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Abstract

We shed new light on the performance of Berry, Levinsohn and Pakes�(1995) GMM esti-

mator of the aggregate random coe¢ cient logit model. Based on an extensive Monte Carlo

study, we show that the use of Chamberlain�s (1987) optimal instruments overcomes most of the

problems that have recently been documented with standard, non-optimal instruments. Op-

timal instruments reduce small sample bias, but prove even more powerful in increasing the

estimator�s e¢ ciency and stability. Other recent methodological advances (MPEC, polynomial-

based integration of the market shares) greatly improve computational speed, but they are only

successful in terms of bias and e¢ ciency when combined with optimal instruments.
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1 Introduction

Discrete choice models have a long tradition in empirical research. They were originally developed

to analyze consumer choices with micro-level data (McFadden (1974)). In two important contribu-

tions, Berry (1994) and Berry, Levinsohn and Pakes (1995) (henceforth BLP) develop a random

coe¢ cients logit demand model that can be estimated with aggregate data on sales, prices and prod-

uct characteristics. Since the random coe¢ cients account for unobserved heterogeneity in consumer

valuations of product characteristics, they create �exible substitution patterns between products.

Since Nevo (2000, 2001), the aggregate random coe¢ cients logit model has become increasingly

popular in industrial organization, marketing, international trade, environmental economics and

many other areas in economics and management.

BLP�s random coe¢ cients logit model generates a non-linear aggregate market share system.

BLP show how to invert the system to solve for the product-speci�c unobservables and estimate

the model using a generalized methods of moments (GMM) estimator. In recent years, several

papers have documented numerical di¢ culties with BLP�s approach, and attempted to formulate

solutions, often based on Monte Carlo studies. Knittel and Metaxoglou (2012) focus on global

convergence problems associated with the non-linearity of the model, including the role of starting

values and optimization algorithms. Dubé, Fox and Su (2012) assess the performance of BLP�s con-

traction mapping, which is a nested �xed point (NFP) algorithm to invert the market share system.

As an alternative, they propose an approach called mathematical programming with equilibrium

constraints (MPEC). This algorithm essentially eliminates the inner loop contraction mapping and

instead minimizes the GMM objective function subject to the market share system as constraints.

Skrainka and Judd (2011) focus on problems with pseudo Monte Carlo integration in the market

share equations, and propose several numerical integration methods as alternatives. Skrainka (2012)

gives an overview of computational problems and discusses small sample bias of the GMM estima-

tor. Finally, Armstrong (2012) focuses on the instruments used in the GMM approach to account

for price endogeneity. He shows that BLP�s functions of characteristics across products may not be

good price instruments in certain demand models, and suggests the use of more traditional (but

less easily available) cost shifters as price instruments.

While this recent work has given interesting new insights, there are many open questions. In

particular, the identi�cation of the variances of the random coe¢ cients proves di¢ cult in both

Monte Carlo studies and in applications, despite recent theoretical identi�cation results (Berry,

Gandhi and Haile (2011), Fox et al. (2012) and Fox and Gandhi (2012)). In this paper, we show that

many of the di¢ culties relate to the use of ine¢ cient instruments for estimating the variances of the

random coe¢ cients. Based on several Monte Carlo simulations, we document that Chamberlain�s

(1987) optimal instruments solve most of the problems reported in previous Monte Carlo studies.

Chamberlain�s (1987) optimal set of instruments consists of the expected value of the derivatives of
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the structural error term (the product-speci�c unobservable) with respect to the parameter vector,

evaluated at an initial estimate of the parameters. Intuitively, this is the most e¢ cient set of

instruments, out of an in�nite set of possible functions of characteristics across products. BLP and

most subsequent work used sums of characteristics of other products as instruments. Interestingly,

BLP already implemented an approximation to Chamberlain�s optimal instruments in their follow-

up application (see Berry, Levinsohn and Pakes (1999)). But to our knowledge it has only been

applied in one other application (Goeree (2008)), and it has not been incorporated in the Monte

Carlo studies that have recently documented di¢ culties with BLP�s GMM approach.

Our main results are in section 4, where we compare standard and optimal instruments in terms

of bias and e¢ ciency performance. We �rst consider the performance of the GMM estimator with

a standard, non-optimal set of instruments. We take into account all advances that have been

proposed in previous work: accurate numerical integration in the market share system, the MPEC

algorithm instead of a NFP algorithm to invert the market share system, the use of cost shifters as

price instruments, and careful checking of starting values. Despite all these precautionary measures,

we �nd that the parameters are estimated with bias. But more importantly, the estimates are rather

imprecise and unstable, with a high root mean squared error and a spike at zero for the variance

of the random coe¢ cient.

