idiosyncratic shocks

do not directly a¤ect aggregates (see also Franco and Philippon, 2007).
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a square summable polynomial in the lag operator (i.e. j�ij < 1) and "zit is a white noise

innovation to the idiosyncratic technology shock to sector i. Furthermore, we assume that

the shocks are idiosyncratic at the sectoral level, i.e. Cov("zit; "
z
jt) = 0, 8i 6= j. Given the

aggregator for intermediate inputs, the price index for intermediate goods can be written as

PMi
t =

Q
j2Si P


ij
jt ; where Pit is the price of the good produced in sector i.

In perfect competition equilibrium requires that the price equals the marginal cost of pro-

duction. Therefore, the cost minimization problem for each sector i in conjunction with the

Cobb-Douglas production function implies constant expenditure shares for all inputs. Free

mobility of intermediate inputs across sectors implies that the marginal productivity of in-

puts (i.e. the prices of intermediate inputs) needs to be equal across sectors and perfect labor

mobility across sectors requires that (at the margin) nominal wages need to be equalized, i.e.

Wit =Wjt =Wt 8i; j. The latter implies that the relative price of two goods is inversely related
to relative (labor) productivity:

Pit
Pjt

= �ij

�
Yjt=Hjt
Yit=Hit

�
; (1)

where �ij re�ects di¤erences in the labor intensity of the production functions.3 From the

de�nition of the price index for intermediate goods, the relative price of intermediate goods is

PMi
t

Pit
=

Q
j2Si P


ij
jt

Pit
=

"Q
j2Si (�ijYjt=Hjt)


ij

Yit=Hit

#�1
: (2)

The relative prices act as an important conduit for the transmission of technology shocks. A

positive technology shock to the jth sector lowers the price in the same sector. Since part of

the production of the jth sector is supplied to the ith sector as an intermediate input, positive

shocks occurring in one sector also have a negative impact on the prices of other sectors.

Labor productivity in sector i can be calculated from the production function as

Yit
Hit

= �iZit

hQ
j2Si (Yjt=Hjt)


ij
i�i
; (3)

where �i is a convolution of the production parameters. The expression (3) above makes it

clear that in a multi-sectoral model the long run level of labor productivity is driven only by

technology shocks, either originating in the same sector or in other sectors through the interme-

diate inputs channel. De�ne xit as the logarithm of labor productivity and zit as the logarithm

of the technology shock and stacking sectoral variables in vectors, xt and zt respectively, the

equilibrium solution for labor productivity can be written as

(I�A�)xt = zt + � (4)

where I is the identity matrix, A = diag (�1; : : : ; �N ) ; � = [log �1; :::; log �N ]
0 and � is the "use"

input-output matrix whose generic elements are the parameters 
�j introduced above. The long

3Notice that if sectoral production functions are identical in each sector the previous expression would be:
Pit=Pjt = Zjt=Zit (see also Ngai and Samaniego, 2008).
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run response of labor productivity in sector i to the innovation to technology is then:

lim
h!1

@ log
�
Yit+h
Hit+h

�
@"zit

= �0i [(I�A�) (I�D)]
�1 �i 6= 0; (5)

lim
h!1

@ log
�
Yit+h
Hit+h

�
@"zjt

= �0i [(I�A�) (I�D)]
�1 �j 6= 0 8j 6= i; (6)

where D = diag (�1; : : : ; �N ) and �k is the k-th column of the N�dimensional identity matrix.
Note that when factor demand linkages are not taken into consideration �i = 0 8i and

lim
h!1

@ log
�
Yit+h
Hit+h

�
@"zit

= �0i (I�D)
�1 �i =

1

1� �i
< �0i [(I�A�) (I�D)]

�1 �i;

lim
h!1

@ log
�
Yit+h
Hit+h

�
@"zjt

= 0 8j 6= i:

Furthermore, permanent preference shocks have no e¤ect on labor productivity because in this

case idiosyncratic shocks do not a¤ect aggregate price or quantities. Therefore, the long run

restrictions that permit the identi�cation of the shocks are

lim
h!1

@ log
�
Yit+h
Hit+h

�
@"pit

= 0; (7)

lim
h!1

@ log
�
Yit+h
Hit+h

�
@"pjt

= 0 8j 6= i: (8)

The labor market clearing condition for sector i equates labor supply - determined by the

households�marginal rate of substitution between consumption and leisure - to the marginal

productivity of labor which drives sectoral labor demands. Therefore, labor input in each sector

can be written as

Hit =
(1� �i) �iZPit

�

Yit
Cit

@V (Lt)

@Lt
; (9)

and clearly depends on the sectoral preferences as well as on sectoral technology shocks. More-

over, the presence of factor demand linkages is such that hours in each sector are in�uenced by

shocks originating in other sectors:

lim
h!1

@ log (Hit+h)

@"pjt
6= 0 8i; j;

lim
h!1

@ log (Hit+h)

@"zjt
6= 0 8i; j:

The empirical analysis in the next section will make use of the fact that in this simpli�ed economy

the long run response of labor productivity is directly in�uenced by technological developments

speci�c to a given sector, as well as by changes in productivity in sectors that supply inputs

(see equation 3). This allows us to identify technology shocks and their �ows across sectors.

However, it is worth emphasizing that in more general speci�cations of a multisectoral model
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the same type of relations might not hold. Indeed, labor productivity in a given sector will still

be in�uenced by technology shocks originating in the other sectors, yet, the relationship may

not be so neatly dependent on the input-output structure of the economy (see e.g. Horvath,

2000, Kim and Kim, 2006, and Foerster et al., 2008).

3 The econometric speci�cation

Reduced form time series methods, in conjunction with the long run identifying assumptions are

used to disentangle two fundamental (orthogonal) disturbances, technology and non-technology

shocks.

Following Gali (1999), many studies adopt the identifying assumption that the only type of

shock that a¤ects the long-run level of labor productivity is a permanent shock to technology.

This assumption is satis�ed by a large class of standard business cycle models.4 However, the

discussion in the previous section points to the need to go further than this when there are factor

demand linkages. Labor productivity in the ith sector in the long run is also a¤ected by labor

productivity in the sectors that supply intermediate goods to the ith sector, through changes in

relative prices as in equation (3). Therefore, to identify technology and non-technology shocks

we need to take into account the intermediate input channel as well.

Estimating a VAR for all industries in an economy is infeasible for any reasonably large

number of industries. A consistent way of identifying the technology shocks is to estimate a

model for each sector and then apply the restrictions implied by the multi-sectoral model with

factor demand linkages. Speci�cally for each industry we estimate the model:5

(Ai0 �Ai1L){it = (Ci0 +Ci1L){�it + �idt + "it; (10)

where {it = [�xit; �hit]0 and �xit and �hit denote respectively the growth rate of labor pro-
ductivity and labor input6, and {�it are appropriate industry speci�c weighted cross sectional
averages of the original variables in the system which re�ect interactions between sectors. Specif-

ically, the industry cross sectional averages are constructed in order to capture factor demand

linkages between manufacturing sectors in the economy, i.e. {�it =
hPN

j=1 !ij�xjt;
PN
j=1 !ij�hjt

i0
;

where the weights, !ij ; correspond to the (possibly time varying) share of commodities j used as

4See, for example, King, Plosser, and Rebelo (1988), King, Plosser, Stock, and Watson (1991) and Christiano
and Eichenbaum (1992). Notice that increasing returns, capital taxes, and some models of endogenous growth
would all imply that non-technology shocks can change long-run labor productivity, thus invalidating the iden-
tifying assumption. Francis and Ramey (2005a) investigate the distortion that may come from the exclusion
of the permanent e¤ect of capital taxes, but �nd that this does not a¤ect the outcome of the simpler bivariate
speci�cation on aggregate data.

5For ease of exposition we focus on the simple VARX(1,1) without any deterministic component, but the
discussion equally applies to a more general formulation. In principle, an appropriate number of lags of the
endogenous and weakly exogenous variables are included such that the error term (i.e. the identi�ed shocks)
are serially uncorrelated. Given the short annual time series we choose a single lag speci�cation in the empirical
section. For most sectors this choice is supported by the Akaike and Schwarz information criteria.

6There is an issue in literature concerning whether labor input (hours) should be modeled as stationary in
level or in �rst di¤erence when extracting the technology shock (Christiano et al., 2003). The fact that aggregate
labor input is stationary is often motivated by balanced growth path considerations. However, at the industry
level the reallocation of the labor input could produce di¤erent sectoral trends (see e.g. Campbell and Kuttner,
1996, and Phelan and Trejos, 2000). Evidence that labor productivity and labor input follow unit root processes
is provided in the Appendix.
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an intermediate input in sector i (i.e. !ij � 
ij). The speci�cation includes a set of k exogenous
aggregate variables, dt, which are meant to control for the e¤ect of aggregate (nominal and real)

shocks hitting the economy.7 The sectoral idiosyncratic shocks "t = ["01t; :::; "
0
Nt]

0 are such that

for each industry "it = ["zit; "
p
it]
0, where "zit denotes the technology shock and "

p
it denotes the

non-technology shock for the ith sector. The key identifying assumption is that E("0it"it) = 
i"
8i is a diagonal matrix and E("0it"is) = 0 8t 6= s.

