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Abstract

In this paper we show that free entry decisions may be socially inefficient,

even in a perfectly competitive homogeneous goods market with non-lumpy

investments. In our model, inefficient entry decisions are the result of risk-

aversion of incumbent producers and consumers, combined with incomplete

financial markets which limit risk-sharing between market actors. Invest-

ments in productive assets affect the distribution of equilibrium prices and

quantities, and create risk spillovers. From a societal perspective, entrants

underinvest in technologies that would reduce systemic sector risk, and may

overinvest in risk-increasing technologies. The inefficiency is shown to disap-

pear when a complete financial market of tradable risk-sharing instruments

is available, although the introduction of any individual tradable instrument

may actually decrease efficiency. We therefore believe that sectors without

well-developed financial markets will benefit from sector-specific regulation of

investment decisions.

1 Introduction

This paper studies whether investments by a small competitive firm are socially ef-

ficient, when market outcomes are uncertain and financial markets are incomplete.

We show that decisions about real investments, i.e. investments in productive assets,
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may be suboptimal, because the presence of those assets changes the distribution of

overall industry risk, which, if financial markets are incomplete, creates a risk exter-

nality for the firms already active in the market. In particular, private investment

decisions will lead to a market in which the industry as a whole takes too much risk

by investing too much in production activities with highly correlated risk profiles.

Firms that could reduce the overall risk of the industry by offsetting the aggregate

risk, do no enter often enough, and firms that increase the overal industry risk, enter

too often. It is important to note that if the entrant only invests in financial prod-

ucts and not in real physical assets, then its investment decisions will be socially

optimal, even if the market is incomplete.

The results of our discussion are relevant for specific sectors such as electricity

or oil, in which investment costs are significant, financial markets do not cover

all potential contingencies1 and firms can choose between different technologies or

locations with different risk profiles. In such situations, the industry as a whole

becomes too risky. In those cases sector-specific regulation might be necessary.

Sector-specific regulation could take the form of entry-regulation or the creation of

additional financial instruments.

The fact that entry decisions might be socially inefficient in an oligopolistic mar-

ket structure is well known. The most obvious case is the case of entry deterrence

by oligopolistic incumbents, a topic that has been studied extensively in the indus-

trial organization literature, following the seminal work by Bain (1949), Sylos Labini

(1969) and Modigliani (1958). With entry deterrence, there is too little entry from

a welfare standpoint. For example, Spence (1977) – later extended by Dixit (1980)

and Schmalensee (1981) among others – shows that entry deterrence through prior

capacity commitments by the incumbent may result in larger costs than are neces-

sary for a given output level, and higher prices. Our paper does not consider the

preemptive strategic actions of incumbents and focuses on the potential entrant’s

investment decision. In such a context, one finds not only cases with too little en-

try, but also cases with excessive entry: von Weizsäcker (1980) shows that there

are plausible parameter configurations under which welfare would be improved by

limiting entry. Similar to Mankiw and Whinston (1986), we use a two-stage model

with capacity investment decisions by entrant(s) in stage one and actual production

in stage two. As Mankiw and Whinston (1986) point out, suboptimal entry is due to

the fact that the entrant’s evaluation of the desirability of his entry is different than

the ‘social planner’s’ evaluation – a phenomenon one could call investment exter-

1Markets might be incomplete because productive assets have a long lifetime, or because some
sources of risks are non-tradable. For instance, there might not be financial instruments to hedge
regulatory uncertainty.

2



nalities. In the analysis by Mankiw and Whinston (1986), the externality is due to

‘business-stealing’ from other players: the entrant will gain some profit by reducing

the profit of the existing players. This leads to a redistribution of industry profits,

but not necessarily to an increase in the total surplus of the industry. Note that the

business stealing effect disappears if the stage-two game is perfectly competitive and

the post-entry market price reflects the marginal cost of firms.2 Our model is quite

different from the industrial organization literature because it has a perfectly com-

petitive post-entry market. Furthermore, the models by Spence (1977), Dixit (1980)

and Schmalensee (1981) either assume a minimum entry capacity or a fixed set-up

cost – independent of entry capacity. In contrast, our model allows for infinitesimal

capacity investment by the entrant. Finally, our model incorporates uncertainty, a

feature which has also been added to the above-mentioned models, by e.g. Perrakis

and Warskett (1983) and Maskin (1999). Most importantly however, we assume

imperfect financial markets. The investment externality in our model turns out to

be a ‘risk externality’: the real investment changes the risk profile of future shocks.

Investment under uncertainty has been thoroughly studied in the real option

framework (Dixit and Pindyck, 1994): firms should take into account the option

value of an investment opportunity. By delaying the investment the firm learns

more about the likely profitability of the project and might be able to avoid in-

vestments that are likely to be loss-making. Recently, Miao and Wang (2007) and

Hugonnier and Morellec (2007) have extended the real option framework to the case

of incomplete markets, using a utility-based approach. They study how market in-

completeness affects the investment decisions of firms. Miao and Wang (2007) for

example, find that – unlike in standard real options analysis – an increase in project

volatility can accelerate investment if the agent has a sufficiently strong precaution-

ary savings motive. Although we use a similar utility-based model framework, our

point of view is complementary in that we do not focus on how the entrant should

make investment decisions, but rather study the social welfare implications of those

decisions.

