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Abstract

We focus on the revealed preference conditions that characterize the collection of nite
data sets that are consistent with the maximization of a weakly separable utility function.
From a theoretical perspective, we show that verifying these revealed preference condi-
tions is a difficult problem, i.e. it is np-complete. From a practical perspective, we present
an integer programming approach that can verify the revealed preference conditions in
a straightforward way, which is particularly attractive in view of empirical analysis. We
demonstrate the versatility of this integer programming approach by showing that it also
allows for testing homothetic separability andweak separability of the indirect utility func-
tion. We illustrate the practical usefulness of the approach by an empirical application to
Spanish household consumption data.
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e universe cannot be dealt with in one stroke and so a bit has to be broken off
and treated as if the rest did not matter.

Afriat, 1969

1 Introduction
We focus on the revealed preference conditions for consistency of a nite data set with themax-
imization of a weakly separable utility function. Our main contribution is twofold. First, we
show that veri cation of these revealed preference conditions is a difficult problem. In particu-
lar, the problem is np-complete, which essentially means that it cannot be solved in polynomial
time. As we will discuss below, this actually motivates our second contribution. Speci cally,
we show that the revealed preference conditions can be veri ed by means of elementary inte-
ger programming procedures, which are easily implemented in practice. We demonstrate the
versatility of this integer programming approach by showing that it can also assess homoth-
etic separability and weak separability of the indirect utility function. Finally, we illustrate the
approach by applying it to a Spanish panel data set.

Weak separability of the utility function is a frequently used assumption in theoretical and
applied demand analysis. A group of goods is said to be separable if the marginal rate of sub-
stitution between any two goods in the group is independent from the quantities consumed of
any good outside this group (Leontief, 1947; Sono, 1961). Weak separability has several con-
venient implications.1 First of all, it allows for representing consumption in terms of two stage
budgeting. is means that, in order to determine the demanded quantities of the goods in the
separable group, it suffices to know the prices of the goods in this group and the total within
group expenditures. Further, weak separability is a crucial condition for the construction of
group price and quantity indices. Such aggregates can be useful, for example, to compute group
cost of living indices for welfare analysis. Finally, from an empirical point of view, weak sepa-
rability signi cantly reduces the number of parameters of the demand system to be estimated
in practical applications.

Considering these advantages for both theoretical and empirical work, an important issue
concerns empirically testing the validity of the separability assumption (prior to effectively im-
posing it). In the literature, there are two approaches to test for weak separability. e most
popular approach uses econometric techniques to verify certain parameter restrictions given a
speci c demand model. Although this approach is fairly exible in terms of the demand model
that is used, it also poses a number of problems. First, in order to verify weak separability, it is
necessary to estimate a full demand system without any restriction on the cross price elastici-
ties. As such,most tests of weak separability will have a degrees of freedomproblem in the sense
that too many parameters must be estimated given the amount of data. Next, if the hypothesis
of weak separability is rejected, it is impossible to verify whether this implies a rejection of weak
separability or, instead, a rejection of the speci c functional form imposed on demand a priori.
In other words, if the null hypothesis of weak separability is rejected, this may well be due to

1See also Deaton and Muellbauer (1980) for a more thorough discussion
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the use of a wrong functional form rather than a nonseparable utility structure per se.2 Finally,
most econometric tests for separability are based on separability of the indirect utility function
(i.e. separability in prices), which does not imply separability of the direct utility function (i.e.
separability in quantities) unless the subutility function is homothetic. As such, a rejection of
weak separability can also reveal a failure of this homotheticity assumption.

An alternative, less known approach to test weak separability is based on revealed prefer-
ence theory. In several seminal contributions to the literature, Afriat (1969), Varian (1983)
and Diewert and Parkan (1985) developed revealed preference conditions that characterize the
collection of data sets that are rationalizable by a (weakly) separable utility function. e re-
vealed preference approach remedies different problems associated with the econometric ap-
proach. First, the revealed preference conditions can meaningfully be applied to data sets with
only two observations, which avoids the degrees of freedom problem discussed above. Fur-
ther, the revealed preference approach abstains from imposing a speci c functional form on
the utility functions. As such, the tests are insensitive to model misspeci cation. Finally, the
revealed preference approach does not require additional assumptions like homotheticity of
the subutility function or separability of the indirect utility function (although such additional
assumptions can be imposed and tested; see below).

Unfortunately, the revealed preference conditions have the drawback that they take the form
of a set of nonlinear, quadratic inequalities, which are very hard to verify. In order to avoid this
problem, several heuristics have been proposed that provide separate sufficient and necessary
conditions for data consistency with weak separability (see Section 2 for an overview). e lack
of an efficient algorithm to verify the revealed preference conditions raises the questionwhether
such an algorithm exists at all. In this study, we show that the answer is no. In particular, we
prove that the veri cation of the revealed preference conditions for weak separability is an np-
complete problem.3 is np-completeness result implies that it is impossible to nd a polyno-
mial time algorithm that veri es whether a data set is consistent with the maximization of a
weakly separable utility function (unless one can prove p= np). is indicates that we should
better look for a widely applied and (for moderately sized problems) reasonably quick non-
polynomial time algorithm to verify the revealed preference conditions. Given this, we present
an easy-to-implement (non-polynomial time) integer programming procedure to verify the re-
vealed preference conditions.4 Our approach exploits the equivalence of the generalized axiom
of revealed preference (GARP) and a set of mixed integer inequalities. Such an integer pro-

2In this respect, it is important to know that imposing separability conditions on a particular functional form
might lead to additional difficulties. In particular, Blackorby, Primont, and Russel (1978) showed that testing
for separability using several econometric speci cations based on local approximations of the true model (i.e.
exible functional forms) is actually equivalent to testing a much stronger condition. For example, it turns out

impossible to test separability for the translog model without imposing the much more stringent assumption of
additive separability. Barnett and Choi (1989) con rmed this result by means of Monte Carlo simulations.

3We refer to Garey and Johnson (1979) for an introduction into the theory of NP-completeness.
4In private communication, Per Hjertstrand pointed out to us that, in an unpublished working paper, he in-

dependently developed a closely similar integer programming procedure; see Hjerstrand (2011b). We thank him
for providing us with the reference. In a sense, Hjertstrand’s procedure is complementary to ours as it uses an
integer programming formulation of the Afriat inequalities in statement (ii) of our following eorem 2, while
our approach builds on an integer programming formulation of the GARP condition (iii) in eorem 2 (see also
eorem 4).
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gramming approach has proven very useful in the literature that applies revealed preference
theory to collective consumption models, which studies the behavior of multi-person house-
holds, and in the literature that investigates the testable implications of general equilibrium
models.5 We extend the insights from this literature to the model of utility maximization with
a weakly separable utility function.

From a theoretical point of view, the core motivation for adopting an integer programming
approach is that this is a widely accepted and a well known approach to handle np-complete
problems. Besides this, we also have a number of other motivations. First of all, our approach
allows for problems with an arbitrary number of observations. Second, any mixed integer pro-
gram can be solved in nite time. Hence, our approach implies the possibility to verify in
nite time the necessary and sufficient conditions for a given data set to be consistent with

maximization of a weakly separable utility function. A nal and important argument pro our
integer programming approach is that it provides a versatile framework for analyzing testable
implications of different model speci cations: we will show that our approach can easily ac-
commodate for homotheticity of the subutility functions, and that we can readily adjust our
integer programming procedure to test for separability of the indirect utility function.

