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Abstract

In a model of stochastic costly signaling in the presence of
exogenous imperfect information, I study whether equilibrium
signaling decreases (‘information substitutes’) or increases (‘in-
formation complements’) if the accuracy of exogenous informa-
tion increases. A unique threshold level of prior beliefs generically
exists that separates the cases of information complements and
substitutes. More accurate exogenous information can induce a
less informative signaling equilibrium, and can result in a lower
expected accuracy of the uninformed party’s equilibrium beliefs.
Keywords: Asymmetric Information, Monotonic Costly Sig-

naling, Stochastic Signaling, Noisy Signaling, Advertising, Job
Market Signaling, Conspicuous Consumption
JEL: C72, D82

1 Introduction

Costly signaling models explain ostentatious waste as a way of communi-
cating private information that otherwise cannot be credibly communi-
cated, and have found numerous applications in recent decades.1 Policy
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1See e.g. Riley (2001) for a survey of the economic literature. Examples include
labor economics (Spence, 1973), advertising (Milgrom and Roberts, 1986), finance
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makers and economists have since long deplored the welfare losses due to
conspicuous waste, and occasionally applauded the welfare gains asso-
ciated with the resulting information transfer (e.g. by solving Akerlof’s
(1970) market for lemons problem).2 But what happens to ostentatious
waste if better information is exogenously provided to the uninformed
parties (‘Receiver’)? A common (but false) intuition is that better in-
formation about the subject of the informed party’s (‘Sender’) private
information is generally an effi cient way of reducing wasteful signaling.
Veblen (1899(1994), pp.53-55) observes that "Conspicuous consump-

tion claims a relatively larger portion of the income of the urban than of
the rural population, and the claim is also more imperative. [...] So it
comes, for instance, that the American farmer and his wife and daugh-
ters are notoriously less modish in their dress, as well as less urbane in
their manners, than the city artisan’s family with equal income. [...]
And in the struggle to outdo one another the city population push their
normal standard of conspicuous consumption to a higher point [...]."
Veblen suggests the availability of exogenous information as an explana-
tion. "The means of communication and the mobility of the population
now expose the individual to the observation of many persons who have
no other means of judging of his reputability than the display of goods
[...]. One’s neighbors, mechanically speaking, often are socially not one’s
neighbors, or even acquaintances; and still their transient good opinion
has a high degree of utility." If the exogenous information is perfect, Ve-
blen’s intuition is trivially true: if exogenous information resolves the
information asymmetry, one expects no costly signaling. But how does
equilibrium signaling depend on the accuracy of exogenous information
when both signaling and the exogenous information are imperfect? And
what happens to the expected accuracy of Receiver’s equilibrium beliefs,
if exogenous information becomes more accurate?

Real world costly signals are usually imperfect information sources,
and Receiver usually has other information (beyond Sender’s control)
about the subject of asymmetric information. In a job market example,
an academic degree can imperfectly reflect a job candidate’s produc-
tivity because of luck with examination questions, a bad day during
the exams or an employers’ hardship to judge a program’s diffi culty.
Moreover, employers often observe additional information: they often
use psychometric tests during recruitment or learn about the candidate

(Myers and Majluf 1984, John and Williams, 1985, Bhattacharya 1979), animal be-
havior and morphology (Zahavi, 1975, Grafen, 1990a,b) consumption (Frank, 1999;
or Truyts (2010) for a recent survey).

2See Truyts (2012) and the references therein for a discussion of various policies
proposed for reducing the welfare costs of signaling.
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from social relations.3 An important distinction is whether Sender knows
the actual realization of exogenous imperfect information when choos-
ing a signaling strategy. If she does (e.g. ethnic markers in job market
signaling), more accurate exogenous information alters the prior beliefs
in equilibrium. Such marginal changes in prior beliefs were studied in
e.g. Matthews and Mirman (1983) and Jeitschko and Norman (2012).
This article’s focus is on cases in which Sender knows the accuracy of
exogenous information, but not its realization (e.g. psychometric tests
during recruitment).
Veblen’s observations suggest that better exogenous information en-

ables Receiver to distinguish more between different Sender types, and
thus reduces Sender’s need for costly signaling. Costly signaling and ex-
ogenous information can then be called ‘information substitutes’: more
accurate exogenous information reduces equilibrium signaling. The nat-
ural counterpart is ‘information complements’: more accurate exogenous
information increases equilibrium costly signaling.

The main difference to earlier work on signaling in the presence of
exogenous information lies in the imperfectly observed signals, which
induce a smooth dependence of equilibrium signaling on the accuracy
of exogenous information. For non-stochastic signaling with exogenous
imperfect information, Feltovitch et al. (2002) show the existence of a
non-monotonic signaling equilibrium: middle types signal while the high
and low types pool at zero signaling, if high types can suffi ciently rely on
exogenous information to separate them from the low types. Daley and
Green (2012) show that separating equilibria do not survive the com-
mon stability-based equilibrium refinements (e.g. D1) in the presence of
suffi ciently informative exogenous imperfect information. Welch (1989)
shows how high quality firms underprice at their initial public offering
(IPO), in order to obtain a higher price in a later seasoned offering,
and finds that equilibrium underpricing decreases if high quality firms
are more likely to be revealed as such between the two offerings. Frank
(1985) studies status consumption as an imperfect signal of ability in the
presence of exogenous imperfect information, and concludes that if unin-
formed parties aggregate both information sources linearly by means of
a minimum variance unbiased estimator, "the ability-signaling rationale
[...] suggests that incentives to distort consumption in favor of observable
goods will be inversely related to the amount and reliability of indepen-
dent information that exists concerning individual abilities". Note that
these findings all suggest that more accurate exogenous information in-
duces lower equilibrium signaling (i.e. information substitutes).

3More examples are discussed at the end of section 2.

3



This article develops a stochastic signaling model with exogenous im-
perfect information, and thus relates to a small literature on stochastic
costly signaling. Matthews and Mirman (1983) introduce noise in terms
of demand shocks in a limit pricing model and demonstrate a number
of advantages of stochastic signaling games: a limited number of equi-
libria, smooth comparative statics and a solution that depends on prior
beliefs.4 Carlsson and Dasgupta (1997) develop vanishing noise as an
equilibrium selection criterion for non-stochastic signaling games. De
Haan et al. (2011) and Jeitschko and Norman (2012) test the implica-
tions of stochastic signaling models experimentally.