To estimate the e¤ect of technology shocks we follow the procedure outlined in Shapiro and

Watson (1988), and discussed in Christiano, Eichenbaum, and Vigfusson (2003). The restriction

that the technology shock is the only source of variation in labor productivity in the long run

allows us to identify sector speci�c shocks. For the ith sector this restriction has to be imposed

on shocks originating in the ith sector and on shocks originating in other sectors that supply

inputs to the ith sector. The equilibrium relation for labor productivity in equation (4) states

that labor productivity in the long run in the ith sector is a¤ected only by direct technology

shocks to the ith sector and by the technology shocks (of other sectors) that have an impact

on labor productivity of supplying sectors (6). Therefore, equation (4) imposes two sets of

restrictions. The �rst one is the standard restriction given by equation (7), which requires that

A12i0 = �A12i1 : The second restriction, which is non-standard, is derived from equation (8) and

requires that C12i0 = �C12i1 .
It is possible to recover the SecVAR speci�cation by stacking the sector speci�c models in

(10). The model can be rewritten as

G0�t +G1�t�1 = ut; (11)

where �t = [{01t; :::;{0Nt]0 and the matrix of coe¢ cients are

Gi0 =
�
Ai0; �Ci0

�
Wi;

Gi1 = �
�
Ai1; Ci1

�
Wi;

where the 4 � 2N weighting matrix, Wi, is constructed such that for each sector this selects

the sector speci�c variables and constructs the sector speci�c cross sectional averages in (10),

as outlined in Pesaran, Schuermann, and Weiner (2004). The reduced form moving average

representation of the dynamics of labor productivity and hours at the sectoral level can be

recovered by inverting G(L) in (11), more speci�cally

�t= B(L)ut: (12)

The transmission mechanism is captured by B(L), a matrix polynomial in the lag operator, L,

and the innovations are such that E(u0tut) = 
u and E(u0tus) = 0 8t 6= s:8 The speci�cation

in (12) does not impose any particular restriction on the nature of the shocks; shocks at the

industry level can be either idiosyncratic or a combination of an aggregate and an industry

7Foerster, Sarte, and Watson (2008) emphasize that a factor error structure at the industry level can arise
both from the presence of aggregate shocks and input-output linkages.

8Appendix B provides more details on the construction of (11), and how to recover the MA representation,
as well as some detailed discussion of the transmission mechanism of idiosyncratic shocks.
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speci�c component (uit = �idt + "it).

Chang and Hong (2006) and Kiley (1998) make use of the restriction that labor productivity

is driven solely by technology shocks in the long run in a bivariate VAR to recover (industry

speci�c) technology shocks. Therefore, they neglect the role of factor demand linkages between

sectors. Their speci�cation can be cast in the general speci�cation (12) with each sector analyzed

in isolation, i.e. the matrix polynomial B(L) is composed of block diagonal matrices. The

speci�cation in (10) encompasses the speci�cation of Kiley (1998) and Chang and Hong (2006)

by setting the coe¢ cients re�ecting factor demand linkages to zero (Cil = 0, 8i; l). However, the
model in the previous section makes it clear that this would only be appropriate if intermediate

inputs had a negligible role to play in production. This is a rather strong restriction, as it

implies that in order to replicate the widely documented comovement between sectors we would

have to rely only on aggregate shocks. The speci�cation in (10), instead, allows us recover a

mechanism by which idiosyncratic and aggregate shocks are propagated by sectoral interactions

due to factor demand linkages, as illustrated by the simpli�ed model in the previous section.

The model analyzed in this section provides a further application of the method described

in Pesaran, Schuermann, and Weiner (2004) but at the industry level. The di¤erence is that we

consider a fully structural model, i.e. the contemporaneous relationships are constrained not

only between the endogenous and the weakly exogenous aggregate variables, but also include

the contemporaneous relationships between the endogenous variables.

4 Data and Estimation Results

4.1 Data description

The data used are collected from the NBER-CESManufacturing Industry Database (Bartelsman

et al., 1996). The database covers all 4-digit manufacturing industries from 1958 to 1996 (39

annual observations) ordered by 1987 SIC codes (458 industries).9 Labor input is measured as

total hours worked, while productivity is measured as real output divided by hours.10 Each

variable is included as a log di¤erence, where this choice is supported by panel unit root tests.

We match the dataset with the standard input-output matrix at the highest disaggregation,

provided by the Bureau of Economic Activity.11 Speci�cally, we employ the "use" table, whose

generic entry ij corresponds to the dollar value, in producers�prices, of commodity produced

by industry j and used by industry i. This table is transformed into a weighting matrix by row

standardization, such that each row sums to one.

9As in other studies we exclude the "Asbestos Product" industry (SIC 3292) because the time series ends in
1993.
10Chang and Hong (2006) have argued that total factor productivity (TFP) and not labor productivity is the

correct measure from which to identify technology shocks. In Appendix A we address this question. Furthermore,
in Section 6 below we show that our results are robust to whether we use TFP or labor productivity.
11The data are available at http://www.bea.gov/industry/io_benchmark.htm. The original input output ma-

trix when constrained to the manufacturing sector has only 355 entries. This means that the BEA original
classi�cation for the construction of the input output matrix aggregates more (4 digit SIC) sectors. As the
entries in the original data correspond to the dollar value, in producers�prices, of each commodity used by each
industry and by each �nal user, when more than one SIC sector corresponds to a single sector in the IO matrix
we split the initial value equally between the SIC sectors. The original IO matrix also includes within sectors
trade, we exclude this from the calculation of the standardized weighting matrix.
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The input-output "use" table clearly re�ects factor demand linkages and is, thus, a good

measure of the intermediate input channel. Shea (2002) and Conley and Dupor (2003) use the

same matrix to investigate factor demand linkages and sectoral complementarities. Ideally, we

would need a time varying input-output matrix in order to take into consideration the change

in the factor linkages between sectors in the economy, or the steady state input-output matrix

as in (4). In the empirical analysis, however, we use the average of the input-output matrix in

1977 and 1987.12 In the robustness section we investigate whether the results are a¤ected by

changes in the IO structure.

4.2 Preliminary investigation of comovement across sectors

In this section we turn to a preliminary analysis of comovement across sectors in manufacturing.

The �rst panel of Table 1 provides evidence of cross sectional dependence in (the growth rate of)

productivity and hours, i.e. the raw data. The �rst row shows the average cross section corre-
lation between sectors, whereas the second row reports the associated cross-section dependence

(CD) test of Pesaran (2004).

[Insert table 1]

The results in Table 1 highlight substantial positive comovement, especially for total hours

worked. The CD test statistics clearly show that the cross correlations are highly signi�cant.

The second panel now takes the residuals recovered from the SecVAR described by equation

(10) but without allowing for the input-output channel (so for each i, Ci0 = Ci1 = 0). Again

the residuals - corresponding to technology and non-technology shocks - exhibit considerable

cross-section dependence, especially for the non-technology shocks.

In absence of any sectoral interaction, the comovement is entirely attributed to the presence

of aggregate factors. The information criteria of Bai and Ng (2002) suggest a speci�cation with

one or two aggregate factors for total hours and one for non-technology shocks, whereas it

identi�es no aggregate factors for the labor productivity series and the technology shocks.13

The bottom half of each panel in Table 1 reports the results of the test of Onatski (2007), which

starts from an a priori maximum number of factors, kmax, where the null hypothesis of the test

is H0 : r = k while the alternative is k < r = k + s � kmax. This test, applied to both the

raw data (panel 1) and the shocks identi�ed without allowing any sectoral interaction (panel

2), points to the presence of two common factors driving both productivity and hours, as well
as two common factors driving the technology shocks. However, despite the high level of cross

sectional correlation, no common factors are detected for non-technology shocks.14

12For the IO matrix in 1987 there exists an exact match between the classi�cation of the NBER-CES database
and the IO matrix from the BEA. For the IO matrix in 1977 we match the 1977 SIC codes to the closest 1987
SIC codes. Detailed tables are available from the authors upon request.
13These results are consistent with Bai and Ng (2002) ICP1 and BIC3 criteria with a maximum number of

factor set to 5. The BIC3 criteria is reported given that it performs well in the presence of pervasive weak cross
sectional dependence (see Bai and Ng, 2002, p. 207, and Onatski, 2005).
14The information criteria of Bai and Ng (2002) and the test introduced by Onatski (2007) determine the

number of common static factors. As observed by Stock and Watson (2002b), the number of static factors
imposes an upper bound on the possible number of dynamic common factors. Foerster, Sarte, and Watson
(2008) also �nd evidence consistent with 1 or 2 static common factors in their analysis of sectoral industrial
production.
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We now turn to the residuals recovered from the full SecVAR in equation (10), where we

allow for sectoral interactions. Given the results in Table 1, suggesting the presence of possible

common factors (aggregate shocks), two proxies for the aggregate shocks have been added as

conditioning variables when we estimate each sectoral model (10). Speci�cally, we include the

aggregate technology shock constructed by Basu, Fernald, and Kimball (2006) and a monetary

policy shock which is derived from an exactly identi�ed VAR, estimated on quarterly data

averaged for each year, following the procedure adopted by Christiano, Eichenbaum, and Evans

(1999).15 The bottom panel of Table 1 shows that the shocks identi�ed by the sectoral model

(10) are (almost) independent, once factor demand linkages among sectors and the aggregate

shocks are taken into account. The average pairwise cross sectional correlation is about 1%,

and the information criteria of Bai and Ng (2002), as well as the test of Onatski (2007), suggest

the absence of any aggregate factor.

