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Abstract

Many countries provide extra resources to schools serving disadvantaged pupils.

We exploit a discontinuity in the assignment of such personnel subsidies in Flan-

ders to estimate the impact on cognitive outcomes via a regression discontinuity

(RD) design. Because bias can be substantial in RD designs, we include a bias cor-

rection in the speci�cation of the control function. Overall, we �nd positive e¤ects

for mathematics, reading and spelling, but the impact is signi�cant for spelling

only. The e¤ects are larger for disadvantaged pupils de�ned on the basis of family

background, smaller� or less reliable� for low initial performers, and again larger

at schools that used the resources to foster socio-emotional development.
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1 Motivation

Investing in the human capital of disadvantaged young children is a policy interven-

tion that promotes both equity and e¢ ciency; see, e.g., Heckman (2006) for a sum-

mary. Understanding why disadvantaged children lag behind is therefore crucial to

�Department of Economics, KULeuven, Belgium. E-mail to erwin.ooghe@econ.kuleuven.be.
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improve the design of education policies. Jacob and Ludwig (2009) provide three pos-

sible explanations� the lack of su¢ cient resources, good practices and good incentives

at school� , and they discuss the e¤ectiveness of di¤erent policy interventions in each

of these areas.

A widespread policy intervention in OECD countries aims to provide extra resources

to schools or school districts serving large numbers of disadvantaged pupils. Guryan

(2001), Card and Payne (2002) and Papke (2005) report on equalization reforms to

narrow the spending gap between the di¤erent school districts in the US. They �nd

evidence that equalization improved test scores and pass rates, particularly for low-

scoring students, and that it lead to a reduction in test score gaps between students

with a di¤erent family background. Ludwig and Miller (2007) analyze �Head Start�, a

US federal program to reduce di¤erences in education and health between young chil-

dren with a di¤erent family background. They �nd a clear drop in mortality rates,

but only suggestive evidence of an improvement in educational performance. Van der

Klaauw (2008a) �nds no evidence that �Title I� funding� a federal program aimed at

low-achieving students in schools with high concentrations of disadvantaged students�

, improved student outcomes in New York City public schools. Machin et al. (2004)

report on the �Excellence in Cities�program that targets resources to schools in dis-

advantaged urban areas in England to alleviate underachievement. They �nd a positive

but modest impact on test scores and a signi�cant improvement in attendance for 14-

year-old children. Leuven et al. (2007) evaluate the e¤ect of two subsidy schemes aimed

at schools with large proportions of disadvantaged students in the Netherlands. They

�nd no impact, sometimes even a negative one, on a range of test scores. Also Bénabou

et al. (2009) �nd no evidence that the �Zones d�Education Prioritaire�, a program pro-

viding additional resources to disadvantaged school districts in France, had an impact

on a range of student outcomes.

We report here on a similar program in Flanders (the North of Belgium) where

schools could receive extra personnel subsidies depending on the family background

of their pupils. This policy measure was one of the three pillars of a broader �Equal

Educational Opportunity�decree, introduced in 2002 following the alarming signals of

relatively high inequalities in educational outcomes in Flanders at that time; see, e.g.,

UNICEF (2002). Some of the key features of the educational system in Flanders� free

school choice on the demand side, free entry and autonomy on the supply side, and no

central exams� can help to explain the combination of high average test scores and high
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inequalities.

In this paper, we exploit a discontinuity in the assignment of the extra resources

to estimate the impact on cognitive pupil outcomes via a regression discontinuity de-

sign. Section 2 provides details about the program and the data. Section 3 presents the

empirical set-up, speci�es the model via cross-validation, and tests the validity of the

identi�cation assumption. Section 4 shows the results and a �nal section 5 concludes.

2 Program and data

We focus on �basic�education in Flanders: 2349 schools with 33905 full-time equivalent

teachers serving 643769 pupils in pre-primary (3-6 years old) and primary education

(6-12 years old) at the start of the �Equal Educational Opportunity (EEO)�-programme.

The EEO-decree of June 2002 stipulates that schools could receive extra personnel subsi-

dies depending on the family background of their pupils. These extra resources are �xed

for a period of three years and schools can autonomously decide how to use them, but

within at least one of the following themes: (1) to remedy lags in cognitive development

and to realize value-added, (2) to foster language pro�ciency, (3) to stimulate a positive

self-image and to improve social skills. To sketch the size of the programme, 4671 extra

full-time equivalent teachers were hired during the �rst EEO-cycle (2002-2005) on top

of the 101939 regular teachers for the same period, or a 4.58% increase.

