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Abstract

e transferable utility hypothesis underlies important theoretical results in household
economics. We provide a revealed preference framework for bringing this (theoretically
appealing) hypothesis to observational data. First, we establish revealed preference condi-
tions that must be satisĕed for observed household consumption behavior to be consistent
with transferable utility. Next, we show that these conditions are easily testable by means
of integer programming methods. e test is entirely nonparametric, which makes it ro-
bust with respect to speciĕcation errors. Finally, we also provide a ĕrst empirical test of
the transferable utility hypothesis through an application to Spanish household data.
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1 Introduction
Household consumption analysis takes a prominent position in the microeconomics literature.
In settings with multiple household members, theoretical consumption models oen assume
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transferable utility. As we will explain below, this assumption considerably simpliĕes the anal-
ysis. is paper provides a framework for bringing the (theoretically appealing) transferable
utility hypothesis to empirical data. Speciĕcally, we deĕne the testable implications of transfer-
able utility in revealed preference terms. In addition, we provide an application to observational
household data, which gives a ĕrst empirical test of the transferable utility hypothesis.

e transferable utility hypothesis is a popular one in household economics. It underlies
important theoretical results in the modeling of household behavior. Probably the best known
example here is Becker (1974)’s Rotten Kid theorem; see Bergstrom (1989) for an insightful dis-
cussion. Bergstrom (1997) provides an extensive review of (other) applications of the transfer-
able utility hypothesis in theoretical household models. Essentially, transferable utility means
that it is possible to transfer utility from one household member to another member in a loss-
less manner, i.e. without affecting the aggregate household utility. Under transferable utility the
frontier of the Pareto set is always a straight line of slope −1. is makes that the intrahouse-
hold distribution of resources is independent of the aggregate household decisions: individual
household members will always behave so as to maximize the size of the Pareto set.

e transferable utility assumption is popular because it has several highly desirable impli-
cations. First of all, it guarantees that household demand behavior displays attractive aggre-
gation properties. In particular, any household then satisĕes the so-called unitary model of
household consumption, which means that aggregate household demand behaves as if it were
generated by a single individual. However, as we will also discuss further on, consistency with
the unitary model does not necessarily imply consistency with transferable utility, i.e. unitary
household behavior is necessary but not sufficient for transferable utility. Next, the transferable
utility hypothesis considerably facilitates welfare analysis. As the distribution of resources over
the different household members does not inĘuence the household decisions, welfare analysis
can focus exclusively on the aggregate utility/welfare. Generally, utilizing the transferable util-
ity hypothesis makes life of household economists a lot easier. Nevertheless, despite its wide
prevalence in theoretical work, the empirical implications of transferable utility have hardly
been studied. In fact, to the best of our knowledge, the hypothesis has never been tested on
observational data.

is paper ĕlls this gap: we develop tools for investigating the empirical realism of the
transferable utility hypothesis. More speciĕcally, we establish revealed preference conditions
for observed consumption behavior to be consistent with the transferable utility assumption
under Pareto efficient household behavior. ese conditions are easily testable as they only
require observations on consumed quantities at the household level and corresponding prices;
testing the conditions can use standard integer programming methods. In addition, the test
is entirely nonparametric, i.e. its empirical implementation does not require a prior (typically
non–veriĕable) functional structure for the utility functions of the individuals in the household.

We not only establish the testable conditions of transferable utility, but also provide a ĕrst
empirical test of the hypothesis. Speciĕcally, we apply our revealed preference conditions to
Spanish household consumption data. We assess the empirical support for transferable utility
by means of two complementary exercises. First, we conduct our basic revealed preference test
for consistency of observed household behavior with transferable utility. is test is a ‘sharp’
one in that it abstracts from measurement error in the consumption data. As such, this ĕrst
exercise will check whether observed consumption behavior is ‘exactly’ consistent with trans-
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ferable utility. In our second exercise, we consider an extension of our basic test that does
account for the possibility of measurement error. Here, we compute the minimal data ad-
justments that are needed for obtaining consistency with transferable utility. Essentially, for
behavior that is not exactly consistent with transferable utility, this will tell us how ‘close’ it is
to such consistency.

At this point, is worth indicating that the usefulness of our following results is not restricted
to household settings. e transferable utility hypothesis is also pervasive in many other areas
of economics. For example, in cooperative game theory the hypothesis is used to determine
the value of a coalition and underlies notions such as the Shapley value (Shapley, 1953), the
kernel (Davis and Maschler, 1965) and the nucleolus (Schmeidler, 1969). Next, it is a critical
assumption in the Shapley-Shubik assignment model (Shapley and Shubik, 1972), which has
become a workhorse in the study of labor andmarriagemarkets and othermodels of two–sided
matching. Furthermore, transferable utility is crucial for the validity of the famous Coase the-
orem (see Coase (1960) and Hurwicz (1995)). Lastly, the hypothesis is also frequently used in
principal–agent models, theoretical mechanism design, matching models, public economics,
industrial organization, international trade, and so on.

e remainder of the paper unfolds as follows. In Section 2, we brieĘy recapture some im-
portant building blocks for our following analysis, and we articulate our own contributions to
the existing literature. Here, we will also indicate that the so-called generalized quasi-linear
(GQL) utility speciĕcation provides a necessary and sufficient condition for a Pareto optimal
household allocation rule to be consistent with transferable utility. In Section 3, we then for-
mally deĕne this GQL speciĕcation. Section 4 subsequently presents the corresponding re-
vealed preference characterization. Section 5 provides the integer programming formulation
of our characterization and presents the empirical application. Finally, Section 6 concludes.

2 Testable implications of transferable utility
Generalized quasi-linearity. To deĕne the testable implications of transferable utility at the
household level, we need to characterize the underlying utility functions of the individuals
within the household. e best–known speciĕcation leading to the property of transferable
utility is the quasi-linear (QL) utility speciĕcation. is speciĕcation requires the utility func-
tions of the individuals to be linear in at least one good, usually called the numeraire. Unfortu-
nately, QL utility has strong and unrealistic implications (e.g. absence of income effects for all
but a single good, risk neutrality, etc.).

In the presence of public goods, Bergstrom and Cornes (1981, 1983) and Bergstrom (1989)
showed that a weaker form than QL utility equally implies transferable utility, i.e. so-called
‘generalized’ quasi-linear (GQL) utility (a term coined by Chiappori (2010)). Interestingly,
these authors also showed that this GQL speciĕcation provides a necessary and sufficient con-
dition for transferable utility under Pareto efficient household behavior. e GQL form can
be obtained from the QL speciĕcation through multiplication of the numeraire by a function
deĕned in terms of the bundle of (intra-household) public goods. e additional requirement
that this function is common to all individuals within the household provides the property
of transferable utility. As households typically consume a large amount of public goods, this
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characterization of transferable utility is particularly convenient in household settings.
Recently, Chiappori (2010) derived a set of necessary and sufficient conditions on the (ag-

gregate) household demand function such that it is compatible with a Pareto efficient allocation
where household members are endowed with GQL utility functions. As far as we know, this is
the ĕrst (and –up till now– sole) study that makes the testable implications of transferable util-
ity explicit. In view of our following exposition, we remark that Chiappori adopted a so-called
‘differential’ approach to characterizing GQL utility: he focused on testable (differential) prop-
erties of the household demand function to be consistent with transferable utility. Practical
applications of this differential approach then typically require a prior parametric speciĕcation
of this demand function, which is to be estimated from the data. As we will indicate below, this
implies a most notable difference with the approach that we follow here.