This paper is an extension and generalization of Willems and Morbee (2010),

in which the effect of increasing market completeness on an entrant’s investment

decisions was examined numerically for the case of the electricity market. In the

current paper we develop a general analytical model. In the next section, we first

demonstrate the possibility of suboptimal entry when risk markets are incomplete.

We will start from the traditional deterministic model, where entry is optimal, and

2Reaching a sufficient number of entrants in order to satisfy this condition typically requires
the absence of fixed set-up costs that would create barriers to entry.
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subsequently include uncertainty and risk aversion, which may lead to suboptimal

entry. Then, in section 3 we study the effect of increasing market completeness,

i.e. increasing availability of instruments to trade risk between market participants.

Section 4 summarizes our conclusions and briefly provides policy recommendations

and areas for future research.

2 Suboptimal entry with incomplete markets

Building on the industrial organization literature, we first describe a deterministic

version of our model, in which entry is always socially optimal, as there are no risk

spillovers. In a second step, we demonstrate the possibility of suboptimal entry

when uncertainty and risk aversion are introduced.

2.1 Traditional deterministic model

Following Mankiw and Whinston (1986), we model entry as a two-stage game. In the

first stage, the investment stage, the entrant decides whether to enter the industry

by investing in capacity. In stage two, the production stage, firms produce and

sell a homogeneous product in a perfectly competitive market. P (Q) denotes the

inverse demand function, where Q is aggregate output, and assume P ′(Q) ≤ 0,∀Q.

Before any entry takes place, the industry marginal cost curve is given by C ′(Q),

with C ′′(Q) ≥ 0,∀Q. In the absence of entry, the competitive market equilibrium is

(p∗, Q∗) with p∗ = P (Q∗) = C ′(Q∗). We consider an entrant who, in the first stage,

has the possibility to invest in an infinitesimal amount of production capacity dq,

at an investment cost of k dq. If the entrant decides to invest, she will have access

to a production capacity dq with marginal production cost c in the second stage.3

Figure 1 shows how the entry decision in stage one affects the outcome of the

production stage, for the case in which c ≤ p∗. Entry reduces the equilibrium price

to p∗ + dp∗, and increases the equilibrium quantity to Q∗ + dQ∗. Entry increases

stage-two Marshallian aggregate surplus by an amount corresponding to the shaded

area ÂCDE. Since the area ÂBC is only a second-order effect (it is approximately

given by 1
2
dp∗·dq), the surface area of ÂCDE can be approximated by ÂBDE, which

3We assume an infinitesimal small entrant as we want to model the behavior of a competitive,
price-taking entrant. An infinitesimal investor will affect market outcomes only marginally, which
justifies the price-taking assumption. Note that in contrast with many entry models we do not
assume that investment decisions are lumpy. Spence (1977), Dixit (1980) and Schmalensee (1981)
either assume a minimum entry capacity or a fixed set-up cost – independent of entry capacity.
By assuming away lumpiness we eliminate a possible source of inefficiency in the market, and the
results of our model become stronger.
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Figure 1: Effect of entry on stage-two Marshallian aggregate surplus
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corresponds to (p∗− c)dq. Taking into account the investment cost k dq incurred by

the entrant in stage one, the net effect of entry on social welfare W is therefore:

dW = (p∗ − c)dq − k dq (1)

This amount dW corresponds exactly to the entrant’s profit dπ, hence the entrant’s

incentives are perfectly aligned with social interest: the entrant invests if and only

if it is socially optimal to do so. This is the well-known textbook result about the

social efficiency of free entry in a perfectly competitive market.

At this point it is useful to take a closer look at equation (1). In general, the

change in social welfare caused by entry is given by:

dW = dΠ + dCS + dπ (2)

where Π represents aggregate industry profits (producer surplus) of existing produc-

ers, CS represents aggregate consumer surplus and dπ the profit of the infinitesimal

entrant. Since we concluded above that dW = dπ, we must have:

dΠ = −dCS (3)

Equation (3) is illustrated in figure 2. The investment in capacity dq causes a

(negative) price change dp∗ = dp∗

dq
dq. As a result, CS increases by the area ĤACG,

which in first order corresponds to −Q∗dp∗. The effect on Π is similar, but slightly
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Figure 2: Effect of entry on producer surplus of existing firms and on
consumer surplus
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more complicated to compute. In the absence of entry, the producer surplus Π

of existing firms is given by ĤAF . In the event of entry, the producer surplus of

existing firms changes to ĜIEF + ĴCD = ĜKF . Hence, dΠ = −ĤAKG, which in

first order corresponds to Q∗dp∗ = −dCS.4 Again, this result stems from ÂCK =

ÂBC = 1
2
dp∗ ·dq being a second-order effect, which should be ignored in infinitesimal

analysis. The fact that there is no net effect of entry on Π + CS is due to the

perfectly competitive nature of the production stage. In a non-competitive setting,

entry would have an additional negative externality, due to ‘business-stealing’ from

existing inframarginal capacity. In a perfectly competitive setting, existing firms

produce up to the point where price equals marginal cost, hence the only existing

capacity that is being displaced by business-stealing is the capacity at the margin,

which does not have any net social value.

