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Abstract

We first estimate a dynamic game for the global automobile industry and

then compute a Markov Perfect equilibrium to study the equilibrium relation-

ship between market structure and innovation. The key state variable in the

model is the efficiency level of each firm and the market structure is character-

ized by the vector of efficiency levels across all firms. Efficiency is estimated

to be stochastically increasing in the dynamic control—innovation—which is

proxied by patenting behavior. Equilibrium innovation is a function of all state

variables in the industry and the cost of R&D which includes a privately ob-

served cost shock. We find that it exhibits the following patterns: 1) innovation

by the industry leader is decreasing in the efficiency of other firms; 2) innova-

tion is decreasing in the efficiency dispersion; 3) innovation is more concentrated

that efficiency; 4) innovation is declining in the number of active firms; 5) the

innovation gap between the leader and other firms increases with competition.
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1 Introduction

Schumpeter (1942) advanced the controversial argument that monopoly is more

conducive to innovation than highly competitive markets. An extensive literature

sprung up investigating the effects of market structure on innovative activity, but

it has proven difficult to identify robust empirical results. Cohen and Levin (1989)

highlight several methodological difficulties that have plagued empirical work. The

absence of a monotone relationship and the endogeneity of market structure are two

of the most important problems.

A number of theoretical studies have demonstrated that the competition-innovation

relationship is monotonic only under restrictive conditions (Gilbert 2006). One rea-

son for this is the opposing impact of the ‘efficiency’ and ‘replacement’ effects. The

former leads to lower innovation incentives in more competitive situations where

aggregate industry profits are lower. The latter leads to lower innovation incentives

for a monopolist that has existing profits at stake. Aghion et al. (2005) demonstrate

in an explicit model of firm optimizing behavior that the relationship between com-

petition and innovation should have a nonlinear ‘inverted-U’ pattern. They confirm

with data for U.K. firms that stronger competition is associated with higher inno-

vation if competition is low, but that the relationship is inverted when competition

is already high.

A second problem for empirical work is the endogeneity of market structure, in

particular reverse causality from innovation to market structure. Vives (2008) shows

that robust patterns in a set of empirically relevant cases remain sensitive to the

assumption of an exogenous market structure versus endogenous entry. The issue

has been ignored in much of the empirical literature, although a few studies have

exploited quasi-natural experiments where market structure changed exogenously.

Carlin, Schaffer, and Seabright (2004) exploit the sudden introduction of competition

after the communist model is abandoned in transition countries. Aghion et al.

(2005) instrument the change in competition with policy variables associated with

the integration of the U.K. economy into the European market.

A host of other factors make it difficult to identify a stable empirical relation-

ship between innovation and market structure. It matters greatly how innovation

is exactly introduced in the model. Opposite effects have been demonstrated for

product versus process innovations (Boone 2000a), for discrete innovations that do

or do not make an existing technology obsolete (Gilbert 2006), and for cases with

or without complementarities between different innovation decisions (Kretschmer,

Miravete, and Pernias 2009). Furthermore, it is difficult to identify the relationship
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from cross-sectoral variation because profit opportunities and innovation costs vary

as well. Market structure variables often turn insignificant if many controls are in-

cluded (Gilbert 2006). Blundell, Griffith, and Reenen (1999) rely on within-sector

comparisons instead, but firm heterogeneity still makes it difficult to identify a stable

relationship between innovation and a firm’s competitive position (Boone 2000b).

All of the above factors are problematic for reduced form studies that regress a

measure of innovation on a measure of competition or market structure. Coefficient

estimates will be sensitive to functional form assumptions and to the controls in-

cluded. In contrast, we propose to study the relationship in an explicit dynamic

model of strategic decision making where the absence of robust monotone effects is

not a problem, an approach urged by Cohen and Levin (1989), Gilbert (2006), and

Sutton (2008). Instead of looking for a relationship that holds similarly everywhere,

we can focus on local effects or investigate which control variables are crucial. Op-

posing effects of market structure on innovation, and vice versa, can be isolated once

the primitives of the model are estimated.

We have chosen to estimate the model for the global automotive industry which

is highly innovative, both in terms of R&D expenditure and patents granted. Many

firms have experienced pronounced changes in their competitive position over the

study period, 1982–2004, which provides identifying power to estimate the structural

parameters. The more globalized operations of some initial regional firms have made

the global market structure more symmetric with a diminished role for fringe firms

and for the very largest firms.

In our model, each firm produces a differentiated product that is characterized

by the firm’s product quality or, interpreted alternatively, the firm’s efficiency level.

A firm’s market share is determined by its price and its relative efficiency. The price

is chosen strategically in each period, taking all efficiencies as given. A firm can

stochastically increase its efficiency by investing in R&D, which is a strategic and

forward looking decision. A firm takes the actions of its rivals and their possible

future states into account.

A few other papers study the interrelation between innovation and market struc-

ture in a dynamic model of strategic interaction. Goettler and Gordon (2009) study

the microprocessor industry and explicitly incorporate the durable nature of the

good by making demand and price setting dynamic as well. They study the im-

pact of market structure on innovation by a counterfactual analysis of monopoly

innovation, relying on the primitives estimated from the actual AMD-Intel duopoly.

Their finding that as a monopoly Intel would innovate more depends crucially on the

durable nature of the good. Upgrades are necessary to stimulate demand and they
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only happen if consumers value quality highly and are relatively price insensitive.

Xu (2008) analyzes innovation decisions in the Korean electric motor industry.

In addition to the cost of R&D, he also estimates R&D spillovers, adjustment costs

of physical investment, and the distribution of plant scrap value. As he uses the

oblivious equilibrium concept of Weintraub, Benkard, and Roy (2008), there is no

strategic interaction between plants in the innovation decision. Plants only optimize

relative to a stable industry state.1 Finally, Siebert and Zulehner (2010) study

the reverse question of ours, i.e. how innovation affects market structure. In their

study of the DRAM industry, they estimate the evolution of sunk entry costs as the

innovation intensity and market demand increase over time. Through their effect

on entry and exit, these costs determine equilibrium market structure.

We differ from these other studies in a number of ways. First, we model a con-

tinuous control variable, innovation, rather than the zero-one decision in the more

common discrete dynamic games. It leads us to the two-step estimation strategy of

Bajari, Benkard, and Levin (2007), which does not require to solve for the equilib-

rium. This estimator has only been used in a few other empirical applications.2

Second, we are the first to estimate a model of dynamic industry equilibrium for

the automobile industry, which has been a popular proving ground for static models

in industrial organization. Hence, we can study the innovation-market structure

relationship using functional form assumptions that are well understood.

Third, once all parameters are estimated, we calculate the equilibrium innova-

tion policy, a mapping from all possible market structures a firm might encounter.

This allows us to study how innovation incentives within a single industry, hold-

ing primitives and parameters constant, vary over the possible states the industry

might visit. While the primitives of the model will lead to a particular stochastic

steady state, exogenous shocks such as globalization or mergers might lead to many

different industry states with possibly very different levels of innovation. With the

optimal dynamic policy vector in hand, it is straightforward to conduct a causal

analysis of market structure on innovation.

1Aw et al. (2011) also study innovation dynamics, but focus on international trade as providing

an incentive for innovation. Their dynamic parameters are those that characterize the sunk cost

distribution for export and R&D activities.
2Examples are: Ryan (2011), who studies the effect of environmental regulation on the cement

industry, and Ellickson and Misra (2008) who study supermarket pricing. Ching (2010) modified the

estimator, simultaneously estimating the demand and policy functions, to study demand dynamics

in prescription drugs after patent expiry. Jenkins et al. (2004) also modified the estimator, allowing

the dynamic parameters to enter nonlinearly, to estimate network effects in the market for internet

browsers.
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The rest of the paper is organized as follows. In Section 2, we provide background

information on the global automotive industry and the data we use. In Section 3 we

introduce the static and dynamic aspects of the model as well as the Markov Per-

fect equilibrium concept. The two-step estimation methodology and the estimation

results are discussed in Section 4, followed by a sensitivity analysis. In Section 5, we

use the estimated model to analyze the equilibrium interaction between innovation

and market structure. We conclude in Section 6.