We then incorporate Chamberlain�s (1987) optimal instruments. Implementation requires an

initial estimate of the parameters. We consider two approaches. First, we evaluate the instruments

at the parameter estimates of a �rst-stage random coe¢ cients logit model using standard, inef-

�cient instruments (i.e. the parameters obtained in the previous paragraph). This is essentially

the approach in Berry, Levinsohn and Pakes�(1999) application (although they only consider an

approximation). Second, we evaluate the instruments at the parameter estimates of a simple linear

logit model, with a guess for the nonlinear parameters (the variances of the random coe¢ cients).

Both approaches eliminate the bias, but our most striking �nding is that they drastically improve

the e¢ ciency and stability of the parameter estimates.

These results refer to a situation where strong instruments (�cost shifters�) are available to

account for price endogeneity. But we also consider a situation where only weak instruments for

price are available. Chamberlain�s (1987) optimal instruments still outperform standard instru-

ments, with the strongest e¢ ciency gains for the nonlinear parameter (the variance of the random

coe¢ cient). Finally, we consider bias as the sample size increases. With optimal instruments, the

bias is decreasing in the sample size (number of products or number of markets). With standard

instruments this is not the case, as documented earlier by Skrainka (2012).

We subsequently consider several extensions in section 5. We compare standard and optimal

instruments in terms of their computational performance, and reconsider the above discussed recent

advances by Dubé, Fox and Su (2012), Skrainka and Judd (2011) and Knittel and Metaxoglou

(2012). First, with optimal instruments MPEC and NFP give identical estimates, but MPEC is
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substantially faster. In contrast, with standard instruments MPEC and NFP give di¤erent results.

Second, with optimal instruments, accurate polynomial-based integration (Sparse Grid quadrature)

is faster and implies higher precision than pseudo Monte Carlo integration in the market shares.

The opposite is true with standard instruments. Finally, under optimal instruments the estimates

are much less sensitive to starting values than under standard instruments, the case documented

by Knittel and Metaxoglou (2012). For example, the standard deviation of the estimates under 10

starting values decreases by a factor of 5 under optimal instruments. The remaining sensitivity to

starting values re�ects the inherent non-linearity of the GMM objective function as implied by the

model, and warrants careful searching for a global optimum, even under optimal instruments.

In sum, the use of Chamberlain�s (1987) optimal instruments reduces bias and drastically im-

proves the e¢ ciency and stability of the parameter estimates. It also explains why earlier method-

ological advances still produce ambiguous �ndings. It is instructive to compare these results with

other work on instruments in a GMM context, and with Bayesian work as an alternative to GMM.

First, Armstrong (2012) also focused on the role of instruments in aggregate random coe¢ cients

logit models. Armstrong (2012) only considers the instruments for the endogenous price variable

(in a more general setting of imperfect competition). As mentioned above, he �nds that cost-

shifters perform better as price instruments than BLP�s proposed functions of characteristics across

products. Armstrong (2012) does not, however, consider the instruments to identify the variances

of the random coe¢ cients. In fact, in his Monte Carlo simulations he sets these variances to their

known values. In contrast, we focus precisely on the instruments that are required to identify the

variances of the random coe¢ cients. For these parameters, BLP�s proposed functions of product

characteristics prove essential, in particular when Chamberlain�s (1987) optimal set of instruments

is used. In applied work, researchers should thus search for good cost-side instruments to identify

the price parameter (as stressed by Armstrong), and apply optimal instruments to identify the

nonlinear parameters (the variances of the random coe¢ cients).

Second, in simpler nested logit models researchers have already commonly used more re�ned

functions of product characteristics than BLP�s original sums of characteristics of other products.

Verboven (1996) proposed to use sums of characteristics of other products by nest (and subnest).

Bresnahan, Stern and Trajtenberg (1997) apply similar instruments in their �principles of di¤erenti-

ation�GEV model. These instruments arise naturally in applications where the random coe¢ cients

(nesting parameters) refer to discrete characteristics (the nests). Since they typically result in fairly

precise parameter estimates, they turn out to be good approximations to Chamberlain�s (1987)

optimal instruments.

Third, Jiang, Manchanda and Rossi (2009) propose a Bayesian estimator to estimate the ag-

gregate random coe¢ cients model. We also implemented a Bayesian estimator in our Monte Carlo

studies. We con�rm that this approach also produces more precise estimates than GMM with

non-optimal instruments (results available upon request). The Bayesian estimator is however con-
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siderably slower, and it involves other trade-o¤s, since the Bayesian approach relies on stronger

assumptions such as functional forms and supply side assumptions, as discussed in Berry (2003).