The above reasoning is for the case in which c ≤ p∗. The alternative case c > p∗ is

trivial: since neither Π nor CS is affected by the entrant’s investment, we obviously

have dW = dπ and dΠ = −dCS = 0 in this case.

4Note that dΠ = Q∗dp∗ is in fact nothing but Hotelling’s lemma for the case of a one-good
economy, while dCS = −Q∗dp∗ is Roy’s identity for the case of a quasilinear utility function (as is
implicitly assumed in our partial equilibrium setting).
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2.2 Model including uncertainty and risk aversion

We will extend the deterministic model from section 2.1 to include the effects of

uncertainty and risk aversion. Uncertainty is included by making the second stage

stochastic: stage two takes place in a random state-of-the-world denoted ω, chosen

stochastically among a range of possible states Ω. As a result, the variables Π, CS

and dπ, as well as all equilibrium prices and quantities, become random variables,

which will be denoted using boldface.5 The randomness may be caused by uncer-

tainty in demand (as in Willems and Morbee, 2010), but may also be due to other

factors, such as e.g. uncertainty in the prices of input factors, possible unforeseen

outages of some of the production capacity, or regulatory uncertainty. Our reasoning

is not limited to any of these sources of uncertainty.

The random nature of stage two requires additional assumptions about the social

welfare function. As before we use a utilitarian social welfare function, i.e. the

sum of the individual utilities of existing firms, consumers and entrant. As for the

individual utility functions, we incorporate risk aversion, i.e. a preference for more

certain outcomes over more uncertain outcomes for a given expected value of the

outcome. For the sake of analytical convenience, we assume that the aggregate

utility Up of the existing producers is given by the well-known mean-variance utility

function:

Up = E[Π]− Ap

2
Var[Π] (4)

and, likewise, that the aggregate utility Uc of consumers is given by:

Uc = E[CS]− Ac

2
Var[CS] (5)

with the risk aversion parameters for producers and consumers Ap, Ac ≥ 0. The

expected-value and variance operators E[·] and Var[·] in equations (4) and (5) are

computed on the sample space Ω. Social welfare is assumed to be given by:

W = Up + Uc + Ue (6)

in which Ue represents the utility of the entrant, for which we do not make functional-

form assumptions.

Proposition 2.1. When social welfare is given by equations (4), (5) and (6), the

effect of an infinitesimal entrant with capacity dq, on social welfare, is given by:

dW = dUe + Cov[ApΠ− AcCS,x]dq (7)

5Later we will interpret random variables as vectors in #Ω-dimensional space.
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where:

x = −Q∗
dp∗

dq
(8)

Proof. If the entrant decides to invest in capacity dq in stage one, this will have an

effect on Π and CS in stage two. The effect may be different in each state-of-the-

world ω. However, equation (3) will hold for each ω. Therefore, we can write the

effect of entry on Π and CS as:

dΠ = −dCS = −xdq (9)

with x as in equation (8). The effect on Up is obtained by differentiation of equation

(4):

dUp = d(E[Π]− Ap
2

Var[Π])

= E[dΠ]− Ap
2

(Var[Π + dΠ]− Var[Π])

= E[−xdq]− Ap
2

(Var[Π− xdq]− Var[Π])

= −E[x]dq + ApCov[Π,x]dq (10)

where we have used the fact that Var[xdq] = Var[x](dq)2 can be ignored as a second-

order term. Using an analogous reasoning, we obtain

dUc = E[x]dq − AcCov[CS,x]dq (11)

Putting equations (6), (10) and (11) together, we find equation (7).

The first term dUe in equation (7) is the effect of entry on the utility of the entrant

himself. The second term in equation (7) is an externality : unlike dUe, this effect

of entry on social welfare is not fully internalized by the entrant, and hence is not

included in his investment decision. Of particular interest are the cases in which the

entrant would like to enter, dUe > 0 but it would not be socially optimal, dW < 0,

or vice versa. Such cases exist when dUe and Cov[ApΠ − AcCS,x] have different

signs and Ap and/or Ac are large enough. In such circumstances, a decision to

enter (or refrain from entering) may be privately optimal, but socially detrimental.