It is worth noting that even though the average pairwise cross sectional correlation is greatly

reduced when we allow for sectoral interactions, cross sectional dependence is still signi�cant

according to the CD test. This implies that shocks to one sector are likely to be correlated with

shocks to other sectors, i.e. the covariance matrix of the idiosyncratic shocks in (12), 
", is not

fully diagonal. Although we can exclude the presence of unidenti�ed aggregate shocks since no

factors could be identi�ed, there are still local interactions among sectors that (10) is not able

to capture16.

In order to quantify how widespread the rejection of orthogonality is, we computed the num-

ber of signi�cant correlations between sectors. The number of rejections vary from a minimum

of 11 to a maximum of 67 (median 36) for technology shocks, and 17 and 73 (median 39) for

non-technology shocks, out of a total of 458 sectors. To establish whether there is any connec-

tion between the residual cross-sectional dependence and the characteristics of the sector, we

looked at the relation of the latter with the number of signi�cant correlations for each sector.

Speci�cally, we considered (a) the size of the sector, (b) the importance of the sector as an

input supplier (measured by the column sum of the weighting matrix used in estimation and

the number of connections of each sector, see also Pesaran and Tosetti, 2007, and Carvalho,

2009) and (c) the importance of a sector as an input user (measured by the number of supplying

sectors and by the size of the input material bill). Overall, for (a) and (c) there seems to be no

relation (the correlations are rather small and are all insigni�cant). For (b), even though there is

no relation for technology shocks, there seems to be a signi�cant correlation for non-technology

shocks, as the number of rejections is marginally (positively) related to the importance of the

sector as an input supplier.

To understand how much information we lose by assuming that the shocks we have identi�ed

are cross sectionally independent, the aggregate output and hours (growth) series were simulated

15The data are provided by Basu et al. (2006) and are available in the AER website (http://aea-web.org/aer/).
Notice that the two shocks are orthogonal by construction. We enter the monetary shocks in the reduced form
model for labor productivity in �rst di¤erence, so that there is no long run e¤ect of a monetary shock on
productivity. In a previous version of this paper we included the monetary policy shock in levels, with the result
that the coe¢ cients associated with these shocks were, on average, not signi�cant and the qualitative overall
results were not a¤ected.
16For instance, Shea (2002) studies other forms of sectoral interaction that might be important for aggregate

cyclical �uctuations. Conley and Dupor (2003) use a nonparametric technique to model the o¤ diagonal elements
of the covariance matrix 
". Here the issue is complicated as we identify not one, but two types of shock.
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assuming that 
" is diagonal. The correlation between the aggregated series for manufacturing

and the sum of sectors is approximately 99% for both series. This can be taken as evidence to

support the hypothesis that the remaining cross sectional dependence is weak, and therefore of

little importance for explaining aggregate �uctuations in manufacturing. Therefore, in the rest

of the paper we proceed as if 
" is diagonal.

4.3 The exogeneity of cross sectional averages

An important issue for the consistent estimation of (10) is whether the weighted cross sectional

averages are weakly exogenous. Here we consider the soundness of this assumption.

Imposing the long run restrictions (which require that, in 10, A12i0 = �A12i1 and C12i0 = �C12i1 )
the two set of equations that need to be estimated for each sector are

�xit = A
12
i0�

2hit +
�
C11i0 + C

11
i1 L
�
�x�it + C

12
i0�

2h�it +A
11
i1�xit�1 + �xidt + "

z
it; (13)

and
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�
A21i0 +A

21
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�
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21
i1 L
�
�x�it+A

22
i1�hit�1+

�
C22i0 + C

22
i1 L
�
�h�it+�hidt+"

p
it:

(14)

Estimation of (13) and (14) requires three instruments in each equation. The long run re-

strictions on the e¤ect of non-technology shocks allow the use of the lagged (growth) of hours

and the associated cross sectional average, �hit�1 and �h�it�1, among the instruments in the

equation for labor productivity. Furthermore, the identi�ed technology shock from (13) can be

used to identify the contemporaneous relation between labor productivity and hours in (14).

Therefore, full identi�cation requires the choice of one additional instrument for the equation

for labor productivity, and two for the equation for hours. If the cross sectional averages are

weakly exogenous, then they can be used directly in estimation, otherwise past values of the

aggregate exogenous shocks, dt�1, can be used as additional instruments.17 Therefore the weak

exogeneity of the cross sectional averages can be tested by looking at the di¤erence between the

J-statistics of the instrument sets with and without the inclusion of the contemporaneous cross

sectional averages among the instruments (see e.g. Eichenbaum et al., 1988). The p-value of

the C-test averaged across sectors is 0.763 and 0.737 for the productivity and hours equations

respectively, whereas the null is rejected at the 5% level in only 2 industries for productivity

and in only 7 industries for hours (out of 458).18 These results seem to support the assumption

that the cross sectional averages are weakly exogenous and that therefore the contemporaneous

relations between the sector speci�c variables and the cross sectional averages in (10) can be

estimated consistently. As such, there is only one variable for each equation that needs to be

instrumented (i.e. the contemporaneous relation between sector speci�c labor productivity and

hours in each of the equations). Furthermore, the long run restriction on the cross sectional

average in the �rst equation automatically provides an additional instrument that can be used

to identify the technology shock from the �rst equation of (10), thus partially addressing some

of the concerns of Christiano, Eichenbaum, and Vigfusson (2003) about possible biases arising

17Shea (1997) partial R2 suggest that those are relevant instruments.
18None of the sectors where we reject the null is a large input supplier.
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from the use of weak instruments.19

5 Technology shocks and the business cycle

Real business cycle theory assigns a central role to technology shocks as a source of aggregate

�uctuations. Moreover, positive technology shocks should lead to positive comovement of out-

put, hours and productivity. However, Gali (1999) �nds that positive technology shocks appear

to lead to a decline in hours, suggesting that technology shocks can only explain a limited

part of business cycle �uctuations. This section re-examines these issues and contributes to

the technology-hours debate by focussing on the implications of the presence of factor demand

linkages for the propagation of sector speci�c technology shocks to the aggregate economy.

5.1 The dynamic response to technology shocks

In Figure 1 we show the response of labor productivity and hours to a 1-standard deviation

technology shock to all industries, disregarding sectoral interactions.20 The panel on the left

displays the aggregate response of manufacturing to a contemporaneous shock to all sectors,

whereas the panel on the right displays the aggregate response to each of theN sectoral shocks.21

Speci�cally, the aggregate response in the left panel is the sum of the disaggregated responses

in the right panel. Clearly, in this case (without interactions among sectors) each sectoral shock

only a¤ects the sector from which the shock originates. The aggregate response for hours is

negative and the e¤ect persists in the long run. The right hand panel indicates that the impact

response is positive only for a minority of sectors (92 sectors). The results are similar to Kiley

(1998) (and Chang and Hong, 2006, when they use labor productivity) and con�rm previous

�ndings in the literature (see e.g. Gali, 1999, Francis and Ramey, 2005a).22

[Insert �gure 1]

When we allow for sectoral interactions, we obtain a very di¤erent outcome. Figure 2 shows

that technology shock to all sectors now has a positive (short and long run) aggregate impact

on total hours in manufacturing. Even though the con�dence intervals on the impulse responses

are wide, the e¤ect of technology on hours is always signi�cant. The impact of the shock is
19 In appendix C we show that �h�it�1 can be used as an additional instrument in the productivity equation

and that, under fairly general conditions, should improve the identi�cation in (13). Indeed, the inclusion of this
instrument increases the average value of the partial R2 of Shea (1997) by approximately 20% (and the average
adjusted partial R2 by 30%). Since including redundant moment conditions might result in poor �nite sample
performance, the results reported below do not include the lagged aggregate shocks, dt�1, among the instruments
used.
20Pesaran and Tosetti (2007) and Chudik and Pesaran (2007) show that neglecting cross section dependence

(i.e. estimating 10 without the cross-sectional averages) could cause the estimator of the coe¢ cients Ail (8i
and l = 0; 1) to be biased. In order to overcome this bias we estimate (10) and then set Cil (8i and l = 0; 1)
arbitrarily equal to 0: Estimating the bivariate model without including the cross sectional averages (as Kiley,
1998, and Chang and Hong, 2006) would give similar results.
21The aggregation weights are proportional to the average shipment value of each sector. Even though some

sectors have a bigger share in total shipments, the unweighted average of the impulse responses would be very
similar.
22Basu, Fernald, and Kimball (2006) reach the same conclusion identifying the shocks from a completely

di¤erent prospective. They also identify the shocks at the sectoral level (2 digit SIC), but do not consider
sectoral interactions.
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generally also much larger in magnitude, highlighting the importance of sectoral interactions as

an ampli�er of sectoral shocks (Cooper and Haltiwanger, 1996). The right hand panel reports

the response of each sector (weighted as discussed above). Many sectors (169) show a positive

impact of a technology shock on hours, and despite the fact that this is not the majority, the

weighted e¤ect is positive for manufacturing as a whole. From Figure 2 it is also evident that the

total positive e¤ect is driven by the large response in a few sectors; interestingly, these are also

the largest supplier sectors.23 Shocks to sectors that are most connected are strongly ampli�ed

by factor demand linkages. Therefore, shocks to these sectors are the most likely to explain the

aggregate business cycle, in line with the argument put forward by Horvath (1998) and recently

emphasized by Carvalho (2009). What is interesting is that the shocks to these sectors give rise

to a positive aggregate response. In the next section we analyze in detail how the presence of

factor demand linkages among sectors is likely to amplify the expansionary e¤ect of technology

shocks.