We demonstrate the practical usefulness of our approach by applying it to data drawn from
the Encuesta Continua de Presupestos Familiares (ECPF), a Spanish household survey. In this
application we rst compare the empirical performance of the four alternative model speci ca-
tions that were also mentioned above: the standard utility maximization model, the model that
additionally imposes weak separability, the homothetic separability model, and the model that
assumes a weakly separable indirect utility function. Speci cally, following a recent proposal of
Beatty and Crawford (2010), we evaluate these different model speci cations in terms of their
‘predictive success’. Next, another main focus is on evaluating the computational speed of our
integer programming approach for substantially large data sets. To this end, we will consider
a preference homogeneity assumption that parallels an assumption oen used in econometric
demand analysis. is will allow us to conduct our separability tests on data sets that bring
together information on multiple (similar) households.

Section 2 introduces the revealed preference conditions for rationalizability under a weakly
separable utility function. Section 3 gives the np-completeness result and presents our integer
programming approach. Section 4 discusses our empirical application. Section 5 concludes.

2 Revealed preferences conditions
To set the stage, we brie y recapture the known revealed preference conditions for the standard
utility maximization model and for the model that additionally imposes weak separability on
the utility function. e results in this section will be useful for our discussion in the following
sections.

5See Cherchye, De Rock, Sabbe, and Vermeulen (2008) and Cherchye, De Rock, and Vermeulen (2011a) for
integer programming characterizations of collective consumptionmodels andCherchye, Demuynck, andDeRock
(2011b) for integer programming characterizations of general equilibrium models.
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Standard utility maximization. Consider a nite data set D = {pt;xt}t∈T, which consists of
strictly positive price vectors pt ∈ Rn

++ and non-negative consumption bundles xt ∈ Rn
+ for

consumption observations t in a ( nite) set T. is data setD is said to be rationalizable if there
exists a well-behaved (i.e. increasing, continuous and concave) utility function u : Rn

+ → R
such that, for all observations t ∈ T,

xt ∈ argmax
x

u(x) s.t. ptx ≤ ptxt.

In other words, for each t it must be the case that the consumed bundle xt maximizes the utility
function u over the set of all affordable consumption bundles.

Next, consider the following concepts. e direct revealed preference relation RD over the
set {xt}t∈T is de ned by xtRDxv if ptxt ≥ ptxv. In words, we have that xtRDxv if xt was
chosen while xv was also affordable. e indirect revealed preference relation R is the tran-
sitive closure of the relation RD; xtRxv if there exist bundles xw,xr, . . . ,xm such that xtRDxw,
xwRDxr, . . . ,xmRDxv. Finally, we say that {pt,xt}t∈T satis es the Generalized Axiom of Re-
vealed Preferences (GARP) if for all xtRxv it is not the case that pvxv > pvxt. In words, if xt
is indirectly revealed preferred to xv, then it is not the case that xv was more expensive then xt
when xv was bought.

Using these concepts, we can state the following result, which is probably the single most
important theorem in revealed preference theory.

eorem 1. [Varian (1982), based on Afriat (1967)]
e following statements are equivalent:

(i) e data set D = {pt,xt}t∈T is rationalizable,

(ii) e data set D = {pt,xt}t∈T satis es GARP,

(iii) ere exist strict positive numbers λt and nonnegative numbers Ut such that, for all t, v ∈ T,

Ut − Uv ≤ λvpv(xt − xv).

Condition (ii) states that GARP is necessary and sufficient for rationalizability. Condition
(iii) provides an equivalent characterization of utility maximization in terms of so-called Afriat
inequalities. Intuitively, these Afriat inequalities allow us to obtain an explicit construction
of the utility levels and the marginal utility of income associated with each observation t: they
de ne a utility levelUt and amarginal utility of income λt (associated with the observed income
ptxt) for each observed xt.

eorem 1 provides two methods to verify whether a data set is rationalizable. e rst
method was originally suggested by Varian (1982) and focuses on verifying the GARP condi-
tion. e method consists of three steps, which comply with the three steps in the de nition
of GARP. e rst step constructs the relation RD from the data set D = {pt,xt}t∈T. A sec-
ond step computes the transitive closure of R. Here, Varian suggests using Warshall (1962)’s
algorithm, which provides an efficient procedure for computing transitive closures. e third
step veri es if pvxv ≤ pvxt whenever xtRxv. If this is the case, the data set satis es GARP
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and is, therefore, rationalizable. Due to its efficiency, this procedure is very popular in applied
work. e second method veri es the rationalizability conditions by testing feasibility of the
corresponding Afriat inequalities (i.e. condition (iii)). ese inequalities are linear in the un-
knowns Ut and λt, which implies that their feasibility can be veri ed using elementary linear
programming methods. We refer to Afriat (1967) and Diewert (1973) for discussions of this
method.

Weak separability. To introduce the notion of weak separability, we rst partition the set of
goodsN = {1, . . . , n} in two groups. Accordingly, we can split any given consumption bundle
into two separate bundles. e rst bundle x contains all consumption quantities of the goods
from the rst group and the second bundle y corresponds to the goods in the second group.
In this way, we write the consumption bundle by (x,y). Likewise, we can split any price vector
into a price vector of all goods in the rst group p and a vector of prices for the goods in the
second group q. Now, consider a data set D = {pt,qt;xt,yt}t∈T. We say that this data set is
rationalizable by weak separability if there exist a well-behaved utility function u and a well-
behaved subutility function s such that, for all observations t ∈ T,

(xt,yt) ∈ argmax
x,y

u(x, s(y)) s.t. ptx+ qty ≤ ptxt + qtyt.

Varian (1983) provides the following characterization of behavior that is rationalizable by
weak separability.

eorem 2. [Varian (1983)]
e following statements are equivalent:

(i) e data set D = {pt,qt;xt,yt}t∈T is rationalizable by weak separability.

(ii) For all t ∈ T there exist a nonnegative numbers St and strict positive numbers δt such that,
for all t, v ∈ T,

St − Sv ≤ δvqv(yt − yv), (ii.1)
{pt, 1/δt;xt, St}t∈Tsatis es GARP. (ii.2)

(iii) For all t ∈ T, there exist nonnegative numbers St and Ut and strict positive numbers δt and
λt such that, for all t, v ∈ T,

St − Sv ≤ δvqv(yt − yv), (iii.1)

Ut − Uv ≤ λv
[
pv(xt − xv) +

1
δv
(St − Sv)

]
. (iii.2)

In contrast to the conditions in eorem 1, the conditions in this theorem are not eas-
ily veri ed. e main problem is that for the veri cation of (ii.2), the ‘prices’ 1/δt and the
corresponding ‘quantities’ St, which must satisfy condition (ii.1), are unobserved. is is also
re ected in condition (iii.2), which can be rewritten as a set of quadratic inequalities.
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e literature brings forward severalmethods to test theweak separability conditions. Prob-
ably the best known alternative is Varian (1983)’s three step procedure. In the rst step, this
method tests GARP consistency of the data set D = {pt,qt;xt,yt}t∈T. If the data fail GARP,
they are not rationalizable and, hence, we can reject weak separability.6 By contrast, if the data
satisfy GARP, the second step tests whether the data set {qt,yt}t∈T satis es GARP. is GARP
condition is equivalent to condition (ii.1). If GARP consistency is rejected in this second step
then, again, the data set is not rationalizable by weak separability. Finally, the third step veri es
GARP of a data set {pt, 1/δ∗t ;xt,V∗

t }t∈T for some speci c values δ∗t and S∗t that satisfy condition
(ii.1). If for this last step GARP is not rejected, then we conclude that the data are consistent
with weak separability.