The externality is due to the fact that the investment in new capacity leads to

a shift in market outcomes, which affects risk-sharing between existing producers

and consumers. Hence, despite the perfectly competitive nature of stage two, the

combination of uncertainty and risk-averse agents may lead to suboptimal entry. We

will illustrate the potential inefficiency of free entry in the following example.
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Figure 3: Graphical illustration of Example 2.2
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Example 2.2. Let us consider a sector with linear inverse demand P (Q) = α−βQ
with α, β > 0. The industry marginal cost curve is given by C ′(Q) = c̄Q, with c̄

a constant. For analytical convenience we assume c̄ = β. In the absence of any

intervention, the competitive equilibrium will be (p∗1, Q
∗
1) = (α

2
, α
2β

), shown as point

A in Figure 3. We introduce uncertainty into this market by assuming that with

probability ψ, government will intervene and forbid the lowest-value applications

of the product.6 The result of this intervention would be that demand becomes

flat as soon as it reaches a certain level D. The part of the inverse demand curve

to the right of Q = D is clipped and becomes a vertical line at Q = D. Hence,

with probability ψ the equilibrium is (p∗2, Q
∗
2) = (α − βD,D), which is shown as

point B in Figure 3. Conversely, with probability 1 − ψ there is no government

intervention and the equilibrium is at point A. No other source of uncertainty is

assumed. Furthermore, we assume that Q∗2 < Q∗1, i.e. D < α
2β

. Social welfare is

assumed to be given by equations (4), (5) and (6), with Ap = 0 and Ac > 0. Hence,

producers are risk-neutral while consumers are risk-averse.

Let us now consider an entrant who has access to two technologies: a ‘peak’

technology with marginal cost cP such that p∗2 < cP < p∗1, and a ‘base’ technology

with marginal cost cB such that 0 < cB < p∗2. The unit investment cost of the

two technologies is kP and kB, respectively. Hence, the ‘peak’ technology will be

6Environmental concerns would be a typical reason for this kind of interventions. One could
think, for example, of a ban on using tap water for filling up swimming pools, or – as it exists in
some European countries – a fine for installing electrical heating in new houses.
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activated only if there is no government intervention (probability 1− ψ), while the

‘base’ technology will be activated both in the case of government intervention and

in the case of no government intervention. Obviously, a necessary condition for

the ‘peak’ technology to be attractive, is that kP < kB. More than that, we will

assume that both technologies yield equal, zero NPV for the investor. Assuming

the entrant is risk-neutral like the other producers (in fact, the entrant could be

one of the existing producers), we would then have dUe = 0, which would make

the entrant indifferent between investing and not investing in either technology. To

make matters more interesting, we shall assume that kB is infinitesimally smaller

and kP is infinitesimally larger, so that the entrant would have a marginal preference

for investing in the ‘base’ technology and not investing in the ‘peak’ technology.

Since dUe = 0, the social welfare impact of the investment is only the ‘investment

externality’: dW = dUp + dUc. Using Proposition 2.1, or by directly computing

Up and Uc, one can demonstrate that the social welfare impact of an infinitesimal

investment dqB in the ‘base’ technology, for the case ψ = 1
2
, is given by:

dW

dqB
= −3Aβ2

8

(
α

2β
−D

)(
D − α

6β

)(
D − α

4β

)
(12)

while the welfare impact of an infinitesimal investment dqP in the ‘peak’ technology,

for the case ψ = 1
2
, is given by:

dW

dqP
=

3Aβ2

8

(
α

2β
−D

)(
D − α

6β

)
α

4β
(13)

Assuming that D > α
4β

, we find that dW/dqB < 0 while dW/dqP > 0. Hence, from

a social welfare point of view, the entrant would overinvest in the ‘base’ technology,

and underinvest in the ‘peak’ technology. The underlying cause is that the ‘peak’

technology takes costly risk out of the market, but the entrant is not rewarded for

this. In this example, we have assumed that the uncertainty is due to unhedgeable

political factors. In the next section, we will examine the case in which risk-sharing

instruments are available.

3 Effects of increasing market completeness

As mentioned before, the demonstration of suboptimal entry in section 2.2 is related

to imperfect risk-sharing between market participants. Indeed, the setting described

above does not offer any instruments that would allow market participants to trade

risk between them: markets are incomplete. In this section we will examine the case
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of increasingly complete markets.

3.1 Increasing market completeness without entry

Let us consider a case with n tradable financial instruments, such as forwards and

options. Such instruments are fully represented by prices Fi, i = 1, . . . , n and their

pay-offs Ti, i = 1, . . . , n, the latter being random variables because they depend

on the state-of-the-world ω ∈ Ω in stage two. Buying (selling) an instrument i

means paying (receiving) a fixed price Fi in stage one, and receiving (paying) an

uncertain pay-off Ti in stage two. Without loss of generality, we can assume that