The outline of the paper is as follows. Section 2 discusses the random coe¢ cients logit model for

aggregate demand data, including the GMM estimator and the set of optimal instruments. Section

3 sets out the data-generating process for our Monte Carlo study and provides computational details

for estimating the model. Section 4 presents our main results on the bias and e¢ ciency with optimal

instruments. Section 5 considers further extensions, covering the computational performance with

optimal instruments. Section 6 summarizes and concludes with some cautionary warnings.

2 The Model

We �rst describe the random coe¢ cients logit model for aggregate demand data. We then discuss

marginal costs and the perfectly competitive market equilibrium. Next, we present the GMM

estimator and the construction of the set of optimal instruments. Finally, we describe the simulated

data-generating process.

2.1 Demand

There are T markets, indexed by t = 1; : : : ; T . In each market t there are Lt potential consumers.

Each consumer i chooses one alternative j, which is either the outside good, j = 0, or one of the J

di¤erentiated products, j = 1; : : : ; J . Consumer i�s conditional indirect utility for the outside good

is ui0t = "i0t, and for products j = 1; : : : ; J it is:

uijt = xjt�i � �pjt + �jt + "ijt; (1)

where xjt is a 1 � K vector of observed product characteristics, pjt is the price and �jt is an

unobserved product characteristic of product j in market t, unobserved by the researcher but

observed by consumers and �rms. The K � 1 parameter vector �i consists of random coe¢ cients,

capturing individual-speci�c valuations for the product characteristics, � is the marginal utility

of income or price valuation (assumed to be equal for all consumers i), and "ijt is a remaining

individual-speci�c valuation for product j. The random coe¢ cient for characteristic k is given

by �ki = �
k + �k�ki , where �

k
i is a random variable with zero mean and unit variance, so that �k

represents the mean valuation for characteristic k and �k is its standard deviation across consumers.

The individual-speci�c valuation for product j, "ijt, is an i.i.d. random variable with a type I

extreme value distribution. We can write consumer i�s conditional indirect utility (1) as

uijt = xjt� � �pjt + �jt +
X

k
xkjt�

k�ki + "ijt: (2)
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Indirect utility can thus be decomposed into the sum of three terms: a mean utility term �jt �
xjt���pjt+�jt common to all consumers; an individual-speci�c utility term �jt(�i) �

P
k x

k
jt�

k�ki ;

and an individual-speci�c utility term "ijt speci�c to each product j. If �k = 0 for all k, we obtain

the standard logit model.

Each consumer i in market t chooses the alternative j = 0; : : : ; J that maximizes her utility.

The predicted market share of product j in market t is the probability that product j yields the

highest utility across all available products (including the outside good 0). This is given by the well-

known logit choice probability, integrated over the individual-speci�c valuations for the continuous

characteristics:

sjt(�t; �) =

Z
exp

�
�jt + �jt(�)

�
1 +

PJ
l=1 exp (�lt + �lt(�))

dP�(�); (3)

where �t is the J � 1 mean utility vector in market t (dependent on the mean valuation parameters
� and �), and � is the vector of standard deviations around the mean valuations. In empirical

work, the integrals are often approximated through m Monte Carlo draws of � from the standard

normal distribution:

sjt(�t; �) �
1

m

mX
i=1

exp
�
�jt + �jt(�i)

�
1 +

PJ
l=1 exp (�lt + �lt(�i))

: (4)

An alternative approach uses more accurate polynomial-based integration such as Sparse Grid

quadrature to approximate the integrals in (3):

sjt(�t; �) �
nX
i=1

�i
exp

�
�jt + �jt(�i)

�
1 +

PJ
l=1 exp (�lt + �lt(�i))

(5)

where n is the number of nodes for � and �i is the weight associated with node �i. See Skrainka

and Judd (2011) and Heiss and Winschel (2008) for a detailed discussion.

In our Monte Carlo analysis, we will base our main results on accurate Sparse Grid numerical

integration. In an extension, we will also discuss the performance of more crude pseudo Monte

Carlo integration of the market shares.

2.2 Costs and Market Equilibrium

Assume that the marginal costs of product j in market t are constant and given by

cjt = xjt
1 + wjt
2 + !jt;

where xjt is the above vector of product characteristics, which a¤ects both utility and marginal

cost, wjt is a vector of other variables that only a¤ect marginal cost, and !jt is an unobserved

marginal cost component.