2 Background on the industry and the data

2.1 Innovation

The automotive industry is well-suited to investigate the interaction between in-

novation and market structure in a strategic context. Demand estimates—see for

example Berry, Levinsohn, and Pakes (1995) and Goldberg (1995)—indicate large

markups over marginal costs, consistent with the view that fixed costs are impor-

tant in this industry. Innovation is an important source of product differentiation

as firms’ competitive position is improved through higher product quality, greater

reliability, and the introduction of new product features. In addition, the industry

is the poster child for the importance of productivity-enhancing process innovations

(Van Biesebroeck 2003).

Producing automobiles is a highly research-intensive activity. In 2003, more than

13% of all R&D in the OECD was by firms in ISIC industry 34 ‘Motor Vehicles’,

more than in any other industry. In 2006 the industry was in third place. Statistics

in Table 1 illustrate the importance of automotive R&D in the five most innovative

economies. Except for the U.S. where it is fourth, the industry is first or second

in terms of R&D spending in each country. The top 13 firms in the auto industry

spent more than 55 billion dollars on R&D in 2005.

The industry is also a heavyweight on the output side of the innovation process.

In the last 25 years, the same 13 firms were awarded more than 50,000 patents by the

U.S. patent office.3 We measure the innovative activities of firms by the number of

patents they apply for in each calendar year.4 We use patents applied for instead of

35% of all patents filed in the European patent office (by E.U. applicants) are in the narrow IPC

category B60 “Vehicles in general”, which is only one of 127 categories and contains only a subset

of motor vehicle related innovations; the corresponding fraction at the U.S. patent office is 3%.
4Patents are a widely used measure of innovation output. In his survey on use of patents as a

measure of technological progress, Griliches (1990) concludes: “In spite of all the difficulties, patents

statistics remain a unique resource for the analysis of the process of technical change.” [p. 1701]
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Table 1: R&D expenditure by industry in selected countries (2006, in PPP$b)

Industry (ISIC Rev. 3) USA Japan Germany Korea France

Chemicals (24) 46.3 16.4 8.2 2.1 5.0

Radio, TV, telecom. equipment (32) 31.2 12.2 4.1 13.3 2.8

Motor vehicles (34) 16.6 17.9 14.4 4.2 4.6

Medical, precision, optical instr. (33) 22.4 4.6 3.5 0.4 1.6

Computing and related machinery (30) 7.4 14.1 0.6 0.4 0.2

Note: Includes all sectors in the top three by R&D expenditure in any of the five countries.

Industries are sorted by total R&D expenditure across the five countries.

Source: OECD ANBERD database, edition 2009 (online).

patents granted to minimize time delay problems. We use patents instead of R&D

expenditure, because only in recent years is the R&D data available for all firms

in consolidated global accounts. Moreover, these firms also spend vast amounts on

engineering and design, which in some countries might be partially included in R&D

expenditures.

The information about patents comes from the PATSTAT database. Since firms

often file for patents through various subsidiaries, we searched the database for all

records containing the core of the parent firm’s name and manually verified the re-

sults. The number of applications for each firm-year observation to the U.S. and

European patent offices are combined as follows: xjt = max(xUSjt , λx
EU
jt ). λ is the

relative weight given to more expensive and more demanding European patents. It

is computed by taking the ratio of U.S. to European patents observed for four large

firms (Daimler, Ford, Honda and Toyota) that have significant sales and production

in both regions. We compute this weight to be 2.36. It implies that for automo-

tive firms one European patent represents the same amount of innovation as 2.36

American patents.

2.2 Market structure

The automotive industry is concentrated worldwide, making it likely that firms will

take actions of competitors into account when deciding on their own innovative

activities. We measure sales by the number of vehicles sold worldwide by each firm

and its affiliates.5 This information is obtained from Ward’s Info Bank, the Ward’s

Automotive Yearbooks, and the online data center of Automotive News for the most

recent years. Market shares in Table 2 are computed as a fraction of total worldwide

5We do not distinguish between minority share holdings and outright control. E.g. Mazda is

counted as part of the Ford group, even though Ford Motor Co. never held more than 33.4% of

Mazda’s shares.
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Table 2: Market shares in the initial and final year of the sample

1982 2004

Sales Market Sales Market

(in ’000) Share (in ’000) Share

Chrysler 1,408 (3.8%) [merged with Daimler]

Daimler 701 (1.9%) 4,719 (8.1%)

Ford 5,415 (14.5%) 7,590 (13.1%)

GM 6,463 (17.3%) 8,990 (15.5%)

Honda 1,015 (2.7%) 3,194 (5.5%)

Hyundai 91 (0.2%) 3,328 (5.7%)

Nissan 2,604 (7.0%) [partnered with Renault]

PSA 1,644 (4.4%) 3,375 (5.8%)

Renault 2,026 (5.4%) 5,785 (9.9%)

Toyota 3,282 (8.8%) 6,708 (11.5%)

VW 2,200 (5.9%) 5,079 (8.7%)

Sample total 26,850 (71.9%) 48,768 (83.9%)

Global total 37,337 58,147

Source: Ward’s Automotive and Automotive News.

new vehicle sales.

We only focus on the largest global firms, which are responsible for the bulk of

innovation, as we explicitly study strategic interaction. Our sample includes the

eleven largest firms which together sold 72% of all new vehicles worldwide in 1982.

After two big tie-ups, a merger between Daimler and Chrysler in 1998 and a close

partnership between Nissan and Renault in 1999, the number of firms was reduced

to nine. By 2004, the firms in the sample controlled 84% of the global market. The

remaining new vehicle sales are by smaller firms and we assume they do not innovate

strategically.6

A couple of patterns in Table 2 stand out. Only the largest three firms—GM,

Ford, and the union of Nissan-Renault—lost market share over the sample period.

The industry became more symmetric over time as some firms that initially operating

mostly in their home region globalized. The market share gains of the other firms

were not only at the expense of the top firms. They took an additional 12% of

market share away from the peripheral firms, partly as a result of takeovers. The

fortunes of the firms that gained market share also varied. While PSA increased

its share by a third, from 4.4% to 5.8%, Honda more than doubled it from 2.7% to

5.5%, and Hyundai increased it by a factor of more than 25, from 0.2% to 5.7%.

6In the model below, the difference between global sales and total sample sales will be accounted

for by an outside good.
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Table 3: Summary statistics

Variable Mean S.D. 10th pctile 90th pctile

Patents 311 268 56 769

Sales (in thousands) 3,653 2,439 900 7,866

Log price (reference firm = 0) -0.03 0.13 -0.19 0.19

Efficiency (reference firm = 0) -1.53 0.97 -2.35 0.48

Note: The number of observations for each variable is 240.

Again because of our focus on strategic interaction in the global automotive

industry, we abstract from the various vehicle models sold by each firm. Instead,

we assume a ‘composite’ model and construct a price for it by estimating a hedonic

price regression. Pooling all available models in a market over the sample period,

we regress the list price in logarithm on a rich set of vehicle characteristics—see

Goldberg and Verboven (2001) for an example. We include a full set of firm-year

interaction dummies and the coefficients on these capture the relative price for each

firm in each year.

This price is relative to the average price charged by a set of peripheral firms,

which are included in the difference between sample and total market in Table 2. It

measures what consumers are willing to pay for a particular firm’s vehicle compared

to a peripheral vehicle with the same characteristics. We estimate this hedonic

regression separately for the U.S. passenger vehicle market, and jointly for five E.U.

countries.7 The (sales) weighted average of a firm’s price in the two markets is its

global price, normalized to zero for the peripheral firms in each year.

The last piece of information we will need to estimate our dynamic model is

the state variable, firm efficiency or product quality. We do not use independent

information for this, but use the residual from a transformed demand equation, the

ξj term in Berry (1994). This measure includes everything that affects a firm’s

market share except the observed vehicle characteristics and prices. It is observed

by all firms in the industry, but not by the econometrician. Most importantly for

our purpose, we hypothesize that its evolution is influenced by innovation.