The funding formula was based on a disadavantage index, calculated for each pupil

as a weighted sum� with a maximum of 1.2� of the following 5 binary pupil indicators

(weights between brackets): the pupil is not living with one of the biological parents

(0.8), the pupil�s family belongs to a traveling population (0.8), the income of the pupil�s

household consists only of replacement incomes (0.4), the mother of the pupil does

not have a degree of secondary education (0.6), and� only in combination with one

of the former indicators� the language spoken at home is di¤erent from Dutch (0.2).1

Pupils who meet at least one of the �rst four mentioned pupil indicators are called

disadvantaged pupils in the sequel. The disadvantage index of a school is the sum of

the indices of their pupils, multiplied by 1.1 if the percentage of disadvantaged pupils

is equal to or higher than 80%, and multiplied by 1.5 if the school lies in the regional

1Schools have to collect the data and to prove their authenticity via certi�cates (for the �rst two

mentioned indicators) and via written declarations by one of the parents or foster parents (for the last

three indicators).
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capital of Brussels. The total budget is allocated in proportion to the disadvantage

index of each school, with a minimum of 0.25 full-time equivalents. One interesting

exception applies: schools do not receive anything if their percentage of disadvantaged

pupils is lower than 10%.

To show the sharp discontinuity, we use administrative data from the Flemish De-

partment of Education. This data set contains all schools in Flanders with the percentage

of disadvantaged students (the assignment or running variable), the extra personnel re-

ceived (treatment variable), a location dummy (Brussels or not) and school size. Figure

1 presents the extra personnel subsidies as a function of the percentage of disadavan-

taged pupils for all schools in Flanders during the �rst EEO-cycle (2002-2005); the extra

personnel is expressed in full-time equivalents per year per 258 pupils (the median school

size in February 2004).

Figure 1: Extra resources during the �rst EEO-cycle (2002-2005)
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Note: bubble size is proportional to school size.

Figure 1 shows that schools do not receive extra resources if the percentage of disad-

vantaged pupils is less than 10%. The di¤erence at the cut-o¤ is equal to one third of

a full-time per year. Above the cut-o¤ the resources increase approximately linearly,
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steeper for schools in Brussels and slightly steeper for schools above 80%. Due to the

minimum amount of 0.25 full-time equivalents some extremely small schools (less than

40 pupils) do receive a relatively large amount of extra resources.

As there are no central exams in Flanders, we use output data from the SiBO-

project aimed at describing and explaining di¤erences in the school curriculum of a

representative sample of about 4000 Flemish pupils in 120 schools. The data collection

started in September 2002, which is� not coincidentally� also the start of the �rst EEO-

cycle in which schools could receive extra personnel subsidies. We have standardized

test scores in mathematics and language pro�ciency at the start of the �rst cycle (in

September-October 2002, at the age of 5, if not retarded) and in mathematics, reading

and spelling for the same pupils at the end of the �rst cycle (in May-June 2005, at

the age of 8). We also have an index of socio-economic status, which is based on the

education level of the parents, the profession of the parents and the household income;

see Reynders et al. (2005) for details. For each school we know the percentage of

disadvantaged students and the extra personnel received. The number of pupils to the

left and right of the 10% cut-o¤ is equal to 408 and 3400, respectively. In Appendix A

we provide some summary statistics.

3 Empirical set-up

At �rst sight, the idea of a regression discontinuity is simple. If schools do not have

perfect control over the percentage of disadvantaged pupils, then the resulting treatment

variation near the cut-o¤ is as good as randomized; see Imbens and Lemieux (2007),

Van der Klaauw (2008b), and Lee and Lemieux (2010) for overviews. As a consequence,

a regression discontinuity (RD) estimate of the (local) average treatment e¤ect can be

obtained by estimating � via a regression

si = �+ �di + �i; (1)

on the basis of observations close to the cut-o¤ (i.e., satisfying c � bw < ai < c + bw),
with si a test score result for pupil i, � a constant, di the treatment dummy indicating

whether pupil i is in a school to the right of the cut-o¤, �i an idiosyncratic error term, c

the cut-o¤ (10% in our case), ai the assignment variable (the % of disadvantaged pupils

at i�s school), and bw the bandwidth, with bw approaching zero.2

2Because the treatment variable� the number of full-time equivalents� is continuous, we can also

estimate the e¤ect of the treatment variable, instrumented by the treatment dummy. Due to the fact that