Most of the literature has adopted a model of imperfect competition, such as multiproduct
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Bertrand competition as in BLP. We take a simpler approach and assume perfect competition,

so that price equals marginal costs. In vector notation, the supply side in market t can then be

described as

pt = Xt
1 +Wt
2 + !t: (6)

The assumption of perfect competition has the advantage of simplicity and transparency. First, this

gives a linear solution for the equilibrium price vector pt, so we do not need to repeatedly solve a

non-linear system of �rst-order conditions as under Bertrand pricing. Second, the competitive price

solution (6) will sharply clarify the distinction between instruments to identify the price parameter

(essentially cost shifters Wt, as stressed earlier by Armstrong (2012) in a more general setting

of imperfect competition) and instruments to identify the variances of the random coe¢ cients.

Nevertheless, the supply side could in principle be extended to imperfect competition (such as

Bertrand-Nash pricing).

To specify the demand side, we set the observed market share sjt = qjt=Lt (aggregate quantity

divided by number of potential consumers) equal to the predicted market share (3). In vector

notation, the demand side in market t can then be described by the market share system

st = st(�t; �); (7)

where

�t � Xt� � �pt + �t: (8)

2.3 GMM Estimator

We have a system of supply and demand equations (6) and (7), where �t is the vector of demand

unobservables and !t is the vector of cost unobservables in market t. Price enters as an endogenous

variable in the demand system. It may be correlated with the demand error �t, since it depends on

!t, and !t and �t may be correlated. BLP estimate the demand and supply side simultaneously, to

increase the e¢ ciency of the estimator. We follow much of the more recent literature and estimate

the demand system (7) separately. We only use the supply side to generate additional instruments

to account for the endogeneity of the price variable. These instruments are the cost shifters wjt,

which only enter marginal cost and not utility.

BLP and most of the subsequent literature estimated the demand system (7) using a nonlinear

Generalized Methods of Moments (GMM) estimator, typically using a panel of markets t = 1; : : : ; T .

The main identi�cation assumption is the conditional moment restriction

E
�
�jtjXt; wjt

�
= 0;

i.e. the unobserved characteristic of product j is mean independent of the observed product char-
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acteristics of all products and of the cost shifters of product j. With continuous characteristics Xt,

the conditional moment restriction implies an in�nite number of unconditional moment restrictions

E
�
�jtzjt

�
= 0; (9)

where zjt = hjt(Xt; wjt) are the instruments and hjt(Xt; wjt) is a vector-valued function of the

product characteristics and exogenous cost shifters. For example, BLP include the own-product

characteristics and the sums of the characteristics of other products (across all products and across

products of the same �rm of product j).

The vector of demand unobservables �t enters highly non-linearly in the market share system

(7). Berry (1994) shows how to solve the market share system analytically for �t in simple examples,

such as the logit model without random coe¢ cients (� = 0) or the nested logit model. In more

general settings, Berry (1994) and BLP suggest to invert the market share system (7) numerically

for �t (and therefore �t). This gives

�t = s
�1
t (st; �) � �t(st; �):

BLP show there is a contraction mapping to invert the market share system. Using (8), we can

write the inverted market share system as

�t = �t(st; �)�Xt� + �pt � �t(�)

where � = (�; �; �) is the vector of demand parameters to be estimated.

BLP propose to apply GMM, based on the following minimization problem

min
�
�(�)0ZAZ 0�(�);

where A is a weighting matrix and where the vectors and matrices are stacked over all markets t.

BLP solve this minimization problem with a nested �xed point (NFP) algorithm, where the outer

loop minimizes the objective function, and the inner loop solves a contraction mapping to obtain

the inverted market share system �t(st; �). The nonlinear minimization problem can be simpli�ed

after �substituting out�the �rst-order conditions with respect to the linear parameters � and �.

Dubé, Fox and Su (2012) propose an alternative formulation of the GMM problem. Instead of

the NFP algorithm, they propose a mathematical program with equilibrium constraints (MPEC)

approach. Their constrained minimization problem is

min
�;�
�0ZAZ 0�
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subject to s(�; �) = s:

Su and Judd (2012) show that the NFP and MPEC algorithms give identical estimators. Dubé,

Fox and Su (2012) characterize the numerical performance of NFP and MPEC in the context of

the BLP model. They �nd that NFP requires a very tight convergence criterion for inverting the

market share system (the inner loop) and that MPEC can be considerably faster.

In our Monte Carlo analysis, we will present our main results based on MPEC, and will provide

a comparison with NFP in the extensions.