In what follows, Sender has binary private information and sends
a costly signal to Receiver. Receiver observes this signal distorted by
random noise, and also sees a binary exogenous imperfect signal. Upon
observing both information sources, Receiver chooses an action from a
continuum. Under mild regularity conditions, a unique sequential equi-
librium exists. First, equilibrium signaling is non-monotonic with re-
spect to the accuracy of exogenous information. A threshold level of
prior beliefs is shown to separate the cases of information complements
and substitutes, such that an interval of suffi ciently low prior beliefs
generically exists for which more accurate exogenous information implies
higher equilibrium signaling. Second, more accurate exogenous informa-
tion can result in a lower expected accuracy of Receiver’s equilibrium
beliefs, due to changes in equilibrium signaling.
This paper is structured as follows: the second section introduces the

formal setting and suggests some specific examples. The third section
characterizes equilibrium signaling in the presence of exogenous imper-
fect information. The final section concludes. All proofs are collected in
a mathematical appendix.

2 Setting

A player, Sender, has private information about a quality parameter θ
(‘her type’), which is either high θH or low θL. She cares about the beliefs
of an uninformed player, Receiver, about θ. Receiver has prior belief
p ∈ (0, 1) that θ is high, and deems θ low with probability 1− p. Sender
sends a costly signal s ∈ R̄+. As in Carlsson and Dasgupta (1997),5

Receiver observes this signal imperfectly as y, the sum of s and random

4Note that these three points are major problems of non-stochastic signaling mod-
els (e.g. Spence, 1973, Riley, 1979). See e.g. Mailath et al. (1993) for a critique of
this last feature of non-stochastic costly signaling games.

5Carlsson and Dasgupta (1997) demonstrate how this additive technology encom-
passes a.o. the demand shocks model of Matthews and Mirman (1983).
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noise ε:
y = s+ ε. (1)

Noise term ε is independently distributed according to a density function
ϕ, with E (ε) = 0 and a variance which is finite and bounded away from
zero. Assume that ϕ satisfies the following properties.

Condition 1 Let ϕ be a C2 probability density function which

1. (symmetry) is symmetric around the mean,

2. (MLR) satisfies the strict monotone likelihood ratio property,6

3. (support) has full support on R.

Prominent examples of distributions satisfying condition 1 are the
normal and logistic distributions. Continuous differentiability, full sup-
port and MLR are in line with Matthews and Mirman (1983), Carlsson
and Dasgupta (1997) and de Haan et al. (2011). Full support on R im-
plies that all y have an equilibrium interpretation, such that specifying
out-of-equilibrium beliefs and the resulting multitude of equilibria is no
cause of concern.
Receiver observes two pieces of imperfect information about θ: dis-

torted signal y and exogenous imperfect information ω, the distribution
of which is independent of Sender’s signaling. Assume for simplicity
binary exogenous information

ω ∈ {L,H} ,

of which the accuracy is denoted q ∈
(

1
2
, 1
)
, such that q ≡ Pr

(
ω = H|θH

)
=

Pr
(
ω = L|θL

)
.

Sender’s preferences are represented by a utility function

u (s, y, ω|θ, β) = v (s|θ) + κβ (y, ω) (2)

in which β (y, ω) represents Receiver’s posterior ‘believed’ probability
of Sender being a high type (her ‘beliefs’), given the pair of imperfect
signals (y, ω) . Parameter κ > 0 represents Sender’s constant marginal
utility of β.

6For two means µ > µ′, a density function ϕ satisfies the strict monotone likelihood
ratio property (MLR) if the ratio ϕ(ε|µ)

ϕ(ε|µ′) strictly increases with ε everywhere. Note
that this is equivalent to log-supermodularity of ϕ w.r.t. ε and µ, i.e. that for ε > ε′

and µ > µ′: ϕ (ε|µ)ϕ (ε′|µ′) > ϕ (ε′|µ)ϕ (ε|µ′) . See a.o. Karlin and Rubin (1956) or
Athey (2002).
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Condition 2 Let v be C2 with v1 (0|.) > 0, v12 (.) > 0 and v11 (.) < η
for an η < 0.

Condition 2 imposes a standard Spence-Mirrlees single crossing con-
dition, and ensures that both Sender types have a unique utility maxi-
mizing choice of s in the absence of signaling concerns, denoted s̄H and
s̄L, such that s̄H > s̄L > 0.7 The utility function in (2) departs from
the utility function in Matthews and Mirman (1983), Carlsson and Das-
gupta (1997) and Jeitschko and Normann (2012) in two respects. First,
it takes Receiver’s beliefs directly as an argument. This either represents
a problem in which Sender cares about Receiver’s beliefs directly, or is
shorthand notation by omitting an explicit analysis of Receiver’s optimal
choice of action in function of her beliefs. Receiver’s choice is easily in-
troduced explicitly, as illustrated at the end of this section. Second, (2)
assumes that Sender’s utility is strictly increasing with β, which reflects
that Receiver’s choice set is a continuum.8 The fact that (2) is linear
in β and additively separable in β and v may seem restrictive at first
sight. But other than ensuring tractability, this formulation also aims
to focus on the interaction between imperfect signaling and imperfect
exogenous information by maximally separating the uncertainty asso-
ciated with noisy information transmission from attitudes towards risk
and other particularities in the utility function of Sender and Receiver.

Sender maximizes expected utility, considering all possible realiza-
tions of ε and ω, for a given interpretation β of distorted signals:

Eu (s, y, ω|θ, β) = v (s|θ) + κB (s|θ) , (3)

with

B (s|θ) ≡
∑

ω′∈{L,H}

∫
Pr (ω = ω′|θ) β (y, ω′)ϕ(y|s)dy.

We consider pure strategy sequential equilibria (S.E.) of the stochas-
tic signaling game.9 Let sL and sH denote respectively the (pure) sig-

7This assumption is not crucial for the results and intuitions developped below. A
pure costly signaling model with linear signaling costs is analytically more involved,
but produces similar results.

8In the stochastic signaling models listed above, Receiver has a binary choice,
which results in combination with MLR in a cut-off strategy as best reply: Receiver
chooses the action most preferred by Sender if y ≥ y∗, with y∗ an optimally chosen
threshold.