[Insert �gure 2]

5.1.1 The role of the factor demand linkages

In the reduced form model in (10) and (11) all sectors interact, and idiosyncratic sectoral shocks

propagate to the manufacturing sector as a whole through input-output linkages. Because shocks

to sector i a¤ect all other sectors, the response of other sectors echoes back to the original sector

i, thus amplifying the original e¤ect of the shock. Sectoral interactions, therefore, induce a rich

set of short-run dynamics. The �rst e¤ect from sector i to all the other sectors in the economy

is a downstream propagation from supplier to user (Shea, 2002). At the same time we have the

second round e¤ect, i.e. a re�ex response, as the original sector is also a user of other sectors�

supplies. In Figure 3 we separate out the two components - the direct component, i.e. the e¤ect

of a shock to sector i on the same ith sector and the complementary component, i.e. the e¤ect

of this shock on all other sectors.24

[Insert �gure 3]

There is considerable heterogeneity in the dynamic response to a technology shock, the direct

e¤ects on hours are generally negative, only being positive for 96 sectors. However, the direct

e¤ect is also relatively small. The complementary e¤ect usually overwhelms the e¤ect of the

shock to the same sector. This is especially true for the dynamic response of hours.

Sectoral interactions appear to be key to re-establishing a positive aggregate response of

hours to technology shocks. A shock to a large input supplier will propagate throughout the

economy as a large fraction of other sectors are a¤ected by it. Positive shocks to sectors which

are most connected are more likely to get transmitted to other sectors, in fact the marginal costs

of production in other sectors decrease as input prices decline and as a consequence demand

increases. The impulse response analysis in Carvalho (2009) supports the presence of this broad

23The most important �ve sectors are all part of the "chemicals and allied products" (speci�cally SIC codes
2812-13-16 and 2865-69), and largely correspond to sectors with the highest column sum of the weighting matrix.
These are the sectors with the largest number of supply linkages to other sectors.
24 In Appendix B we derive expressions for the direct and the complementary e¤ects. We scale them so that the

aggregate response in the left panel of �gure 3 can be recovered by summing up all the direct and complementary
e¤ects.
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comovement in the production of each sector after a positive technology shock to the sectors

that are the bigger suppliers in the economy. In this sense, the procyclical e¤ect due to the

intermediate input channel is ampli�ed and overwhelms the e¤ect coming from the marginal

productivity of leisure.25 This is, in fact, consistent with the empirical evidence in Figure 3. The

impact response of the complementary e¤ect is generally positive for most of the sectoral shocks

(273 sectors). Furthermore, the aggregate positive comovement between labor and productivity

is driven, in particular, by the very strong positive complementary e¤ect in those sectors which

are most connected through input-output linkages.26

Moreover, Figure 3 makes clear that the dynamic response following a technology shock to a

particular sector is indeed di¤erent depending upon whether the shock originates in the sector

itself, or whether it is a shock to other sectors transmitted through factor demand linkages.

According to the aggregation theorem in Blanchard and Quah(1989, p.670), the e¤ect of the

intermediate goods channel, or the e¤ect of aggregate shocks, is correctly captured by the

standard bivariate procedure applied to each sector separately, if and only if, the response of a

sector to other sectors�shocks is the same as the response of a sector to its own idiosyncratic

sectoral shocks up to a scalar lag distribution. Our results suggest that the convention of using

aggregate data to identify shocks, when these shocks are likely to originate at the sectoral level,

may be misleading.

Overall, these results highlight the quantitative and qualitative importance of the interme-

diate input channel as a way by which idiosyncratic sectoral shocks are propagated. They also

draw attention to the potentially important role this channel might have for understanding the

dynamic response of hours following a technology shock.

5.2 Variance decomposition

In this section we decompose forecast variances at the sectoral level. This allows us to evaluate

the relative role played by technology compared to non-technology shocks. Furthermore, we

evaluate the importance of the factor demand linkages among sectors as a transmission mech-

anism for idiosyncratic shocks. Since each sector is related to other sectors, productivity and

hours in sector j are explained by shocks to the jth sector, and also by shocks (technology and

non-technology) to other sectors. Table 2 shows that aggregate shocks have a limited role to

play in explaining sectoral movements. In fact, aggregate technology shocks account for about

5% of the overall variation in labor productivity. For hours it declines from an initial 10% to 5%.

25The standard RBC model assumes that the substitution e¤ect after a technology shock dominates the wealth
e¤ect, therefore implying a positive shift in labor input. Francis and Ramey (2005a) and Vigfusson (2004) show
how the introduction of habits in consumption and investment adjustment costs inverts their relative importance,
giving rise to a temporary fall in labor supply. Chang, Hornstein, and Sarte (2009) also show that inventory
holding costs, demand elasticities, and price rigidities all have the potential to a¤ect employment decisions in the
face of productivity shocks. Canova, Lopez-Salido, and Michelacci (2007) show that a negative response of the
labor input is consistent with a Schumpeterian model of creative destruction, where improvements in technology
trigger adjustments along the extensive margin of the labor market. Kim and Kim (2006) emphasize the role of
the intermediate input channel in producing positive comovement in labor input.
26There is a statistically signi�cant positive correlation of 0.44 between the impact response of the complemen-

tary e¤ect and the column sum of the weighting matrix used in (10), a measure of the sector�s importance as an
input supplier. At the same time there is a positive, but limited, correlation of 0.14 between the impact response
and the size of the sector. Notice that this last correlation might simply be a re�ection of the fact that the larger
input suppliers tend to be larger in size (the correlation between these two measures is 0.28).
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The role of the monetary policy shock is also limited. As for sectoral shocks, technology shocks

account for much of the volatility in labor productivity, but with a sizable part (20 to 25%)

originating in other sectors. The variation in hours is initially dominated by non-technology

shocks, but, nevertheless, technology shocks coming from other sectors are also important. On

impact technology shocks account roughly for 20% of the variation in hours, with its role rising

steadily to roughly 40%, though this increase is entirely due to the role of technology shocks to

other sectors. This re�ects the fact that the complementary e¤ect dominates the direct e¤ect in

the aggregate response of hours to a technology shock. Sectoral interactions, in total, account

for roughly 20% of the variation in productivity and 40% of the variation in total hours worked.

Clearly, we would get a very misleading picture if we ignored sectoral interactions because in

such a case the role of technology shocks in the explanation of total hours would be completely

underestimated, as it would only account for only 15� 20% of the variation.

[Insert Table 2]

Once the role of factor demand linkages is accounted for, the positive conditional correlation

between productivity and hours is re-established and technology shocks appear to be important

drivers of aggregate �uctuations.

5.3 A historical decomposition of the Business Cycle

In this section we provide a historical decomposition of business cycle �uctuations in the man-

ufacturing sector. We �rst consider the importance of aggregate and sectoral speci�c shocks. It

is widely agreed that the positive comovement across sectors is a stylized fact that needs to be

accounted for by any theory of the business cycle. Whether this comovement and the aggregate

business cycle originates from aggregate or sectoral shocks ampli�ed by sectoral interactions,

or a combination of the two is not clear a priori (see e.g. Cooper and Haltiwanger, 1996). To

evaluate the importance of the aggregate shocks we compute the contribution of those to the

total variation in aggregate manufacturing productivity and hours by looking at the partial R2

and the cross section pairwise correlations which can be attributed to the aggregate shocks,

�idt. The average partial R2 is approximately just 8% for both labor productivity and hours.27

Furthermore, the aggregate component is able to explain only a small part of the comovement

(see top panel of Table 1), indeed the average pairwise correlation of the aggregate component

is 0.05 for labor productivity and 0.044 for hours.

In Figure 4 we decompose the historical aggregate business cycle for manufacturing into

that which is attributable to sectoral shocks and that which is attributable to the aggregate

technology and monetary shocks.28 The �gure clearly shows that the bulk of aggregate volatility

is to be attributed to sectoral shocks.29 The aggregate technology shock plays a very limited

27The �t of the whole SVARX (10) measured by the average value of the generalized R2 (Pesaran and Smith,
1994), is approximately 0.29 for labor productivity and 0.55 for hours.
28Labor productivity is de�ned as output per hours worked, so output growth can be recovered. The exact

procedure for aggregation is discussed in Appendix D.
29On empirical grounds Long and Plosser (1987) �rst investigated whether the source of business cycle �uc-

tuations is aggregate or sector speci�c. Their analysis is consistent with the existence of a single aggregate
disturbance whose explanatory power is, however, limited. Similar results are reported by Cooper and Halti-
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role. However, a bigger role can be assigned to monetary policy shocks. Interestingly, monetary

policy seems to account for the recession in the early 1980s, corresponding to the Volcker

disin�ation.

[Insert �gure 4]

These results suggest that the role of aggregate shocks, in particular those to technology, in

explaining the aggregate business cycle in manufacturing is limited.
In order to assess the role of di¤erent types of shocks originating at the sectoral level, Fig-

ure 5 shows simulated aggregate hours and output growth implied by the industry speci�c

technology and non-technology shocks. Of the total variation explained by industry speci�c

shocks, technology shocks are responsible for almost 50% of the variation in aggregate man-

ufacturing output and 40% of the variation in the change in total hours. Overall technology

and non-technology shocks seem to be equally important for explaining aggregate �uctuations.