Summary statistics for the four variables that enter the model are reported in

Table 3. Recall that the sample contains eleven firms over 23 years (1982–2004).

All firms in the sample are very innovative, applying for an average of 311 patents

per year. The standard deviation of 268 suggests that there is a lot of variation

in innovative activities. Average annual sales in the sample is 3.7 million vehicles,

7We have updated the data sets in Petrin (2002) and Goldberg and Verboven (2001) to 2004

using information from JATO Dynamics.
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Figure 1: Aggregate relationship between innovation and market structure

with a standard deviation of 2.4 million. The log price averages around zero (-0.03

to be specific) and 10th to 90th percentiles range from -0.19 to 0.19. The average

efficiency level is −1.53, with a standard deviation of 0.97.

2.3 A first look at the relationship

To illustrate the observed relationship between market structure and innovation

in the raw data, we plot in Figure 1 two measures of innovation at the industry

level against the total number of active firms. Note that we use information on

all 24 internationally active firms in this section and not only on the 11 largest.8

Because the overall rate of patenting in the economy has increased notably over time,

especially after 1984 (Hall 2004), we purge the innovation variables on the vertical

axis from a cubic time trend and plot the residual. The patterns rely solely on time

series variation as the global industry has gradually become more concentrated—we

have reversed the scale of the X-variable to coincide with the progression of time.

Both measures, the total number of patents and the ratio of patents to revenue,

indicate that even after controlling for the time trend innovation was highest in the

later years when fewer firms were active. In the graph on the left this is driven

entirely by the data for the last couple of years when patenting increased markedly.

The fitted relationship shows a U-shaped pattern, but the data points indicate that

this was not a gradual evolution. There was a downward trend in patenting over

most of the period as the industry consolidated from 24 to 13 independent firms.

This trend reversed suddenly and strongly once merger activity stopped.

Normalizing the total number of patents by revenue suggests a rather different

8Most of these smaller firms were at some point absorbed by one of the larger firms.
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Figure 2: Firm-level relationship between innovation and market structure

pattern. The relationship is now clearly positive: the patent-to-sales ratio is in-

creasing in the number of firms. In later years, the relationship breaks down as

the patenting ratio stops its increase. Both patterns are consistent with opposing

‘efficiency’ and ‘replacement’ effects, but which effect dominates depends on the

innovation measure used.

The aggregate relationship hides important underlying variation. Even condi-

tioning on the competitive state of the industry in a given year, there are large

differences across firms in the number of patents they apply for. The relationship

between firm size, measured by revenue, and the number of patents is depicted in

Figure 2 for the initial and last years. In both years the relationship is inverted-U

shaped (solid lines) and the same holds for the fitted relationship over the entire

sample period (dashed lines). On average the smallest firms patent the least, while

the most innovative firms are those in the middle of the size distribution.

This pattern is even more pronounced for patents by revenue as innovation mea-

sure. It is consistent with the evidence for U.K. manufacturing firms in Aghion

et al. (2005). In order to gauge whether the mechanisms leading up to this are also

consistent with their interpretation, we need a model of firm behavior and industry

competition.

3 The Model

We write down a simple model of industry equilibrium with forward-looking in-

novation decisions. Firms decide on their innovation effort based on the current

market structure and a (private) cost of innovation. At the same time, they realize

that their individual decisions collectively and stochastically determine the evolution
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of the market structure. Our modeling strategy follows Ericson and Pakes (1995)

except for the absence of entry and exit which have not been important in this

industry.

Time is discrete. There are n firms in the industry, each producing a single dif-

ferentiated product. Firms are heterogenous with respect to their relative efficiency

level, ξj ∈ Ξ. At the beginning of each period, firms observe the full state vector for

the industry, their own cost of innovation, and they decide on price and investment

in R&D. While price-setting can be thought of as the equilibrium outcome of a static

Bertrand-Nash game, the investment decisions are the outcome of a dynamic game

of incomplete information.

3.1 The Static Problem

Prices influence current profits, but have no effect on the future. They are chosen

conditioning on the industry state vector and in equilibrium no firm should be willing

to deviate unilaterally. The outcome from the static problem is a mapping from all

possible industry states to a vector of profit levels for each firm under optimally

chosen equilibrium prices.

The demand system is derived from a discrete choice model of individual con-

sumer behavior, following Berry, Levinsohn, and Pakes (1995) and many others

studying the automobile industry. Vehicles differ in quality, ξ, which is observable

to all firms and consumers, but not to the econometrician. There are m consumers

in the market and each buys one vehicle. The utility for consumer i from buying ve-

hicle j depends on its quality, its price and the consumer’s idiosyncratic preferences

as follows

uij = θp log(pj) + ξj + εij , i = 1, . . . ,m, j = 1, . . . , n. (1)

θp is the price elasticity of demand.9 The price of vehicle j incorporates an adjust-

ment for a set of vehicle characteristics as described in the data section. In addition

to the n firms that innovate and price strategically and are the focus of our study,

there are a number of peripheral firms. We normalize the consumer’s utility from

buying a vehicle from a peripheral firm, the outside good, to zero.

If we assume that the idiosyncratic utility εij is i.i.d. extreme value distributed,

9We do not use a random coefficients model because our main focus is on innovation and not on

substitution patterns or on consumer heterogeneity beyond what is implied by εij .
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we obtain the following expected market share for firm j:10

σj(ξj , ξ−j , pj , p−j) =
exp(θp log(pj) + ξj)

1 +
∑n

k=1 exp(θp log(pk) + ξk)
, (2)

where p−j is the price vector of all other firms than j in the industry. The expected

demand is simply mσj(·). The demand that each firm faces depends on the full price

vector for all firms, directly through the denominator of (2) and indirectly through

its own price which, in equilibrium, is a function of its rivals’ prices.

Each firm chooses its price taking the industry state and rival prices as given.

The profit maximization problem of firm j is

πj(ξj , ξ−j , p−j ,m|θp, θc) = max
pj
{pj − µj(ξj |θc)}mσj(ξj , ξ−j , pj , p−j |θp).

µj is the marginal cost of firm j and it might vary with the relative efficiency level.

This allows for higher vehicle quality translating in higher costs, but also for cost-

reducing process innovations. θc are the parameters in the marginal cost function.

The first order condition for firm j, after some simplification, is

{pj − µj(·)} {1− σj(·)} θp + pj = 0. (3)

With n active firms, we have to solve n such first order conditions simultaneously

to obtain the equilibrium price vector {p∗j , p∗−j}. Existence and uniqueness of equi-

librium in this context is proved by Caplin and Nalebuff (1991). The equilibrium

profits are then given directly by

π∗j (ξj , ξ−j ,m|θp, θc) = {p∗j − µj(ξj |θc)}mσj(ξj , ξ−j , p∗j , p∗−j |θp). (4)

Once the functional forms and parameter values of the demand and cost functions

are known, the vector of π∗ values for all firms can be calculated for any state of the

industry using equation (4).

3.2 The Dynamic Problem

The optimal innovation decision is a dynamic problem that generates an evolution

for the firm’s state variable. We now have to be more specific on the domain Ξ for ξ.

It is defined by specifying lower and upper bounds and discretizing the intermediate

range of possible values in steps of ∆ξ. As a result, Ξ = {ξmin, ξmin + ∆ξ, · · · , ξmax−
∆ξ, ξmax}. Recall that ξj is the relative efficiency of firm j, defined by normalizing

10Anderson, de Palma, and Thisse (1992, p. 136) illustrate how the CES demand system can

equivalently be motivated using the representative consumer framework.
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the absolute efficiency level by the average efficiency of a set of peripheral firms.

The benefit of this formulation is that ξj is naturally bounded.

Firms also differ in their cost of R&D, which is the sum of a common part that is a

function of R&D expenditure xj and a private shock νj ∈ R that is i.i.d. across firms

and over time and only observed by firm j. The state vector for firm j is then given

by {ξ1, · · · , ξj , · · · , ξn, νj}, which we write in short as sj = {ξj , ξ−j , νj}.11 These

random shocks perform the same function as the choice-specific state variables in

Rust (1987) or Gowrisankaran et al. (2009). They make sure that each investment

choice has positive probability.