5



If the variation around the cut-o¤ is as good as randomized, there is no theoretical

reason to include baseline covariates and/or �xed e¤ects. Still, it might help to improve

the precision of the estimates and it can serve as a robustness check; see Lee and Lemieux

(2010). Let si;0 and si;1 denote initial and �nal test score results respectively, let sesi
be the socio-economic status and let ui be a pupil-speci�c e¤ect. If

si;0 = �0 + �0sesi + ui + �i;0; (2)

si;1 = �1 + �di + si;0 + �1sesi + ui + �i;1; (3)

then we can di¤erence out the pupil-speci�c e¤ect to estimate � via

�si = si;1 � si;0 = ��+ �di + si;0 +��sesi +��i; (4)

again on the basis of observations satisfying c� bw < ai < c+ bw. We call the estimate
of � via (4) a di¤erence-in-di¤erence (DID) estimate, here corrected for initial test score

and socio-economic status.

Before we present the RD and DID estimates of the local treatment e¤ect, two

questions have to be answered. Is the identi�cation assumption of imperfect control

valid? And how can we estimate the treatment e¤ect �near the cut-o¤�? We start with

the last question because we need it to handle the �rst one.

3.1 Bandwidth and control function

How can we estimate the treatment e¤ect �near the cut-o¤�? We face a classic bias-

variance trade-o¤. Too narrow a bandwidth is not feasible in practice because there are

either no observations, or too little observations to obtain a reliable estimate. But the

wider the bandwidth, the more (negatively) biased our estimate will be, because test

scores decrease on average with the percentage of disadvantaged pupils at school.

Imbens & Lemieux (2008) show that the bias in RD designs is likely to be substan-

tial. Therefore, we follow the literature and add a control function� a function of the

assignment variable� to the right-hand side of equations (1) and (4). We use a polyno-

mial of order o = 0; 1; 2 : : : and we allow some of the parameters to be di¤erent on both

sides of the cut-o¤; more precisely, we add

(1� di)
Po

k=0 �
�
k (ai � c)

k + di
Po

k=0 �
+
k (ai � c)

k : (5)

the resulting IV-estimate is equal to � in equation (1) divided by the number of full-time equivalents

at the cut-o¤ (approximately 0.4 in the SiBO sample), and because the signi�cance is not a¤ected

substantially, we do not report the IV estimates.
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The speci�cation is now de�ned up to a bandwidth bw, an order o for the polynomial,

and, new to the RD literature, two parameters ��0 and �+0 . Note that the average

treatment e¤ect at the cut-o¤ equals � +
�
�+0 � ��0

�
when adding the above control

function. Therefore, only the di¤erence ��0 = �+0 � ��0 is relevant for our purposes.
Choosing an optimal speci�cation for ��0 is equivalent to specifying an optimal bias-

correction as proposed by Simar and Wilson (2007) to measure e¢ ciency in a production

context.

Inspired by Imbens and Lemieux (2007) and Lee and Lemieux (2010), and to better

mimick the estimation process in (1) or (4), we propose a �leave-two-out�cross-validation

to assess the predictive performance of di¤erent choices for (bw; o;��0).
3 First, choose a

speci�cation (bw; o;��0).
4 Second, select a pair of schools, one to the left and one to the

right of the cut-o¤, and let a` and ar denote their percentage of disadvantaged students.

Third, use all observations with assignment levels in [a` � bw; a`[ [ ]ar; ar + bw] to

estimate equation (1) or (4), while adding

(1� di)
Po

k=0 �
�
k (ai � a`)

k + di
Po

k=0 �
+
k (ai � ar)

k (6)

as a control function.5 This provides us with a prediction b�+��0 of the treatment e¤ect
that can be compared with the true e¤ect �, being the observed di¤erence in average

test scores between the two selected schools. Fourth, repeat the previous three steps for

all pairs of schools �close�to the cut-o¤ and calculate the mean squared error, i.e., the

average of (� � (b� +��0))2 over the di¤erent school pairs.6
The cross-validation function can guide us in choosing reasonable speci�cations. In

appendix B we plot the mean squared error as a function of the bandwidth for each

order of the polynomial o = 0; 1; 2, once without bias correction (dotted lines) by �xing