Nevertheless, some di¤erence are clear. Technology shocks appear to account for most of the

cyclical volatility in the second part of the sample; from approximately 1980 the share of vari-

ance accounted for by technology shocks rises from (approximately) 37 to 73% for output and

27 to 70% for hours. By contrast, non-technology shocks appear to be more important in the

earlier period from 1960 to 1980. Furthermore, the slow down at the beginning of the 90s seems

to be largely the result of technology shocks (Hansen and Prescott, 1993). These results are

generally consistent with the view that demand shocks were the main driver of the business

cycle before the 1980s, whereas supply side shocks have gained importance since then (Gali

and Gambetti, 2009). Interestingly the latest period also corresponds to a steady decrease in

aggregate volatility, the so-called �Great Moderation�(see e.g. Stock and Watson, 2002).

[Insert �gure 5]

Franco and Philippon (2007) argue that the main source of aggregate �uctuations can be

identi�ed by looking at the pair-wise cross-sectional correlations between the shocks at a disag-

gregated level. The intuition can be traced back to Lucas (1981), with the law of large numbers

at work, shocks at the disaggregated level need to be highly correlated in order for idiosyncractic

shocks to be able to explain aggregate volatility. However, this does not take into account the

ampli�cation mechanism that might result from sectoral interactions. In Figure 5 we show that

shocks that are almost equally uncorrelated with each other (see bottom panel of Table 1) are

able to explain a large part of the aggregate variation in manufacturing once the ampli�cation

mechanism coming from sectoral interactions is allowed for.

The results above underline the role of factor demand linkages in reproducing aggregate

�uctuations. In Figure 6 we show a decomposition of the business cycle that is directly at-

tributable to shocks, both aggregate and sector speci�c, and plot them against the actual data

(the di¤erence can be attributed to the ampli�cation role of the intermediate input channel).

wanger (1996). Conley and Dupor (2003) also support the sectoral origin of the business cycle. On the other
hand, Foerster, Sarte, and Watson (2008) report evidence that most of the variance of industrial production at
the sectoral level is explained by the presence of two aggregate factors, even after controlling for the role of factor
demand linkages.
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The pattern that emerges is revealing. With our speci�cation, the propagation and ampli�ca-
tion mechanism arising from the presence of factor demand linkages among sectors appears to

be key to reproducing aggregate business cycle �uctuations.

[Insert �gure 6]

6 Some Robustness Checks

In order to test the robustness of our results we have performed a number of checks. First, we

replicated our results using di¤erent measures of hours, employment, hours worked and labor

productivity. The results, not reported here, con�rm the previous analysis.

[Insert �gure 7]

Secondly, we generated the cross sectional averages by using the �rst IO matrix for the subsam-

ple up until 1980 and the second thereafter, instead of using the simple average of two di¤erent

input-output matrices for 1977 and 1987. The left panel of Figure 7 plots the short run re-

sponses of hours to a permanent shock to labor productivity for this case vis a vis the baseline

speci�cation. The general results do not seem to be altered; the cross sectional correlation

between the two estimates across 458 industries is 0.99.

Thirdly, to address possible problems with only 37 annual observations for each industry,

we repeated the analysis by pooling sectors at the 3 digit SIC level, i.e. each more aggregated

sector is estimated as a pooled VAR (as in Chang and Hong, 2006). This implicitly assumes

that heterogeneity among industries in the same 3 digit class is limited relative to heterogeneity

across di¤erent industries. The right panel of Figure 7 reports the short run response of hours to

a technology shock for the two speci�cations. Again, the overall conclusions are not qualitatively

a¤ected, the correlation between the two results is 0.82. However, the baseline speci�cation at

the 4 digit level gives rise to a larger impulse response of hours in aggregate. This is consistent

with the theoretical �ndings of Swanson (2006), who shows that heterogeneity might itself be a

source of ampli�cation for shocks hitting the economy.

[Insert �gure 8]

Next we examined the robustness of our results to the choice of conditioning aggregate

shocks. Which shocks/factors to include is not uncontroversial. Earlier we used a measure of

aggregate technology so as not to attribute all the e¤ect of technology shocks to the sector

speci�c shocks. However, the measure derived by Basu et al. (2006) does not explicitly consider

possible ampli�cation due to the input-output linkages. To check the robustness of our �ndings

we have computed the impulse responses for hours worked to a permanent productivity shock

for di¤erent aggregate factors. We consider three di¤erent combinations of possible aggregate

shocks. In the left panel of Figure 8 we include shocks similar to Shea (2002). Speci�cally,

we have included an exogenous oil production shock30 as well as the spread between 6 month

30The data for the oil production shock is from Kilian (2008). This series measures the shortfall of OPEC oil
production caused by exogenous political events such as wars or civil disturbances. This paper�s yearly shock is
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commercial paper and the Treasury-Bill interest rate, which is intended to proxy for monetary

policy (Friedman and Kuttner, 1992).31 In the central panel of Figure 8 we include the oil pro-

duction shock and the growth rate of real government defense spending to proxy for exogenous

government spending shocks.32 In the last panel we use the growth rate of real government de-

fense spending and the monetary policy shock. As shown in Figure 8, which aggregate factor we

use does not signi�cantly alter the results of the previous section. All speci�cations give quanti-

tatively similar results and the short run response for all sectors is strongly correlated with the

baseline speci�cation (furthermore the correlation increases if longer horizons are considered).

Moreover, all speci�cations show a positive aggregate response of hours to a productivity shock.

[Insert �gure 9]

As a �nal robustness check following Chang and Hong (2006) we replicated the results using

TFP. Speci�cally, we identify technology shocks as permanent shocks to TFP, and approximate

the role of the intermediate input channel by including the cross sectional average of TFP as in

(10). Figure 9 provides evidence of the direct and complementary e¤ect on hours when shocks

are identi�ed using TFP. The main di¤erence is that, in this case, the direct e¤ect of the shocks

is generally positive. However, even by using TFP, the aggregate response of hours is dominated

by the complementary e¤ect, which is positive and much larger than the direct e¤ect. Similarly

to the shocks identi�ed from labor productivity, the larger the role of the sector as an input

supplier in the economy, the larger the e¤ect of the shocks will be. The intermediate input

channel continues to provide a strong ampli�cation mechanism for idiosyncratic shocks, and

to be the key mechanism for understanding aggregate responses. Furthermore, even though

the impulse responses of TFP are not strictly comparable to those for labor productivity, the

similarity between the identi�ed responses is still surprisingly high. The correlation between

the short run responses of this speci�cation of the model with respect to the baseline is 0.59 for

hours, whereas for labor productivity and TFP the correlation is 0.88.

7 Conclusions

This paper has investigated the role of factor demand linkages in the propagation of shocks

across the economy. Using data on highly disaggregated manufacturing industries from 1958

to 1996, we construct a sectoral structural VAR (SecVAR) and estimate a series of bivariate

models for productivity and hours. Weighted averages of sectoral variables, where the weights

are derived from the input-output matrix, are used to recover the e¤ect of sectoral interactions.

In line with the real business cycle model of Long and Plosser (1983), Horvath (1998, 2000)

and Carvalho (2009) factor demand linkages prove to be an important ampli�er of the shocks

hitting the economy. Most importantly, we show that the contraction in hours worked in

the sum of the quarterly shocks.
31The inclusion of the commercial paper spread as a measure of monetary policy, produces results which are

quantitatively and qualitatively very similar to those with a monetary policy shock measured as in Christiano,
Eichenbaum, and Evans (1999) and reported in the previous sections.
32Ramey and Shapiro (1998) highlight that military buildups correspond to the big upswings in military

spending during the period under analysis. Using dummy variables corresponding to the military buildups dates
would give very similar results.
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response to a technology shock found in many other studies remains if sectoral interactions via

the input-output matrix are ignored. However, when the latter are incorporated into the model,

technology shocks generate an increase in hours and are an important source of �uctuations in

output. This is because the intermediate input channel itself provides an additional explanation

for a positive shift in hours.

This paper clearly points to some of the potential problems that may arise when sectoral

interactions are ignored.
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Tables

TABLE 1 - PRELIMINARY ANALYSIS OF COMOVEMENT

Labor Productivity Hours

�̂ 0.055 0.202

CD 109.28 403.44

Onatski (H0: r = 0) 33.089� 6.621�

(H0: r = 1) 33.089� 6.621�

(H0: r = 2) 1.243 3.904

No sectoral interactionsa Technology Non Technology

�̂ 0.046 0.183

CD 91.12 356.86

Onatski (H0: r = 0) 6.838� 5.661

(H0: r = 1) 6.838� �

(H0: r = 2) 1.405 �

Identi�ed idiosyncratic shocks Technology Non Technology

�̂ 0.009 0.010

CD 18.89 20.93

Onatski (H0: r = 0) 2.295 2.501

Notes: The �rst part of the table reports measures of the strength of the cross sectional dependence between sec-

tors, �̂ is the simple average of the pair-wise cross section correlation coe¢ cients, �̂= [2=N(N � 1)]
PN�1

i=1

PN
j=i+1 �̂ij

with �̂ij being the correlation coe¢ cient for the i
th and jth cross section units. The test of the null hypothe-

sis of no cross sectional dependence (Pesaran, 2004) is CD =
p
2T=N(N � 1)

PN�1
i=1

PN
j=i+1 �̂ij , which tends to

N(0; 1) under the null. The second part of each panel reports the Onatski (2007) test of the number of static
factors. The critical values depend on � = kmax � k; and these are tabulated in Onatski (2008). In the table
we report the test for kmax = 5. The 5% values are 5:77 for � = 5; 5:40 for � = 4 and 4:91 for � = 3: The
superscript �*�signi�es the test is signi�cant at the �ve per cent level.