Revealedpreference implications. WecomplementChiappori’s ĕndings by establishing testable
conditions of transferable utility (orGQLutility) in the revealed preference tradition of Samuel-
son (1938), Houthakker (1950), Afriat (1967), Diewert (1973) andVarian (1982). In contrast to
the differential approach, this revealed preference approach obtains conditions that can be ver-
iĕed by (only) using a ĕnite set of household consumption observations (i.e. prices and quan-
tities) and, thus, it does not require the estimation of a household demand function. As such,
a main advantage of these revealed preference conditions is that they allow a nonparametric
analysis of the data: they do not impose any functional form on the utility function (generating
a particular household demand function) except for usual regularity conditions.

More speciĕcally, we get necessary and sufficient conditions that enable checking consis-
tency of a given data set with transferable utility. In the spirit of Varian (1982), we refer to
this as ‘testing’ data consistency with transferable utility. As for the practical application of
this test, we will show that our revealed preference conditions can be equivalently reformulated
as integer programming constraints. is integer programming formulation allows us to test
data consistency with transferable utility by applying standard integer programming solution
techniques.

Our empirical application in Section 5 will demonstrate the empirical usefulness of this
integer programming approach. In this respect, it is worth pointing out that a similar integer
programming approach has been fruitfully applied for a revealed preference analysis of house-
hold consumption behavior; see, for example, Cherchye, De Rock, and Vermeulen (2011) and
Cherchye, Demuynck, and De Rock (2010). Our study complements these earlier studies by
further illustrating the versatility of integer programming techniques for analyzing household
consumption in revealed preference terms. Cherchye, Crawford, De Rock, and Vermeulen
(2009a) also provide a theoretical analysis of the computational complexity of revealed prefer-
ence conditions for general equilibriummodels that are formally close to the transferable utility
conditions that we study here. In principle, this analysis could be translated to our setting but,
for compactness, we will not do this in the current paper.

Further contributions. At this point, it is worth to indicate two further important differences
between our study and the original study of Chiappori (2010), which involve two additional
contributions. First, to establish his characterization, Chiappori assumed observability of the
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numeraire good. However, in practice this numeraire good is typically an ‘outside’ good, i.e.
the amount of money not spent on observed consumption, which is usually not recorded in
real–life applications (including our own application). Given this, our following revealed pref-
erence analysis will principally focus on characterizing transferable utility for the case with an
unobserved numeraire (or outside good). To obtain this characterization, we will ĕrst have to
establish the characterization that applies to an observed numeraire.

Another main difference between our study and the one of Chiappori is that we present
an empirical application that effectively brings our testable implications to observational data.
As indicated above, as far as we know, this provides a ĕrst empirical test of the transferable
utility hypothesis. Speciĕcally, we verify our revealed preference conditions for a sample of
households drawn from the Encuesta Continua De Presupestos Familiares (ECPF), a Spanish
consumer expenditure survey. In general, our results are mixed. Although we ĕnd the as-
sumption of transferable utility to be realistic for a considerable part of the households under
consideration, there is also a substantial share of households whose behavior contradicts the
transferable utility assumption. Given this, we will explore the possibility to rationalize ob-
served consumption behavior by accounting for (a little) measurement error.

As a ĕnal remark, we indicate that Brown and Calsamiglia (2007) recently developed a
revealed preference characterization of the QL utility speciĕcation. By focusing on the GQL
utility form, we provide revealed preference conditions for a model that contains this QL spec-
iĕcation as a special case. In addition, in our empirical exercise we will compare the empirical
goodness of the GQL and QL speciĕcations. A main conclusion here will be that, for the given
households, the GQL utility speciĕcation provides a better ĕt of the observed consumption
behavior than the QL speciĕcation.

3 Generalized quasi-linear utility
Consider a household withM (≥ 2) members. Each memberm (≤ M ) consumes a bundle of
N + 1 private goods (qm, xm) ∈ RN+1

+ and a bundle of K public goods Q ∈ RK
+ . e private

good xm denotes member m’s amount of the numeraire. For each m, we assume xm > 0 in
what follows.1 In addition, we normalize by setting the price of the numeraire equal to one.
Next, the vector p ∈ RN

++ represents the normalized price vector for the bundle of private
goods qm, while the vector P ∈ RK

++ is the normalized price vector for the bundle of public
goods Q.

Utility ofmemberm is represented by the strictly increasing and quasi–concave utility func-
tion um(qm, xm,Q). e utility functions um are said to be of the generalized quasi–linear
(GQL) form if there exist a (member-speciĕc) function bm : RK+N

+ → R and a (common)
function a : RK

+ → R++ such that

um(qm, xm,Q) = a(Q)xm + bm(Q,qm). (1)

Bergstrom and Cornes (1983) have shown that member-speciĕc GQL utilities are necessary
1Just like for quasi-linearity, we need a non-zero amount of the numeraire in order to have transferable utility.
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and sufficient for transferable utility under Pareto efficient household behavior.2
e GQL speciĕcation encompasses the quasi-linear (QL) speciĕcation as a special case.

Speciĕcally, if a(Q) = a for all Q (i.e. the function value a(Q) is everywhere the same) then
the speciĕcation in (1) coincides with the QL speciĕcation:

um(qm, xm,Q) = a xm + bm(Q,qm).

However, if a(Q) varies with the level of public goods, then the GQL speciĕcation vastly ex-
pands the range of utility functions compatible with transferable utility.

We assume that household decisions aremade according to the Pareto criterion: allocations
are chosen such that no member can be made better of without reducing the utility of some
other householdmember.3 In this case, any equilibriumallocation (q1, . . . ,qM , x1, . . . , xM ,Q)
minimizes total household expenditures subject to the constraint that every member of the
household receives at least some predeĕned level of utility ūm. In other words, given a ĕxed
vector of utility levels (ū1, . . . , ūM) ∈ RM

+ , Pareto efficiency imposes that the household deci-
sion making process solves the next optimization problem (OP.1):

min
(q1,...,qM ,x1,...,xM ,Q)∈RM(N+1)+K

+

M∑
m=1

xm +
M∑

m=1

pqm +PQ

s.t. a(Q)xm + bm(Q,qm) ≥ ūm (∀m ≤ M).

In view of our following analysis, we develop an equivalent formulation of OP.1. To obtain
the formulation, we ĕrst observe that each constraint will be binding in the solution of OP.1
because the utility functions um are strictly increasing. Using this, and because xm > 0 for all
m, we can substitute the restrictions in the objective function. As a result, we can equivalently
reformulate the original optimization problem as follows (OP.2):

min
(q1,...,qM ,Q)∈RMN+K

+

α(Q)
M∑

m=1

ūm −
M∑

m=1

βm(qm,Q) +
M∑

m=1

pqm +PQ,

with α(Q) =
1

a (Q)
and βm(qm,Q) =

bm(qm,Q)

a (Q)
(∀m ≤ M) .

From this equivalent formulation, it is directly clear that the optimal solution of problem
OP.1 only depends on the total amount of utility

∑M
m ūm but not on the speciĕc distribution of

this amount over the different household members. is demonstrates the property of trans-
ferable utility under GQL.

Standard ĕrst order conditions characterize the (interior) solutions of problem OP.2 if
the function α is convex and the functions βm are concave. Bergstrom and Cornes (1983)
showed that these requirements are equivalent to the condition that the utility functions um

are quasi-concave (which we assumed before). Next, it is easy to verify that α is decreasing in
2See also Browning, Chiappori, and Weiss (2011, p. 276) for a detailed discussion of this functional speciĕca-

tion.
3See Chiappori (1988) and Cherchye, De Rock, and Vermeulen (2007, 2009b, 2011) for revealed preference

tests of the assumption of Pareto optimality, without the additional assumption of transferable utility.
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Q while the βm are increasing in q. If we further assume that bm and a are bounded from
below and a is strictly positive, then βm is also increasing in Q.4 For an optimal solution
(q1∗, . . . ,qM∗, x1∗, . . . , xM∗,Q∗) of problem OP.2, the ĕrst order conditions are as follows:5

−∂α(Q∗)

∂Q

M∑
m=1

ūm +
M∑

m=1

∂βm(qm∗,Q∗)

∂Q
= P, (foc.1)

∂βm(qm∗,Q∗)

∂qm
= p, (foc.2)

xm∗

α(Q∗)
+

β(qm∗,Q∗)

α(Q∗)
= ūm. (foc.3)

Conditions (foc.1) and (foc.2) provide a formal expression of the household’s marginal deci-
sion rules for the public and private goods, respectively. Next, condition (foc.3) complies with
the GQL utility speciĕcation in (1). e ĕrst order conditions (foc.1)–(foc.3) provide a useful
starting point for developing our revealed preference characterization in the next section.