E[Ti] = 0,∀i. To study the impact of the availability of these financial instruments

on the behavior of producers and consumers, it is convenient to consider random

variables as ‘vectors’. Indeed, the space of zero-mean random variables (i.e. all

functions X : Ω → R with E[X] = 0) can be augmented with an inner product

〈X,Y〉 = E[XY] = Cov[X,Y], to form a Hilbert space. The instrument pay-

offs Ti, i = 1, . . . , n span a subspace of this Hilbert space. Through orthogonal

projection of the two zero-mean random variables Π− E[Π] and CS− E[CS] onto

this subspace, we can uniquely rewrite Π and CS as:7

Π = E[Π] + ~λTp
~T + εp (14)

CS = E[CS] + ~λTc
~T + εc (15)

with E[εp] = E[εc] = 0 and Cov[Ti, εp] = Cov[Ti, εc] = 0,∀i. The arrow ~· denotes

an n-dimensional column matrix, and ·T denotes matrix transposition. Furthermore,

we write ~T = [T1 . . . Tn]T and ~F = [F1 . . . Fn]T . Finally, note that εp and εp are

stochastic, while ~λp and ~λc are deterministic.

The trade of financial instruments modifies producers’ profits and consumer sur-

plus. The resulting quantities are:

Π̃ = Π + ~kTp (~T− ~F ) (16)

C̃S = CS + ~kTc (~T− ~F ) (17)

with the column matrices ~kp and ~kc denoting the amount of each of the n instruments

bought by producers and consumers, respectively. Negative amounts represent ‘sell-

ing’. The resulting utility levels Ũp and Ũc are related to Π̃ and C̃S in the same

way as in equations (4) and (5).

7Uniqueness requires that the Ti, i = 1, . . . , n not be linearly dependent. We assume here that
this condition is fulfilled.
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Lemma 3.1. In the absence of other players on the financial markets, the equilib-

rium quantities and prices of financial instruments bought and sold by producers and

consumers are given by:

~kp = −~kc =
Ac~λc − Ap~λp
Ac + Ap

(18)

and
~F = − AcAp

Ac + Ap
Σ(~λc + ~λp) (19)

with Σ the n× n-dimensional covariance matrix of ~T.

Proof. From equations (4), (14) and (16), we find that:

Ũp = E[Π]− ~kTp ~F −
Ap
2

((~λp + ~kp)
TΣ(~λp + ~kp) + Var[εp]) (20)

using the fact that Cov[Ti, εp] = 0,∀i. The gradient in ~kp, assuming price-taking

behavior on the financial market, is easily derived as:

~∇kpŨp = −~F − ApΣ(~λp + ~kp) (21)

from which the first-order equilibrium condition for ~kp can be determined:

~kp = −
(

1

Ap
Σ−1 ~F + ~λp

)
(22)

A completely analogous condition can be derived for ~kc. In the absence of other

players on the financial markets, we must have ~kp + ~kc = ~0, from which we can

derive equation (19). Substituting (19) into (22), we obtain (18).

Equation (18) represents the optimal risk-sharing between producers and con-

sumers, for the given set of available financial instruments.

Example 3.2. Assume the market is complete (εp = εc = 0) and Ap = Ac = A.

Then ~kp =
~λp−~λc

2
, hence Π̃ = E[Π]−~kTp ~F +

(
~λp+~λc

2

)
~T, so that Π̃ becomes identical

to Π+CS
2

, except for a non-stochastic component. The same holds for CS, hence risk

is perfectly distributed between producers and consumers: the only remaining risk is

the sector risk Π + CS, which is shared equally between producers and consumers.

The transition from an incomplete market (as in Section 2.2) to a complete market

as in this example, increases social welfare from E[Π + CS]− A
2

(Var[Π] + Var[CS])

to E[Π + CS]− A
4

(Var[Π + CS]) .8

8Note that market completion does not increase social welfare when the stochastic variations
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3.2 Production entry in an increasingly complete market

Let us now study the effect of an infinitesimal entrant in the case of an increasingly

complete financial market. Analogous to equations (14) and (15), we can write x

(defined as in Section 2.2) as:

x = E[x] + ~λTx
~T + εx (23)

Lemma 3.3. In first order, an entrant who only invests in physical capacity and

does not enter the financial markets, does not change the prices of tradable financial

instruments (d~F = 0), while the quantities of financial instruments traded change by

an amount corresponding to the hedgeable part of the impact of the entrant (d~kp =

−d~kc = ~λxdq).

Proof. From equations (9), (14), (15), (23) and the uniqueness of orthogonal pro-

jection, one can infer that the effect on ~λp and ~λc, of an infinitesimal entrant with

capacity dq, is d~λp = −d~λc = −~λxdq. Lemma 3.3 then follows directly from Lemma

3.1.

Proposition 3.4. Assume the same conditions as in Proposition 2.1. When tradable

financial instruments ~T are available, the effect of an infinitesimal entrant with

capacity dq, on social welfare, is given by:

dW̃ = dUe + Cov[Apεp − Acεc, εx]dq (24)

with εp, εc and εx defined as in equations (14), (15) and (23).