a Speci�cally, this corresponds to setting the matrices Cil (8i and l = 0; 1) arbitrarily equal to the null
matrix 0 in (10), i.e. the matrix of coe¢ cients Gl, for l = 0; 1, in (11) are block diagonal matrices.
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TABLE 2: FORECAST VARIANCE DECOMPOSITION

LABOR PRODUCTIVITY

Sect. Technology Sect. Non-Technology Aggregate Technology Monetary Policy

HORIZON Same Sector O ther sectors Sam e Sector O ther sectors

1
74.11

(69.7 � 79.1)

12.33

(6.5 � 16.0)

2 .40

(1.6 � 2.9)

2 .12

(0 � 3.4)

3 .62

(0.3 � 5.5)

5 .38

(1.8 � 8.2)

2
72.35

(66.7 � 79.5)

21.49

(13.6 � 27.1)

0 .24

(0.09 � 0.3)

0 .82

(0 � 1.5)

3 .47

(0 � 6.3)

1 .60

(0 � 3.1)

3
73.66

(67.2 � 81.3

22.52

(13.9 � 28.7)

0 .04

(0 � 0.08)

0.15

(0 � 0.4)

3 .39

(0 � 6.2)

0 .20

(0 � 0.5)

5
73.76

(66.6 � 82.3)

22.91

(14.0 � 29.7)

0 .003

(0 � 0.01)

0.01

(0 � 0.06)

3.28

(0 � 6.2)

0 .01

(0 � 0.06)

10
73.83

(66.6 � 83.0)

22.86

(13.3 � 29.2)

0 .0

(0 � 0)

0.0

(0 � 0.003)

3.29

(0 � 6.1)

0 .0

(0 � 0.001)

HOURS

Sect. Technology Sect. Non-Technology Aggregate Technology Monetary Policy

HORIZON Same Sector O ther sectors Sam e Sector O ther sectors

1
12.76

(11.0 � 14.7)

9 .69

(2.6 � 14.3)

41.80

(37.0 � 46.6)

19.79

(10.4 � 26.5)

8 .83

(1.2 � 14.4)

7 .11

(3.9 � 9.1)

2
11.42

(9.4 � 13.4)

20.14

(9.9 � 27.8)

32.10

(28.0 � 35.9)

22.81

(13.2 � 30.6)

7 .67

(0 � 13.6)

5 .82

(2.4 � 8.1)

3
10.96

(8.6 � 13.1)

26.44

(14.9 � 36.6)

31.92

(27.0 � 36.6)

20.11

(9.7 � 27.8)

5 .76

(0 � 9.6)

4 .78

(0.5 � 7.6)

5
10.97

(8.4 � 13.3)

28.73

(15.5 � 40.4)

31.43

(26.2 � 36.4)

19.95

(10.1 � 28.0)

4 .09

(0 � 6.9)

4 .81

(0 � 7.5)

10
10.97

(8.2 � 13.5)

29.12

(14.3 � 41.1)

31.18

(25.8 � 36.6)

19.86

(9.6 � 27.9)

4 .01

(0 � 6.6)

4 .82

(0 � 7.5)

Notes: The table reports the mean (weighted average) of the forecast error variance decomposition of productivity

and hours. Entries are point estimates at a given horizon (in years) of the percentage contribution to the forecast

error for labor productivity and hours (in level). In parentheses are the associated 90 percent con�dence intervals,

based on 500 bootstrap draws.
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Figures

FIGURE 1 - IMPULSE RESPONSES TO AN AGGREGATE TECHNOLOGY SHOCK
(WITHOUT SECTORAL INTERACTIONS)
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Notes: The �gure shows impulse responses of labor productivity and hours to a contemporaneous shock, where

no interaction between sectors is allowed. The left hand panel provides the aggregate response, the shaded area

represents the 90-percent con�dence intervals (Hall�s "percentile interval", see Hall, 1992) based on bootstrapping

500 draws. The right hand panel shows the sectoral responses weighted by sectoral average real shipment value,

such that the sum of these corresponds to the �gure on the left hand side.
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FIGURE 2 - RESPONSES TO AN AGGREGATE TECHNOLOGY SHOCK
(WITH SECTORAL INTERACTIONS)
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Notes: The �gure shows impulse responses of labor productivity and hours to a contemporaneous change to the

idiosyncratic sectoral technology shock when sectoral interactions are at work. The left hand panel provides the

aggregate response, the shaded area represents the 90-percent con�dence intervals (Hall�s "percentile interval",

see Hall, 1992) based on bootstrapping 500 draws. The right hand panel shows the aggregate response to each

of the 458 idiosyncratic technology shocks, such that the sum of these corresponds to the �gure on the left hand

side.
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FIGURE 3 - DECOMPOSITION OF THE DYNAMIC RESPONSE TO A TECHNOLOGY SHOCK
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Notes: The �gure shows the response of hours to an idiosyncratic technology shock at the sectoral level. The

original impulse responses are weighted according to industry size, measured by the real value of shipments; in

this way the sum of the sectoral impulse responses exactly match the aggregate response reported in Figure 2.
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FIGURE 4 - BUSINESS CYCLE, HISTORICAL DECOMPOSITION

Sectoral vs aggregate shocks
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Notes: The �gure shows a historical decomposition of the aggregate growth rate of output and hours into sector

speci�c and aggregate shocks. The blue continuous (� � ) line represents the actual data, the green dashed line

with circles (�
�
�) the simulated data with only sector speci�c shocks, and the green dashed line with
squares (�����) the aggregate technology shock and the green dashed line with triangles (�4�4�) is
the component associated with monetary policy shocks.
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FIGURE 5 - BUSINESS CYCLE, HISTORICAL DECOMPOSITION

Technology vs non-technology shocks

Technology Component Non Technology Component
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Notes: The �gure shows a historical decomposition of the aggregate growth rate of manufacturing output and

hours into that which is attributable to technology (left panel) and non-technology shocks (right panel). The

blue continuous (� -) line represents actual data, the green dashed line with circles (�
�
�) simulated
data with only technology shocks, the red dotted line with squares (�� �� �) denotes non technology shocks.
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FIGURE 6 - BUSINESS CYCLE, HISTORICAL DECOMPOSITION
The role of factor demand linkages
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Notes: The �gure shows the aggregate growth rate of output and hours and the simulated series with aggregate

and idiosyncratic shocks but excluding sectoral interactions. The blue continuous (� ) line represents the actual

data, the green dashed line with stars (-*-*-) the simulated data with aggregate and idiosyncratic shocks, but
excluding sectoral interactions.
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FIGURE 7 - ROBUSTNESS TO VAR SPECIFICATION
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Notes: x-axis: short-run responses of hours to permanent shocks to labor productivity from the industry VAR.

y-axis: short run response of hours to permanent shocks to labor productivity, controlling for time-varying
input-output matrices (left panel) and pooling sectors to the 3 digit SIC level (right panel).

FIGURE 8 - ROBUSTNESS TO THE CHOICE OF AGGREGATE SHOCKS
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Notes: x-axis: short-run responses of hours to permanent shocks to labor productivity from the industry VAR.

y-axis: short run response of hours to permanent shocks to labor productivity, controlling for di¤erent choices of
the aggregate shocks.
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FIGURE 9 - Dynamic Response of Total Hours Worked to a permanent shock to TFP
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Notes: The �gure reports the direct and complementary e¤ect on total hours of a technology shock identi�ed

from the bivariate VAR with TFP and total hours as suggested by Chang and Hong (2006). The shocks are

identi�ed from (10) which uses the cross-sectional average computed from the input-output matrix to proxy for

sectoral interactions.
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Appendix A: Labor productivity and TFP

Chang and Hong (2006) have argued that total factor productivity (TFP) and not labor pro-
ductivity is the correct measure from which to identify technology shocks. This is because the
latter re�ects both improved e¢ ciency and changes in the input mix as a result, for example,
of a change in the relative price of intermediate inputs. In support of their argument they show
that labor productivity and TFP, both integrated of order 1, are not cointegrated. Therefore,
the long run component of labor productivity does not truly identify technology shocks. In the
top panel of Table A we report tests for cointegration between TFP and labor productivity
using both the IPS test and the CIPS test. In both cases, as with Chang and Hong (2006),
the null cannot be rejected at the conventional level. In the bottom panel, instead, we report
tests of the null of a unit root, but this time the residuals are generated from a regression that
includes the cross sectional weighted averages of labor productivity, where those re�ect the role
played by the relative prices in line with what would be implied by the multi-sectoral model
of section 2, speci�cally equation (3). Thus, we are now able to reject the null of a unit root,
which implies that shocks that a¤ect labor productivity in the long run re�ect changes in TFP
in some sector, which are propagated though the input-output linkages of the economy.

The simple sectoral bivariate VAR for TFP and labor input employed by Chang and Hong
(2006) cannot fully capture the dynamic e¤ects of shocks to technology because it implicitly
neglects the e¤ect on relative prices. Indeed, a technology shock at the industry level has a �rst
order e¤ect on relative prices, which itself gives rise to an additional channel of propagation of
the shock that has to be taken into consideration when analyzing the dynamic response to a
technology shock. This channel is implicitly shut down when each sector is analyzed separately
from the others. Instead, the speci�cation in (10) allows us to investigate the empirical relevance
of sectoral interactions in a more complete way.