4 Revealed preference characterization
We analyze the (aggregate) consumption behavior of a household withM individuals, by start-
ing from a ĕnite set T of observed household choices. For each observation t ∈ T , we know the
privately and publicly consumed quantities qt and Qt, as well as the corresponding prices pt

and Pt. Remark that we only observe the aggregate private quantities qt and not the member-
speciĕc quantities qm

t . In a ĕrst instance we assume that the aggregate amount of the numeraire
(‘outside’) good at every t (i.e. xt) is also observed (again we assume that the member-speciĕc
quantities xm

t are not observed). We will relax this assumption later on. As discussed before,
we believe an unobserved numeraire is a more realistic assumption for real life applications.

Numeraire observed. If the consumption of the numeraire is observed, then the relevant data
set is S = {pt,Pt;xt,qt,Qt}t∈T . In what follows, we present necessary and sufficient condi-
tions for the setS to be rationalizable in terms of GQL utility functions, i.e. there exist functions
α and βm so that each bundle (xt,qt,Qt) (t ∈ T ) leads to a solution for OP.2. is provides
a characterization of transferable utility in the revealed preference tradition. Our starting def-
inition is the following:

Deĕnition 1 (TU-rationalizable) e data set S = {pt,Pt;xt,qt,Qt}t∈T is transferable util-
ity (TU)-rationalizable if (i) there exist a convex and decreasing function α : RK

+ → R and
4We can show this by contradiction. Assume that βm is non-increasing inQ at some bundle. en, concavity

of βm implies that βm is unbounded from below. However, as a is strictly positive for all Q, this means that bm
must be unbounded from below, which gives the wanted contradiction. We thank Phil Reny for pointing this out
to us.

5If α or β are not differentiable we may take the sub- and superdifferentials that satisfy the corresponding ĕrst
order conditions. We will also use this in the proof of Proposition 1.

7



M concave and increasing functions βm : RN+K
+ → RN and (ii), for each t, there exist pri-

vate consumption bundles q1
t , . . . ,q

M
t that sum to qt and strictly positive numbers x1

t , . . . , x
M
t

that sum to xt such that {q1
t , . . . ,q

M
t ,Qt} solves OP.2 given the prices pt,Pt and utility levels

ūm
t =

xm
t

α(Qt)
+

βm(qm
t ,Qt)

α(Qt)
.

Of course, the above deĕnition could equally well have been stated by using the functions
a and bm and by referring to program OP.1. We opt for the current statement to enhance the
interpretation of the revealed preference characterization below.

It follows from Deĕnition 1 that the concept of TU-rationalizability implicitly depends on
the number of individuals within the household. However, as the following result shows, this
qualiĕcation is actually irrelevant in view of practical applications: it is empirically impossible
to distinguish between different household sizes; there exists a rationalization of the set S in
terms of a single individual (i.e. M = 1) if and only if there exists one in terms of any number
of individuals. More speciĕcally, we can prove the following result:6

Proposition 1 Consider a data set S = {pt,Pt; xt,qt,Qt}t∈T . e following statements are
equivalent:

1. e data set S is TU-rationalizable for a household ofM individuals;

2. e data set S is TU-rationalizable for a household of a single individual;

3. For all t ∈ T , there exists αt ∈ R++, βt, ūt ∈ R+, λα
t ∈ RK

− and λβ
t ∈ RK

++ such that, for
all t, v ∈ T :

αt − αv ≥ λα
v (Qt −Qv), (RP.1)

βt − βv ≤ pv(qt − qv) + λβ
v (Qt −Qv), (RP.2)

λβ
t − λα

t ūt = Pt, (RP.3)

ūt =
xt

αt

+
βt

αt

. (RP.4)

e equivalence between statements 1 and 2 demonstrates the aggregation property of the
transferable utility assumption that we mentioned above: if a data set is TU-rationalizable for
a household of M individuals, then it is rationalizable for a single individual (endowed with a
GQL utility function), and vice versa.7 Statement 3 then provides the combinatorial conditions
that characterize the collection of data sets that are TU-rationalizable. e ĕrst two conditions
((RP.1) and (RP.2)) deĕne so-called Afriat inequalities (see also our discussion of Afriat’s eo-
rem in Appendix C) that apply to our speciĕc setting. In terms of Deĕnition 1 these inequalities
correspond to, respectively, the (convex) function α and the (concave) function β (where we
drop the indexm because of the equivalence between statements 1 and 2). e vectors λα

t and
λβ

t then represent the gradient vectors of these functions in terms of the public goods bundle.
Finally, the conditions (RP.3) and (RP.4) give the revealed preference counterparts of the ĕrst
order conditions (foc.1) and (foc.3) that we discussed in the previous section.

6Appendix A contains the proofs of our main results.
7Chiappori (2010) obtained a similar result in his differential setting.
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Numeraire unobserved. In real life applications the amount of the numeraire good is usually
not observed. For example, this will also be the case in our own application. e relevant data
set is then given as S = {pt,Pt;qt,Qt}t∈T .

Interestingly, the result in Proposition 1 enables us to establish a characterization of trans-
ferable utility for such a data set S. Speciĕcally, we can derive the following result:

Proposition 2 Consider a data set S = {pt,Pt;qt,Qt}t∈T . e following statements are equiv-
alent:

1. For all t ∈ T , there exist xt ∈ R++ such that {pt,Pt;xt,qt,Qt}t∈T is TU-rationalizable
for a household ofM individuals (or, equivalently, a single individual);

2. For all t ∈ T , there exist UA
t , U

B
t ∈ R+, λA

t ∈ R++, PA
t ∈ RK

+ , PB
t ∈ RK

++ such that, for
all t, v ∈ T :

UA
t − UA

v ≤ λA
t

[
PA

v (Qt −Qv)
]
, (RP.5)

UB
t − UB

v ≤ pv(qt − qv) +PB
v (Qt −Qv), (RP.6)

PA
t +PB

t = Pt. (RP.7)

When compared to the characterization in Proposition 1, the conditions (RP.5), (RP.6) and
(RP.7) in Proposition 2 correspond to (RP.1), (RP.2) and (RP.3), respectively. We refer to the
proof of the result for an explicit construction. is proof also shows that, for each observation
t, we can always construct a numeraire quantity xt thatmeets condition (RP.4) if the data satisfy
(RP.5)–(RP.7).

Nested models. To conclude this section, we discuss the relationship between the transfer-
able utility conditions developed above and closely related rationalizability conditions that have
been considered in the revealed preference literature. Speciĕcally, we make explicit how the
transferable utility model is situated ‘between’ the quasi-linear (QL) utility model and the uni-
tary model. is further clariĕes the interpretation of our revealed preference characterization
of transferable utility.