Investment in R&D is a strategic and dynamic decision, chosen each period based

on the expected value of future profit streams. The problem is recursive and can be

described by the following Bellman equation

Vj(ξj , ξ−j , νj |θ) = max
xj∈R+

{πj(ξj , ξ−j |θp, θc)− c (xj , νj |θx) (5)

+ βEVj(ξ
′
j , ξ
′
−j , ν

′
j |ξj , ξ−j , xj , θ)},

where β is the discount factor and c(·) the cost of R&D that depends on the dynamic

parameters in θx. θ combines all parameters of the model. The variables with a prime

denote the next period values. The expectation is with respect to the evolution of

the entire state vector s′j and firm j conditions this on xj , ξj , and ξ−j , but not νj

as it is assumed to be i.i.d. over time.

The expected value can be written explicitly as

EVj(ξ
′
j , ξ
′
−j , ν

′
j |ξj , ξ−j , xj , θ) =∑

ν′j

∑
ξ′−j

∑
ξ′j

Vj(ξ
′
j , ξ
′
−j , ν

′
j |θ)Pξ(ξ′j |ξj , xj , θt)Pξ(ξ′−j |ξ−j , E(x−j), θt)Pν(ν ′j),

where E(x−j) =
∑

ν−j
x−jPν(ν−j). We need to take the expectation over the rivals’

investments x−j as they determine the evolution of the industry state, but they

depend on cost shocks ν−j that firm j does not observe. θt are the parameters in

the state transition function.

The evolution of νj is straightforward. We assume it to be i.i.d. over time and

across firms and to follow a normal distribution with a mean of zero and standard

deviation σν , which is one of the dynamic parameters in the vector θx.

The evolution of ξj , denoted by Pξ(ξ
′|ξ, x, θt), depends on the firm’s choice of xj

and is assumed to depend also on the distance of the firm’s relative efficiency to the

11The market size m is another state variable that is the same for all firms. To keep the size of

the state space manageable, we assume that it is constant over time.
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frontier ξmax.12

We follow Ericson and Pakes (1995) and assume that next period’s efficiency

level can only take three possible values if current efficiency is ξj : (ξj + ∆ξ), ξj , or

(ξj−∆ξ). On the discretized domain, efficiency can increase or decrease by one step

or stay the same. The probability distribution over these possible future states is

given by the triplet
{
pU , pS , pD

}
, which are defined as

pU = Pr
(
ξ′j = ξj + ∆ξ | ξj

)
pS = Pr

(
ξ′j = ξj | ξj

)
pD = Pr

(
ξ′j = ξj −∆ξ | ξj

)
.

(6)

The functional forms for the transition probabilities will incorporate that the firm

cannot move up anymore when it is at ξmax or down when it is at ξmin.

The solution to (5) is a strategy profile xj = χj(ξj , ξ−j , νj |χ−j). The Markov

Perfect Equilibrium (MPE) of the game is a strategy profile χ∗j that solves (5)

given that all rivals follow the same equilibrium strategy as firm j. It is given by

χ∗j (ξj , ξ−j , νj |χ∗−j), which we denote for short as X∗(s).

In the estimation of the dynamic parameters θx we exploit the properties of

the equilibrium strategy profile. The estimation approach is described in the next

section, where we also introduce the functional form assumptions for the marginal

costs and the transition probabilities.

4 Estimation Methodology and Results

We need to estimate parameters from four functions: demand (θp), marginal cost

(θc), state transitions (θt), and the cost of R&D (θx). The first two sets of parameters

can be estimated from the specification of the static problem and the third set is

merely a parametric description of the observed process in the data. The major

challenge is to estimate the dynamic parameters in the cost of R&D function. With

nine to eleven firms in the industry, the brute force method of computing the Markov

Perfect Equilibrium (MPE) and matching predicted to observed innovation decisions

is computationally infeasible.

12This assumption is supported by the data. The following fixed-effects regression characterizes

changes in efficiency,

∆ξjt = −0.28
(0.10)

+ 0.13
(0.09)

xjt−1 − 0.13
(0.03)

ξjt−1 + γ̂j .

Innovation has a positive effect on the change in efficiency, but a higher level of initial efficiency

makes it harder to improve further.
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Recently, a number of alternative approaches have been developed that do not

require the calculation of the equilibrium of the game. As observed investment

decisions are equilibrium outcomes, they are used directly to characterize the policy

function and the state transition function (non)parametrically.13

We adopt the two-step estimator of Bajari, Benkard, and Levin (2007) as it is

directly applicable to our situation with a continuous choice variable.14 In the first

step, state transition probabilities and the equilibrium policy functions are combined

with the estimates of the period profit function to obtain numerical estimates of the

value function by forward-simulation. In the second step, the dynamic parameters

are chosen to minimize the deviations from equilibrium conditions, which occur when

the value function is higher under policies that differ from the optimal policies.

We present benchmark estimates and some sensitivity checks immediately follow-

ing the discussion of the estimation methodology for the different elements of the

model.

4.1 Step 1

4.1.1 Demand and Cost Parameters

The demand side in our model is static and we can follow Berry (1994) to write the

log market share of firm j relative to a base firm as15

log[σj(·)/σ0(·)] = θp log[pj/p0] + [ξj − ξ0].

This can be estimated using the observed market shares and price data. The relative

efficiency levels of all firms are then simply the residuals from the demand equation.

Consistent estimation requires that we account for the endogeneity of prices as firms

use unobserved vehicle quality in their pricing decisions. In particular, we expect

the price coefficient to be biased upward if we estimate with ordinary least squares.

The usual instruments in this context are the product characteristics of rival firms,

see for example Berry et al. (1995). In our case, we do not have any characteristics in

the demand equation, as they have already been accounted for in the construction of

the price series. However, lagged patent activity by rival firms should be correlated

with the quality of their current products and thus be correlated with a competitor

13While this approach is widely used in single agent dynamic problems since Hotz and Miller

(1993), in a dynamic game context the assumption is less innocuous due to the possibility of

multiple equilibria, see Doraszelski and Pakes (2007).
14Alternative approaches that avoid computing the MPE at each iteration include Aguirregabiria

and Mira (2007) and Pakes, Ostrovsky, and Berry (2007).
15All estimators in Step 1 pool data across all years; time subscripts are omitted.
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firm’s price. We also include firm-fixed effects in the regression, which already absorb

much of the endogeneity as unobserved product quality varies a lot more between

firms than over time. The fixed effects are added again to calculate the ξj series.

Finally, we perform a sensitivity check for the estimation of the dynamic parameters

by selecting a higher and lower price elasticity parameter than the one we estimate.

If marginal costs are assumed constant, the demand function can be estimate

alone. If marginal cost varies with a firm’s efficiency level, it is estimated jointly

with the first order condition for price setting to recover both sets of coefficients. We

use the following specification for the marginal cost function, where the coefficient

on the quadratic term can be fixed to zero or estimated freely:

µj/µ0 = θc0 + θc1ξ̃j + θc2ξ̃
2
j + εmcj (7)

with ξ̃j = exp(ξj − ξ0).

The estimates for the three different specifications of marginal cost together with

the corresponding price elasticity estimates are reported in Table 4. Price enters

negatively and significantly in each case. Given the log(p) in the indirect utility

function, we are estimating a CES demand model and the coefficient on price directly

gives the price elasticity of demand. Joint estimation of the demand with the first

order condition guarantees an elasticity above unity, but we find this holds even when

demand is estimated separately. Weak instruments or controlling imperfectly for the

product characteristics in the hedonic price regression would lead to an upwardly

biased price coefficient. Both issues do not appear to be problematic.