Proof. Using reasoning analogous to the proof of Proposition 2.1, we find

dŨp = d

(
E[Π]− ~kTp ~F −

Ap
2

((~λp + ~kp)
TΣ(~λp + ~kp) + Var[εp])

)
= E[dΠ]− ~λTx ~Fdq − Ap(~λp + ~kp)

TΣd(~λp + ~kp)

−Ap
2

(Var[εp − εxdq]− Var[εp])

= −E[x]dq − ~λTx ~Fdq − Ap(~λp + ~kp)
TΣ(−~λxdq + ~λxdq)

−Ap
2

(−2Cov[εp, εxdq])

= −E[x]dq − ~λTx ~Fdq + ApCov[εp, εx]dq

and analogous for dŨc. Putting both expressions together, we find equation (24).

in Π and CS are identical. In that case, social welfare remains the same before and after the
introduction of a complete market, because there are no gains to be made from trading risk.
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Figure 4: Graphical illustration of Example 3.5
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As before, the second term in equation (24) is an externality that may lead

to over- or underinvestment. Proposition 3.4 clearly demonstrates the impact of

increasing market completeness. As markets become more complete, the subspace

spanned by the instruments ~T approaches the complete space of random variables.

As a result, Var[εp] = ‖εp‖2 → 0, and likewise for εc, so that, in a complete market,

the externality disappears and the entry decision is socially optimal.

Example 3.5. Let us consider a sector in which consumers have fixed inelastic

demand D, with reservation price α. We assume that the industry marginal cost

curve takes one of the following three forms: C ′1(Q) = 1
2
βQ, C ′2(Q) = βQ, or

C ′3(Q) = 2βQ. In words: costs can take a reference value, or double the reference

value, or half the reference value. As an example, the uncertainty in industry costs

may be due to uncertainty in prices of input products, such as oil. To focus our

thoughts, let us assume indeed that the industry is strongly dependent on oil and

that all the above-described uncertainty in production costs is due to uncertainty

about the oil price. The choice between the three cost curves is stochastic. We

assume that the three states-of-the-world are equally likely. The sector assumptions

are illustrated in Figure 4. Note that we assume α > 2βD. The competitive

equilibrium price in the absence of entry is p∗1 = 1
2
βD (point A), p∗2 = βD (point B),

or p∗3 = 2βD (point C), each with probability 1
3
. The top part of Table 1 summarizes

the pay-offs Π and CS in each of the states-of-the-world. Social welfare is assumed

to be given by equations (4), (5) and (6), with Ap = Ac ≡ A. Hence, consumers and

producers are equally risk-averse.
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Table 1: Example 3.5: profits of existing producers and consumer surplus
in the three states-of-the-world (top part of the table), and impact of the
entrant (bottom part of the table)

State-of-the-world ω = ω1 ω2 ω3

C ′(Q) = 1
2
βQ βQ 2βQ

Π = 1
4
βD2 1

2
βD2 βD2

CS = (α− 1
2
βD)D (α− βD)D (α− 2βD)D

dCS
dqB

= − dΠ
dqB

= xB = 1
2
βD βD 2βD

dCS
dqM

= − dΠ
dqM

= xM = 0 βD 2βD

dCS
dqP

= − dΠ
dqP

= xP = 0 0 2βD

Let us now consider an entrant who has access to three technologies: a ‘peak’

technology with marginal cost cP such that p∗2 < cP < p∗3, a ‘base’ technology with

marginal cost cB such that 0 < cB < p∗1, and a ‘medium’ technology with marginal

cost cM such that p∗1 < cM < p∗2. We assume that the costs cP , cB and cB do

not exhibit any uncertainty. In the story of our example: they are independent of

the oil price. The unit investment cost of the three technologies is kP , kB and kM ,

respectively. The ‘peak’ technology will be activated only in state ω3, the ‘medium’

technology will be activated only in states ω2 and ω3, while the ‘base’ technology

will be activated in all three states. As in Example 2.2, we assume that all three

technologies yield equal, zero NPV for the investor. Again assuming the entrant is

risk-neutral, we would then have dUe = 0 for all technologies, which would make the

entrant indifferent between investing and not investing in any of the technologies.

We will assume that in this case the entrant does not invest. The bottom part

of Table 1 shows the impact (on profits of existing producers and on consumer

surplus) of an entrant investing in an infinitesimal amount of ‘base’ capacity (dqB),

‘medium’ capacity (dqM), or ‘peak’ capacity (dqP ), respectively. Since dUe = 0,

the social welfare impact of the investment is only the ‘investment externality’:

dW̃ = dŨp + dŨc. Looking at Table 1 and considering Proposition 2.1, it is easy to

see that dW̃ > 0 for all three technologies, because they reduce the variability of

profits of existing producers and consumer surplus. However, since the entrant does

not invest, we have a case of underinvestment (insufficient entry) compared to the

social optimum.

Now let us introduce tradable financial instruments. Since there are three states-

of-the-world, the Hilbert space of zero-mean random variables is two-dimensional.