��0 = 0, and once with optimal bias correction (full lines) by setting ��0 = ��
�
0, with

3Note that the usual leave-one-out procedure performed separately on both sides of the cut-o¤ does

not take into account the possible correlation structure in the bias. For example, a speci�cation with

exactly the same bias on both sides of the cut-o¤ is still unbiased in estimating the di¤erence, which is

what we are ultimately interested in.
4In principle, one could allow for a di¤erent bandwidth and a di¤erent order for the control function

on either side of the cut-o¤. Experiments with this more �exible speci�cation do not change the

cross-validation results in a qualitative way.
5Note the di¤erence between (5) and (6): the cut-o¤ c is replaced by the new cut-o¤s a` and ar.
6We follow Imbens and Lemieux (2007) and use the median value of the assignment variable on

either side of the cut-o¤ as border cases to de�ne �close to the cut-o¤�. Because the bias correction is

sensitive to this choice, we will report sensitivity results in the next section.
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���0 the bias correction that minimizes the mean-squared error for a given bandwidth

and order. The di¤erence between a dotted line and the corresponding full line is the

squared bias.

We retain the following three guidelines. The bias correction can be substantial� up

to half a standard deviation� , and therefore we will only report results with bias-

correction. Given the bias-correction, the mean squared error remains more or less

stable given a bandwidth of at least 10. We show estimates for bandwidths from 10 to

80 in steps of 10 in the sequel. Given the bias-correction, order 0 typically performs

better than order 1 and order 1 in turn outperforms order 2. As the di¤erences can be

substantial, we will report results for order 0 in the main text and provide estimates

based on a local linear regression (order 1) as a robustness check.

3.2 Validity

Is the identi�cation assumption of imperfect control valid? Because the funding rules

were announced in June 2002, but based on pupil data collected in February 2002,

manipulation could only occur if schools anticipated the funding rules (in particular,

the 10% cut-o¤). While manipulation is therefore less likely in the �rst funding cycle

(2002-2005), this is de�nitely not the case for the second one (2005-2008) as the rules

of the game were well-known.

Direct validity tests look for a discontinuity in the density of the assignment variable

at the cut-o¤. Indeed, if schools just below the cut-o¤ would try to get the extra

resources by attracting more disadvantaged students or by manipulating the data, we

should see an �abnormally� low density to the left of the cut-o¤ and the opposite to

the right of it. Figure 2 presents the density of the assignment variable in the �rst two

cycles for all Flemish schools. There is some indication of manipulation, especially in

the second cycle. But in the �rst cycle it is less clear, as expected. To summarize, there

is no strong reason to believe that the RD identi�cation assumption for the �rst cycle

would be invalid, while we have to be much more reluctant to make the same assumption

in the second cycle.

The visual direct validity test is con�rmed by a more formal indirect validity test that

checks whether there exist discontinuities in the baseline covariates at the cut-o¤. The

main drivers of test score results are initial test scores� the mathematics and language

pro�ciency test at age 5� and socio-economic status.
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Figure 2: Density of the assignment variable in the �rst two cycles
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Table 1 presents the estimated di¤erence in initial test score results and socio-economic

status for di¤erent bandwidths.7 The joint null hypothesis� i.e., no di¤erences in the

7We estimate a seemingly unrelated regression with initial test scores and socio-economic status as

dependent variables and the treatment dummy as the covariate; see Lee and Lemieux (2010).
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initial test scores and socio-economic status at the cut-o¤� , is never rejected for the

�rst cycle (2002-2005).

Table 1: Testing continuity of the baseline covariates in the �rst cycle (2002-2005)

bw = 10 20 30 40 50 60 70 80

math0 0.06 0.06 0.04 0.05 0.04 0.04 0.06 0.05

lang0 0.05 0.05 0.02 0.03 0.03 0.03 0.04 0.04

ses -0.07 -0.05 -0.05 -0.03 -0.05 -0.05 -0.03 -0.04

Prob > �2 0.20 0.29 0.53 0.56 0.53 0.52 0.47 0.49

This can again be contrasted with Table 2, presenting estimates of the same di¤erences

in the second cycle (2005-2008): the null is always rejected.