Unfortunately, Varian (1983)’s test is not an exact one. In particular, it is possible that a data
set is rationalizable by a weakly separable utility function while the algorithm effectively rejects
weak separability. Simulation results indicate that this may actually occur quite frequently (see,
for example, Barnett and Choi (1989); Fleissig and Whitney (2003); Hjerstrand (2009)). e
problem is that the third step of the procedure xes the values of both δ∗t andV∗

t in an arbitrary
way. In this respect, however, certain values may be more probable than others. is idea pro-
vides the intuition behind the linear program developed by Fleissig and Whitney (2003). In
particular, these authors determine the values of 1/δ∗t and V∗

t based on the theory of superla-
tive index numbers (see Diewert (1976, 1978)). A superlative index number provides an exact
index number for some order approximation of the underlying (in casu homogeneous) utility
function s. However, this test is again only sufficient but not necessary. An alternative testing
strategy is explored by Swofford and Whitney (1994) and Fleissig and Whitney (2008), who
use nonlinear programming methods to solve (iii.1) and (iii.2) simultaneously. Alas, nonlin-
ear programming problems are generally difficult to solve. e most important problem with
the solution algorithms is that they do not always yield an optimal solution: most algorithms
search for local optima, which need not be globally optimal. Generally, nding a global opti-
mum requires a ne grid search over the set of initial values. But even a very ne grid search
cannot exclude that weak separability is rejected while the assumption effectively holds. We
refer to Hjerstrand (2009) for a Monte Carlo comparison of the different test procedures cited
in this paragraph.

3 Main results
is section contains our main results. First, we show that the problem of rationalizing a data
set by a weakly separable utility function is a difficult (= np-complete) problem. Next, we show
how the above revealed preference conditions for rationalizability by a weakly separable utility
function can be restated as a mixed integer programming (MIP) problem. MIP is a frequently
used and widely accepted approach to handle np-complete problems. Further, we show the
exibility of our approach by deriving MIP conditions for two related rationalizability prob-

lems. First, we consider the speci c case where the subutility function is homothetic. Next, we
focus on the case where separability is imposed on the indirect utility function, i.e. the case

6If the data set does not satisfy GARP, then it is not rationalizable by a utility function. As such, it is also not
rationalizable by a weakly separable utility function.
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of weak separability in prices. ese two cases are interesting because they are widely used in
econometric analysis of separability (see also our discussion in the Introduction).

e np-completeness result. Consider a data set D = {pt,qt;xt,yt}t∈T. For any such data
set, we can ask the question whether this data set is rationalizable by a weakly separable util-
ity function (i.e. whether it satis es the conditions of eorem 2: either (ii.1)-(ii.2) or (iii.1)-
(iii.2)). Basically, this decision problem asks for testing rationalizability by weak separability
by an arbitrary data set. e following theorem shows that this problem is np-complete. e
proof is given in Appendix A.

eorem 3. e question whether a given data set is rationalizable by a weakly separable utility
function is an np-complete problem.

is result considers the general case without any restriction on the number of goods or
observations. Of course, it does not rule out speci c instances for which veri cation of the ra-
tionalizability conditions might be performed efficiently. Nevertheless, our result does indicate
that it is highly improbably that the problem of weakly rationalizability can be solved by means
of an efficient algorithm (like, for example, linear programming).

Essentially, eorem 3 implies that one should not waste time trying to construct a polyno-
mial time algorithm that veri es rationalizability by weak separability (unless one has taken up
the ambitious task of showing that p= np. In turn, this suggests considering easy-to-implement
non-polynomial time algorithms for tackling the testing problem. erefore, we next propose
a widely used method called Mixed Integer Programming (MIP). MIP problems look like stan-
dard linear programming problems except that certain variables are restricted to be integer
valued (in our case either 0 or 1).

e mixed integer program. We proceed by translating conditions (ii.1) and (ii.2) to an in-
teger programming setting. e basic idea is to notice that condition (ii.2) is equivalent to the
condition that the data set {δtpt, 1;xt, St}t∈T satis es GARP. Indeed, this equivalence follows
from normalizing the price of good St to unity for all observations.7 is new GARP condition
can be transformed into the following mixed integer linear program. (e proof of eorem
4 explains the equivalence between GARP consistency of the data set {δtpt, 1;xt, St}t∈T and
feasibility of the conditions (cs.2)-(cs.5).)
CS.WS For all t, v ∈ T, there exist numbers St,Ut ∈ [0, 1[, δt ∈]0, 1] and binary variables
Xt,v ∈ {0, 1} such that, for all observations t and v ∈ T,8

St − Sv ≤ δvqv(yt − yv), (cs.1)
Ut − Uv < Xt,v, (cs.2)

(Xt,v − 1) ≤ Ut − Uv, (cs.3)
δtpt(xt − xv) + (St − Sv) < Xt,vAt, (cs.4)

(Xt,v − 1)Av ≤ δvpv(xt − xv) + (St − Sv). (cs.5)
7is can always be done, by noticing that this does not alter the GARP conditions.
8e strict inequalities in cs.2 and cs.4 are difficult to handle. erefore, in practice, we use a weak inequality

and subtract a very small but xed number from the right hand side.
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Here, we let At be some xed and large number (larger than ptxt + 1). First of all, observe
that the restriction of St,Ut and δt to the unit interval is harmless as it is possible to rescale
both variables without changing the revealed preference conditions (ii.1) and (ii.2). Condition
(cs.1) then reproduces condition (ii.1). Hence, we only need to show that conditions (cs.2)-
(cs.5) are equivalent to the condition that {δtpt, 1;xt, St}t∈T satis es GARP. is is captured by
the following result. e proof is given in Appendix B.

eorem 4. e data set D = {δtpt, 1;xt, St}t∈T satis es GARP if and only if conditions (cs.2)-
(cs.5) have a solution.

Homothetic and indirect weak separability. e above MIP formulation is very exible in
terms of incorporating additional (separable) preference structure. We illustrate this by con-
sidering two special cases. e rst case requires that the subutility function s is homothetic.
e second case requires separability of the indirect utility function.

A data set D = {pt,qt;xt,yt}t∈T is rationalizable by homothetic separability if there exist a
well-behaved utility function u and a well-behaved and homothetic subutility function s such
that, for all observations t ∈ T,

(xt,yt) ∈ argmax
x,y

u(x, s(y)) s.t. ptx+ qty ≤ ptxt + qtyt.

e following theorem characterizes the data sets that are homothetic weakly separable. e
result directly follows from combining Varian (1983)’s rationalizability conditions for a homo-
thetic utility function with eorem 2.9

eorem 5. e following statements are equivalent:

(i) e data set D = {pt,qt;xt,yt}t∈T is rationalizable by homothetic separability.

(ii) For all t ∈ T there exist nonnegative numbers Ut and strict positive numbers St such that,
for all t, v ∈ T,

St − Sv ≤
Sv

qvyv
qv(yt − yv),{

St
qtyt

pt, 1;xt,yt

}
t∈T

satis es GARP.

In other words, to impose homotheticity of the subutility function, we only need to add the
additional (linear) restriction that δt = St/qtyt . As such, by substituting in the MIP problem
CS.WS each occurrence of δt by St/qtyt (or by imposing the additional restriction that δt =
St/qtyt ), we obtain a MIP formulation for homothetic weak separability.

As a nal result we state the revealed preference conditions for indirect weak separability.
First of all, let us normalize the prices pt and qt such that, for all t, ptxt + qtyt = 1. en, we
say that the data setD = {pt,qt;xt,yt}t∈T is rationalizable by indirect weak separability if there

9See also Varian (1983) for a similar result.
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exist a well-behaved (i.e. decreasing, convex and continuous) indirect utility function v and a
well-behaved indirect subutility function w such that, for all observations t ∈ T,

{pt,qt} ∈ argmin v(p,w(q)) s.t. pxt + qyt ≤ 1. (1)

e next theorem gives a characterization of data sets that are rationalizable in terms of an
indirect weakly separable utility function. e result is obtained by combining the result in
eorem 2 with Brown and Shannon (2000) ’s rationalizability conditions for an indirect utility
function.10

eorem 6. e following statements are equivalent:

(i) e data set D = {pt,qt;xt,yt}t∈T is rationalizable by indirect weak separability.