The estimates range between -3.9 and -2.5, which tends to be lower in absolute

value than the average elasticities that in studies using model-level data. This is

consistent with the more aggregate product definition as the residual demand for a

firm should be less elastic than for an individual model. The implied price-marginal

cost markups are correspondingly lower. Again, this is reasonable because at the

firm level more costs will be variable than at the model level.

The relationship between marginal cost and the unobserved quality term is nega-

tive, in both the linear and quadratic cases.16 It is counterintuitive that firms seem

to be able to produce higher quality vehicles at lower costs. It is therefore better

not to think of ξ as just product quality, but any unobservable that makes the firm

achieve high sales. It is not surprising that factors that make a firm succeed in the

marketplace are correlated with factors that make it produce efficiently.

16The same holds if we specify the logarithm rather than the level of marginal cost as the linear

function in equation (7).
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Table 4: Parameter estimates for demand and marginal cost functions

Constant MC Linear MC Quadratic MC

(1) (2) (3)

Demand parameters

Price -3.925 -2.950 -2.512

(1.605)∗ (0.431)∗∗ (0.413)∗∗

Marginal cost parameters

Constant term 0.059 -0.042 -0.225

(–) (0.012)∗∗ (0.059)∗∗

Unobserved quality (ξ̃) -0.108 -0.396

(0.024)∗∗ (0.116)∗∗

Unobserved quality-squared -0.068

(0.033)∗

Notes: Includes firm-fixed effects in demand and instruments price with lagged patenting of

rivals. In columns (2) and (3), demand and the first order condition are estimated jointly.
∗∗, ∗ indicate significance at the 1% and 5% level.

4.1.2 Policy function and state transition

In addition to the demand and cost parameters, we need the values of future state

variables to calculate future profits. Using the observed patenting decisions, we

characterize the empirical innovation policy as a function of the state variables.

Ideally, the control variable x should be modeled as a completely flexible func-

tion of a firm’s own state and the full vector of its rivals’ states. Given the data

limitations, we use the following specification:

xjt = α1ξ̄t + α2σξt + α3ξ
max
t + α4ξjt + α5ξ

2
jt + γDCt + γNRt + ejt, (8)

which includes the mean, maximum, and standard deviation of the ξ distribution

as well as the firm’s own efficiency and efficiency squared. We also include two

dummies for the post-merger periods for Daimler-Chrysler and Nissan-Renault. ejt

is an approximation error between the innovation that the true policy function would

generate and our prediction. We do not report the full set of coefficients for the

policy function as they have no direct interpretation. Note that the policy function

is re-estimated for robustness checks with different marginal cost specifications.

Innovation stochastically determines the evolution of the state variable according

to the three probabilities in equation (6). Let p ∈ [0, 1] be the probability that a

firm’s efficiency moves up by one step and d ∈ [0, 1] the probability that it depreciates

by one step. Assuming that p and d are independent,17 the probabilities of moving

17This assumption is consistent with the data. If we add an interaction term between xjt−1 and
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up, staying put, or moving down are

pU = p (1− d)

pS = pd+ (1− p)(1− d)

pD = (1− p)d,

and we use the following parameterizations for p and d:

p = 1− exp(−θt1 − θt2x),

d = exp

(
−θt3

ξmax − ξ
ξmax − ξmin

)
.

This specification has several attractive properties. First, if θt2 > 0 patenting

increase the probability that efficiency increases. Second, if innovation goes to in-

finity, efficiency increases almost surely. Third, even if a firm does not innovate

there is some positive probability that its efficiency improves. Fourth, if θt3 > 0, the

probability that efficiency depreciates is inversely related to the distance from the

frontier.

Together these probabilities fully define the transition function Pξ(ξ
′|ξ, x). They

also imply that when a firm is at maximum efficiency, the probability of a further

increases is zero because d = 1. At the other extreme, when the firm is at the

minimum level of efficiency, it does not hold automatically that pD = 0 and we need

to enforce this. If ξ = ξmin, we assume that pD = 0 and adjust pS to equal 1− pU .

We now outline how we estimate the three parameters in the θt vector. Because

the state variable ξ is continuous in the data, we first need to discretize it. The size

of the state space has an important impact on the computational burden in step 2

and we use a relatively coarse discretization. We limit ξ to lie in the −3.0 to 0.2

interval and use a distance between consecutive values of 0.4. It implies that ξ can

take nine different values.

In Figure 3, we plot the continuous ξ values that are recovered as residuals from

the demand estimation in the top panel. The discretized series is shown in the

bottom panel. The correlation between the two is 0.943, suggesting that the ap-

proximation works reasonably well. Moreover, Figure 3 shows that there is sufficient

variation in the discretized ξ series over time that we can hope to capture interesting

dynamics.

Following Rust (1987), we estimate the state transition parameters by maxi-

mum likelihood. Recall that a change in ξ can take only three possible values:

{−∆ξ, 0, ∆ξ}. To construct the log-likelihood function, we simply take the corre-

sponding probability from
{
pU , pS , pD

}
and evaluate them using the ξ and x values

ξjt−1 in the regression in footnote 12, its coefficient is statistically insignificant.
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Figure 3: Evolution of efficiency for selected firms

Note: The top panel shows the estimated (continuous) values for ξ and the bottom panel the

discretized efficiency levels used in the model.

for each observation. The objective function is then the sum of the logarithms of

the relevant probabilities over all observations in the sample.

The parameter estimates for the three specifications for marginal costs are in

Table 5. We faced two problems. First, due to the coarse discretization of ξ, some

of the standard errors are extremely high. With a finer discretization this problem

largely disappears, with t-statistics above 1.5 even for θt3. We use the current point

estimates to reduce the computational burden in the next step.

Second, the parameter estimate for θt2, which captures the impact of innovation

on the probability that efficiency increases, is negative in the third specification,

although it is estimated very imprecisely. It would imply that innovation lowers

the probability of improving efficiency. This problem does not appear when using
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Table 5: Transition probability parameters estimates

Constant MC Linear MC Quadratic MC

(1) (2) (3)

θt1 1.745 2.469 3.636

(constant term in p) (0.37)∗∗ (0.48)∗∗ (0.41)∗∗

θt2 0.564 0.323 -0.626

(coefficient on x in p) (1.11) (1.30) (1.01)

θt3 0.656 0.448 -1.105

(coefficient in d) (4.10) (4.99) (0.63)∗

Notes: Maximum likelihood estimates. ∗∗, ∗ indicate significance at the 1% and 10% level.

the continuous ξ values in this case, i.e. running a regression similar to the one in

footnote 12. As we need to discretize the state variable for the estimation of dynamic

parameters, we will focus on the first two specifications.

4.1.3 Computation of the Value Function

Combining all the building blocks with a set of initial values for the structural

parameter vector θx, we can calculate a numerical estimate of the value function for

any industry state s = {ξ1, · · · , ξn, ν1, · · · , νn}. We do this by forward simulating

profit realizations.

We start from an initial industry state s0: the observed values of ξt for a given

year supplemented by a set of random draws on the cost shock ν. The system of

first-order conditions (3) together with the estimated demand and cost parameters

allow the calculation of the equilibrium price vector. The estimated policy function

directly provides optimal innovation decisions for all firms. Substituting both in the

net profit function vector, equation (4) minus the cost of innovation, gives a vector

of values for all active firms: π0(s0)− c(x0, s0|θ0x).

Next, we use the estimated transition probabilities to find the industry state for

the next period s1. For each (xj , ξj), j ∈ [1, · · · , n] we compute the three proba-

bilities in (6) and then draw a realization of ξj1 from the appropriate distribution.

This updates the industry state to s1. Following the same steps as above we can

compute the expected net profit in period 1 for each firm, which is discounted back

to period 0.

This process is repeated T periods, until βT gets arbitrarily close to zero. We

have set the discount factor to 0.9 and T to 150 periods (β150 = 3.70E-06). The
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value functions are then simply the present discounted values of these profit streams:

V (s0|θ0x) = E

[
T∑
t=0

βt[πt(st)− c
(
xt, st|θ0x

)
]

]
, (9)

where the expectation is over future states. We perform these forward simulations

10, 000 times using different draws for the ν shocks and the realizations of the state

transitions. The average over all simulations is the numerical estimate of V (s0|θ0x)

for starting state s0. We repeat this for all observed industry states by taking each

as the starting state for a separate set of simulations.