Table 2: Testing continuity of the baseline covariates in the second cycle (2005-2008)

bw = 10 20 30 40 50 60 70 80

math0 0.17 0.18 0.18 0.18 0.17 0.18 0.18 0.18

lang0 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.00

ses -0.27 -0.26 -0.26 -0.26 -0.26 -0.26 -0.25 -0.25

Prob > �2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

In appendix C we report estimates based on a local linear regression (order 1) for both

cycles. Although the �gures can be di¤erent, the overall picture is the same: no rejection

of the null hypothesis in cycle 1� except for bw = 10� and full rejection in cycle 2. Based

on these validity tests, we only report estimates for cycle 1 in the next section.

4 Results

Table 3 presents the RD and DID estimates for the di¤erent standardized test scores.

Almost all e¤ects are positive, but only the e¤ects for spelling tend to be signi�cant.

This overall picture is quite robust. The di¤erences between the RD and DID estimates

and between the di¤erent bandwidths are small. In addition, the local linear regression

estimates in appendix C are also similar: with the exception of reading� the e¤ects for

reading become negative, but never signi�cantly di¤erent from zero� the overall picture

remains the same. In appendix D we repeat the above RD estimates (in the middle
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row denoted �50j50�) and report estimates when the cross-validation� including the bias
correction� is based on larger (�rst two rows) and smaller subsamples (last two rows).

Although the �gures change due to di¤erences in the bias correction, the e¤ects remain

typically positive, and only signi�cant for spelling.

Table 3: RD and DID estimates of the treatment e¤ect

math bw = 10 20 30 40 50 60 70 80

RD 0.10 0.10 0.09 0.10 0.09 0.09 0.10 0.10

DID 0.08 0.07 0.06 0.07 0.07 0.07 0.07 0.07

read bw = 10 20 30 40 50 60 70 80

RD -0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.00

DID 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

spel bw = 10 20 30 40 50 60 70 80

RD 0.25��� 0.26��� 0.25��� 0.26��� 0.25��� 0.25��� 0.27��� 0.26���

DID 0.26��� 0.26��� 0.26��� 0.26��� 0.25��� 0.26��� 0.26��� 0.26���

Note: �, �� and ��� mean signi�cantly 6= 0 at the 90%, 95% and 99% con�dence level.

Next, we want to check whether the treatment e¤ect is di¤erent for di¤erent groups

of pupils. Table 4 presents estimates of the treatment e¤ect for advantaged (a) and

disadvantaged (d) pupils separately; the DID estimates were again very similar and not

reported here.

Table 4: RD estimates for advantaged and disadvantaged pupils

math bw = 10 20 30 40 50 60 70 80

a 0.11 0.10 0.10 0.12 0.11 0.11 0.13 0.14

d 0.31 0.32 0.31 0.29 0.29 0.29 0.29 0.26

read bw = 10 20 30 40 50 60 70 80

a -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.02 -0.01

d 0.39� 0.38� 0.36� 0.35� 0.36� 0.38�� 0.36� 0.33�

spel bw = 10 20 30 40 50 60 70 80

a 0.24��� 0.26��� 0.26��� 0.27��� 0.27��� 0.27��� 0.29��� 0.30���

d 0.38� 0.39� 0.36� 0.34 0.33 0.34 0.32 0.29

Note: �, �� and ��� mean signi�cantly 6= 0 at the 90%, 95% and 99% con�dence level.
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Due to the small number of disadvantaged pupils in the control group (34 pupils only),

one should be cautious when interpreting these e¤ects. Still, the results suggest that

disadvantaged pupils bene�t more from the extra resources according to all tests.

We �nd a similar, but less pronounced picture if we look at the dependence of the

treatment e¤ect on socio-economic status. This stands to reason, because socio-economic

status and disadvantage do correlate: being disadvantaged explains about 37% of the

variation in socio-economic status. We split up all pupils to the left of the cut-o¤ in

three equally sized groups according to socio-economic status and compare them with

groups of pupils to the right of the cut-o¤ based on the same quantiles. From Table

5 we infer again that individuals with a low and middle socio-economic status tend to

gain somewhat more for math and reading, while for spelling the evidence is less clear

for pupils with a low socio-economic status.