(ii) For all t ∈ T there exist nonnegative numbers Vt andWt and strict positive numbers λt and
δt such that, for all t, v ∈ T,

Wt −Wv ≥ −δvyv(qt − qv), (iv.1)

Vt − Vv ≥ −λv
(
xv(pt − pv) +

1
−δv

(Wt −Wv)

)
. (iv.2)

Similarly to before, we can show that the rationalizability conditions in eorem 6 are
equivalent to the following set of MIP constraints (see Appendix C for a proof):

CS.WSI ere exist numbers Wt,Wv,Vt,Vv ∈ [0, 1[, δt ∈]0, 1] and binary variables Xt,v ∈
{0, 1} such that, for all t, v ∈ T,

Wt −Wv ≤ δvyv(qt − qv), (csi.1)
Vt − Vv < Xt,v, (csi.2)

(Xt,v − 1) ≤ Vt − Vv, (csi.3)
δtxt(pt − pv) + (Wt −Wv) < Xt,vAt, (csi.4)

(Xt,v − 1)Av ≤ δvxv(pt − pv) + (Wt −Wv). (csi.5)

Again, At is a xed number larger than ptxt + 1.

4 Empirical Application
We applied our integer programming tests to data drawn from the Encuesta Contunua de Pre-
sopuestos Familieares (ECPF) Survey. e ECPF is a quarterly budget survey (1985–1997)
that interviews about 3200 Spanish households on their consumption expenditures. For each
household, the survey provides consumption observations for a maximum of eight consecutive
quarters. See Browning and Collado (2001) and Crawford (2010) for a more detailed explana-
tion of this data set. We exclude all households with less then eight observations. In the end,

10See also Hjerstrand and Swofford (forthcoming) for a similar result.
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this obtains a panel with 1585 households. e data set covers consumption decisions for 15
(nondurable) goods: (i) food and non-alcoholic drinks at home, (ii) alcohol, (iii) tobacco, (iv)
energy at home, (v) services at home, (vi) nondurables at home, (vii) nondurable medicines,
(viii) medical services, (ix) transportation, (x) petrol, (xi) leisure, (xii) personal services, (xiii)
personal nondurables, (xiv) restaurant and bars and (xv) traveling holiday. We follow Blundell,
Browning, and Crawford (2007) and de ne the separable group to include all goods except
food (i.e. the separable group contains all goods except (i), (ii) and (xiv)). is separability
assumption is frequently used in empirical analysis of consumption behavior.

Test results: pass rates and power. Table 1 reports the pass rates of the revealed preference
tests. About 90% of the households (1431 out of 1585) satisfy the revealed preference condition
for the standard utility maximization model (i.e. the conditions in eorem 1). By contrast,
only 870 households (or 55%) satisfy the revealed preference conditions for rationalizability
by weak separability (as given by eorem 2). Remarkably, none (!) of the households satisfy
the conditions for rationalizability by homothetic separability (see eorem 5). is already
indicates that weak separability and, to a much greater extent, homothetic weak separability
are rather stringent assumptions.11 Finally, 1242 households (or 79%) pass the rationalizability
conditions for indirect weak separability (see eorem 6), which is substantially more than for
the other separability assumptions.

Our diverging results for weak separability and indirect weak separability can seem surpris-
ing to some, as one may have expected these two assumptions to be about equally stringent.
Still, our pass rate results suggest that the rst assumption has a better empirical t than the
second one for our sample of households. In a sense, this may be a useful result from the per-
spective of econometric applications, which oen invoke indirect weak separability (see our
discussion in the Introduction). Our results reveal that observed behavior is largely consistent
with such indirect separability.

Table 1: Pass rate and Power (in percentages)

model pass rate power
mean min 1st quartile median 3rd quartile max

general ut. max. 90.2 11.1 0 0.3 06.9 20.1 61.0
weak separability 51.4 48.0 4.2 31.4 48.2 64.0 97.4
homothetic separability 0 99.9 99.8 100 100 100 100
indirect separability 78.4 15.8 0 0.8 11.6 27.0 82.2

11Given this failure of homothetic separability for our sample, one may want to test whether homotheticity
holds at the subutility level, as a necessary (but not sufficient) condition for homothetic separability. is can tell
us whether it is actually homotheticity of the subutility function that is strongly rejected, even without additionally
imposing weak separability at the aggregate utility level. is test can be performed by simply applying Varian
(1983)’s test to the data set {qt,yt}t∈T. When applied to our data set, we found that, indeed, none of the households
satis es this weaker test.
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Importantly, tomeaningfully compare the differentmodels, one should notmerely consider
the corresponding pass rates. For example, as the weak separability model is nested within the
standard utility maximization model, the former model will have a lower pass rate than the
latter model by construction. Indeed, Bronars (1987) and, more recently, Andreoni and Har-
baugh (2008) and Beatty and Crawford (2010) -rather convincingly- argue that revealed pref-
erence test results (indicating pass or fail of the data for some behavioral condition) should be
complemented with power measures to obtain a fair empirical assessment of the rationalizabil-
ity conditions under evaluation. Here, power is measured as the probability of rejecting the
revealed preference test given that the model does not hold. Favorable test results (i.e. a high
pass rate for some given data), which prima facie suggest a good empirical t, have little value
if the test has little discriminatory power (i.e. the conditions are hard to reject for the data at
hand).

For all revealed preference tests under evaluation, we compute a power measure for every
individual household. ismeasure quanti es discriminatory power in terms of the probability
to detect random behavior, and is constructed as follows. We simulate 1000 random series
of eight consumption choices by drawing for each of the eight observed household budgets,
a random quantity bundle from a uniform distribution on the given budget hyperplane for
the corresponding prices and total expenditure. e power measure is then calculated as one
minus the proportion of these randomly generated consumption series that are consistent with
the rationalizability conditions under evaluation. e distribution of this power measure for
the different models is given in Table 1. We see that the standard utility maximization model
has a rather low power. On average only about 11% of all random data sets violate the revealed
preference conditions of eorem 1. By contrast, the power distribution for the homothetic
separability test is entirely centered around 1, with almost no spread. In other words, nearly all
random data sets fail this test, which con rms its stringency. Finally, the weak separability test
has reasonably high power while the power of the indirect weak separability test is fairly low.

is last nding suggests that, from an empirical point of view, indirect separability is much
less stringent than weak separability. In this respect, we recall that the weak separability model
was associated with a higher pass rate for the sample at hand. Now, it seems that this better
t may simply be due to a lower discriminatory power rather than a better model per se. Our

following exercise accounts for the possible trade-off between pass rate and power.

Predictive success. e above analysis compares the four behavioral models in terms of to
their pass rates and discriminatory power. Beatty and Crawford (2010) recently suggested to
combine these two (oen inversely related) performance measures into a single metric. More
speci cally, building further on an original idea of Selten (1991), they suggest to assess the
empirical performance of a model by a so-called predictive success measure which, for a given
household, is computed as the difference between the pass rate (either 1 or 0) and 1 minus
the power. By construction, this measure takes values between -1 and 1. Negative values then
suggest that themodel under study is rather inadequate to describe the household data at hand:
the model provides a poor t of the household behavior (pass rate is zero) even though the
model’s power is low (i.e. the model is difficult to reject empirically). Conversely, a high and
positive predictive success value points to a potentially useful model: it is able to explain the
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observed consumption behavior (i.e. pass rate equals 1) while its power is high (i.e. the model
would rapidly be rejected in case of random behavior).