9A Sequential Equilibrium (S.E.) is described by a pair of strategy profile and
posterior beliefs

((
ŝL (q) , ŝH (q)

)
, β
)
, such that:

1.
(
ŝL (q) , ŝH (q)

)
maximizes expected utility (3) of each type given β

2. Beliefs β (y, ω) are Bayesian consistent with equilibrium strategies
(
ŝL (q) , ŝH (q)

)
as in (4) and (5) .
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naling strategy of the low and high Sender type. Receiver’s beliefs are
consistent with pure strategy profile

(
sL, sH

)
if they satisfy Bayes’rule

for each (y, ω):

β (y,H) =

(
1 +

1− q
q

1− p
p

ϕ(y|sL)

ϕ(y|sH)

)−1

(4)

β (y, L) =

(
1 +

q

1− q
1− p
p

ϕ(y|sL)

ϕ(y|sH)

)−1

. (5)

The likelihood ratio formulations (4) and (5) illustrate that MLR im-
poses consistent posterior beliefs β (y, ω) to be strictly monotonic with
y if sL 6= sH .

Note that if q = 1
2
and V ar (ε) = 0, this game reduces to a textbook

Spence costly signaling game with quasilinear preferences. Therefore, a
number of standard examples in the literature are easily adapted to this
setting of stochastic signaling with imperfect exogenous information.

Example 1 (Status Signaling) Sender wishes to signal her income
θ to other consumers because she cares directly about their beliefs and
esteem. Sender divides her income between invisible rest consumption
and visible status consumption s, such that her utility is represented by
vSS (θ − s, s) + κβ (y, ω) . The ‘intrinsic’utility of consumption, vSS, is
strictly increasing in both arguments and strictly concave. Status con-
sumption is an imperfect signal because status goods can be bought at
a discount price, second hand or can be cheap imitations, and because
there are far too many visible consumption goods to keep track of prices.
On the other hand, one can typically rely on gossip for additional infor-
mation ω about a consumer’s reputability.

Example 2 (Job Market Signaling) As in Spence (1973), Sender is
a job candidate of high or low productivity θ, and invests in education s
at cost − (s− θ)2 . Hence, job candidates intrinsically enjoy some edu-
cation up to θ for its own sake. Receiver is an employer in a competi-
tive job market, who sees a noisy educational score y and an additional
imperfect test result ω and offers in equilibrium a contract with wage
θL + β (y , ω)

(
θH − θL

)
. The expected utility of a job candidate is then

θL − (s− θ)2 +
(
θH − θL

)
B (s|θ) . Education is an imperfect signal be-

cause Sender may have been lucky with exam questions or have had a
bad day during the exams, or an employer may have diffi culty judging
the diffi culty of a degree. On the other hand, the employer typically has
extra psychometric tests at her disposal during the recruitment stage, or
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can ask social relations whether they know more about the job candidate.
Note that w never equals the true productivity of Sender in this stochastic
job market signaling game. The return to education thus only concerns
a period needed by employers to learn about Sender’s true productivity
and to alter a possibly rigid contract.

Example 3 (Advertising) As in Milgrom and Roberts (1986) and Hertzen-
dorf (1993), Sender is a monopolist, selling a new product of high or low
quality θ to a continuum of consumers, distributed uniformly on [0, 1] .
For simplicity, we take the commodity price as exogenously fixed. Before
launching the new product, Sender can invest in advertising s at strictly
convex costs −vAD (s|θ) in a first period.10 Advertising is an imperfect
signal because consumers typically fail to observe the total number of ad-
vertisements bought, ignore their costs and have diffi culty comparing the
importance of these advertising costs to the size of the firm and market.
They can often also rely on product tests in magazines or discussions on
the internet. After observing both imperfect signals (y, ω) , consumers
decide whether or not to buy the product. Consumers buy the product
if they deem the probability of a high quality product higher than their
position on [0, 1] .11 Only consumers who buy the product observe the
true quality θ, and can buy the product again in a second period (they all
do if θ is high). If each consumer draws an independent y and ω, and
profits per unit sold are πθ (with 2πH > πL), then profits of a high and
low quality monopolist are respectively −vAD

(
s|θH

)
+ 2πHB

(
s|θH

)
and

−vAD
(
s|θL

)
+πLB

(
s|θL

)
, such that Sender’s preferences can be written

as B
(
s|θH

)
− vAD(s|θH)

2πH
and B

(
s|θL

)
− vAD(s|θL)

πL
.

3 Information Substitutes and Complements

Before presenting the main results, this section first highlights a few sim-
ple features of the stochastic signaling game under consideration. First,
by condition 1, Receiver’s consistent beliefs are never degenerate for fi-
nite y and s, such that Receiver’s best choice is generically suboptimal
with respect to Sender’s true type. In expectation, the weighted average

10Note that by condition 2, vAD1 (0|.) > 0. This can reflect other advantages of
advertising (informing consumers of the existence of the product, entry deterrence...)
as summarized in Bagwell (2007).
11If a risk neutral consumer’s willingness to pay for a high and low quality product is

resp. λH > λL > 0, she buys at price γ if β (y, ω) 2
(
λH − γ

)
+(1− β (y))

(
λL − γ

)
≥

0, i.e. if β (y, ω) ≥ γ−λL

(λH−γ)+(λH−λL)
≡ ζ.We thus assume ζ uniformly distributed on

[0, 1]. Consumers with ζ negative or greater than 1 never and always buy, respectively.
See also Milgrom and Roberts (1986) and Hertzendorf (1993).
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of Receiver’s consistent beliefs equals the prior belief, as stated by the
following lemma.

Lemma 1 For Receiver’s beliefs consistent with a strategy profile
(
sL, sH

)
,

1. the stochastic signaling game is zero sum in B:

pB
(
sH |θH

)
+ (1− p)B

(
sL|θL

)
= p, (6)

2. B depends only on ∆ ≡ sH − sL and not on actual levels of s.

Using lemma 1, it will be convenient to normalize B
(
sH |θH

)
for

consistent beliefs, such that it is written

B (∆|p, q) ≡
∫ (

qβ̃ (y,H|p, q) + (1− q) β̃ (y, L|p, q)
)
ϕ(y|∆)dy,

with

β̃ (y,H|p, q) =

(
1 +

1− q
q

1− p
p

ϕ(y|0)

ϕ(y|∆)

)−1

(7)

and

β̃ (y, L|p, q) =

(
1 +

q

1− q
1− p
p

ϕ(y|0)

ϕ(y|∆)

)−1

. (8)

Let B′ (∆|p, q) denote the marginal effect of ∆ on B for fixed consistent
beliefs, i.e.12

B′ (∆|p, q) ≡
∫ (

qβ̃ (y,H|p, q) + (1− q) β̃ (y, L|p, q)
)
ϕ2 (y|∆) dy.