Table 5: RD estimates according to socio-economic status

math bw = 10 20 30 40 50 60 70 80

low 0.23�� 0.22�� 0.20�� 0.21�� 0.20�� 0.20�� 0.20�� 0.19��

mid 0.24��� 0.23��� 0.23��� 0.24��� 0.24��� 0.24��� 0.26��� 0.28���

high 0.10 0.09 0.12 0.14 0.14 0.14 0.16 0.18

read bw = 10 20 30 40 50 60 70 80

low 0.08 0.09 0.07 0.07 0.07 0.08 0.08 0.07

mid 0.02 0.03 0.04 0.04 0.04 0.04 0.05 0.06

high 0.00 -0.02 0.01 0.02 0.02 0.02 0.03 0.04

spel bw = 10 20 30 40 50 60 70 80

low 0.25� 0.27� 0.25� 0.26� 0.25� 0.25� 0.26� 0.24

mid 0.36��� 0.37��� 0.39��� 0.39��� 0.39��� 0.39��� 0.42��� 0.43���

high 0.28��� 0.29��� 0.31��� 0.33��� 0.32��� 0.33��� 0.35��� 0.37���

Note: �, �� and ��� mean signi�cantly 6= 0 at the 90%, 95% and 99% con�dence level.

Whereas Tables 4 and 5 suggest that the subsidies have decreased social inequalities

according to di¤erent de�nitions, the picture is less clear if we look at output inequalities.

Table 6 looks at the e¤ect for pupils with low, middle and high initial test scores. For

mathematics we use the initial mathematics scores, while for reading and spelling we use

the initial language pro�ciency scores to split up the sample in 3 subgroups as before.

With the exception of one estimate for spelling, low initial performers never signi�cantly
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improve their test scores. Middle as well as high initial performers bene�t more from

the extra funds.

Table 6: RD estimates according to initial performance

math bw = 10 20 30 40 50 60 70 80

low 0.18 0.18 0.17 0.18 0.16 0.16 0.17 0.16

mid 0.07 0.09 0.12 0.13 0.12 0.13 0.14 0.16

high 0.12 0.19��� 0.21��� 0.23��� 0.22��� 0.23��� 0.24��� 0.26���

read bw = 10 20 30 40 50 60 70 80

low -0.10 -0.12 -0.12 -0.11 -0.11 -0.11 -0.11 -0.11

mid 0.05 0.07 0.08 0.08 0.09 0.09 0.10 0.10

high 0.07 0.09 0.08 0.09 0.07 0.07 0.09 0.10

spel bw = 10 20 30 40 50 60 70 80

low 0.20 0.20� 0.19 0.20 0.19 0.19 0.20 0.19

mid 0.39��� 0.43��� 0.43��� 0.43��� 0.42��� 0.43��� 0.45��� 0.46���

high 0.21 0.24� 0.26� 0.25� 0.24� 0.25� 0.27�� 0.28��

Note: �, �� and ��� mean signi�cantly 6= 0 at the 90%, 95% and 99% con�dence level.

This is not necessarily contradictory to the previous tables: for example, being disad-

vantaged is only a weak signal of initial test score performance: it explains 9.46 % and

5.47% of the variance in initial maths and language pro�ciency, respectively.

Finally, recall that schools could autonomously decide how to use the extra personnel

subsidies, but within at least one of the following three themes: (1) to remedy lags in

cognitive development and to realize value-added, (2) to foster language pro�ciency,

(3) to stimulate a positive self-image and to improve social skills. In our sample, the

percentages of pupils within these themes are equal to 76%, 52% and 43%, respectively.

Because the themes are chosen by the school, the DID design seems more appropriate

to control for the potential endogeneity problem (but again, RD estimates point to the

same qualitative result).

Table 7 presents the DID estimates of the treatment e¤ect within the di¤erent

themes. Schools that worked on remediation (theme 1) did slightly better for math and

spelling, but worse for reading. Schools that focused on language pro�ciency (theme 2)

did worse, not only for mathematics but, more surprisingly, also for reading and spelling.

Finally, schools that worked on socio-emotional skills (theme 3) always performed bet-

ter, on average at least. The �gures in Table 7 are average treatment e¤ects, so one
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could still wonder whether schools within themes 1 and 2 do better to remedy pupils

who lag behind. In appendix E we present estimates for the di¤erent themes for low

initial performers only. Roughly speaking, the same picture emerges: socio-emotional

development is more e¤ective to foster cognitive test scores.