As a ĕrst exercise, we recall from the previous section that QL utility imposes that the func-
tion value α(Q) is constant for all Q. In terms of the characterization in Proposition 1, this
means that the gradient vector λα

t equals zero. One can then easily verify that the conditions
(RP.1)-(RP.4) reduce to

βt − βv ≤ pt(qt − qv) +Pt(Qt −Qv). (RP.8)

is condition is necessary and sufficient for data consistency with the QL utility speciĕcation.8
We observe that the QL condition (RP.8) is independent of the level of the numeraire (xt),
which implies a notable difference with our above characterization of GQL utility. In fact, this
independence is also revealed by the fact that the conditions (RP.5)–(RP.7) in Proposition 2

8In fact, condition (RP.8) is equivalent to the revealed preference condition that Brown and Calsamiglia (2007)
originally derived for data consistency with the QL speciĕcation.
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equally coincide with (RP.8) if we set PA
t equal to zero for all t ∈ T (which has a similar

meaning as λα
t = 0 in Proposition 1).

Next, it directly follows from statement 2 in Proposition 1 that the transferable utilitymodel
is nested in the unitarymodel. In fact, in Appendix Bwe show that conditions (RP.1)-(RP.4) au-
tomatically require that the data satisfy theGeneralizedAxiomof Revealed Preference (GARP),
which is necessary and sufficient for data consistency with the unitary model.9 In other words,
if a household data set is TU-rationalizable then the household acts as a single individual. How-
ever, a household may well behave as if it were a single decision maker without satisfying trans-
ferable utility. In this sense, our revealed preference conditions in Propositions 1 and 2 capture
the additional restrictions that observed consumption behavior must satisfy for the transfer-
able utility assumption to hold. Our conditions effectively allow for bringing these speciĕc
restrictions of TU-rationalizability to empirical data.

In this respect, one further point relates to Proposition 2. is result makes clear that trans-
ferable utility has testable implications even if the numeraire good is not observed. (And, as we
will show in the next section, these implications may actually be fairly strong for observational
data.) By contrast, following a revealed preference approach similar to ours, Varian (1988) has
shown that the unitary model does not have any testable implications as soon as we do not ob-
serve the consumption quantity of some good (in casu the numeraire quantity xt). We believe
this is an interesting observation, as it suggests that considering the transferable utility model
may be empirically meaningful even if the unitary model is non-testable. (In fact, it also mo-
tivates why we will not consider tests of the unitary model in our following application, which
focuses on a setting with an unobserved numeraire.)

5 Empirical application
In this section, we will use the above revealed preference characterization to empirically assess
the validity of the transferable utility hypothesis for Spanish household data. As indicated in
the Introduction, our application consists of two complementary exercises. In a ĕrst step, we
consider the basic revealed preference tests as they have been introduced above. It follows from
our exposition that these tests are ‘sharp’, in the following sense: either a data set exactly satisĕes
the data consistency conditions or it does not; the tests abstract from possible measurement
error in the consumption data. In this exercise, an important focus will be on comparing the
empirical performance of the GQL andQL utility speciĕcations. Here, amain result will be that
a considerable part of the households under evaluation passes the GQL (or transferable utility)
test while failing theQL test. To fairly assess this difference, we also consider the discriminatory
power of the two tests under study; this should account for a possible trade–off between power
and pass rates.

In our second step, we then introduce an extension of our basic tests that does account for
the possibility of measurement error. Speciĕcally, we compute the minimal data adjustments

9See the next section (Deĕnition 2) for a formal deĕnition of GARP. In this respect, we also refer to Afriat’s
eorem that we recapture in Appendix C. is result states the conditions for a price-quantity set to be rational-
izable in terms of a single utility function. As such, it actually provides the revealed preference characterization of
the unitary model that complements our characterization of the transferable utility model.
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that we need formaking behavior consistentwith transferable utility (i.e. rationalizable in terms
of GQL utility functions). Essentially, if the observed behavior of some household does not
exactly ĕt transferable utility, this will tell us how ‘close’ the household data are to such an exact
ĕt. Like before, we do not merely study the GQL speciĕcation, but also compare the results
for this speciĕcation with those for the QL speciĕcation. is should provide complementary
information on the empirical validity of transferable utility as well as the relative empirical
performance of the two utility speciĕcations.

As wemotivated before, our following analysis will concentrate on the case where the quan-
tity of the numeraire good is not observed. Before presenting our data and results, we ĕrst in-
troduce the integer programming formulation of the conditions (RP.5)–(RP.7) in Proposition
2.

Integer programming formulation. e conditions (RP.6) and (RP.7) in Proposition 2 are
linear and therefore easily veriĕable, while theAfriat inequalities in condition (RP.5) are quadratic
(i.e. nonlinear in the unknown λt’s and PA

t ’s). From a practical point of view, this nonlin-
earity makes it difficult to empirically verify the characterization in Proposition 2. However,
these Afriat inequalities can be equivalently restated in terms of linear (mixed) binary integer
programming constraints by making use of the Generalized Axiom of Revealed Preferences
(GARP); this follows fromAfriat’seorem that we recapture in Appendix C. As is well known,
linear (mixed) binary integer programming problems can be solved more efficiently than pro-
grams with quadratic constraints.10

Let us consider a general setting with a set Z = {wl;yl}l∈L containing (strictly positive)
price vectors wl and (positive) quantity vectors yl. en the GARP condition is as follows:

Deĕnition 2 Consider a set Z = {wl;yl}l∈L. For any l1, l2 ∈ L, yl1Ryl2 if wl1yl1 ≥ wl1yl2 .
Next, yl1Ryl2 if there exists a sequence r, . . . , t (with r, . . . , t ∈ L) such that yl1Ryr,…,ytRyl2 .
e set Z satisĕes GARP if, for all l1, l2 ∈ L, yl1Ryl2 implieswl2yl1 ≥ wl2yl2 . We refer to R as
a revealed preference relation.

We now have the following proposition, which makes use of the binary variables rt,v.

Proposition 3 Consider a data set S = {pt,Pt;qt,Qt}t∈T . e following statements are equiv-
alent:

1. For all t ∈ T , there exist xt ∈ R++ such that {pt,Pt;xt,qt,Qt}t∈T is TU-rationalizable
for a household ofM individuals (or, equivalently, a single individual);

2. For all t, v ∈ T , there exist rt,v ∈ {0, 1}, UA
t , U

B
t ∈ R+,PA

t ∈ RK
+ ,PB

t ∈ RK
++ such that,

10Speciĕcally, by adding for any binary variable r the constraints 0 ≤ r ≤ 1 and r2 = r, we can easily convert
any linear (mixed) binary integer programming problem into a problem with quadratic constraints.
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for all t, v, s ∈ T :

UB
t − UB

v ≤ pv(qt − qv) +PB
v (Qt −Qv), (IP.1)

PA
t +PB

t = Pt, (IP.2)
PA

t (Qt −Qv) < rt,vC, (IP.3)
rt,v + rv,s ≤ 1 + rt,s, (IP.4)

PA
t (Qt −Qv) ≤ (1− rv,t)C, (IP.5)

with C a given number exceeding all observedPtQt.

e linear inequalities (IP.1) and (IP.2) are clearly identical to (RP.6) and (RP.7). Further,
the nonlinear inequalities (RP.5) have been replaced by the linear inequalities (IP.3)–(IP.5) that
make use of real and binary variables. More speciĕcally, (IP.3)-(IP.5) correspond to the GARP
condition in Deĕnition 2 in which we take wl = PA

l and yl = Ql.
To explain the inequalities (IP.3)-(IP.5), we interpret the variables rt,v in terms of the re-

vealed preference relation R, i.e. rt,v = 1 corresponds to QtRQv. e constraint (IP.3) then
imposes QtRQv (or rt,v = 1) whenever PA

t Qt ≥ PA
t Qv. Next, the constraint (IP.4) complies

with transitivity of the relation R: if QtRQv (rt,v = 1) and QvRQs (rv,s = 1), then QtRQs

(rt,s = 1). Finally, the constraint (IP.5) states that, if QvRQt (rv,t = 1), then we must have
PA

t Qt ≤ PA
t Qv.

For a given data set S, we can verify the above linear inequalities by usingmixed integer lin-
ear programming techniques. Given the result in Proposition 3, this effectively checks whether
the set S is consistent with transferable utility (i.e. rationalizable in terms of GQL utility func-
tions).