TABLE A - THE COINTEGRATION OF TFP AND LABOR PRODUCTIVITY

�it= xit��0��1zit
IPS -2.032 -1.939 -1.653

p� value 0.284 0.322 0.417

CIPS -1.973 -2.451 -2.121

eit= xit�a0�a1x�it�a2zit
IPS -3.17� -2.861� -2.52

p� value 0.032 0.07 0.127

Notes: Table 1 report unit root tests for two di¤erent relations between labor productivity and TFP. All series

are entered in log form, xit is labor productivity, zit is total factor productivity, x
�
it =

PN
j=1 !ijxjt; where the

weights !ij are computed from the "use" input-output matrix as described above. eit and �it are cointegrating
vectors computed as shown. IPS report the averages of the Augmented Dickey-Fuller test statistics for 0, 1

and 2 lags. Underneath are reported the associated asymptotic p-values (Im, Pesaran and Shin, 2003). Given

the high degree of cross sectional dependence in �it (�̂ = 0:334); for this variable the table includes the Cross
Sectional IPS test (CIPS). The critical values for this test are tabulated in Pesaran (2007). The superscript �*�

signi�es the test is signi�cant at the 10% level.
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Appendix B: Some details of the transmission mechanism of
shocks

Here we discuss the interpretation of the impulse response function of a shock to a particular sec-
tor i. We focus on the impact e¤ect, the generalization to any other horizon is straightforward.
Recall that we estimate a separate (2�dimensional) system for each sector i

Ai0{it = Ci0{�it +Ai1{it�1 +Ci1{�it�1 + "it:

Stacking all the sectors in the economy, a model for the full economy can be written as

G0�t = G1�t�1 � ut;

where xt is a 2N � 1 vector containing all the 2 variables of the N sectors in the economy,
and (abstracting from the presence of the aggregate shocks) ut is a vector of the same size
corresponding to identi�ed shocks. The matrix of coe¢ cients Gl for l = 0; 1 is an 2N � 2N
matrix composed such that

Gl =

2664
B1lW1

:::
:::

BlNWN

3775 ;
with Bi0 =

�
Ai0; �Ci0

�
and Bi1 =

�
Ai1; Ci1

�
; 2 � 4 matrices. The sector speci�c

weighting matricesWi are 4� 2N matrices, and (in this speci�c case) can be written as

Wi =

24 0|{z}
2�(i�1)2

I2 0|{z}
2�(N�i)2

IOi 
 I2

35
= �i 
 I2

where I2 is the 2�dimension identity matrix, IO is the input-output matrix denoting the relation
between the sectors in the economy, normalized such that the diagonal is all 0 and the row sum
is equal to 1: Therefore, ioi denotes the row i of the normalized matrix IO. �i for a particular
sector i can be written as

�i =

�
indN (i)
ioi

�
where indN (i) is a 1 � N indicator vector, where the i�th element is equal to 1 and the rest
equal to 0.

Note that the matrices Gl can be rewritten such that the position in the matrix of the
coe¢ cients of the endogenous variables and the exogenous variables clearly appears in the ma-
trix. This speci�cation can be useful for disentangling the direct and complementary (through
the input-output matrix) e¤ect of a shock. Notice that the diagonal block of the matrix Gl is
composed of the matrices Ail for i = 1; :::; N and l = 0; 1.

As we focus on the impact e¤ect the only relevant variable is G0, and we focus on this from
now onwards. Let us introduce the 2N � 2 indicator matrix, INDi

2N ; that extracts the i�th
block of an 2N � 2N matrix.

INDi
2N = indN (i)
 I2;

where indN (i) is the 1�N indicator vector introduced above and I2 the usual identity matrix.
Then, G0 can written such that the i�th 2 � 2 block diagonal element is Ai0 and in general
the i�th 2� 2N block of the matrix can be written as�

INDi
2N

�0 �G0 =
h
io
[1:(i�1)]
i 
 (�Ci0); Ai0; io

[i+1:N ]
i 
 (�Ci0)

i
;
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where io[j:k]i is the 1 � (k � j) vector corresponding to the j to k elements of ioi: Let us focus
on the impulse response to the �rst sector, the matrix of coe¢ cients G0 can therefore be easily
partitioned as

G0 =

�
G01 G12

0

G21
0 G22

0

�
;

with G12
0 = io

[2:N ]
1 
 (�C10) (2� (N � 1)2 matrix), and the (N � 1)2� 2 matrix G21

0

G21
0 =

264 io
[1]
2 
 (�C20)

:::

io
[1]
N 
 (�CN0)

375 ;
Understanding the role of the matrices G12

0 and G21
0 is essential for the decomposition of the

impulse response into all its components (direct and complementary, and the ampli�cation
mechanism). Note that G11

0 = A10 and therefore it corresponds to the coe¢ cients of the VAR
for the �rst sector. G21

0 summarizes the e¤ect of a shock to sector 1 on all the other sectors.
Speci�cally, for each sector di¤erent from 1; this is equal to the e¤ect of the aggregate variables
in those sectors scaled by the importance of sector 1, where this is measured by the factor
share of intermediate inputs from sector 1. In addition, G12

0 re�ects the e¤ect of the aggregate
variables on sector 1; where the aggregate variables are constructed by scaling the variables in
the other sectors by size. The latter is the impact e¤ect on suppling sectors of sector 1.

The contemporaneous e¤ect of an idiosyncratic shock in sector 1 to all the variables in the
system can now be found as follows. The VAR for the all industries (11) is inverted to give

�t = G
�1
0 G1�t�1 +G

�1
0 ut:

Denote the matrix G�1
0 G1 = F. The impulse response at any horizon h from the shock j to

sector i can be written as
 (h) = FhG�1

0 sji;

where sji is a 2N � 1 selection vector with the only non-null element, which selects the ap-
propriate shock j in sector i: Here we consider the e¤ect of a technology shock in the �rst
sector, therefore ordering the variables as in the main text, such that productivity comes �rst,

s11 =

�
%01 0|{z}

1�[(N�1)2]

�0
=

�
1 0|{z}

1�(2N�1)

�0
, as in the bivariate model %1 =

�
1 0

�0
. The

contemporaneous impulse response (i.e. the impact e¤ect)33 is

 (0) = G�1
0 s11:

Therefore, to understand the di¤erent e¤ect we need to understand what happens when we
invert G0: Applying the partition matrix inversion lemma

G0 =

�
A01 G12

0

G21
0 G22

0

�
;

G�1
0 =

�
A�101

�
In +G

12
0 �0G

21
0 A

�1
01

�
�A�101G12

0 �0
��0G21

0 A
�1
01 �0

�
;

with �0 =
�
G22
0 �G21

0 A
�1
01G

12
0

��1
: Notice that for the impact e¤ect the selection vector s11

33Starting from the impact e¤ect, the impulse response for any horizon h can be calculated as  (h) = F (h�1).
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implicitly selects the �rst n column of G�1
0 ; speci�cally

 (0) = G�1
0 s11;

=

�
A�101

�
Ik +G

12
0 �0G

21
0 A

�1
01

�
%1

��0G21
0 A

�1
01 %1

�
;

=

�
A�101 %1 +A

�1
01G

12
0 �0G

21
0 A

�1
01 %1

��0G21
0 A

�1
01 %1

�
;

The ((2N � 2) � 1) subvector �comp =
�
��0G21

0 A
�1
01 %1

�
is what we have referred to as the

complementary e¤ect, i.e. this is the e¤ect that a shock to sector 1 has on all the other sectors
in the economy through sectoral complementarity. This is equal to the e¤ect that the shock
would have had on sector 1; if the sector was not connected to other sectors,A�101 %1, which is �rst
transmitted to the other sectors through the downstream supplier user relations, captured by
G21
0 . These e¤ects are further ampli�ed by the interconnectivity properties of the input-output

matrix, that directly or indirectly (i.e. through a third sector) links up all the sectors in the
economy. This mechanism is embodied in �0. Notice that the minus sign on �comp balances the
negative sign on G21

0 that come by the fact that the matrix of coe¢ cients associated with the
intermediate input channel, the Ci0;8i 6= 1; enters the system with a negative sign. Therefore,
the sign of �comp re�ects the sign of the estimated Ci0;8i 6= 1.

What we label in the text as the direct e¤ect is the e¤ect on the sector from which the shock
originates. This corresponds to the �rst 2� 1 subvector of  (0). Rewriting this as

�dir = A�101 %1 +A
�1
01G

12
0 �0G

21
0 A

�1
01 %1;

= A�101 %1 �A
�1
01G

12
0 �comp;

makes clear that this is composed of the e¤ect that the shock would have had if there were no
interactions, A�101 %1; plus a component that comes as an echo from the complementary e¤ect34.

To underline the fact that the e¤ect of a shock in a system with no interactions corresponds
only to the �rst part of the direct e¤ect, notice that if each sector is considered in isolation, the
matrix G0 block diagonal and its i� th diagonal element is the generic matrix Ai0: Therefore,
the inverse matrix G�1

0 is itself a block diagonal matrix whose i � th diagonal element is the

genericA�1i0 . It follows that in this case the impact e¤ect is  (0) =

" �
A�110 %1

�0
; 00|{z}

1�[(N�1)2]

#0
:

34Note that in this case the negative sign is, again, neutralized by the fact that the C01 enters G12
0 with a

negative sign.
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Appendix C: Estimation issues

To estimate the dynamic e¤ect of a technology shock we follow the procedure outlined in Shapiro
and Watson (1988), and discussed in Christiano et al (2003). As in Pesaran, Schuermann and
S.M. Weiner (2004) the contemporaneous relationships between sector speci�c variables and the
aggregate variables can be estimated consistently as long as the weighted aggregate variables
in the system are weakly exogenous. To estimate the contemporaneous relationship between
the endogenous variables we need to rely on instrumental variables. Speci�cally, we make use
of long run identi�cation restrictions, in line with the literature. The analysis of disaggregated
sectors as in (10)-(11) provides both a theoretically consistent estimate of an economy with
sectoral interdependence and/or both sectoral and aggregate shocks to the economy and a new
set of instruments. In this case, the weak instrument problem usually described in literature
might be avoided by using the industry speci�c cross sectional averages of the original variables
in the system.