Table 7: DID estimates of the treatment e¤ect for the di¤erent themes

math bw = 10 20 30 40 50 60 70 80

1 0.13 0.10 0.10 0.10 0.09 0.09 0.09 0.08

2 -0.22�� -0.12 -0.10 -0.06 -0.07 -0.06 -0.06 -0.06

3 0.21� 0.19� 0.17 0.19� 0.19� 0.18 0.19� 0.19�

read bw = 10 20 30 40 50 60 70 80

1 -0.10 -0.07 -0.06 -0.04 -0.04 -0.04 -0.02 -0.02

2 0.05 0.00 -0.02 -0.02 -0.03 -0.02 -0.03 -0.03

3 0.13 0.09 0.05 0.05 0.05 0.04 0.02 0.02

spel bw = 10 20 30 40 50 60 70 80

1 0.26�� 0.27�� 0.26�� 0.26�� 0.25�� 0.26�� 0.28��� 0.26��

2 0.16 0.16 0.19� 0.20� 0.19� 0.20� 0.19� 0.19�

3 0.49��� 0.48��� 0.46��� 0.47��� 0.46��� 0.44��� 0.42��� 0.42���

Note: �, �� and ��� mean signi�cantly 6= 0 at the 90%, 95% and 99% con�dence level.

It is not clear to what extent the DID estimates su¢ ciently control for endogeneity,

but the results suggest that fostering socio-emotional skills (e.g., a positive self-image)

is more e¤ective in improving cognitive test scores. This is in line with the evidence

in Borghans et al. (2008) and Cunha et al. (2010) showing that non-cognitive skills

in�uence cognitive test scores.

5 Conclusion

In this paper, we exploit a discontinuity in the assignment of extra personnel subsidies

in basic (i.e., pre-primary and primary) education to estimate the impact on cognitive

outcomes via a regression discontinuity (RD) design. As bias can be substantial in RD

designs, we propose to include a bias-correction in the speci�cation of the control func-

tion. Overall, we �nd robust positive e¤ects for mathematics, reading and spelling, but

the e¤ects are only signi�cant for spelling. The e¤ects tend to be larger for disadvantaged
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pupils de�ned on the basis of family background, and smaller� or less reliable� for low

initial performers. This suggests that social inequality, i.e., the dependence of outcomes

on family background, has decreased; meanwhile, output inequality, the dependence

of outcomes on initial test score results, has increased. We also �nd that the impact

is larger for pupils at schools that used the resources to stimulate the socio-emotional

development of their pupils.
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A. Summary statistics

Summary statistics

mean stddev min p05 p25 p50 p75 p95 max

math0 4.26 0.87 0.71 2.72 3.70 4.31 4.92 5.59 5.91

lang0 4.55 0.88 1.43 2.83 4.08 4.65 5.15 5.81 6.75

ses 0.06 0.86 -2.36 -1.35 -0.55 0.03 0.68 1.49 2.07

math 9.87 1.00 6.33 8.20 9.18 9.87 10.57 11.50 12.28

reading 3.00 1.00 0.18 1.37 2.27 3.03 3.71 4.63 6.24

spelling 8.84 1.00 3.98 7.29 8.14 8.90 9.37 10.41 12.02

% disadvantaged 21.98 16.61 2.38 6.47 12.58 15.7 25.82 62.73 89.51

# fte teachers 0.82 0.93 0.00 0.00 0.33 0.54 0.96 2.50 5.21

Note: Due to attrition, standard deviations di¤er from 1 for the initial test scores and socio-

economic status. Statistics in the last two rows are calculated at the school level.

B. Cross-validation functions

Cross-validation for mathematics
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Cross-validation for reading
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C. Local linear regressions