Unless potentially confusing, the two last arguments p and q are omitted
from B, B′ and β̃ to economize on notation. The next lemma shows that
B increases with ∆.

Lemma 2 If ϕ satisfies condition 1, then ∆ > 0 implies B′ (∆) > 0
and B1 (∆) > 0, while B′ (0) = 0.

As such, the stochastic signaling game can be understood as an arms
race in which both Sender types waste means to secure for themselves a
larger share of a given resource of fixed size: Receiver’s expected consis-
tent beliefs. The division of this resource depends only on the difference
in signaling efforts ∆. The high Sender type can create more distinction
in expectation by increasing sH , while the low Sender type can increase

12The notation B′ is used to distinguish from the first order derivative to all ∆ in
B (i.e. in β̃ and ϕ), denoted B1.
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signaling sL to confuse Receiver more and undo the expected distinc-
tion established by the high type. If both Sender types signal, then an
amount min

{
sL − s̄L, sH − s̄H

}
is wasted, in the sense that exogenously

reducing the signaling efforts of both Sender types by this much (and
adapting beliefs accordingly) improves the welfare of both Sender types
without affecting the information transferred to Receiver in expectation.
Note also that B (∆), the expectation of Receiver’s believed probability
that the high Sender type is a high type, measures the expected accu-
racy of Receiver’s consistent beliefs, such that Receiver is by assumption
ceteris paribus better off with higher ∆.

Pure strategy sequential equilibria are characterized by consistent
beliefs, (7) and (8) , and a strategy profile

(
ŝL (q) , ŝH (q)

)
which satisfies

the following first order conditions for expected utility maximization for
given consistent beliefs:

v1

(
ŝH (q) |θH

)
+ κB′

(
∆̂ (q)

)
= 0 (9)

and
v1

(
ŝL (q) |θL

)
+ κ

p

1− pB
′
(

∆̂ (q)
)

= 0. (10)

If Sender’s problem is strictly concave for all strategy profiles,13 one can
construct for each Sender type a function similar to best response func-
tions in e.g. Cournot games. For the high Sender type, such a function
indicates for each level of sL the unique level of sH which satisfies (9) for
consistent beliefs (7) and (8) , under the restriction that∆ ≥ 0 (as∆ < 0
cannot be an equilibrium, cfr. infra). After constructing a similar func-
tion for the low Sender type, any crossing of both functions constitutes
an S.E. The following proposition shows that such an S.E. is unique.

Proposition 1 If ϕ and v satisfy respectively conditions 1 and 2 and if
Sender’s problem is strictly concave, then a unique S.E. in pure strate-
gies exists, in which equilibrium strategies

(
ŝH (q) , ŝL (q)

)
are such that

∆̂ (q) > 0, ŝH (q) > s̄H and ŝL (q) > s̄L.

The existence and uniqueness of such an S.E. for stochastic signal-
ing games was shown by Matthews and Mirman (1983)), and is in this
framework shown by an elementary application of the Poincaré-Hopf
index theorem. As in Jeitschko and Normann (2012) and unlike in non-
stochastic costly signaling games in line with Spence (1973), signaling
causes distortion at the top and bottom. The low Sender type wastes

13An extensive characterization of strict concavity of Sender’s problem in terms of
the fundamentals is provided in section A.3 of the appendix.
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means in equilibrium to confuse Receiver and undo distinction with the
high Sender type.

How does more accurate exogenous information affect equilibrium
signaling? I impose an additional technical condition, which bounds the
accuracy of exogenous information ω from above.14

Condition 3 Let q < 2+
√

3
4
∼= 0.933.

The following theorem then shows that imperfect signaling and ex-
ogenous information are information complements for prior beliefs below
a threshold, and information substitutes for prior beliefs above the same
threshold.

Theorem 1 If ϕ, v and q satisfy, respectively, conditions 1, 2 and 3
and if Sender’s problem is strictly concave, then a unique threshold p̄ (q)
exists such that:
if p < p̄ (q) , then ŝH1 (q) > 0 and ŝL1 (q) > 0 (information complements),
if p > p̄ (q) , then ŝH1 (q) < 0 and ŝL1 (q) < 0 (information substitutes).
Moreover, p̄ (q) is a continuous function of q.

Hence, an interval of suffi ciently low prior beliefs generically exists
for which both imperfect information channels are information comple-
ments. Figure 1 displays a numerical solution of threshold p̄ (q) , for ϕ
the normal density function at σ = 2 and for three values of ∆.

A marginal increase in accuracy q affects B′ (∆) , and thus the mar-
ginal rewards to signaling, by changing the probability density of exoge-
nous signal ω and by changing Receiver’s consistent beliefs:

B′3 (∆|p, q) =

∫ [
β̃ (y,H|p, q)− β̃ (y, L|p, q)

]
ϕ2 (y|∆) dy

+

∫ [
qβ̃4 (y,H|p, q) + (1− q) β̃4 (y, L|p, q)

]
ϕ2 (y|∆) dy.

First, the effect of high Sender types drawing ω = H more often
depends on the magnitude of p and ∆. If p or ∆ are so high that, for
almost all y with a nontrivial probability mass under ϕ (y|∆) , Receiver
deems Sender almost certainly a high type if ω = H, while she is less
certain for part of the same y if ω = L, then the marginal rewards to
signaling are greater if ω = L. Drawing ω = H more often then decreases

14This restriction reflects a limitation of my method of proof. Extensive numerical
simulations failed to generate a counterexample to theorem 1 beyond condition 3, i.e.
for q > 2+

√
3

4 .
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Figure 1: p̄ (q) for ϕ the normal density function with σ = 2 at ∆ equal
to 1, 2 and 3.