Speci�cally, for a speci�c sector i the system of simultaneous equations to be estimated is

(Ai0 �Ai1L)
�
�xit
�hit

�
= (Ci0 �Ci1L)

�
�x�it
�h�it

�
+

�
"1it
"2it

�
; (A1)

where Ail and Cil, 8i and l = 1; 2, are 2 � 2 matrices, with the generic xj�element denoted
with a subscript. The restriction that only technological shocks have a permanent e¤ect on
productivity implies that A12i0 = �A12i1 : A similar restriction for technology shocks to other
sectors is also imposed, i.e. C12i0 = �C12i1 . It follows that the technology shock for sector i; "zit,
can be recovered from

�xit = A
12
i �

2hit + C
11
i0�x

�
it + C

12
i �

2h�it +A
11
i1�xit�1 + C

11
i1�x

�
it�1 + "

z
it; (A2)

with A12i = A12i0 = �A12i1 and C12i = C12i0 = �C12i1 : To estimate the equation above we need
at least a single instrument to estimate the contemporaneous e¤ect of productivity and hours
growth, A12i . The usual procedure of using �hit�1 has been criticized as this practice may su¤er
from a weak instrument problem35. Speci�cally, consider the reduced form VARX representation
of the system

�i(L)

�
�xit
�hit

�
= 	i(L)

�
�x�it
�h�it

�
+ eit;

The �rst di¤erence of the second variable (�2hit), in the simple case of a VARX(1,1), i.e.
�i(L) = (I ��i1L) and 	i(L) = (	i0 �	i1L); can written as

�2hit = �
21
i1�xit�1 + (�

22
i1 � 1)�hit�1 +	21i0�x�it +	22i0�h�it +	21i1�x�it�1 +	22i1�h�it�1 + e2it:

Therefore, the validity of �hit�1 as an instrument clearly depends on the condition �22i1 6= 1,
so if �22i1 is close enough to 1 then the use of �hit�1 as instrument for �

2hit is subject to the
weak instrument problem36. Rewriting the expression as a function of �2h�it�1 we obtain

�2hit = �21i1�xit�1 + (�
22
i1 � 1)�hit�1 +

	21i0�x
�
it +	

22
i0�

2h�it +	
21
i1�x

�
it�1 + (	

22
i1 +	

22
i0 )�h

�
it�1 + e

2
it:

The expression above makes clear that the aggregate hours, �h�it�1; constitutes an additional
appropriate instrument for �2hit if (	22i0 +	

22
i1 ) 6= 0; i.e. if the long run e¤ect of an aggregate

non-technology shock on the sector speci�c labor input is not zero. This condition corresponds
to the long run neutrality of aggregate shocks to the labor input, as considered in Campbell

35See Staiger and Stock (1997) for a discussion of the weak instrument problem.
36This is the well known condition A(1) 6= 0 for a general VAR of order p; see e.g. Christiano et al. (2003).
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el al. (1996). However, as they also recognize, this restriction is quite restrictive and not
entirely innocuous37. In the light of this we include �h�it�1 as an additional instrument for the
identi�cation of A12i above.

Once (A2) has been estimated the residual (the technology shock, "zit) can be used to in-
strument the second relation for the labor input in (A1), which will deliver the non-technology
shock to sector i; "pit; from

�hit = A21i0�xit + C
21
i0�x

�
it + C

22
i0�h

�
it +

A21i1�xit�1 +A
22
i1�hit�1 + C

21
i1�x

�
it�1 + C

22
i1�h

�
it�1 + "

p
it:

The assumption of independence between the shocks insures that the shock is a good instrument
to recover the contemporaneous e¤ect of labor productivity on the labor input.

37See Campbell el al. (1996), footnote 4 p. 96. For instance, theories of "reallocation timing" suggest that
transitory aggregate shocks may be associated with permanent changes in industry size.
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Appendix D: Aggregation

Here we explain how to obtain the aggregate series and impulse responses for output and hours38.
Small capitals indicate the logarithms of the variables, aggregate variables are denoted with a
tilda. By de�nition aggregate hours is

eHt =X
i

Hit;

and therefore the growth rate of (aggregate) total hours can be written as

�eht = log

 eHteHt�1
!
= log

� P
iHitP
iHit�1

�

' log

 X
i

!i exp(�hit)

!
;

where !i is an appropriate aggregation weight that re�ects industry size. In the application we
use �xed weights and construct them from the average shipment value of sales over the sample
period.

Similarly, aggregate output growth is computed as

�eqt ' log X
i

!i exp(�xit +�hit)

!
:

38Note that in the text we de�ned log of hours as hit, and (labor) productivity as xit. Labor productivity is
de�ned as output per hours worked, therefore we can de�ne (the log of) output as qit = xit + hit.
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Additional results: Unit root versus stationary hours

There is an issue in literature concerning how the labor input (hours) should be modeled when
extracting the technology shock.39 The fact that aggregate labor input is stationary is often
motivated by balanced growth path considerations. However, the reallocation of the labor input
among industries could produce di¤erent sectoral trends. Speci�cally, Campbell and Kuttner
(1996) and Phelan and Trejos (2000) highlight the role of sectoral shifts in modelling employment
at the industry level and their importance for a better understanding of the driving forces of
aggregate employment.

In (10) we have not assumed any particular process for hours. Indeed either the level or the
di¤erence speci�cation for labor input can be accommodated (Pagan and Pesaran, 2008). To
determine the correct stationary transformation of the variables we apply the panel unit root
test developed by Pesaran, Smith, and Yamagata (2007)40. The null hypothesis is that all the
series have a unit root and are not cointegrated with the underlying factors. The results for the
industry data are summarized in Table B. Speci�cally, the null hypotheses cannot be rejected
for the level of log labor productivity (xit) and hours (hit), whereas it is rejected for the growth
rates. In the light of these results and the theoretical considerations outlined above we assume
that there is a unit root in the labor input. Therefore, we estimate and analyze (12)-(10) with
both variables in log di¤erence.

There may be a variety of reasons for a failure to reject the unit root hypothesis, including
lack of power, shifts in mean, or misspeci�cation of the low frequency deterministic components,
or other forms of non-linearity.41 Nevertheless, the presence of industry speci�c cross sectional
averages as weakly exogenous variables in the system will help to avoid most of the problems
related to the particular speci�cation of the labor input. Indeed, the forcing variables will be
acting to balance the distortionary e¤ect of any low frequency components of the labor input,
as well as possible breaks or nonlinearity in the variable.

39The empirical evidence on the stationarity of aggregate hours worked is mixed (see e.g. Shapiro and Watson,
Shapiro and Watson (1988)). Christiano, Eichenbaum, and Vigfusson (2003) argue that the negative response
of the labor input to a technology shock might be the result of a misspeci�cation of the original model and,
more speci�cally, the mistreatment of labor input in the empirical model. Indeed, they �nd that the e¤ect of a
technology shock on the labor input clearly depends on the treatment of the labor input; if this is included in
levels the puzzling result disappears.
40This test extends the original test of Pesaran (2007) to the case with multiple common factors. With respect

to other tests, this has the advantage of not requiring prior speci�cation of the factor structure. Speci�cally, for
each variable we augment the ADF regression with the weighted average of both productivity and hours. The
weights are computed from the input output matrix as described above. We obtain similar results if a simple
average is used to control for the cross sectional dependence. Perron and Moon (2007) highlight that this type
of test has a better performance than the other panel unit root tests with cross sectional dependence for small
panels where the estimation of factors is di¢ cult.
41Note that this problem would persist even in the di¤erence speci�cation. Fernald (2007) and Francis and

Ramey (2005b) document trend breaks in productivity and hours.
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TABLE B - UNIT ROOT TEST

With intercept and linear trend

CADF (0) CADF (1) CADF (2) CADF (3)

xit �3:052� �2:609 �2:181 �2:072
hit �2:615 �2:476 �2:22 �2:081

With intercept

CADF (0) CADF (1) CADF (2) CADF (3)

xit �2:819� �2:392� �2:004 �1:904
hit �2:374� �2:241 �2:031 �1:921
�xit �6:306� �4:547� �3:29� �2:671�
�hit �7:409� �4:477� �3:523� �2:857�

Notes: The reported values are CIPS(p) statistics, which are cross section averages of cross-sectionally Augmented
Dickey-Fuller test statistics (Pesaran, Smith and Yagamata, 2007). The critical values for this test depend on

the cross section, time dimension and number of lags included, as well as the number of cross sectional averages

included. The values are tabulated in Pesaran, Smith and Yagamata (2007). When only the intercept is included

the 5% critical value is -2.29 for when no lag is included, -2.24 for 1 lag, -2.10 for 2 lags and -2.03 for three lags.

When an intercept and linear trend are included the critical value is -2.72 when no lag is included, -2.67 for 1

lag, -2.50 for 2 lags and -2.41 for three lags. The superscript �*� signi�es the test is signi�cant at the �ve per

cent level.
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