Hence, two linearly independent instruments T1 and T2 are sufficient to make the

15



Table 2: Example 3.5: pay-offs of the tradable financial instruments

State-of-the-world ω = ω1 ω2 ω3

T1 = −1 0 1

T2 = −1 −1 2

T3 = 4 −5 1

Table 3: Example 3.5: Social welfare impact of the entrant (for each of
the three technologies) as a function of the available tradable instruments

No instruments Only T1 Only T2 Both T1 and T2

dW̃
dqB

= 7
12

1
48

1
16

0

dW̃
dqM

= 3
4

0 1
8

0

dW̃
dqP

= 5
6

1
12

0 0

Note: all values in this table need to be multiplied by Aβ2D3.

market complete. Let us define the pay-offs of T1 and T2 as in Table 2. T1 could

be considered as a ‘future’ contract on the oil price, while T2 could be considered as

a ‘call option’ contract. The table also mentions T3, which will be considered later

on. The availability of tradable financial instruments alters the risk-sharing between

existing producers and consumers. As a result, the risk-reducing external benefits

of an investment by the entrant may be less important. Using Proposition 3.4,

we can compute the impact of an infinitesimal investment on social welfare, when

an increasing number of tradable instruments are available. Table 3 provides an

overview of the results, for each of the three technologies. The presence of either T1

or T2 reduces the positive externalities of entry. When both instruments are present,

the market is complete, hence risk-sharing between producers and consumers is

perfect and entry (or, in this example, lack thereof) is socially optimal. Finally, it is

interesting to note that the externalities for some types of entry may become 0 even

when the market is not yet fully complete. This is the case when an instrument

is available with exactly the same risk profile as the impact of the entrant. For

example, the presence of only T1 already makes the externality of the ‘medium’

technology disappear. The same holds for T2 and the ‘peak’ technology.

The observation in Table 3 that the investment externality goes down for each

tradable instrument added, is however not general:

Corollary 3.6. Adding a tradable instrument does not necessarily decrease the in-

vestment externality computed in Propositions 2.1 or 3.4.
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To see this, let us consider a market in which the instruments Ti, i = 1, . . . , n

are available. The investment externality per unit of investment dq according to

Proposition 3.4 is given by:

Cov[Apεp − Acεc, εx] = 〈εpc, εx〉 (25)

with εpc = Apεp−Acεc. Consider the addition of a new instrument Tn+1. Let T′n+1

denote the component of Tn+1 that is orthogonal to Ti, i = 1, . . . , n. We can now

write εpc = ε′pc+apcT
′
n+1 and εx = ε′x+axT

′
n+1 , with

〈
ε′pc,T

′
n+1

〉
=

〈
ε′x,T

′
n+1

〉
= 0.

The new value of the investment externality is now given by
〈
ε′pc, ε

′
x

〉
. We find:

〈εpc, εx〉 =
〈
ε′pc + apcT

′
n+1, ε

′
x + axT

′
n+1

〉
(26)

=
〈
ε′pc, ε

′
x

〉
+ ax

〈
ε′pc,T

′
n+1

〉
+ apc

〈
T′n+1, ε

′
x

〉
+ (27)

+apcax
〈
T′n+1,T

′
n+1

〉
(28)

hence: 〈
ε′pc, ε

′
x

〉
= 〈εpc, εx〉 − apcax

∥∥T′n+1

∥∥2
(29)

Clearly, when apcax < 0 (i.e. when sgn
〈
εpc,T

′
n+1

〉
6= sgn

〈
εx,T

′
n+1

〉
), the investment

externality increases. If in addition, 〈εpc, εx〉 > 0, then the investment externality

increases also in absolute terms. By analogy, the same holds when no instruments

are available yet and the instrument added is the first (i.e. n = 0). As mentioned

before, however, when sufficiently many instruments are added so that the market

becomes complete, the externality always tends to 0.

Example 3.7. (Continuation of Example 3.5) Consider the same set-up as in Ex-

ample 3.5. Suppose that we do not introduce T1 and T2, but instead we introduce

T3 (and only T3 ), an instrument with pay-offs shown in Table 2. In the story of

the example, T3 can be considered as an asymmetric long straddle option on the

oil price. The investment externality after introduction of T3 is shown in Table

4. The introduction of T3 increases the investment externality of entry in ‘peak’

technology. Hence, if only the ‘peak’ technology is available, the introduction of

T3 increases the inefficiency in entry. To illustrate this point, suppose that instead

of dUe = 0, we have dUe = −71
84
Aβ2D3dqP . Clearly, the entrant would not invest.

When no tradable instruments are available, this would also be the socially optimal

behavior, since dW = (−71
84

+ 5
6
)Aβ2D3dqP < 0. Now suppose that the instrument

T3 is available. The entrant obviously still would not invest. But in this case, this

would not be socially optimal, since dW̃ = (−71
84

+ 6
7
)Aβ2D3dqP > 0.
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Table 4: Example 3.5 – continued: Social welfare impact of the entrant
(for each of the three technologies) as a function of the available tradable
instruments

No instruments Only T3

dW̃
dqB

= 7
12

= 0.583 4
7

= 0.571

dW̃
dqM

= 3
4

= 0.750 5
7

= 0.714

dW̃
dqP

= 5
6

= 0.833 6
7

= 0.857

Note: all values in this table need to be multiplied by Aβ2D3.