4.2 Step 2

We are finally ready to estimate the dynamic parameters of the model using the

minimum distance estimator proposed by Bajari, Benkard, and Levin (2007). Let

χ∗j (ξj , ξ−j , νj |χ∗−j) be the Markov perfect equilibrium policy profile for firm j. For

this to be the equilibrium strategy, the value function following this strategy must

be higher than for any alternative strategy χ′j :

Vj(ξj , ξ−j , νj |χ∗j , χ∗−j , θx) ≥ Vj(ξj , ξ−j , νj |χ′j , χ∗−j , θx). (10)

Note that only firm j deviates from the MPE strategy, while its rivals still play their

Nash strategies. Equation (10) will hold at the true value of the parameter vector

θ∗x.

Using the forward simulation procedure as described above, we can calculate the

value function for both for the optimal and for a number of alternative policy profiles.

The difference d(ξj , ξ−j , νj |χ′j , θx) = Vj(ξj , ξ−j , νj |χ∗j , χ∗−j) − Vj(ξj , ξ−j , νj |χ′j , χ∗−j)
enters the objective function of the minimum distance estimator only if it is negative

as this implies a violation of equilibrium condition (10). For a given vector of θx, we

calculate these differences for all firms j, industry states s, and alternative policies

χ′. θ̂x is then chosen to minimize the sum of the squared negative terms to minimize

the violations of the MPE, i.e.

θ̂∗x = arg min
∑
j, s, χ′

[
min{d(ξj , ξ−j , νj |χ′j , θx), 0}

]2
. (11)

The specific alternative policies that we use are the following deviations from the

equilibrium Nash policy: χ′j = (1 + ι)χ∗j , where ι takes the following four values:

[0.90 0.95 1.05 1.10]. And finally, we parameterize the cost of R&D function as:

c(xj , νj |θx) = (θx1 + θx2xj + θx3ν̃j) xj , (12)
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Table 6: Dynamic parameter estimates

Constant MC Linear MC

(1) (2) (3)

θx1 71 144 83

(coefficient on x) (165) (99) (–)

θx2 0.066

(coefficient on x2) (0.138)

θx3 490 441 169

(coefficient on ν) (220)∗ (226)∗ (–)

Notes: Minimum distance estimation, see text. Standard errors are

bootstrapped. ∗∗, ∗ indicate significance at the 1% and 5% level.

where ν̃j is a standard normal variable and θx3ν̃j = σν ν̃j = νj .

The estimates for three different specifications of the model are reported in Table

6. They are based on a normalization of the marginal cost to 1. The standard errors

are bootstrapped, re-estimating all intermediate parameters as well.18

In the first column, we use the specification with constant marginal production

cost and a quadratic function for the cost of innovation. To put the magnitudes

in perspective, the expected R&D expenditure to apply for 700 patents, which is

approximately the mean in the last few years of the sample, is estimated to be

85,334 (= 71x + 0.066 x2) times the marginal cost. If we assume that the marginal

cost of producing a vehicle is $15,000, it amounts to a total innovation outlay of

$1.28 billion or $1.78 million per patent. The convexity of the cost of R&D function

implies that the cost per patent rises to $2.33 million for firms at the high end of the

observed patenting range. Moreover, each firm received each period a positive or

negative shock to the cost of R&D and the high estimated standard error indicates

we really need this exogenous source of variation to rationalize observed patenting

rates.

In the second column, we restrict the R&D function to be linear in the number

of patents. The estimate of 144 implies a cost per patent of $2.16 million. Because

the standard error for θ̂1 is much lower in the restricted model, we use this estimate

in the remainder of the paper. The coefficient is still not estimated very precisely,

but the p-value for a one-sided test against a zero cost is only 0.073.19

18We draw without replacement 20 subsamples of 12 years each, from the 23 total years in

the sample. For each subsample, we re-estimate demand, policy, and state transition parameters,

and then use forward simulations and the minimum distance estimator to estimate the dynamic

parameters.
19Increasing the number of subsamples raises the precision somewhat, but is computationally

very demanding in our model with up to 11 active firms.
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We have investigated the sensitivity of the estimates in column (2) to the price

elasticity of demand, which is a key parameter in the model. It determines not

only how high the price-cost margins and thus profits are, but also how consumers

trade off lower prices and higher quality. Both are key considerations in the firms’

innovation decision. In the benchmark case with constant marginal cost, the price

elasticity was estimated at −3.92. We re-estimate the dynamic parameters when

the elasticity is set to one half and to double the estimated value.

As the price elasticity rises from −1.96, over −3.92, to −7.85, the θ̂1 estimate

falls from 261, to 144, and 114. The intuition is the following. When demand is

less elastic, markups are higher and so are profits from increased sales. In addition,

consumers value a high vehicle quality relatively more than a low price. As a result,

the incentives to innovate are raised and to rationalize the observed number of

patents in the data we need a higher cost of R&D.

At the same time, the θ̂3 estimate for the standard deviation of the shock to

innovation falls from 1059, to 441, and 19. This is the result from an asymmetric

effect of the cost shocks. As we impose that the cost of R&D can never be negative, a

higher standard deviation mainly has an effect on the positive side, i.e. to discourage

innovation. Several firms in the data are observed to innovate less than we would

predict based on the model primitives and the shock rationalizes their behavior.

When the price elasticity is very high, the incentives to innovate in the model are

reduced and we can fit the patenting activity without requiring large variations in

the cost of innovation.

The results reported in the third column of Table 6 allow the marginal production

cost to vary with firm efficiency. Recall that we found marginal costs to be declining

in efficiency in Table 4, but we nevertheless find lower estimates for both θ̂1 and θ̂3,

at 83 and 169. It is counterintuitive that the model comes up with a lower cost of

innovation to match observed rates of patenting when patents have the additional

benefit of lowering production costs. The explanation comes from the differences

in state-transition estimates. The lower estimates for θ̂t2 in the second column of

Table 5 implies that innovation has less of a positive effect on the probability that

efficiency improves in this case. The lower estimate for θ̂t3 implies slower depreciation

of efficiency, further reducing the incentive to innovate. These effects outweigh the

boost in incentives coming from the production costs.
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5 Market Structure and Innovation

5.1 Computation of Equilibrium

Now that we have estimated all the parameters in the model, we can compute just

once the Markov perfect equilibrium strategy of a firm for all possible industry states

it might find itself in. These strategies will then be used to study the equilibrium

dynamics of market structure and innovation. We follow the algorithm of Pakes and

McGuire (1994) and provide some of the details in the Appendix.

The notorious computational burden stems mainly from three sources. The size

of the state space, the computation of the continuation value, and the number of

iterations that the algorithm takes to converge. To limit the size of the state space we

use a coarse discretization of ξ as discussed before. We also compute the equilibrium

for eight instead of the nine or eleven firms in the sample. We demonstrate below

that this equilibrium already contains rich dynamics to inform us on the question

of interest. To reduce the burden of computing continuation values in all possible

future market structures, we follow Pakes and McGuire (1994) and assume that from

each efficiency level today, a firm can only reach three possible values in the next

period. With eight firm, this still leaves 6,561 (= 38) possible values for the industry

state in the next period.

With these steps, it takes about 10 days of CPU time to compute the equilibrium

once. It is important to point out that for a dynamic game of this size, multiple

equilibria are the rule rather than the exception. We compute just one possible

equilibrium out of the potentially many. For the different starting values for X0 and

V 0 that we tried, the algorithm always converged to the same equilibrium.