the high Sender type’s marginal rewards to signaling. By a similar logic,
the opposite is true if ∆ and p are suffi ciently low. One can show the
existence of a unique threshold p such that a greater occurrence of ω = H
increases or rather decreases the marginal rewards to signaling for p,
respectively, below and above this threshold.
Second, conditional on ω being H or L, an increased accuracy of ω

affects Receiver’s consistent beliefs, respectively, as a increase or decrease
in prior beliefs. A marginally more accurate exogenous signal ω = H
increases or rather decreases the marginal rewards to signaling if prior
beliefs are respectively below or above a threshold level p. For low prior
beliefs, Receiver is convinced only after very high y that Sender is a high
type. This is achieved at lower y, more within reach of a high Sender
type, if Receiver observes more accurate exogenous information ω = H,
such that the latter enhances the marginal rewards to signaling. For
similar reasons, more accurate exogenous information ω = L decreases
or rather increases the conditional marginal benefits to signaling for prior
beliefs respectively below and above another (lower) threshold level.
Bringing these partial effects together, theorem 1 states that a thresh-

old p̄ (q) exists, such that y and ω are information complements for prior
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beliefs below p̄ (q) , and information substitutes for prior beliefs above
p̄ (q) . Or, an open interval of suffi ciently low prior beliefs generically
exists for which signaling and exogenous information are information
complements. If Receiver is suffi ciently pessimistic about Sender being
a high type and exogenous information is inaccurate, then imperfect
signals (y, ω) that Receiver attributes to a high Sender type with an
intermediate or high probability are only drawn by Sender if she is very
lucky. More accurate exogenous information brings such imperfect sig-
nals more likely within reach of Sender, thus inciting greater rewards
for increased signaling efforts. By the zero sum nature of the stochas-
tic signaling game, the high Sender type’s enhanced opportunities for
distinction also raise the stakes for the low type, who equally increases
equilibrium signaling. Note that higher ∆ implies lower p̄ (q) , as illus-
trated in figure 1: on average more informative y implies that only for
the most pessimistic Receivers more accurate exogenous information is
needed to bring imperfect signals (y, ω) which Receiver attributes to a
high Sender type with an intermediate or high probability more within
reach of Sender. By the same logic, p̄ (q) can be seen to decrease with q.
In example 3, a monopolist is selling a new product, about which

specialized media will publish product tests to distinguish between a
true innovation and a marketing scam. If customers deem the chance of
a true innovation suffi ciently low, then an improved reliability of tests
increases advertising by both true innovators and imitators selling junk.
More reliable tests more often convince customers that a truly good
product might indeed be a true innovation, whereas without these tests,
the advertising needed to convince enough customers is prohibitively
high. By distinguishing better between true innovators imitators, more
reliable tests also raise the stakes for the latter, who accordingly increase
their equilibrium advertising to restore confusion with true innovators.

How does more accurate exogenous information help Receiver? A
greater accuracy of exogenous information ω affects the expected accu-
racy of Receiver’s equilibrium beliefs, as measured by B, in two ways:
directly by providing more accurate ω, and indirectly by changing the
average informativeness of equilibrium signaling:

Bq

(
∆̂ (q) |p, q

)
= B3

(
∆̂ (q) |p, q

)
+B1

(
∆̂ (q) |p, q

)
∆̂1 (q) .

The direct effect B3

(
∆̂ (q) |p, q

)
is always positive: given ∆, more ac-

curate exogenous information improves the expected accuracy of Re-
ceiver’s equilibrium beliefs. For the indirect effect, B1

(
∆̂ (q) |p, q

)
> 0
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by lemma 2: more separation in signaling helps Receiver in expectation
to distinguish between Sender types. Note then in (9) and (10) that in
the S.E.

p

1− pv1

(
ŝH (q) |θH

)
= v1

(
ŝL (q) |θL

)
= −κ p

1− pB
′
(

∆̂ (q)
)
,

and define

h
(
sL, sH

)
≡ (1− p) v11

(
sL|θL

)
− pv11

(
sH |θH

)
as the weighted difference in the rate at which the marginal utility costs
of signaling increase for either Sender type. The next result shows that
an open interval of intermediate prior beliefs generically exists for which
a marginal increase in q induces a decrease in the average informative-
ness of costly signaling, and that this decrease can come to dominate
the direct information benefits of more accurate exogenous information.
Better exogenous information can thus make Receiver worse off in ex-
pectation.

Proposition 2 If the conditions of theorem 1 apply, then:

1. ∆̂1 (q) takes the opposite sign of ŝH1 (q)h
(
ŝL (q) , ŝH (q)

)
,

2. for ϕ the normal distribution, Bq

(
∆̂ (q) |p, q

)
< 0 for a non-empty

part of parameter space.

First, if p̂ denotes the prior beliefs at which h
(
sL, sH

)
= 0, 15 then

the first part of proposition 2 shows that ∆̂1 (q) < 0 only in an open
interval between p̄ and p̂. Second, in this case the negative indirect ef-
fect can outweigh the positive direct effect on the expected accuracy of
Receiver’s equilibrium beliefs. For information substitutes, this occurs if
the low Sender type’s marginal signaling costs increase very quickly, such
that a decrease in the marginal rewards to signaling induces a negligible
reduction in sL, while the high Sender type’s reduction in signaling is
suffi ciently large to outweigh the direct effect.

4 Conclusions

The ostentatious waste associated with costly signaling is generally un-
derstood as a necessary cost for a transfer of information which otherwise
cannot be credibly communicated. This paper developed a simple model

15That is: p̂ =
v11(sL|θL)

v11(sL|θL)+v11(sH |θH)
.
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of stochastic costly signaling in the presence of exogenous imperfect in-
formation, and studied how more accurate exogenous information affects
the equilibrium signaling costs as well as the information eventually held
in expectation by Receiver. Previous literature, mostly focussing on non-
stochastic signaling with imperfect exogenous information, has found
that better exogenous information can reduce equilibrium signaling, by
offering Receiver more means to distinguish between Sender types. The
present analysis demonstrates that more accurate exogenous information
can generically both decrease and increase equilibrium costly signaling,
depending on Receiver’s prior beliefs. The intuition for the latter result
is generic: for suffi ciently pessimistic prior beliefs, the signaling levels
required to generate with non-negligible likelihood noisy signals which
Receiver attributes to a high Sender type with intermediate or high
probability are prohibitively high. More accurate exogenous informa-
tion brings these noisy signals more likely within reach of high Sender
types, thus increasing their marginal benefits of signaling. More accurate
exogenous information can also cause Receiver to be less well informed in
equilibrium. More accurate exogenous information, although improving
Receiver’s information as a direct effect (i.e. for fixed signaling strate-
gies), can by changing equilibrium signaling induce a decrease in the
average informativeness of the distorted equilibrium signals. The latter
effect of more accurate exogenous information can dominate the former,
thus decreasing the expected accuracy of Receiver’s equilibrium beliefs.
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A Mathematical Appendix: Proofs

It will be convenient to write

c (y, q) ≡ qβ̃ (y,H) + (1− q) β̃ (y, L) ,

and to denote

FH
(
sH , sL|q

)
≡ v1

(
sH |θH

)
+ κB′ (∆)

FL
(
sL, sH |q

)
≡ v1

(
sL|θL

)
+ κ

p

1− pB
′ (∆) .