Application set-up. Our data are drawn from the Encuesta Continua de Presupestos Famil-
iares (ECPF). e ECPF is a quarterly budget survey (1985–1997) that interviews about 3200
Spanish households on their consumption expenditures. For each household, the data pro-
vides consumption observations for a maximum of eight consecutive quarters. See Browning
and Collado (2001) and Crawford (2010) for a more detailed explanation of this data set.

For obvious reasons, we focus on households with at least two household members. Next,
all households in our sample are headed by a married couple where the husband is full time
employed and the wife is outside the labor force. Finally, we exclude all households with less
than eight observations. In the end, this obtains a panel with 1585 households.

For each household, we have consumption data (quantities and prices) for 15 nondurable
consumption goods: (i) food and non-alcoholic drinks at home; (ii) alcohol; (iii) tobacco; (iv)
energy at home (heating by electricity); (v) services at home (heating: not electricity, water,
furniture repair); (vi) nondurables at home (cleaning products); (vii) non-durable medicines;
(viii) medical services; (ix) transportation; (x) petrol; (xi) leisure (cinema, theater, clubs for
sports); (xii) personal services; (xiii) personal nondurables (toothpaste, soap); (xiv) restaurants
and bars and (xv) traveling (holiday). We will treat energy at home, services at home and non-
durables at home as our three public goods. To obtain normalized prices, we deĘate the price
(index) for each good (category) by the value of the consumer price index in the corresponding
quarter.
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To avoid (debatable) preference homogeneity assumptions across similar households, we
will consider each household separately in our following analysis. In other words, we consider
a different data set S = {pt, Pt; qt, Qt}t∈T for every individual household. is practice
effectively accounts for inter–household heterogeneity and, thus, optimally exploits the panel
structure of our data set.

Pass rates and power. We ĕrst consider the basic tests of our rationalizability conditions,
which do not account for measurement error in the household consumption data. In what fol-
lows, we do not only consider themere test results but also the discriminatory power of the two
(GQL and QL) rationalizability conditions under study. Indeed, Bronars (1987) and, more re-
cently, Andreoni and Harbaugh (2008) and Beatty and Crawford (2011) –rather convincingly–
argue that revealed preference test results (indicating pass or fail of the data for some behavioral
condition) should be complemented with powermeasures to obtain a fair empirical assessment
of the condition under evaluation. Favorable test results (i.e. a high pass rate for some given
data), which prima facie suggest a good empirical ĕt, have little value if the test has little dis-
criminatory power (i.e. the condition is hard to reject for the data at hand).

For both rationalizability conditions under evaluation, we compute a powermeasure for ev-
ery individual household. ismeasure quantiĕes discriminatory power in terms of the proba-
bility to detect random behavior, and is constructed as follows. We model random behavior by
using a bootstrap procedure: we simulate 1000 random series of eight consumption choices by
constructing, for each of the eight observed household budgets, a random quantity bundle ex-
hausting the given budget (for the corresponding prices). We construct these quantity bundles
by randomly drawing (with replacement) budget shares (for the 15 goods) from the set of 12680
(= 8 x 1585) observed household choices in our data set. e power measure is then calculated
as one minus the proportion of these randomly generated consumption series that are consis-
tent with the rationalizability condition under evaluation. By using this bootstrap method, our
power assessment gives information on the expected distribution of violations under random
choice, while incorporating information on the households’ actual choices.11

Table 1 presents our results. e ĕrst column in the table gives the pass rates for the two
rationalizability conditions. Each pass rate gives the proportion of households in our sample
that meets a particular (GQL or QL) condition. A ĕrst observation is that the GQL condition
does not allow us to rationalize all consumption behavior in our sample. Still, we ĕnd that
about half of all households (i.e. 49%) are consistent with the GQL speciĕcation. For these
households, we cannot reject the transferable utility hypothesis. By contrast, the QL utility
speciĕcation appears to be overly stringent for the current data set: not a single household
passes the corresponding rationalizability condition.

e remaining columns of Table 1 report on the power distribution for the two rational-
izability tests. First, for the QL speciĕcation we obtain that the power distribution is almost
entirely centered around unity, which reveals a (nearly) 100% probability of rejecting random
behavior for each individual household. At this point, we note that this high power should not
be too surprising given our previous ĕnding that the QL condition is rejected for every house-

11We refer to Bronars (1987) and Andreoni and Harbaugh (2008) for a general discussion on alternative pro-
cedures to evaluate power in the context of revealed preference tests such as ours.
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Figure 1: Power
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hold in our sample. Next, we observe that the discriminatory power is rather substantially
lower for the GQL test than for the QL test. However, the GQL test has reasonable power for a
considerable part of the households; see, for example, the median, 3rd quartile and max values
in Table 1. Figure 1 provides a corresponding kernel estimation of the GQL power distribu-
tion. A notable observation is that this distribution is bimodal with peaks around 0.15 and 0.5.
Overall, our results reveal quite some variation in the power of the GQL test: it is fairly low for
some household but considerably high for other households.12

Table 1: Pass rates and power
condition pass rate power

mean min 1st quartile median 3rd quartile max

QL 0 1 0.998 1 1 1 1
GQL 0.488 0.398 0.101 0.241 0.449 0.515 0.674

As a further investigation, we consider two additional power distributions for the GQL test.
Speciĕcally, we compare the power distribution for the group of households that pass the test

12At this point, it is worth indicating that the power of revealed preference tests is driven essentially by price
and income variation over consumption observations (see for example Bronars (1987)). Here, we note that we
have a rotating panel of households, so that both price and income differences can explain the observed power
variation across households.
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(pass group) with the one for the group of households that fail the test (fail group). Table 2
gives the results. We observe a trade–off between power and pass rate for the GQL test: the
power distribution for the fail group generally dominates the distribution for the pass group.
Interestingly, however, this trade-off seems to be not very prevalent. For example, the minimal
power for the pass group actually exceeds (albeit slightly) the one for the fail group, and the
differences between the median, 3rd quartile and max values in Table 2 are rather small. In our
opinion, this indicates that the better ĕt of the transferable utility model for the pass group can
hardly be attributed to a lower power of the GQL test for this group (as compared to the fail
group).

Table 2: Power for pass and fail groups

group power
mean min 1st quartile median 3rd quartile max

pass 0.352 0.105 0.174 0.388 0.496 0.659
fail 0.441 0.101 0.394 0.473 0.531 0.674

Predictive success. As an additional exercise, we compute a predictive success measure for
the two conditions that we study. is measure was recently introduced and axiomatized by
Beatty and Crawford (2011) and is based on an original proposal of Selten (1991). It com-
bines the pass rate and power of a particular behavioral condition into a single metric: for each
household, it subtracts 1 minus the power measure from the pass measure (1 or 0). As such,
the predictive success measure can be interpreted as a power-adjusted pass rate. e measure
is always situated between -1 and 1. Generally, a higher predictive success value then reveals
a better empirical performance of the behavioral condition that is subject to testing. More
speciĕcally, a predictive success value that is close to -1 pertains to a household that fails the
rationalizability condition (i.e. pass measure equals 0) even though the power of the test is low
(i.e. close to 0). Conversely, a predictive success value close to 1 indicates a household that
passes the condition (i.e. pass measure equals 1) in a situation where this condition has high
power (i.e. close to 1). Finally, a predictive success value that equals exactly zero means that
the condition is not informative for the household at hand: the condition does not perform
any better than the (uninformative) assumption that households exhibit random consumption
behavior (for which the power is 0 and the pass measure equals 1, by construction). For a given
household, we will use this zero value as a natural threshold value to identify a rationalizabil-
ity condition as a ‘bad’ condition (if predictive success is below zero) or a ‘good’ condition (if
predictive success is above zero).