In Figure 4, we assess the in-sample performance of the model. We compare

optimal innovation under the equilibrium strategy with the observed innovation for

industry states contained in our data set. In Panel (a) of Figure 4 we have sorted all

observations on the horizontal axis in ascending order of expected innovation—the

thick red line. The three thin lines show the expected innovation if the shock to

the cost of R&D is −σν , 0, and σν . The circles represent the actual innovation

in the data. The figure illustrates that the vast majority of observed innovation

decisions are within the range of predictions that a one standard deviation cost

shock generates. It is also clear, however, that this range is rather wide.20

In Panel (b), we plot the observed innovation on the x-axis against the predicted

20To avoid negative values for the cost of innovation we have set the standard deviation for the

private R&D shock to one tenth of its estimated value throughout.
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Figure 4: In-sample performance of the model

Notes: (a) The red line shows the expected equilibrium innovation. The three thin lines, starting

from the top, show innovation when the shock to the cost of R&D is −1, 0 and +1, respectively.

The circles show innovation in the data. (b) The scatter plot of innovation in the data and expected

innovation from the model. (c) The scatter plot of innovation in the data and innovation from the

model with the appropriate shock to the cost of R&D.
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equilibrium innovation on the y-axis. The correlation is 0.42 and the model only does

a modest job of predicting the data. This should not be surprising as the estimated

importance of the random shock to the cost of R&D was rather large. We allowed

the shock to the cost of R&D to take one of five values: {−2σν ,−σν , 0, σν , 2σν}.
Expected innovation is computed by taking the expectation over the equilibrium

innovation for each possible realization of the shock. In Panel (c), we report the

equilibrium innovation when we pick for each observation the value of the shock (out

of the 5 possible values) that minimizes the difference between actual and equilibrium

innovation. The correlation between the actual and equilibrium innovation is now

0.94, illustrating that the model is capable of rationalizing the data quite well.

In Figure A.1 in the Appendix we further illustrate that the calculated optimal

investment policy leads to an evolution of efficiency levels that captures the observed

patterns quite well. Starting from the observed industry state in 1982 for the eight

largest firms, we simulate the industry forward till 2004 one thousand times using

the optimal innovation policy. The average evolution (red lines) track the actual

evolutions (black lines) rather well.21 The average correlation between the actual

and predicted efficiency levels is 0.75.

5.2 Equilibrium Relationship between Market Structure and Inno-

vation

We now turn to the main question that motivated the paper: what is the equilib-

rium relationship between market structure and innovation in the global automobile

industry? We illustrate several patterns by graphing optimal innovation using the

MPE policy vector against specific variations in market structure.

We use the optimal policies that we calculated for all possible market structures

because in the data we only observe a small set of states for the industry. This

is illustrated in Figure A.2 in the Appendix, where we forward simulate the model

using optimal innovation and random draws on the transition process. The figure

shows the average efficiency in the industry for one thousand periods starting from

an initial state where all eight firms have ξj = −0.5. We see that there can be quite

dramatic endogenous changes. For example, in the 30 periods following t = 380, the

average efficiency level increases from close to −1 to almost −0.1. There are several

such episodes and they imply even more dramatic changes at the firm level. We also

see that, despite the sometimes dramatic changes, the industry is in a stochastic

steady state.

21The averaging over different industry realizations has smoothed the predicted evolution.
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Figure 5: Innovation as a function of the quality gap

Notes: The different markers represent various possible market structures that give the same

average quality for lagging firms.

When we use the optimal MPE vector to study the impact of market structure on

innovation, we always hold constant the own efficiency level of the firm we study. The

model generates a strong positive relationship between a firm’s efficiency level and

its innovation, which is illustrated in Figure A.3 in the Appendix. In the following

three figures, we hold the efficiency of a firm constant and study how its optimal

innovation changes when we vary the market structure that the firm operates in.

The first pattern in Figure 5 illustrates that the leading firm innovates most when

its advantage over lagging firms is largest. The blue markers at the top show the

innovation of the leader in a variety of market structures where its own efficiency is

always at the same level.22 The red markers show that innovation of lagging firms

increases as they catch up to the leader, but this mostly reflects the strong positive

correlation between own-efficiency and innovation already alluded to before.

The magnitude of the effect on the leader is very large. Faced with a group of

lagging firms that are all at minimum efficiency, the leader innovates 50% more than

when the other firms have almost caught up. Note that this large innovation response

shows up even though we keep the leader’s own efficiency level fixed throughout. A

change in innovation of 0.5 represents applying for 500 fewer patents per year and

it is more than half of the additional innovation performed by the average lagging

22We have normalized the minimum of ξ to zero and chosen a level of 3.2 for the leader.
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Figure 6: Innovation as a function of mean-preserving quality dispersion

firm as its efficiency level is raised over the full range of the state variable.23.

The second pattern in Figure 6 looks at innovation of a firm holding constant

not only its own efficiency level and its relative position in the industry, but also

the average level of efficiency for the industry as a whole. On the horizontal axis we

measure the dispersion of efficiency in the industry, where variation is added in a

mean-preserving way. On the vertical axis we indicate innovation of the middle firm

(green markers), the average innovation for the industry (solid line) and the lowest

and highest industry average innovation across different market structures (dashed

lines).24

The central pattern in this figure is of declining innovation as efficiency becomes

more unequal. The middle firm innovates less when its distance to the industry

leaders grows, even though its own advantage over laggards grows by the same

amount. Average innovation falls as well, which is the result of a concave relationship

between innovation and own efficiency (Figure A.3). As a result, holding total

efficiency for the industry constant, total innovation is maximized when the efficiency

is divided equally among firms.

23Figure A.3 in the Appendix shows that the innovation of a group of symmetric firms grows by

approximately the same amount, from 0.25 to 0.75, if their efficiency level is raised over the full

range of the state variable
24We only show market structures where no firm is at zero efficiency as the sudden drop in

innovation at that point would introduce small jumps in the figure.
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The previous pattern in Figure 5 works against this trend of declining average

innovation with dispersion. Innovation incentives for the leaders get stronger as

their advantage grows, but this effect is not strong enough to overcome the effect

of concavity. It does show up, however, in a less pronounced decline of the average

innovation level compared with the decline for the middle firm.

These same effects also give rise to a positive and more than proportional rela-

tionship between concentration in innovation and in efficiency. When the allocation

of the state variable is more concentrated, innovation is also more concentrated.

The relationship, shown in Figure A.4 in the Appendix, is even steeper than the

45 degree line. A 50% rise in the Herfindahl index for efficiency can double the

Herfindahl index for innovation. At the same time, total innovation for the industry

is a declining function of the concentration in efficiency, in line with the dispersion

results in Figure 6.

Another interesting question is whether industry leaders innovate more than fol-

lowers. However, it is difficult to make such a comparison while holding constant own

efficiency and total efficiency for the industry. The only way to do this is to make

the distribution less dispersed when we consider the leader’s innovation, but Figure

6 already demonstrated that this in itself raises innovation. We made a number of

comparisons for an industry consisting of just three firms and found innovation to

be between 1.1% and 3.3% higher for a leader compared to a follower with the same

efficiency level, when holding total efficiency in the industry constant as well.

We can make similar comparisons to verify whether a firm at the very bottom

innovates more or less than a firm in the middle. Again, the only way to do this

while holding own efficiency and total industry efficiency constant is to make the

distribution less dispersed for the bottom firm. Across several cases, we find that

the bottom firm innovates 0.7% to 4.1% more than the middle firm. These results

suggest that innovation is higher for firms at the very top or bottom than for firms

in the middle, but we cannot rule out entirely that this is the result of efficiency

dispersion rather than the firm’s own position in the industry.

The above results are all for the specification of the model with constant marginal

production costs. The pattern in Figure 5 is similar when we use the model with

marginal production costs declining in efficiency. Only the range of innovation over

different possible market structures is wider, both for the leader and lagging firms.

The pattern in Figure 6 is similar for the middle firm, but the average innovation in

the industry is now increasing in dispersion, see Figure A.5 in the Appendix. The

reason is that the relationship between own-efficiency and innovation is still increas-

ing, but now has an S-shape rather than being concave. It makes the innovation
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Figure 7: Innovation as a function of the number of firms

boost for the leading firms more important and suggests that in this case aggregate

innovation would be much higher if efficiency were highly asymmetric.25

The last pattern in Figure 7 illustrates how innovation changes when the number

of competitors is exogenously increased.26 Again, we hold the relative and absolute

position of a firm constant and plot its optimal level of innovation as we add firms to

the market. Additional firms are always entered at the mean level of efficiency. The

blue circled markers are for a firm that is also at the mean efficiency level, i.e. all

firms in the industry are symmetric in this case. The figure shows a monotonically

declining rate of innovation with competition, consistent with the efficiency effect.