A.1 Proof of lemma 1
To see the first part, write

pB
(
sH |θH

)
+ (1− p)B

(
sL|θL

)
=

∫
β (y,H)

[
pqϕ

(
y|sH

)
+ (1− q) (1− p)ϕ

(
y|sL

)]
dy

+

∫
β (y, L)

[
q (1− p)ϕ

(
y|sL

)
+ (1− q) pϕ

(
y|sH

)]
dy

= pq + (1− q) p = p,

while the second part follows directly from the assumption that the
distribution of ε is independent of s.
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A.2 Proof of lemma 2
By condition 1, β̃ is strictly increasing with y if ∆ > 0 and constant if
∆ = 0, such that

B′ (∆) = q

∫ +∞

∆

(
β̃ (y,H)− β̃ (2∆− y,H)

)
|ϕ′(y|∆)| dy (11)

+ (1− q)
∫ +∞

∆

(
β̃ (y, L)− β̃ (2∆− y, L)

)
|ϕ′(y|∆)| dy > 0

if ∆ > 0 and B′ (0) = 0. Next, use lemma 1 to write

B (∆) = 1− 1− p
p

∫
c (y, q)ϕ(y|0)dy,

such that

B1 (∆) = −
∫ (

q2

1− q

(
1− β̃ (y,H)

)2

+
(1− q)2

q

(
1− β̃ (y, L)

)2
)
ϕ2(y|∆)dy,

in which, by condition 1, −
(

1− β̃ (y, ω)
)2

is strictly increasing with y

if ∆ > 0 and constant if ∆ = 0. Use condition 1 to write B1 (∆) as an
integral over [∆,∞) , as in (11) , to obtain B1 (∆) > 0 for ∆ > 0 and
B1 (0) = 0.

A.3 Proof of proposition 1
Define the second order derivative of B, taking β̃ as given,

B′′ (∆) ≡
∫
c (y, q)ϕ22(y|∆)dy,

while differentiating B′ (∆) to ∆ (including the ∆ in β̃) gives

B′1 (∆) = B′′ (∆) +
p

1− p

∫  q2

1−q

(
1− β̃ (y,H)

)2

+ (1−q)2
q

(
1− β̃ (y, L)

)2

 (ϕ2(y|∆))2

ϕ(y|0)
dy,

(12)
in which the second term is always positive. In general, B′1 (∆) can be
both positive and negative, such that condition 2 must be strenghtened
with an additional strict concavity condition.

Condition 4 Let u and ϕ be such that for all
(
sL, sH

)
with ∆ ≥ 0:

v11

(
sH |θH

)
+ κB′1 (∆)< 0

v11

(
sL|θL

)
− κ p

1− pB
′′ (∆)< 0.
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This condition encompasses two sets of second order conditions. First,
a solution to (9) and (10) is a maximum for given beliefs (7) and (8) if
for all

(
sL, sH

)
with ∆ ≥ 0:

v11

(
sH |θH

)
+ κB′′ (∆) < 0 (13)

v11

(
sL|θL

)
− κ p

1− pB
′′ (∆) < 0. (14)

On the other hand, for a given level of signaling of the other type, an
interior solution to (9) and (10) defines a unique interior level of signaling
consistent with an S.E. if for all

(
sL, sH

)
with ∆ ≥ 0:

SH
(
sH
)
≡ v11

(
sH |θH

)
+ κB′1 (∆) < 0 (15)

SL
(
sL
)
≡ v11

(
sL|θL

)
− κ p

1− pB
′
1 (∆) < 0. (16)

Because the second term in (12) is always nonnegative, (13) is implied
by (15) and (16) is implied by (14).

Proof. i)Any S.E. strategy profile
(
ŝL (q) , ŝH (q)

)
must be above

(
s̄L, s̄H

)
.

Assume otherwise. First, if ŝL (q) ≤ ŝH (q) , then B′
(

∆̂ (q)
)
≥ 0 and

either v1

(
ŝH (q) |θH

)
> 0 or v1

(
ŝL (q) |θL

)
> 0, such that (9) and (10)

cannot both be satisfied. Second, if ŝL (q) > ŝH (q) and ŝL (q) ≤ s̄H ,
then at ŝH (q) = ŝL (q) we have v1

(
ŝH (q) |θH

)
≥ 0 and B′ (0) = 0,

which implies in combination with condition 4 that (9) cannot be sat-
isfied. If ŝL (q) > ŝH (q) and ŝL (q) > s̄H , then v1

(
ŝL (q) |θL

)
< 0 and

B′
(

∆̂ (q)
)
< 0, such that (10) cannot be satisfied.

ii) In any equilibrium, ∆̂ (q) ≥ 0. If ∆̂ (q) < 0 (and ŝL (q) ≥ s̄H by the
previous point), then the low Sender type can strictly improve herself

by signaling less, because v1

(
ŝL (q) |θL

)
< 0 and B′

(
∆̂ (q) ∆

)
< 0.

iii) Existence of an S.E. Let bL
(
sH
)
represent for each value of sH ≥

s̄H the sL for which (10) is satisfied. By condition 4, this value is
unique, and by conditions 1 and 2, bL is continuously differentiable. Let
bH
(
sL
)
represent for each value of sL the unique value of sH for which

FH
(
sH , sL|q

)
∆ = 0, such that bH

(
sL
)
≥ sL satisfies (9) or bH

(
sL
)

= sL

if the constraint ∆ ≥ 0 is binding. By conditions 1 and 2, bH is contin-
uously differentiable.
A crossing of bH

(
sL
)
and bL

(
sH
)
constitutes an S.E. Note then that

bL
(
sH
)
∈
(
s̄L, sH

)
, because for sH ≥ s̄H by construction v1

(
s̄L|θL

)
= 0

and B′
(
sH − s̄L

)
> 0 while v1

(
sH |θL

)
< 0 and B′ (0) = 0.at sL =

sH . On the other hand, bH
(
s̄L
)
> s̄H because v1

(
s̄H |θH

)
= 0 and
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B′
(
s̄H − s̄L

)
> 0 by construction. Moreover, a threshold ζ ≥ s̄H

exists such that bH
(
sL
)