Table 2 presents the mean and quartile values of the predictive success measures associated
with the four models under study. We observe that the standard utility maximization model
has the highestmean predictive success. However, the value of 0.013 is still very low. In general,
the mean predictive success values do not provide a strong empirical case in favor of one or the
other model.

Let us then consider the quartile values. Here, we get a more balanced picture. For the
homothetic separability model, the predictive success measure is entirely centered around zero
with (practically) no spread. is result directly follows from the fact that this model has, for
each household, a zero pass rate combined with power (close to) unity. Next, the distributions
of the predictive success measures are almost identical for the standard utility maximization
model and the indirect weak separability model. In other words, indirect separability seems
to add little value (if any) over and above basic utility maximization in terms of predictive
success. Finally, the predictive success distribution of the weak separability model has fatter
tails than the ones of both the standard utilitymaximizationmodel and the indirect separability
model: on the one hand, there are a lot of households with very negative predictive success
values for weak separability but, on the other hand, there are also a lot of households with
large and positive predictive success values. One interpretation is that the weak separability
model performs rather well empirically for one subgroup of households while it does a fairly
poor job for other households. Given this, it can be useful to investigate which household
characteristics determine the good t of the weak separability model. Because our empirical
application is mainly meant to be illustrative, we will not explore this route here, but we do see
this as a potentially interesting avenue for follow-up research.

A related point concerns the observation that the weak separability model dominates the
indirect weak separability model in terms of predictive success for the median, third quartile
and maximum values. is suggests that weak separability may effectively constitute an appro-
priate model to describe the consumption behavior of most households in our sample. While it
provides a worse t than indirect separability at the overall sample level, for those households
that do pass the weak separability test the higher discriminatory power effectively makes this
model more useful from an empirical point of view. at is, for many households we obtain a
predictive success value that is substantially above zero.

Table 2: Predictive success

model mean min 1st quartile median 3rd quartile max
general ut. max. 0.013 -1 0 0.031 0.171 0.610
weak separability -0.005 -0.950 -0.443 0.099 0.428 0.942
homothetic separability 0 -0.002 0 0 0 0
indirect separability -0.056 -0.998 0 0.016 0.191 0.733
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Table 3: Computational speed for different data set sizes
size of data set number of datasets pass rate (mean) time (in seconds) var time

8 152 84 0.023 0.00001
16 87 5 0.099 0.0002
24 49 1 0.256 0.001
32 38 0 0.559 0.009
40 48 0 1.125 0.021
48 22 0 1.911 0.067
56 22 0 3.223 0.098
64 14 0 5.206 0.144
72 7 0 7.74 1.256
80 9 0 12.042 1.835
88 6 0 15.319 1.223
96 5 0 21.644 5.367
104 1 0 39.267 N.A.
120 2 0 50.543 13.256

Large data sets and computational speed. e above empirical illustration considers data
sets with (only) 8 observations. Not very surprisingly, for such small data sets the integer pro-
gramming method we propose comes to a test result very rapidly. Here, it seems interesting
to assess whether this ‘speediness’ also holds if we increase the size of the data sets. As is well
known, integer programming problems might become increasingly hard to solve as the size of
the problem gets larger. To assess whether our integer programming method also works well
for substantially large data sets, we assume identical preferences for all households with the
same age of the male and female household members. In practice, this means that we perform
our separability tests on pooled data sets containing all households with equally aged house-
hold members. A similar homogeneity assumption is frequently used in econometric demand
analysis, i.e. demand estimation is oen conditioned on ages of the household members as
demographic factors.

As can be seen from Table 3, the size of our newly constructed data sets varies from 8 to
120 observations, with the average number of observations equal to 27.44. Clearly, this implies
relatively big data sets as compared to other data sets that have been considered in empirical
revealed preference analysis.12 To keep our discussion focused, we here only report on the
revealed preference conditions for the weak separability model. e results for the other sepa-
rability models are more or less similar in terms of computational speed.

e third column of Table 2 reports the pass rates for the data sets of different sizes. How-
ever, our main interest here is in the fourth column of the table, which gives the average com-
putation time of our algorithm for the different data set sizes that we consider.13 Generally,

12See, for example, Cherchye, De Rock, Sabbe, and Vermeulen (2008) for a discussion on the typical size of data
sets considered in empirical revealed preference analysis.

13We performed all our computations on a laptop computer with 2.4GHz clock speed and 4GB RAM with a
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these results provide a fairly strong case in favor of our integer programming approach. For
example, checking the revealed preference conditions for weak separability takes (on average)
less than a second for data sets with up to 32 observations. However, if we keep increasing the
number of observations, the computational time increases rapidly. Nevertheless, even for the
largest data sets with 120 observations we obtain an outcome in less than aminute (on average),
which -in our opinion- is still reasonably fast.

5 Conclusion
We considered the revealed preference conditions for weak separability. From a theoretical
perspective, we found that verifying these conditions is a difficult (= np-complete) problem.
Given this, we introduced an integer programming approach to test data consistency with the
conditions. We illustrated the versatility of this approach by deriving formally similar integer
programming tests for the case of homothetic separability and indirect separability.

Further, we showed the empirical viability of our integer programming approach by pro-
viding an application to Spanish household consumption data. In this application, we focused
on separability between food expenditures and other expenditures (on nondurables). An in-
teresting observation was that indirect weak separability was associated with a higher pass rate
than weak separability for the sample of households at hand. However, we also found that the
weak separability test had substantially more discriminatory power than the indirect separabil-
ity test. As such, the weak separability model was associated with a rather favorable predictive
success measure (indicating a high degree of empirical usefulness) for most households that
we considered. Finally, we also investigated the computational tractability of our integer pro-
gramming procedure if we increased the size of the data sets. Here, we demonstrated that the
test procedure works rather quickly even in the case of substantially large data sets (with up to
120 observations).

We see multiple avenues for further research. First of all, at the theoretical level, we have
concentrated on three most commonly used types of separability, which have been established
in the literature for a long time: weak separability, homothetic separability and indirect weak
separability. More recently, Blundell and Robin (2000) introduced the notion of latent separa-
bility, a generalization of weak separability that provides an attractive empirical and theoretical
framework for investigating the grouping of goods and prices. Crawford (2004) has derived the
revealed preference conditions for latent separability. Just like for weak separability, in their
original formulation these conditions are nonlinear (quadratic) and thus hard to verify. We
believe it interesting to explore whether and to what extent the integer programming approach
set out in the current paper may help to derive necessary and/or sufficient testable (integer
programming) formulations of Crawford’s conditions for latent separability.