Table 3 presents summary statistics for the predictive success measures that are relevant
here. ese statistics tell us about the empirical performance of the two rationalizability condi-
tions at the aggregate level of our sample (with 1585 households). As a ĕrst observation, we note
that the distribution is centered around zero for the QL condition, with (almost) no variation
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across observations. In fact, we could have expected this result on the basis of the 0% pass rate
and (nearly) 100% power results that we presented before. Given the above, this suggests that
the QL condition is not informative for the data at hand. By contrast, the pattern seems to be
more indicative for the GQL condition. Like for the QL condition, we again get that the mean
predictive success score is close to zero, but now there is more variation across households.

Table 3: Predictive success

condition mean min 1st quartile median 3rd quartile max

QL 0 -0.002 0 0 0 0
GQL -0.114 -0.899 -0.530 -0.371 0.376 0.659

To provide a better view of this cross-household variation, Figure 2 depicts an estimation of
the predictive success distribution for theGQLcondition. Interestingly, the ĕgure reveals a clear
bimodal pattern: the distribution achieves a ĕrst peak around−0.55 and a second peak around
0.5. One possible interpretation of this bimodalility is that it suggests a particular split-up of our
original sample of households: for a substantial group of households the GQL condition can
be identiĕed empirically as a ‘good’ one, whereas it is a rather ‘bad’ condition for the remaining
households. In turn, this indicates that the adequacy of the GQL condition may depend on
the speciĕc household (characteristics) at hand. In this respect, we have compared observable
characteristics (in our data set) for the two household groups, i.e. households with predictive
success above zero (forwhichGQL is a ‘good’ condition) andhouseholdswith predictive success
below zero (for which GQL is a ‘bad’ condition). We considered the following characteristics:
age of the household head, number of household members, specialized worker occupation and
home ownership. However, we found no statistical differences between the two subsamples.
A (tentative) conclusion can be that other (unobserved) household characteristics drive the
adequacy of the GQL condition.

Measurement error. So far, we have considered basic tests for the GQL and QL conditions.
As we mentioned before, these are sharp tests that do not account for measurement error. ey
only tell us whether households are exact optimizers in terms of a particular behavioral (GQLor
QL) condition for the data at hand. Obviously, this is a demanding premise since consumption
data are oen contaminated by (small) error. From this perspective, it seems useful to com-
plement our ĕrst assessment with a second exercise which, for household behavior violating
the sharp rationalizability conditions, evaluates how close observed behavior is to rationaliz-
ability once we account for measurement error. erefore, in what follows we concentrate on
an extension of the basic tests that seeks minimal data adjustments needed for exact consis-
tency with the behavioral conditions under study. For our speciĕc application, we here focus
on adjustments of the price data. is follows Crawford (2010), who motivates the possibility
of price errors for the sample at hand.13 Our following method for dealing with (price) errors

13However, it should be clear that our following method is easily accommodated to account for quantity errors
in (other) applications where this seems more adequate.
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Figure 2: Predictive success
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essentially adapts an idea of Varian (1985), who originally focused on revealed preference anal-
ysis of the unitary model. Aer introducing the method, we will present (and compare) our
empirical results for the GQL and QL speciĕcations.

For each observation t, we let the vectors εt and υt represent the measurement errors in
the prices of, respectively, the private goods (pt) and the public goods (Pt). We assume that
these errors are independently normally distributed with zero mean and variance σ2; Γt andΛt

stand for the diagonal matrices with as diagonal entries 1 + εt,n and 1 + υt,k.14 en, we have
that the observed prices pt and Pt are related to the ‘true’ (but unobserved) prices p̃t and P̃t

in the following way:
p̃t = Γtpt and P̃t = ΛtPt, (2)

We note that we assume a multiplicative error structure. is allows for a higher variance asso-
ciated with higher prices, which is intuitively plausible. It will also simplify the interpretation
of our following empirical results.

Using (2), we can reformulate our revealed preference conditions in terms of the true prices
p̃t and P̃t, by replacing the conditions (IP.1) and (IP.2) with, respectively,

UB
t − UB

v ≤ Γvpv(qt − qv) +PB
v (Qt −Qv), (IP.1-e)

PA
v +PB

v = ΛvPv. (IP.2-e)

Now, if consumption is not consistent with the conditins (IP.1)–(IP.5), we know that we
will need εt and υt different from zero to satisfy the conditions (IP.1-e), (IP.2-e) and (IP.3)-
(IP.5). As we do not now the true values of the errors εt and υt (because the true prices are

14Here, εt,n stands for the n-th entry of the vector εt and υt,k for k-th entry of the vector υt.
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unobserved), we compute the minimal sum of squared errors that makes the data satisfy these
last conditions. is can effectively be interpreted in terms of the minimal price adjustments
needed for obtaining consistency with the behavioral condition subject to evaluation; it quan-
tiĕes how close observed behavior is to such consistency. Formally, we deĕne ε̂t and υ̂t that
minimize

R̂ =
∑
t∈T

(ε̂tε̂t + υ̂tυ̂t)

subject to the constraints (IP.1-e), (IP.2-e) and (IP.3)–(IP.5). is obtains a minimization prob-
lem with a quadratic objective function and mixed linear programming constraints. Again,
solution methods for such problems are fairly standard.

Interestingly, the outcome of the minimization problem can also be used to statistically test
the null hypothesis that rationalizability holds when accounting for measurement error. To
see this, let R represent the sum of squared errors associated with the true prices (i.e. R =∑

t∈T (εtεt + υtυt)). Given our above assumptions, we know that15

R

σ2
∼ χ2

120.

us, for any critical valueCα taken from the given chi-squared distribution, we reject the null
hypothesis of rationalizability at a signiĕcance level α as soon as R/σ2 ≥ Cα.

Of course, in practicewe donot observeR orσ2. However, we can use that, by construction,
R̂ will bound R from below, so that (for given σ2)

R̂

σ2
≤ R

σ2
.

en, following an original idea of Varian (1985), we can compute (for critical value Cα asso-
ciated with some predeĕned signiĕcance level α)

σ̂ =

√
R̂

Cα

.

Our above argument directly obtains that σ̂ gives the standard deviation (of the measurement
errors εt and υt) one minimally needs to account for in order not to reject the null hypothesis
that behavior is rationalizable. In practice, σ̂ can be compared to one’s prior belief regarding the
true standard deviation σ. If σ̂ exceeds this prior belief, then one can reject the null hypothesis
for rationalizability (at the signiĕcance level α), and vice versa. It is worth pointing out that,
clearly, this test procedure is fairly conservative; the null hypothesis of rationalizable behavior
will be rejected only if there is strong evidence against it.

Table 4 provides some key values for the empirical distribution of the measure σ̂ associated
with signiĕcance levelα = 0.05. It reports for the subset of households that fail the ‘sharp’ GQL
andQL tests. Recall that we used amultiplicative error structure, which, from an interpretation
point of view, implies that σ̂ captures standard deviation of the price errors in percentage terms.

15e degrees of freedom equal the number of data points that are perturbed. In our application, we consider
8 observations and 15 goods, which makes that we have 120 prices for which we allow errors.
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Table 4: Measurement error (σ̂)

mean min 1st quartile median 3rd quartile max

QL 0.0057 0.0005 0.0036 0.0055 0.0074 0.0158
GQL 0.0017 0 0.0002 0.0011 0.0026 0.0111

We ĕrst consider the GQL results. Here, we conclude that measurement errors may effec-
tively explain the rejections of the ‘sharp’ test. Indeed, the maximum σ̂ value amounts to no
more than 1, 1%. In other words, the behavior of this ‘worst ĕtting’ household can be rational-
ized in terms of transferable utility (or GQL utility) as soon as we believe the price errors have
a standard deviation of (minimally) 1, 1%. In addition, looking at the 3rd quartile value, we
conclude rationalizability of 75% of the households if we accept a standard deviation of only
0.3%. ese are obviously very small numbers. As such, this provides a strong empirical case
for transferable utility in the case one believes prices are measured with errors.