Testing continuity of the baseline covariates for cycle 1 and 2

bw = 10 20 30 40 50 60 70 80

math0 -0.03 0.04 0.08 0.06 0.07 0.06 0.04 0.05

1 lang0 0.17 0.14 0.17 0.15 0.14 0.13 0.11 0.12

ses 0.04 -0.03 -0.04 -0.07 -0.04 -0.05 -0.05 -0.05

Prob > �2 0.02 0.20 0.12 0.14 0.24 0.24 0.35 0.33

bw = 10 20 30 40 50 60 70 80

math0 -0.25 -0.23 -0.19 -0.19 -0.19 -0.20 -0.20 -0.19

2 lang0 0.20 0.25 0.24 0.25 0.24 0.24 0.23 0.23

ses -0.08 -0.10 -0.10 -0.12 -0.11 -0.12 -0.12 -0.11

Prob > �2 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

RD and DID estimates for the di¤erent test scores

math bw = 10 20 30 40 50 60 70 80

RD 0.08 0.12 0.12 0.09 0.11 0.10 0.09 0.09

DID 0.08 0.08 0.06 0.05 0.06 0.06 0.06 0.05

reading bw = 10 20 30 40 50 60 70 80

RD -0.19 -0.13 -0.11 -0.11 -0.10 -0.11 -0.12 -0.11

DID -0.21 -0.14 -0.12 -0.12 -0.11 -0.11 -0.12 -0.11

spelling bw = 10 20 30 40 50 60 70 80

RD 0.24 0.26� 0.28� 0.27� 0.29�� 0.27� 0.26� 0.27�

DID 0.20 0.23� 0.24� 0.25�� 0.27�� 0.25� 0.24� 0.25��

Note: �, �� and ��� mean signi�cance at the 90%, 95% and 99% con�dence level.
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D. Sensitivity for cross-validation percentiles

RD estimates for di¤erent percentiles used in the cross-validation

math bw = 10 20 30 40 50 60 70 80

40j60 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.02

45j55 0.08 0.08 0.07 0.08 0.07 0.07 0.08 0.08

50j50 0.10 0.10 0.09 0.10 0.09 0.09 0.10 0.10

55j45 0.11 0.11 0.10 0.11 0.10 0.10 0.11 0.11

60j40 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.04

reading bw = 10 20 30 40 50 60 70 80

40j60 0.10 0.10 0.09 0.10 0.09 0.10 0.11 0.10

45j55 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.02

50j50 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.00

55j45 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04

60j40 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

spelling bw = 10 20 30 40 50 60 70 80

40j60 0.19�� 0.20�� 0.19�� 0.19�� 0.18�� 0.19�� 0.21�� 0.20��

45j55 0.24��� 0.25��� 0.25��� 0.25��� 0.24��� 0.25��� 0.26��� 0.26���

50j50 0.25��� 0.26��� 0.25��� 0.26��� 0.25��� 0.25��� 0.27��� 0.26���

55j45 0.28��� 0.29��� 0.29��� 0.29��� 0.28��� 0.28��� 0.30��� 0.29���

60j40 0.32��� 0.34��� 0.33��� 0.34��� 0.33��� 0.33��� 0.34��� 0.34���

Note: �, �� and ��� mean signi�cance at the 90%, 95% and 99% con�dence level. In the �rst

column the symbol �x�in the notation �xj1-x�stands for the percentile used to the left of the
cut-o¤.
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E. Low performers within the di¤erent themes

DID estimates of the treatment e¤ect for the di¤erent themes for low initial performers

math bw = 10 20 30 40 50 60 70 80

low 0.18 0.18 0.17 0.18 0.16 0.16 0.17 0.16

low 1 0.15 0.07 0.06 0.05 0.03 0.03 0.03 0.01

low 2 -0.18 -0.06 -0.07 -0.04 -0.05 -0.04 -0.05 -0.04

low 3 0.35�� 0.27� 0.23 0.24 0.24 0.24 0.23 0.23

read bw = 10 20 30 40 50 60 70 80

low -0.10 -0.12 -0.12 -0.11 -0.11 -0.11 -0.11 -0.11

low 1 -0.14 -0.12 -0.11 -0.09 -0.09 -0.09 -0.06 -0.07

low 2 0.10 -0.06 -0.15 -0.14 -0.14 -0.14 -0.16 -0.16

low 3 0.12 -0.03 -0.10 -0.09 -0.09 -0.11 -0.17 -0.17

spel bw = 10 20 30 40 50 60 70 80

low 0.20 0.20� 0.19 0.20 0.19 0.19 0.20 0.19

low 1 0.13 0.15 0.13 0.13 0.13 0.13 0.18 0.13

low 2 0.15 0.15 0.11 0.13 0.12 0.12 0.09 0.10

low 3 0.46�� 0.40� 0.32 0.34 0.33 0.32 0.25 0.26

Note: �, �� and ��� mean signi�cantly 6= 0 at the 90%, 95% and 99% con�dence level.
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