As the number of active firms increases in a market of constant size, profit rates will

go down and innovation incentives with them. Firms do take some market share

away from the outside good, but it is not enough to compensate for the additional

competition. Note that the interpretation here is really the innovation response

to an exogenous change in market structure as we always use the optimal MPE

innovation policy.

The same pattern of declining innovation with competition holds for leading and

lagging firms, but for firms that are ahead of the new entrants the innovation decline

25The same mechanism also leads to higher average innovation for higher levels of the Herfindahl

index in efficiency in this case.
26To construct this figure we computed the optimal policy vector for different numbers of active

firms.
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is much less pronounced. To illustrate this more clearly, we included red lines on

the graph that express innovation of an existing leading or lagging firm relative to

the innovation of firms at average efficiency, either existing or new entrants. The

interpretation of the red lines is that they are the optimal innovation policies of

leaders or laggards, relative to the optimal policies of average firms.

For existing industry leaders, their relative rate of innovation increases strongly

when additional competitors enter the market. A firm with a competitive advantage

will increase its innovation lead over other firms when faced with more competition.

While its absolute level of innovation is declining with entry, it declines much less

than the innovation of other (average) firms. This pattern is in line with the replace-

ment effect. A firm that is innovating to defend its competitive position, increases

the gap with other firms when facing more competition.

6 Concluding remarks

We have accomplished two things. First, we estimated all parameters in a structural

game-theoretic model of strategic, forward-looking, innovating firms for a particular

sector. Second, we calculated the optimal Markov-perfect equilibrium policy for

this game for all possible industry states and used it to investigate how optimal

innovation responds to exogenous changes in market structure.

The structural approach in this paper has a number of advantages over reduced

form approaches that look directly at the relationship between innovation and mar-

ket structure in the data. It allows us to focus on the equilibrium relationships and

do away with worries about endogeneity of market structure and reverse causality

of innovation on market structure. In fact, the structural approach tackles the en-

dogeneity problem directly by modeling the market structure and its evolution. The

structural model can accommodate non-monotonic effects of market structure on

innovation, which we can investigate by holding some aspects of market structure

constant while varying others. It also allows us to study the relationship across a

wide range of industry states, even though only a limited set is observed in the data.

Our approach is also complementary to theoretical work studying the same ques-

tion. While it is useful to know what type of effects are possible in a model of

profit-maximizing firms, it is equally important to know which of these effects are

most important in a model where the primitives are estimated from the data. We

relied on a functional form for demand and a price setting assumption that are

widely used in static models of the automobile sector. The implementation to the

global industry necessitated some more assumptions, but the estimated model, in
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particular the dynamic policy vector, is consistent with the observed data.

We learned a number of things. The parameter estimates in the demand, marginal

cost, and state transition equations are all plausible. Most, importantly, the model

implies average R&D expenditure of approximately $1.78 million per patent and

this cost is increasing in the rate of patenting. To fit the data, the model requires a

relatively large firm-specific element to the cost of R&D.

In terms of the response of optimal innovation to changes in market structure

we can highlight the following patterns. First, innovation by the industry leader

is strongly decreasing in the efficiency of the lagging firms. Second, holding own-

efficiency constant, innovation is decreasing in the dispersion of efficiency in the in-

dustry. Third, whether total industry innovation increases or decreases with disper-

sion of efficiency depends on the specification of marginal production costs. Fourth,

higher concentration in efficiency leads to a more than proportional increase in the

concentration of innovation. Fifth, innovation is declining in the number of active

firms. Sixth, the innovation gap between the leader and other firms increases with

competition.

One limitation of the analysis is the assumption of i.i.d. shocks to the cost of

R&D over time. It appears from the data that the innovation level of firms persists

over time and this might be the result of persistent shocks to the cost of R&D. Some

firms are consistently better at innovation than others. We did not incorporate

persistent shocks, but believe that this is an interesting area for future research.
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Appendix: Implementing the Pakes-McGuire algorithm

The Pakes-McGuire (PM) algorithm starts with arbitrary value and policy functions

V 0 and X0 that are defined over the entire admissible state space. We update these

functions pointwise and iterate until they converge to their equilibrium values. The

updating goes as follows.

For firm j in state (ξj , ξ−j , νj), we find its equilibrium level of innovation given

V 0 and X0
−j . Differentiate the right hand side of the Bellman equation (5) with

respect to xj :

∂c(xj , νj)

∂xj
= β

∂EV 0
(
ξ′j , ξ

′
−j , ν

′
j

)
∂xj

.

The functional form for marginal cost in (12) immediately gives the left hand side:

∂c(xj , νj)

∂xj
= θx1 + 2θx2xj + νj .

To find the derivative on the right, first note that

EV 0
(
ξ′j , ξ

′
−j , ν

′
j

)
= pUEV 0

(
ξj + ∆ξ, ξ

′
−j , ν

′
j

)
+ pSEV 0

(
ξj , ξ

′
−j , ν

′
j

)
+ pDEV 0

(
ξj −∆ξ, ξ

′
−j , ν

′
j

)
.

The derivative, after some simplification, is then given by

∂EV 0
(
ξ′j , ξ

′
−j , ν

′
j

)
∂xj

= θt2Ae
−θt1−θt2xj ,

where

A =
(

1− e−θt3ξ̃
) [
EV 0

(
ξj + ∆ξ, ξ

′
−j , ν

′
j

)
− EV 0

(
ξj , ξ

′
−j , ν

′
j

)]
+e−θt3ξ̃

[
EV 0

(
ξj , ξ

′
−j , ν

′
j

)
− EV 0

(
ξj −∆ξ, ξ

′
−j , ν

′
j

)]
.

and ξ̃ = (ξmax − ξ)/(ξmax − ξmin). Substituting the two derivatives into the f.o.c.

and simplifying, we find an implicit definition of the optimal innovation:

x∗j =
1

θt2

[
ln (βθt2A)− θt1 − ln

(
θx1 + 2θx2x

∗
j + νj

)]
. (13)

The left hand side in equation (13) is linearly increasing in x and the right hand

side is convexly decreasing because θ̂x2 > 0. If the term in square brackets is strictly

positive when x = 0, equation (13) yields a strictly positive and finite equilibrium

value x∗. If the term is negative, we have a corner solution and we set x∗ equal to

zero. We set the standard deviation of the mean-zero error term νj to one tenth its

estimated value to avoid negative values for the cost of innovation.

Once we know the optimal x∗j we can substitute it in the right hand side of the

Bellman equation to update the value function:

V 1 (ξj , ξ−j , νj) = π (ξj , ξ−j)−
(
θx1 − θx2x∗j − νj

)
x∗j + βEV 0

(
ξ′j , ξ

′
−j , ν

′
j |ξj , ξ−j , x∗j

)
.
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Figure A.1: Evolution of efficiency (ξ) in the model and in the data.

Notes: The black lines show the actual evolution of efficiency for the eight largest firms in the

sample. The red lines show the evolution of efficiency when the 1982 industry state is simulated

forward using the MPE policy (averaged over one thousand simulations).
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Figure A.2: Evolution of average industry efficiency

Notes: The graph is based on a single forward simulation of the model for one thousand periods.

The starting efficiency level is −0.5 for all 8 firms in the model.

Figure A.3: Innovation as a function of own quality
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Figure A.4: Concentration of efficiency and innovation

Notes: The concentrations are measured by the Herfindahl indices for firm shares of the state

variable (efficiency/quality) and innovation. The average innovation is plotted on the right scale

against the quality concentration, holding total industry quality constant.

Figure A.5: Innovation as a function of mean-preserving quality dispersion with
marginal production costs declining in innovation
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