= sL for all sL ≥ ζ, because in this case
FH

1

(
s, sL|q

)
< 0 for all s > sL. This implies that bH

(
sL
)
and bL

(
sH
)

cross at least once, and at such crossing ∆ > 0, bL
(
sH
)
> s̄L and

bH
(
sL
)
> s̄H .

iv) Uniqueness. This is shown by an elementary instance of the Poincaré-
Hopf index theorem (Guillemin and Pollack, , p. 134), as exemplified
in a.o. Chenault (1986). Construct the auxiliary function d

(
sL
)
≡

bH
(
sL
)
−
(
bL
)−1 (

sL
)
,measuring the distance between bH

(
sL
)
and bL

(
sH
)
.

Then

d1

(
sL
)

= bH1
(
sL
)
− 1

bL1 (sH)
= −

FH
2

(
sH , sL|q

)
SH (sH)

+
SL
(
sL
)

FL
2 (sL, sH |q) > 0

⇔FH
2

(
sH , sL|q

)
FL

2

(
sL, sH |q

)
− SL

(
sL
)
SH
(
sH
)

= − p

1− p (κB′1 (∆))
2 − SL

(
sL
)
SH
(
sH
)
< 0,

which is always satisfied under condition 4. Because d
(
sL
)
crosses 0 at

most once, the S.E. is unique.

A.4 Proof of theorem 1
This proof proceeds in 3 steps.

Claim 1 ŝH1 (q) and ŝL1 (q) have the same sign as B′3
(

∆̂ (q) |p, q
)
.

Claim 2 B′ (∆|p, q) is continuously differentiable w.r.t. q for q ∈
(

1
2
, 2+

√
3

4

)
.

B′3 (∆|p, q) is strictly positive for p suffi ciently close to 0, and strictly
negative for p suffi ciently close to 1.

Claim 3 B′3 (∆|p, q) is continuous w.r.t. p, and at the p̄ (q) (where
B′3 (∆|p̄ (q) , q) = 0), it must be that B′23 (∆|p̄ (q) , q) < 0.

Claims 1, 2 and 3 together imply theorem 1.

A.4.1 Proof of claim 1

Proof. Write FH
q

(
ŝH (q) , ŝL (q) |q

)
= 0 and FL

q

(
ŝL (q) , ŝH (q) |q

)
= 0

as a system

A ·
(
ŝL1 (q)
ŝH1 (q)

)
=

 −κB′3
(

∆̂ (q) |p, q
)

−κ p
(1−p)B

′
3

(
∆̂ (q) |p, q

) , (17)
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with

A =

 −κB′1
(

∆̂ (q)
)

v11

(
ŝH (q) |θH

)
+ κB′1

(
∆̂ (q)

)
v11

(
ŝL (q) |θL

)
− κp

(1−p)B
′
1

(
∆̂ (q)

)
κp

(1−p)B
′
1

(
∆̂ (q)

)  .

System (17) has a unique solution if |A| 6= 0 everywhere, which is satis-
fied under condition 4 as:

|A| = − p

(1− p)

(
κB′1

(
∆̂ (q)

))2

− SL
(
ŝL (q)

)
SH
(
ŝH (q)

)
< 0.

The system is solved for ŝL1 (q) and ŝH1 (q) by Cramer’s rule, such that

ŝL1 (q) =
κB′3(∆̂(q)|p,q)v11(ŝL(q)|θL)

|A| and ŝH1 (q) =
κ p
(1−p)B

′
3(∆̂(q)|p,q)v11(ŝH(q)|θH)

|A| .

This implies that ŝL1 (q) and ŝH1 (q) take the same sign asB′3
(

∆̂ (q) |p, q
)
.

A.4.2 Proof of claim 2

It will be convenient to define z (y, p) ≡ (1−p)
p

ϕ(y|0)
ϕ(y|∆)

, such that z (y, p) ∈
R+ and z1 (y, p) < 0.Whenever obvious, the arguments of z are omitted.

Further, I denote P 1 (y, ω) ≡
(

1− β̃ (y, ω)
)
β̃ (y, ω) and P 2 (y, ω) ≡(

1− β̃ (y, ω)
)(

β̃ (y, ω)
)2

.

Proof. Write B′3 (∆|p, q) =
∫
f (z|p, q)ϕ2 (y|∆) dy, with

f (z|p, q)≡ c2 (y, q) = β̃ (y,H) +
P 1 (y,H)

1− q − β̃ (y, L)− P 1 (y, L)

q

=
z2 (2q − 1) (z + 1)

((q + (1− q) z) ((1− q) + qz))2 .

Note that f (z|p, q) > 0 for all z ∈ R+. By condition 1, f (z|p, q) is
continuous and bounded, such that B′ (∆) is differentiable w.r.t. q.
Moreover, it is easily verified that f (0, q) = 0 and lim

z→+∞
f (z|p, q) = 0.

Furthermore, f (z|p, q) has a unique extremum in terms of z, a maximum,
because

f1 (z|p, q) = z (2q − 1)
(−z3a+ z2 (1− 4a) + 3za+ 2a)

((q + (1− q) z) ((1− q) + qz))3 ,

with a ≡ q (1− q) , has for q ∈
(

1
2
, 1
)
and z > 0 a strictly positive

denominator which is finite for finite z. Then f1 (z|p, q) = 0 only where
−z3a+z2 (1− 4a)+3za+2a = 0, which has a unique real root because its
discriminant is δ = −a (−1088a3 + 564a2 − 105a+ 8) < 0 for q ∈

(
1
2
, 1
)
.
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This root, denoted ξ, is strictly positive and finite for q bounded away
from 1 (while only q < 2+

√
3

4
is considered):

ξ =
(1− 4a)

3a
+

1

3a
3

√
1

2

(
X +

√
−27a2δ

)
+

1

3a
3

√
1

2

(
X −

√
−27a2δ

)
> 0,

with
X ≡

(
2 (1− 4a)3 + 27a2 (1− 4a) + 54a3

)
.