Next, at the methodological level, we focused our discussion by only considering revealed
preference tests for alternative separability speci cations. If observed behavior is consistent
with a particular speci cation (i.e. can be rationalized), then a natural next question pertains
to recovering/identifying the structural features of the model under consideration. For exam-
ple, in the present context such recovery can focus on identifying group (price/quantity) indices

standard con guration. For solving the integer programming problem, we used the commercial solver CPLEX©.
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that are consistent with a separable representation of the utility structure. Because the revealed
preference approach does not require a prior speci cation for the utility functions, it addresses
recovery questions by ‘letting the data speak for themselves’ (i.e. it only uses the information
that is directly revealed by the data). See, for example, Afriat (1967) and Varian (1982) for de-
tailed discussions of revealed preference recoverability. ese authors consider the standard
utility maximization model. By using the integer programming formulations developed in the
current paper, one can address similar recovery questions under alternative separability as-
sumptions.14

Finally, the rationalizability tests discussed above are ‘sharp’ tests: they only tell us whether
observations are exactly consistent with the rationalizability conditions that are under evalu-
ation. However, as argued by Varian (1990), exact consistency may not be a very interesting
hypothesis. Rather, one may be interested whether the behavioral model under study pro-
vides a reasonable way to describe observed behavior; for most purposes, ‘nearly optimizing
behavior’ is just as good as ‘optimizing’ behavior. Also, in empirical applications of revealed
preference tests it is oen useful to account for measurement errors in the price and quantity
data. is pleads for re nements of our integer programming tests that account for optimiza-
tion and/or measurement errors. In this respect, we indicate that our integer programming
formulations can easily account for such issues. Speci cally, it is fairly straightforward to in-
clude the methodological extensions that Varian (1985, 1990) originally proposed in the case
of the standard utility maximization model to deal with (measurement/optimization) errors.15
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Appendix A: proof ofeorem 3
Proof. In order to show that the problem of rationalizability by a weakly separable utility func-
tion is in the class np, we need to reduce a known np-complete problem to this decision prob-
lem. For this we use the problem of Monotone 3SAT (M3SAT).
M3SAT
INSTANCE: A set of binary variables b1, . . . , bt and a set of clauses C1, . . . ,Cr. Each clause Cℓ,
ℓ = 1, . . . , r, contains three literals l1,ℓ, l2,ℓ and l3,ℓ and each literal either equals a variable or its
negation. e condition monotone refers to the fact that for every clause all literals within this
clause are either negated or unnegated.
QUESTION: Does there exist an assignment to the variables b1, . . . , bt (either 1 or 0) such that
each clause contains at least one literal with the values equal to 1?

Now, consider an instance of M3SAT. We rst construct the set of observations T and the sets
of goods T and S.:

• For every literal lk,ℓ (ℓ = 1, . . . , r and k = 1, 2, 3), we construct two observations t(k, ℓ)
and v(k, ℓ). ese observations are gathered in the set T′.

• For every literal lk,ℓ (ℓ = 1, . . . , r and k = 1, 2, 3), we create two goods g(t, k, ℓ) and
g(v, k, ℓ).

• For every literal lk,ℓ (ℓ = 1, . . . , r and k = 1, 2, 3), we create two goods h(t, k, ℓ) and
h(v, k, ℓ).

For two literals l and l′, we say that they are opposites if l corresponds to a variable bi and l′
corresponds to (1− bi) or l corresponds to (1− bi) and l′ corresponds to bi (i.e. l ≡ (1− l′)).
We consider some special subsets of the set of goods.

• Gt = {g(t, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

• Gv = {g(v, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

• O(t, k, ℓ) =
{
g(v, k′, ℓ′)

∣∣∣∣ the k-th literal in clause ℓ and the k′th literal
in clause ℓ′ are opposites

}
.

• Ht = {h(t, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

• Hv = {h(v, k, ℓ)|k = 1, 2, 3; ℓ = 1, . . . , r}.

e goods in the separable group (bundle y) are the goods g(t, k, ℓ) and g(v, k, ℓ). For k and
l ∈ N denote by k⊕ l the number (k + l) mod 3. e remaining goods are the goods for the
nonseparable group (bundel x). e prices and quantities for each observation and good are
summarized in the following tables for all k = 1, 2, 3 and ℓ = 1, . . . , r (prices are before the
separator ‘|’, quantities aer).

Here, the numbers p, z and y are given by:

p = 14+ 35r, z = 16+ 42r, y = 11+ 29r,
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Table 4: Prices and quantities for instance of weak separability

observation g(t, k, ℓ) Gt − {g(t, k, ℓ)} Gv −O(t, k, ℓ) O(t, k, ℓ)

t(k, ℓ) p|1 1|2 1|2 1|1− 1
p

observation h(t, k, ℓ) Ht − {h(t, k, ℓ)} h(v, k, ℓ) Hv − {h(v, k, ℓ)}

t(k, ℓ) z|2 1|3 1|1− 1
y

1|2

observation g(v, k, ℓ) Gt Gv − {g(v, k, ℓ)}
v(k, ℓ) p|1 1|2 1|2

observation h(t, k⊕ 2, ℓ) Ht − {h(t, k⊕ 2, ℓ)} h(v, k, ℓ) Hv − {h(v, k, ℓ)}
v(k, ℓ) 1|1 1|3 y|1 1|2

with r the number of clauses.
We have to show that M3SAT has a solution if and only if the data set constructed above

is weakly separable rationalizable. First let us assume that the data set is weakly separable ra-
tionalizable. Let St(k,ℓ) and Sv(k,ℓ) and Ut(k,ℓ),Uv(k,ℓ) be the Afriat numbers for the observations
t(k, ℓ) and v(k, ℓ) that correspond to this rationalization. e idea is to set the value of the vari-
ables in such a way as to guarantee that the kth literal in the ℓth clause is equal to one whenever
St(k,ℓ) ≥ Sv(k,ℓ). We need to verify that this is possible and that this leads to a solution ofM3SAT.
e following facts will be helpful.

Fact 1. For all k, k′ = 1, 2, 3 and ℓ, ℓ′ = 1, . . . , r, if the kth literal in the ℓth clause and the k′th
literal in the ℓ′th are opposites, then Sv(k,ℓ) > St(k′,ℓ′).

Proof. We have that:

St(k′,ℓ′) − Sv(k,ℓ) ≤ δv(k,ℓ)qv(k,l)
[
yt(k′,ℓ′) − yv(k,ℓ)

]
= δv(k,ℓ)

[
−1− 1+ (−2+ 1− 1/p)

∣∣O(t, k′, ℓ′) ∩ (Gv − {g(v, k, ℓ)})
∣∣]

< 0

Fact 2. For all ℓ, ℓ′ = 1, . . . , r and k, k′ = 1, 2, 3 if the kth literal in the ℓth clause and the
k′th literal in the ℓ′th clause are opposites then it is not the case that both St(k,ℓ) ≥ Sv(k,ℓ) and
St(k′,ℓ′) ≥ Sv(k′,ℓ′).

Proof. If, on the contrary, St(k,ℓ) ≥ Sv(k,ℓ) and St(k′,ℓ′) ≥ Sv(k′,ℓ′), we would have that (by fact 1):

St(k,ℓ) ≥ Sv(k,ℓ) > St(k′,ℓ′) ≥ Sv(k′,ℓ′) > St(k,ℓ),

a contradiction.
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Facts 1 and 2 show that above construction above can be performed (i.e. it is never the
case that two opposite literals have the value of one). e following fact demonstrates that it
provides a solution to M3SAT.

Fact 3. For all ℓ = 1, . . . , r, there is at least one value k = 1, 2, 3 such that St(k,ℓ) ≥ Sv(k,ℓ).