3.3 Entry in financial markets

Until now, we have assumed that the entrant invests only in physical capacity and

does not trade on the financial markets. Let us now consider an entrant on the finan-

cial markets. As before, the available financial instruments are Ti, i = 1, . . . , n. The

pre-entry equilibrium on the financial markets is described by Lemma 3.1. Entry here

means that the entrant invests in an infinitesimal amount of financial instruments d~ke

in stage one, thereby causing a change d~F in the prices ~F of financial instruments,

and a change d~kp and d~kc, respectively, in the quantities ~kp and ~kc of financial in-

struments bought by existing producers and consumers, respectively. In the absence

of other players on the financial markets, we must have d~ke + d~kp + d~kc = 0.

Lemma 3.8. In response to a change d~F in the price of financial instruments –

caused by infinitesimal entry on the financial markets – the existing producers and

consumers change their quantities of financial instruments bought, by:

d~kj = − 1

Aj
Σ−1d~F j = p, c (30)

Proof. The proof follows directly from differentiation of equation (22).

Proposition 3.9. Entry on the financial markets without production entry, does

not have an externality on the existing producers and consumers:

d(Ũp + Ũc) = 0 (31)

Proof. Differentiation of equation (20) yields:

dŨp = −d~kpT ~F − ~kTp d~F − Ap(~λp + ~kp)
TΣd~kp (32)
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Using Lemma 3.8, we obtain:

dŨp =

(
1

Ap
Σ−1d~F

)T

~F − ~kTp d~F − Ap(~λp + ~kp)
TΣ

(
− 1

Ap

)
Σ−1d~F (33)

=
1

Ap
d~F TΣ−1 ~F + ~λTp d

~F (34)

and a completely analogous expression for dŨc. Putting both together, we find:

d(Ũp + Ũc) =

(
1

Ap
+

1

Ac

)
d~F TΣ−1 ~F + d~F T (~λp + ~λc) (35)

Substituting ~F from Lemma 3.1 into the last factor of the first term, we find that

the first term and the second term cancel out, hence equation (31).

Proposition 3.9 is equivalent to saying dW̃ = dŨe. The entrant on the financial

markets therefore ‘sees’ the full societal impact of its entry. Entry decisions in the

financial market are therefore always optimal from a societal perspective.

4 Conclusions

In this paper we have developed a model of investment in a perfectly competitive

industry. We have shown that a combination of risk aversion of existing players and

incomplete financial markets, leads to a situation in which entrants’ investment de-

cisions in productive assets may be inefficient. In particular, we have demonstrated

that there are situations in which new entrants overinvest in one technology and

underinvest in another technology, compared to the socially optimal investment de-

cisions. The underlying cause is that presence of the new productive assets changes

the distribution of overall industry risk, which, if financial markets are incomplete,

creates a risk externality for the firms already active in the market. The availability

of an additional tradable financial instrument (without making the market com-

plete) does not necessarily reduce the externality. When financial markets become

complete however, the externality disappears. If the entrant invests in the finan-

cial market instead of in productive assets, there are no externalities, hence entry

decisions in the financial market are always optimal from a societal perspective.

The result of the above is that the industry as a whole takes too much risk by

investing too much in production activities with highly correlated risk profiles. Firms

that could reduce the overall industry risk, do no enter often enough, while firms that

increase overall industry risk, enter too often. Governments could attempt to reduce

these inefficiencies by stimulating the creation of financial markets. More than that,
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in the absence of financial markets, the results could provide a ground for sector-

specific regulation of investment decisions. Indeed, one could imagine a regulatory

setting in which all project proposals need to be screened in advance by the regulator

in order to assess the impact of the proposed investment on systemic risk. Approval

would be given when project benefits weigh up against a possible negative risk

spillover. Finally, from the perspective of competition policy, the analysis of this

paper shows that, in the absence of complete financial markets, an efficiency defense

based on optimal risk-sharing may be a valid argument in vertical mergers.

Our model takes the number and types of tradable financial instruments as an

exogenous input. Future work could endogenize the degree of market completeness,

in order to study e.g. whether incumbent firms might have strategies to create

market incompleteness as an entry barrier. Furthermore, the model assumes mean-

variance utility, which allows for simple closed-form expressions of welfare impacts of

entrants. Using numerical methods, one could study the effect of assuming a different

structure for the utility functions. Finally, our model makes no assumptions about

the risk behavior of the entrant. By making such assumptions, one could make an

integrated study of the effect of market completeness on both the risk externality

and the entrant’s decision-making under (hedgeable) uncertainty.
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