Hence, c2 (y, q) is unimodal with a unique maximum at yξ (p) , which
solves z (yξ (p) , p) = ξ, such that c2 (y, q) is strictly increasing with y for
y < yξ (p) and strictly decreasing with y for y > yξ (p) .
Note that ξ is independent of p, and that by taking p suffi ciently close
to 0, f (z|p, q) is strictly increasing with y for almost all mass under
|ϕ2 (y|∆)| such that B′3 (∆|p, q) > 0. Similarly, for p suffi ciently close
to 1, f (z|p, q) is strictly decreasing with y for almost all mass under
|ϕ2 (y|∆)| such that B′3 (∆|p, q) < 0.

A.4.3 Proof of claim 3

Proof. First, B′23 (∆|p, q) = − 1
p(1−p)

∫
(zf1 (z|p, q))ϕ2 (y|∆) dy exists

everywhere because zf1 (z|p, q) is continuous w.r.t. y and bounded for
q ∈

(
1
2
, 2+

√
3

4

)
.Note also that lim

z→0
zf1 (z|p, q) = 0 and lim

z→+∞
zf1 (z|p, q) =

0.
Consider thenB′23 (∆|p, q) =

∫
f2 (z|p, q)ϕ2 (y|∆) dy with β̃3 (y, ω|p, q) =

P 1(y,ω)
p(1−p) such that

p (1− p) f2 (z|p, q) =P 1 (y,H)− P 1 (y, L)

+
P 1 (y,H)− 2P 2 (y,H)

1− q − P 1 (y, L)− 2P 2 (y, L)

q

= f (z|p, q)− g (z|p, q) ,

with

g (z|p, q)≡
(
β̃ (y,H)

)2

−
(
β̃ (y, L)

)2

+ 2

(
P 2 (y,H)

1− q − P 2 (y, L)

q

)
=
z2 (2q − 1) (5q2z2 − 2q2z − 3q2 − 5qz2 + 2qz + 3q + 2z2 + z)

((q + (1− q) z) ((1− q) + qz))3 ,

such that

p (1− p)B′23 (∆|p, q) = B′3 (∆|p, q)−
∫
g (z|p, q)ϕ2 (y|∆) dy
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Define

r (z) ≡ g (z|p, q)
f (z|p, q) =

(5q2z2 − 2q2z − 3q2 − 5qz2 + 2qz + 3q + 2z2 + z)

((q + (1− q) z) ((1− q) + qz)) (z + 1)
.

One can verify that

r1 (z) = −2(1−q)q
(
(q + (1− q) z)−2 + (q(z − 1) + 1)−2

)
+(z+1)−2 < 0

(18)
for all z ∈ R+ if q < 2+

√
3

4
∼= 0.93301. At p̄, we have by definition

B′3 (∆|p̄, q) =
∫ +∞

∆
[−f (z (2∆− y, p̄) |p̄, q) + f (z (y, p̄) |p̄, q)] |ϕ2 (y|∆)| dy =

0, which implies for all q < 2+
√

3
4

that

−p̄ (1− p̄)B′23 (∆|p̄, q) =

∫ +∞

∆

[
−g (z (2∆− y, p̄) |p̄, q)

+g (z (y, p̄) |p̄, q)

]
|ϕ2 (y|∆)| dy > 0,

because by (18) we have

−g (z (2∆− y, p) |p, q)+g (z (y, p) |p, q) > −f (z (2∆− y, p) |p, q)+f (z (y, p) |p, q)

for all y ∈ (∆,∞) . Hence, B′23 (∆|p, q) < 0 at p̄, and this implies that

p̄ (q) is unique for all q ∈
(

1
2
, 2+

√
3

4

)
. The continuity of p̄ (q) follows from

the differentiability of B′3 (∆|p, q) w.r.t. p.

A.5 Proof of proposition 2
First, from the proof of claim 1 we obtain ∆̂1 (q) = ŝH1 (q) − ŝL1 (q) =
κB′3(∆|p,q)h(ŝL(q),ŝH(q))

|A|(1−p) , which establishes the first part of proposition 2.
The second part of proposition 2 is shown by constructing a nu-

merical example for which B3

(
∆̂ (q) |p, q

)
+B1

(
∆̂ (q) |p, q

)
∆̂1 (q) < 0.

Consider ∆̂ (q) = 3
2
, p = 0.9, q = 0.91 and ϕ the normal density

function with σ = 2. In this case, we seek to construct an S.E. where
κh(ŝL(q),ŝH(q))
|A|(1−p) <

B3(∆̂(q)|p,q)
B1(∆̂(q)|p,q)B′3(∆̂(q)|p,q)

' −395.095. For these parameter

values we also have max
∆
{|B′1 (∆)|} < 0.008052 ≡ C, max

∆
{|B′′ (∆)|} <

0.0104 ≡ D and B′′
(

3
2

)
' 0.00612. Choose a utility function for which

−v11

(
.|θH

)
is minimal at ŝH (q) and for which v

(
.|θL
)
is suffi ciently con-

cave to guarantee
−v11(.|θL)

−v11(ŝH(q)|θH)
> 9D

C
= 15.289. Note that this implies

h
(
ŝL (q) , ŝH (q)

)
< 0 and ∆̂1 (q) < 0 and that condition 4 is satisfied if

we choose

κ =
−v11

(
ŝH (q) |θH

)
C

.
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Thus, we obtain

κh
(
ŝL1 (q) , ŝH1 (q)

)
|A| (1− p) =

 −C(
1− p

(1−p)
v11(ŝH(q)|θH)
v11(ŝL(q)|θL)

) +B′1 (∆)


−1

=

 −0.008052(
1− 9

v11(ŝH(q)|θH)
v11(ŝL(q)|θL)

) + 0.00612


−1

which is smaller than −395.095 if
v11(ŝH(q)|θH)
v11(ŝL(q)|θL)

/ 7.720 × 10−3, i.e. if

−v11

(
ŝL (q) |θL

)
> 129.53

(
−v11

(
ŝH (q) |θH

))
.

Finally, an S.E. is constructed which satisfies the above restrictions.
First, B′

(
∆̂ (q)

)
' 0.0111 for the given parameter values, such that (9)

can be written
v1(ŝH(q)|θH)
v11(ŝH(q)|θH)

= 0.0111
0.008052

= 1.3748 and likewise (10) becomes

v1(ŝL(q)|θL)
v11(ŝH(q)|θH)

= 9 (0.0110702)
0.008052

= 12.374. No other restrictions impede the

construction of such a function v.
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