Let us then focus on the QL results. As a ĕrst observation, we ĕnd that the corresponding
values in Table 4 are everywhere above those for the GQL model. is falls in line with the
basic test results that we reported before, and so again suggests that the GQL speciĕcation has
better empirical support than he QL speciĕcation. However, the σ̂ values are generally low.
For example, the maximum value in the sample amounts to only 1.5%. us, if one believes
prices are measured with error, the observed consumption behavior can be rationalized fairly
well in terms of the QL speciĕcation; a little degree of price adjustments allows for such a ra-
tionalization. From this perspective, we may conclude that there does not seem to be a very
strong empirical case against the QL speciĕcation when accounting for price errors.

What do we learn from all this? Our application allows for drawing both methodological
and empirical conclusions. At the methodological level, we believe that our application con-
vincingly demonstrates the practical usefulness of our revealed preference characterization for
assessing the validity of transferable (or GQL) utility in real life settings. Also, it shows that the
conditions we derived above provide a useful basis for analyzing power and predictive success,
and are directly extended to account for measurement error in the consumption data. More
generally, this illustrates that using our integer programming formulation does not restrict the
revealed preference analysis. Starting from this formulation, we can empirically address the
same type of questions (including methodological extensions) as in more standard analysis of
the unitary model of household consumption. In this respect, we also refer to our discussion
in the concluding section, where we touch upon recovery and forecasting analysis.

Next, at the empirical level, we have investigated the validity of the transferable utility hy-
pothesis, and hereby compared the performance of the GQL and QL speciĕcations for a par-
ticular sample of Spanish households. We conducted two complementary exercises. e con-
clusions of our ĕrst exercise, which focused on the basic tests without measurement error, are
quite clear-cut. A ĕrst main conclusion is that the GQL speciĕcation is more useful than the
QL speciĕcation, which is strongly rejected for our data. In fact, for a considerable subset of
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households the GQL speciĕcation performs rather well empirically. However, if we focus on
the ‘sharp’ GQL test, there is also a substantial amount of households that behave inconsistently
with transferable utility. Wewere not able to explain the observed violations of transferable util-
ity by characteristics observed in our data set. So, from this point of view, other (unobserved)
characteristics may deĕne (exact) consistency with the transferable utility speciĕcation.

Our second exercise took a very different perspective and investigated whether measure-
ment error in the price data can explain the observed violations of (GQL and QL) rationaliz-
ability. Interestingly, we did ĕnd that accounting for a little measurement error can rationalize
all household behavior in terms of transferable utility (i.e. obtains consistency with the GQL
condition). In fact, and somewhat remarkably, we now also obtained a much stronger empiri-
cal case pro the QL speciĕcation: when considering a small amount of measurement error, we
canmake the observed consumption behavior consistent with the QL speciĕcation under small
adjustments of the observed prices. us, our earlier conclusion in favor of the GQL speciĕca-
tion and against the QL speciĕcation seems to depend largely on the maintained assumption
that prices are measured accurately.

6 Conclusion
Wehave presented revealed preference conditions thatmust be satisĕed by observed behavior to
be consistent with transferable utility (or GQL utility) under Pareto efficiency. ese conditions
are easily veriĕed by using integer programming techniques, which is attractive from a practical
point of view. is provides an easy-to-apply framework for evaluating the empirical realism
of the transferable utility hypothesis in observational settings. As a side-result, our theoretical
discussion also made clear how the transferable utility model is situated ‘between’ the quasi-
linear (QL) and unitary model: its (revealed preference) testable implications are weaker than
the QL implications but stronger than the unitary implications.

We have demonstrated the usefulness of our revealed preference framework by an empirical
application to Spanish households. Generally, our results suggest that the assumption of trans-
ferable utility is a useful one for this sample of households. First, when considering our basic re-
vealed preference tests, which abstract from errors in the consumption data, we concluded that
a large class of households satisĕes transferable utility. We then investigated whether account-
ing for errors in the price data allowed for rationalizing behavior that is not exactly consistent
with transferable utility. Interestingly, we found that this is effectively the case: we needed only
small adjustments of the observed prices to rationalize all household consumption behavior in
terms of transferable utility. It seems interesting to investigate whether these conclusions are
conĕrmed for other household data (that potentially imply more powerful revealed preference
tests). We provided a framework that allows for doing so in a fairly easy manner.

In our application, we also compared the empirical ĕt of the GQL speciĕcation with the one
of the more restrictive QL speciĕcation. For the basic revealed preference tests, we found quite
an important difference: none of the households appeared to be (exactly) consistent with QL
utility, while a substantial part of the households meet the conditions for GQL utility. is dif-
ference becamemuch less pronouncedwhenwe accounted for price errors. We found that small
price adjustments can obtain rationalizability of the observed household behavior in terms of
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the QL speciĕcation. is suggests that, for the sample under study, the favorable results for the
GQL speciĕcation as compared to the QL speciĕcation are mainly driven by the assumption
that prices are measured without error. At this point, however, it is also worth to recall that the
test procedure we used to account for measurement error is a fairly conservative one.

We see different avenues for follow-up research. From an empirical point of view, an in-
depth investigation can provide more detailed insights into possible explanations of violations
of transferable utility. For example, one may use richer data sets than the one we studied
(e.g. involving additional consumption observations and/or household characteristics) tomore
thoroughly investigate the speciĕc household characteristics that deĕne the adequacy of the
transferable utility model. We believe this is particularly interesting given the wide use of the
transferable utility hypothesis in (theoretical) household economics. Next, as also indicated in
the Introduction, our framework can equally be used for assessing the validity of the transfer-
able utility hypothesis in alternative (non-household) settings where this assumption crucially
underlies important theoretical results.

Finally, to keep our exposition simple, our analysis has concentrated on the characteriza-
tion of transferable utility, and testing consistency of observed behavior with this character-
ization. If observed behavior is found consistent with a behavioral hypothesis, then natural
next questions involve recovering/identifying the corresponding decision model that rational-
izes the observed consumption behavior, and to forecasting behavior in new situations. In this
respect, it is worth emphasizing that our revealed preference characterization does allow for
subsequent recovery and forecasting analysis. For example, this analysis can develop along the
lines of Varian (1982) and, more recently, Blundell, Browning, and Crawford (2008), who use
similar revealed preference methods to consider such questions for the unitary model. In this
respect, we recall from our theoretical discussion that the GQL (or transferable utility) model
has stronger testable implications than the unitary model, which is usually considered in re-
vealed preference applications. As such, we can expect that using the GQL speciĕcation (when
it cannot be rejected) can effectively produce more vigorous recovery and forecasting results.
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Appendix A: proofs

Proof of Proposition 1
(2 → 3). By convexity of the function α(Q) and concavity of the function β(q,Q) we must
have that for all observations t, v ∈ T :

α(Qt)− α(Qv) ≥
∂α(Qv)

∂Q
(Qt −Qv) ,

βm(qt,Qt)− βm(qv,Qv) ≤
∂β(qv,Qv)

∂q
(qt − qv) +

∂β(qv,Qv)

∂Q
(Qt −Qv) .
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For all t ∈ T , deĕne αt = α(Qt), βt = β(qt,Qt), ūt = u(xt,qt,Qt), λα
t =

∂α(Qt)

∂Q
and

λβ
t =

∂β(qt,Qt)

∂Q
. en, substituting and using the ĕrst order conditions (foc.1)-(foc.3) ob-

tains conditions (RP.1)-(RP.4).

(1 → 3) e proof is similar to the case ( 2 → 3) except now, we deĕne βt =
∑

m βm(qm
t ,Qt)

and λβ
t =

∑ ∂β(qm
t ,Qt)

∂Q
.