Proof. Let us rst show that for all k = 1, 2, 3 and ℓ = 1, . . . , r, Ut(k,ℓ) > Uv(k⊕1,ℓ). Indeed,

Uv(k⊕1,ℓ) − Ut(k,ℓ) ≤ λt(k,ℓ)pt(k,ℓ)
[
xv(k⊕1,ℓ) − xt(k,ℓ)

]
+ λt(k,ℓ)qt(k,ℓ)

[
yv(k⊕1,ℓ) − yt(k,ℓ)

]
= λt(k,ℓ)

[
p− 1+ (2− 1+ 1/p) |O(t, k, ℓ) ∩ (Gv − {g(v, k, ℓ})|
−z+ (2− 1+ 1/y) + (1− 2)

]
≤ λt(k,ℓ) [p− 1+ 6r− z+ 2− 1]
= λt(k,ℓ) [(14+ 35r) + 6r− (16+ 42r)] < 0

Now, consider the identity

0 =
[
Uv(k⊕1,ℓ) − Ut(k,ℓ)

]
+
[
Uv(k⊕2,ℓ) − Ut(k⊕1,ℓ)

]
+
[
Uv(k⊕3,ℓ) − Ut(k⊕2,ℓ)

]
+
[
Ut(k,ℓ) − Uv(k,ℓ)

]
+
[
Ut(k⊕1,ℓ) − Uv(k⊕1,ℓ)

]
+
[
Ut(k⊕2,ℓ) − Uv(k⊕2,ℓ)

]
e rst three terms on the right hand side are negative, hence,

0 <
[
Ut(k,ℓ) − Uv(k,ℓ)

]
+
[
Ut(k⊕1,ℓ) − Uv(k⊕1,ℓ)

]
+
[
Ut(k⊕2,ℓ) − Uv(k⊕2,ℓ)

]
≤
λv(1,ℓ)
δv(1,ℓ)

[
St(1,ℓ) − Sv(1,ℓ)

]
+

λv(2,ℓ)
δv(k⊕1,ℓ)

[
St(2,ℓ) − Sv(2,ℓ)

]
+

λv(3,ℓ)
δv(3,ℓ)

[
St(3,ℓ) − Sv(3,ℓ)

]
As such at least for one k = 1, 2, 3 it must be that St(k,ℓ) > Sv(k,ℓ).

Now, consider a ‘yes’ instance of M3SAT. We need to construct Afriat numbers S and δ
for each observation that satisfy the the conditions for rationalizability by weak separability
(see eorem 2). Let us start by constructing a binary relation ≻. For k, k′ = 1, 2, 3 and
ℓ, ℓ′ = 1, . . . , r if the k-th literal in the ℓth clause and the k′th literal in the ℓ′th clause are
opposites, we set v(k, ℓ) ≻ t(k′, ℓ′). Further, for all k = 1, 2, 3 and ℓ = 1, . . . , r if the kth literal
in the ℓth clause has the value 1, we set t(k, ℓ) ≻ v(k, ℓ). ese are the only comparisons in ≻.
Observe that ≻ has no cycles and any path in ≻ contains no more than 4 observations.

Let M1 be the set of ≻-maximal elements of T′:

M1 = {a ∈ T| ̸ ∃b ∈ T′, b ≻ a}.

For all observations a inM1, we set Sa = 4. LetM2 be the set of≻-maximal elements inT′−M1.
For all a ∈ M2, set Sa = 3. Next, letM3 be the set of≻-maximal elements inT′−(M1∪M2) and
set Sa = 2 for all a ∈ M3. Finally letM4 be the set of≻-maximal element inT′−(M1∪M2∪M3)
and set for all a ∈ M4, Sa = 1. It is easy to see that M1 ∪ M2 ∪ M3 ∪ M4 = T, hence all
observations are allocated a value. Observe that when the kth literal in the ℓth clause equals
one, then St(k,ℓ) > Sv(k,ℓ). Finally, for all k = 1, 2, 3 and ℓ = 1, . . . , r, set δt(k,ℓ) = 1 and set

δv(k,ℓ) =
1

3+ 7r
, where r is the number of clauses.
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We need to proof two things. First we need to verify that all Afriat inequalities hold for
every two observations in the set

{
t(k, ℓ), v(k, ℓ), t(k′, ℓ′), v(k′, ℓ′)

}
k,k′=1,2,3;ℓ,ℓ′=1,...,r (i.e. con-

dition (ii.1) of eorem 2). Second, we need to show that the data set {pw, 1/δw,xw, Sw}w∈T′

satis es GARP (condition (ii.2)). For the rst, it is a straightforward but cumbersome exercise
to verify every possible combination of states. As such we refer to the appendix D. Now, let
us verify the second claim. Consider the direct revealed preference relation RD for the data set
{pw, 1/δw;xw, Sw}w∈T′ . We have following results.

Fact 4. For all k = 1, 2, 3 and ℓ = 1, . . . , r, we have that the observation t(k, ℓ) is directly revealed
preferred to the observation v(k⊕ 1, ℓ) (i.e. (t(k, ℓ), v(k⊕ 1, ℓ)) ∈ RD).

Proof. We have that:

pt(k,ℓ)
[
xt(k,ℓ) − xv(k⊕1,ℓ)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k⊕1,ℓ)

]
= z+ (1− 1/y− 2) + (2− 1) +

[
St(k,ℓ) − Sv(k⊕1,ℓ)

]
≥ z− 2− 3 = 16+ 42r− 5 > 0

Fact 5. For all k = 1, 2, 3 and ℓ = 1, . . . , r, (v(k, ℓ), t(k, ℓ)) ∈ RD if and only if Sv(k,ℓ) ≥ St(k,ℓ)
(which implies that the kth literal in the ℓth clause is equal to zero).

Proof. We have that,

pv(k,ℓ)(xv(k,ℓ) − xt(k,ℓ)) +
1

δv(k,ℓ)
[
Sv(k,ℓ) − St(k,ℓ)

]
=

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k,ℓ)

]
.

is is positive or negative depending on the sign of Sv(k,ℓ) − St(k,ℓ).

Fact 6. e relation RD contains no comparisons except for the cases mentioned by Facts 4 and 5.

Proof. See appendix E.

Now, assume a violation of GARP. Above Facts show that this implies the following cycle
for some ℓ = 1, . . . , r:

(t(1, ℓ), v(2, ℓ)), (v(2, ℓ), t(2, ℓ)), (t(2, ℓ), v(3, ℓ))
(v(3, ℓ), t(3, ℓ)), (t(3, ℓ), v(1, ℓ)), (v(1, ℓ), t(1, ℓ)).

Fact 5 shows that in this case Sv(1,ℓ) ≥ St(1,ℓ), Sv(2,ℓ) ≥ St(2,ℓ) and Sv(3,ℓ) ≥ St(3,ℓ). is can
only be the case if all literals in the clause ℓ are zero, a contradiction.
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Appendix B: proof ofeorem 4
Proof. Assume that the data set D = {δtpt, 1;xt, St}t∈T satis es GARP. From eorem 1, we
know that this data set is rationalizable. As such, consider a utility function u that rationalizes
this data set. It is always possible to rescale u such that, for all t ∈ T, u(xt, St) < 1. en, for
all t ∈ T, de ne Ut = u(xt, St) and, for all t, v ∈ T, de ne Xt,v = 1 if and only if Ut ≥ Uv
(i.e. Xt,v = 0 if Ut < Uv) . We must show that conditions (cs.2)-(cs.5) hold. By de nition,
conditions (cs.2) and (cs.3) are always satis ed. Let δtptxt + St ≥ δtptxv + Sv. en, as u
rationalizes the data set D, it must be that Ut ≥ Uv and thus Xt,v = 1. is demonstrates that
condition (cs.4) holds. Next, assume that Xt,v = 1, which implies Ut ≥ Uv. As u rationalizes
D, we have that it is impossible that δvpvxv + Sv > δvpvxt + St. Otherwise, we would have that
Uv > Ut. is shows that (cs.5) is also satis ed.

For the reverse, assume that (cs.2)-(cs.5) has a solution. We need to show that D satis es
GARP. If δtptxt + St ≥ δtptxv + Sv, we have, from (cs.4), that Xt,v = 1. Condition (cs.3) then
requires that Ut ≥ UV. As such, by transitivity, if (xt, St) is indirectly revealed preferred to
(xv, Sv), it must also be the case that Ut ≥ Uv. Condition (cs.2) then shows that Xt,v = 1. Now,
if (xt, St) is indirectly revealed preferred to (xv, Sv) (and hence Xt,v = 1), then condition (cs.5)
requires that δvpvxv + Sv ≤ δvpvxt + St. As such, the data set D satis es GARP.