(3 → 2). Deĕne the functions α(Q) and β(q,Q) in the following way:

α(Q) = max
t∈T

{αt + λα
t (Q−Qt)} , (A.1)

β(q,Q) = min
t∈T

{
βt + pt(q− qt) + λβ

t (Q−Qt)
}
. (A.2)

Deĕne u(x,q,Q) =
x

α(Q)
+

β(q,Q)

α(Q)
.

e functionα is convex and β is concave, hence u is quasi-concave. Further, it is increasing
in both q and Q. Finally, using a similar argument as Varian (1982, p.970), we can derive that
α(Qt) = αt and β(qt,Qt) = βt for all t ∈ T

Given all this, we can prove the result ad absurdum. Suppose thatS is not TU-rationalizable.
en, there must exist an allocation {x,q,Q} such that x+ ptq+PtQ < xt + ptqt +PtQt

and u(x,q,Q) ≥ u(xt,qt,Qt) = ūt. We thus get

x+ ptq+PtQ ≥ ūtα(Q)− β(q,Q) + ptq+PtQ

≥ ūtαt − βt +
(
λα

t ūt − λβ
t

)
(Q−Qt)− pt(q− qt) + ptq+PtQ

= xt + ptqt +PtQt,

which gives thewanted contradiction. (eĕrst inequality combinesu(x,q,Q) = (x/α(Q))+
(β(q,Q)/α(Q)) with u(x,q,Q) ≥ ūt, the second inequality uses (A.1) and (A.2), and the ĕ-
nal equality uses (RP.3) and (RP.4).)

(3 → 1) e argument is similar to one for (3 → 2), when using the additional deĕnition
βm(qm,Q) =

1

M
β(Mqm,Q). en, for all t ∈ T and m ≤ M , we set qm

t = qt/M and
xm
t = xt/M .

Proof of Proposition 2
(1→ 2)Assume that there exist numbersxt such that {pt,Pt;xt,qt,Qt}t∈T is TU-rationalizable.
en, it follows from Proposition 1 that there exist positive numbers αt, βt and ūt, vectors
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λα
t ∈ RK

− and λβ
t ∈ RK

++ such that

αt − αv ≥ λα
v (Qt −Qv) (RP.1)

βt − βv ≤ pv(qt − qv) + λβ
v (Qt −Qv) (RP.2)

λβ
t − λα

t ūt = Pt (RP.3)

ūt =
xt

αt

+
βt

αt

(RP.4)

Setting, for all t ∈ T , βt = UB
t , λβ

t = PB
t and PA

t = −λA
t ūt translates condition (RP.2)

and (RP.3) into conditions (RP.6) and (RP.7). So we only need to demonstrate condition (RP.5).
Multiplying (RP.1) by minus one, gives:

−αt − (−αv) ≤
1

ūt

PA
v (Qt −Qv)

Given this, setting λA
t = 1/ūt > 0 andUA

t = −αt−minv{−αv} ≥ 0 establishes condition
(RP.5).

(2 → 1) Assume that there exist numbers UA
t , U

B
t and λA

t , and vectors PA
v and PB

v such that

UA
t − UA

v ≤ λA
t

[
PA

v (Qt −Qv)
]

(RP.5)
UB
t − UB

v ≤ pv(qt − qv) +PB
v (Qt −Qv) (RP.6)

PA
t +PB

t = Pt (RP.7)

First, by setting, for all t ∈ T , βt = UB
t , λβ

t = PB
t , we derive (RP.2).

Next, we deĕne ūt = 1
/
λA
t and PA

t

/
ūt = −λα

t . Substitution in condition (RP.7) gives
condition (RP.3).

Further, multiplying (RP.5) by minus one gives,

−UA
t − (−UA

v ) ≥ λα
t (Qt −Qv) (A.3)

As ūt > 0, there exist a number δ > 0 such that ūt > δ for all t ∈ T . Now, consider a number
z ∈ R++ and deĕne αt such that (i) αt ≡ −UA

t + z > 0 (∀t ∈ T ) and (ii) 0 < βt/αt ≤ δ.
ese conditions can be guaranteed by taking z large enough. Using this deĕnition of αt in
condition (A.3) above gives condition (RP.1).

Finally, we deĕne xt such that

xt ≡ αtūt − βt > 0,

which obtains condition (RP.4).

Proof of Proposition 3
is result uses the equivalence of (RP.5) and GARP; this is stated more formally in eorem 1
below. Next, in the main text we argued that (IP.3)-(IP.5) do allow for verifying GARP for our
setting.

25



Appendix B: Conditions (RP.1)-(RP.4) imply GARP
From (RP.2) it follows that

(βt + xt)− (βv + xv) ≤ pv(qt − qv) + λβ
v (Qt −Qv) + xt − xv.

en, using (RP.4) we obtain

ūtαt − ūvαv ≤ pv(qt − qv) + (λ)v(Qt −Qv) + xt − xv.

Next, adding to both sides ūv(αv − αt) and making use of (RP.1) gives

(ūt − ūv)αt ≤ pv(qt − qv) + λβ
v (Qt −Qv) + ūv(αv − αt) + xt − xv

≤ pv(qt − qv) + λβ
v (Qt −Qv)− ūvλ

α
v (Qt −Qv) + xt − xv.

Finally, from (RP.3) we get

(ūt − ūv)αt ≤ pv(qt − qv) +Pv(Qt −Qv) + xt − xv.

(3)

Now, the above inequality shows that, if pvqv + PvQv + xv ≥ pvqt + PvQt + xt, then
ūv ≥ ūt. Hence, if (qv,Qv, xv)R(qt,Qt, xt), then also ūv ≥ ūt. As such, if on the contrary
GARP is not satisĕed, theremust exist observations t and v ∈ T such that ūv ≥ ūt and ūt > ūv,
a contradiction.

Appendix C: Afriat’s eorem
In the main text, we make use of Afriat’s eorem. is result was stated by Varian (1982) and
is based on the original work of Afriat (1967). It is probably the single most important theorem
in the revealed preference literature. To facilitate our exposition in the main text, we brieĘy
recapture the result here. We refer to Varian (1982) for a more detailed discussion.

Let us consider a general setting with a price-quantity set Z as introduced in Section 5 of
the main text. We consider the following rationalizability concept:

Deĕnition 3 (U-rationalizable) e set Z = {wl;yl}l∈L is utility (U)-rationalizable if there
exist a non-satiated utility function u such that each quantity bundle yl maximizes the function
u in the following sense: yl ∈ argmaxy u (y) s.t.wly ≤ wlyl.

We can now state Afriat’s eorem.

eorem 1 (Afriat’s eorem) Consider a set Z = {wl;yl}l∈L. e following conditions are
equivalent:

1. e set Z is U-rationalizable;

2. e set Z satisĕes GARP;
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3. For all l ∈ L, there exist Ul ∈ R+ and λl ∈ R++ such that, for all l, k ∈ L :

Ul − Uk ≤ λkwk(yl − yk).

4. ere exist a strictly increasing, continuous and concave utility function that provides a
U-rationalization for Z .

In Section 5 of our main text, we use two important implications of this result. First,
the equivalence between statements 1 (or 4) and 2 implies that a price-quantity set Z is U-
rationalizable by some utility function if and only if it is consistent with GARP. Second, the
equivalence between statements 2 and 3 means that the set Z is consistent with GARP if and
only if it satisĕes a number of inequalities deĕned in the unknowns Ul and λl. ese last in-
equalities are commonly referred to as ‘Afriat inequalities’ corresponding to the set Z . In-
tuitively, these Afriat inequalities allow us to obtain estimates for the utility levels (Ul) and
marginal utilities (λl) attained at each l whenever the set Z is rationalizable.
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