Appendix C: MIP formulation for rationalizability by indirect
weak separability
Multiplying (iv.1) by minus one gives:

(−Wt)− (−Wv) ≤ δvyv(qt − qv)

Next, observe that (iv.2) can be rewritten as:

(−Vt)− (−Vv) ≤ λv
(
xv(pt − pv) +

1
δv
((−Wt)− (−Wv))

)
.

Now, transform each variable Vt andWt by adding a strict positive number A such that for
each t, A− Vt and A−Wt become positive. is does not change the le and right hand side
of above inequalities. en, using W̃t = A−Wt and Ṽt = A− Vt, we obtain:

W̃t − W̃v ≤ δvyv(qt − qv),

Ṽt − Ṽv ≤ λv
(
xv(pt − pv) +

1
δv
(W̃t − W̃v)

)
.

From eorem 2, we see that the last condition is equivalent to the condition that the data
set {xt, 1/δt,pt, W̃t}t∈T satis es GARP. Observe that the prices and quantity vector have ex-
changed places. e result follows then from the proof of eorem 4.
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Appendix D: supplement to Appendix A
Case 1: (t(k, ℓ), t(k′, ℓ′))

δt(k,ℓ)qt(k,ℓ)
[
yt(k′,ℓ′) − yt(k,ℓ)

]
=

p+ (1− 2) + (1− 2− 1/p)
∣∣G −O(t, k, ℓ) ∩ O(t, k′, ℓ′)

∣∣
+(2− 1+ 1/p)

∣∣O(t, k, ℓ) ∩
(
Gv −O(t, k′, ℓ′)

)∣∣
≥ p− 1− 6r = 14+ 35r− 6r > 3 ≥ St(k′,ℓ′) − St(k,ℓ)

Case 2: (v(k, ℓ), v(k′, ℓ′))

δv(k,ℓ)qv(k,ℓ)
[
yv(k′,ℓ′) − yv(k,ℓ)

]
= δv(k,ℓ) [p+ (1− 2)]

=
14+ 35r− 1

3+ 7r
> 3 ≥ Sv(k′,ℓ′) − Sv(k,ℓ)

Case 3: (t(k, ℓ), v(k′, ℓ′))

δt(k,ℓ)qt(k,ℓ)
[
yv(k′,ℓ′) − yt(k,ℓ)

]
=

p+ (1/p)
∣∣O(t, k, l) ∩ {g(v, k′, ℓ′)}

∣∣
+(1− 2)

∣∣(Gv −O(t, k, ℓ)) ∩ {g(v, k′, ℓ′}
∣∣

+(2− 1+ 1/p)
∣∣O(t, k, l) ∩

(
Gv − {g(v, k′, ℓ′)}

)∣∣
≥ p− 1 = 14+ 35r− 1 > 3 ≥ Sv(k′,ℓ′) − St(k,ℓ)

Case 4: (v(k, ℓ), t(k′, ℓ′)) and the kth literal in the ℓth clause and the k′th literal in the ℓ′th clause
have opposite signature. First of all, observe that −1 ≥ St(k′,ℓ′) − Sv(k,ℓ).

en:

δv(k,ℓ)qv(k,ℓ)
[
yt(k′,ℓ′) − yv(k′,ℓ′)

]
= δv(k,ℓ)

[
p(1− 1/p− 1) + (1− 2)
+(1− 2− 1/p)

∣∣(Gv − {g(v, k, ℓ)}) ∩ O(t, k′, ℓ′)
∣∣ ]

≥ −1− 1− 6r
3+ 7r

> −1 ≥ St(k′,ℓ′) − Sv(k,ℓ)

Case 5: (v(k, ℓ), t(k′, ℓ′)) and the kth literal in the ℓth clause and the k′th literal in the ℓ′th clause
do not have opposite signature.

δv(k,ℓ)qv(k,ℓ)
[
yt(k′,ℓ′) − yv(k′,ℓ′)

]
= δv(k,ℓ)

[
p+ (1− 2)
+(1− 1/p− 2)

∣∣(Gv − {g(v, k, ℓ)}) ∩ O(t, k′, ℓ′)
∣∣ ]

≥ p− 1− 6r
3+ 7r

=
13+ 29r
3+ 7r

> 3 ≥ St(k′,ℓ′) − Sv(k,ℓ)
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Appendix E: supplement to Appendix A
Case 1: (t(k, ℓ), t(k′, ℓ′))

pt(k,ℓ)
[
xt(k,ℓ) − xt(k′,ℓ′)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − St(k′,ℓ′)

]
= −z+ (3− 2) +

[
St(k,ℓ) − St(k′,ℓ′)

]
≤ −16− 42r+ 1+ 3 < 0

Case 2: (t(k, ℓ), v(k′, ℓ′)) with ℓ ̸= ℓ′.

pt(k,ℓ)
[
xt(k,ℓ) − xv(k′,ℓ′)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k′,ℓ′)

]
= −z+ (3− 1) + (1− 1/y− 2) + (2− 1) +

[
St(k,ℓ) − Sv(k′,ℓ′)

]
≤ −16− 42r+ 2+ 1+ 3 < 0

Case 3: (t(k, ℓ), v(k, ℓ))

pt(k,ℓ)
[
xt(k,ℓ) − xv(k,ℓ)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k,ℓ)

]
= −z+ (3− 1) + (1− 1/y− 1) +

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k,ℓ)

]
≤ −16− 42r+ 2+ 3 < 0

Case 4: (t(k, ℓ), v(k⊕ 2, ℓ))

pt(k,ℓ)
[
xt(k,ℓ) − xv(k⊕2,ℓ)

]
+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k⊕2,ℓ)

]
= −z+ (3− 1) + (1− 1/y− 2) + 1+

1
δt(k,ℓ)

[
St(k,ℓ) − Sv(k⊕2,ℓ)

]
≤ −16− 42r+ 2+ 1+ 3 < 0

Case 5: (v(k, ℓ), v(k′, ℓ′))

pv(k,ℓ)
[
xv(k,ℓ) − xv(k′,ℓ′)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − Sv(k′,ℓ′)

]
= −y+ (2− 1)

1
δv(k,ℓ)

[
Sv(k,ℓ) − Sv(k′,ℓ′)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0
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Case 6: (v(k, ℓ), t(k′, ℓ′)) with ℓ ̸= ℓ′.

pv(k,ℓ)
[
xv(k,ℓ) − xt(k′,ℓ′)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k′,ℓ′)

]
= (1− 3) + (3− 2)− y+ (2− 1+ 1/y) +

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k′,ℓ′)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0

Case 7: (v(k, ℓ), t(k⊕ 1, ℓ))

pv(k,ℓ)
[
xv(k,ℓ) − xt(k⊕1,ℓ)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕1,ℓ)

]
= (1− 3) + (3− 2)− y+ (2− 1+ 1/y) +

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕1,ℓ)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0

Case 8: (v(k, ℓ), t(k⊕ 2, ℓ))

pv(k,ℓ)
[
xv(k,ℓ) − xt(k⊕2,ℓ)

]
+

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕2,ℓ)

]
= (1− 2)− y+ (2− 1+ 1/y) +

1
δv(k,ℓ)

[
Sv(k,ℓ) − St(k⊕2,ℓ)

]
≤ −11− 29r+ 1+ (3+ 7r)3 < 0
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