2.4 Instruments

Our primary interest is in the role of the instruments included in zjt. We begin with three sets

of instruments that have been used in most previous research, including the recent Monte Carlo

studies on the performance of BLP�s GMM estimator. The �rst set of instruments is z1jt = (xjt; wjt),

i.e. the set of observed product characteristics (that a¤ect both demand and marginal cost) and

an additional set of cost shifters (that do not directly a¤ect demand). Armstrong (2012) shows

that cost shifters can be more powerful to account for the endogeneity of price. The second set

of instruments z2jt adds polynomials to z
1
jt (i.e. squares and interactions of xjt and wjt). Dubé,

Fox and Su (2012) used this approach in their simulations. A third set of instruments z3jt adds

characteristics of other products as in BLP. More speci�cally, we add the sum of the characteristics

of all other competitors to the �rst instrument set, so z3jt = (xjt; wjt;
P
k 6=j xkt). This third set

serves to assess to which extent BLP�s instruments are useful in identifying the variances of the

random coe¢ cients � (since Armstrong (2012) only focused on instruments to identify the price

parameter �, and imposed � to known values).

We next consider the performance of the set of optimal or e¢ cient instruments, out of the

in�nite number of orthogonality conditions implied by (9). The set of optimal instruments results

in an asymptotically e¢ cient estimator. Amemiya (1977) obtained optimal instruments in non-

linear models, and Chamberlain (1987) �nds that the optimal instruments attain the e¢ ciency

bound. See Arellano (2003) for an overview of optimal instruments in linear and nonlinear mod-

els. Berry, Levinsohn and Pakes (1999) propose an approximation to the optimal instruments for

the random coe¢ cients logit model. We will consider both their approximation and a more exact

implementation of the optimal instruments. Chamberlain�s (1987) optimal set of instruments is:

zjt = E

�
@�jt(�)

@�0

����Xt; wjt� :
The optimal set of instruments is therefore a vector of variables with the same dimension as the

parameter vector � = (�; �; �). Intuitively, these instruments exploit the functional forms behind
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the model, in particular concerning the consumer heterogeneity that generates the market share

system.

The optimal instruments for the linear parameters � and � are easy to interpret. In particular,

we have

E

�
@�jt(�)

@�0

����Xt; wjt� = E [xjtjXt; wjt] = xjt

E

�
@�jt(�)

@�

����Xt; wjt� = E [pjtjXt; wjt] = xjt
1 + wjt
2: (10)

The optimal instrument for � is just xjt, while the optimal instrument for � is the predicted price

from a �rst-stage OLS regression on the linear competitive supply equation (6). Intuitively, the

optimal instruments for the linear parameters are the same as those from the �rst stage in a 2SLS

estimator. Note that these instruments do not depend on the demand parameters � = (�; �; �), so

they can be calculated without having to estimate the demand model in a �rst stage.

The optimal instruments for the nonlinear parameters � are

E

�
@�jt(�)

@�0

����Xt; wjt� = E � @�jt(st; �)@�0

����Xt; wjt� : (11)

These instruments are a non-linear function of the characteristics of all competing products. Since

the expectation in (11) is a function of the true demand parameters � = (�; �; �), the optimal

instruments for � are not feasible: they cannot be computed directly from the data and require a

�rst stage estimate of the demand model. In the following we develop a parametric approach to

calculate (11).

We �rst follow Berry, Levinsohn and Pakes�(1999) approximation. They replace the expected

value of the derivatives in (11) by the derivatives evaluated at the expected value of the unobserv-

ables. More speci�cally, the procedure is as follows (in vector notation per market t):

1. Obtain an initial estimate b� = (b�; b�; b�) (for example, based on one of the three earlier
ine¢ cient sets).

2. Compute the predicted price bpt = Xtb
1 +Wtb
2.
3. Compute the predicted mean utility b�t � Xtb� � b�bpt, and then the predicted market sharesbst = st(b�t; b�).
4. Compute the Jacobian of the inverted market share system �t(bst; �) evaluated at b�:

@�t(bst; �))
@�0

����
�=b� (12)
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To compute the Jacobian of the mean utility with respect to �, we di¤erentiate the market share

function (3) with respect to �t and �0, and apply the implicit function theorem; see the appendix

of Nevo (2000) for details. Note that this Jacobian is also used to optimize the GMM objective

function and to compute the standard errors of the nonlinear parameters.

Next, as an alternative to the approximation of optimal instruments, we compute the exact

expectation in (11). Since the structural error �t enters the Jacobian nonlinearly, its distribution

does not cancel out in the expectation. We can take this into account by the following procedure:

1. Obtain an initial estimate b� = (b�; b�; b�) and compute the density of the unobservable b�t.
2. Compute the predicted price bpt = Xtb
1 +Wtb
2.
3. Take K draws, k = 1; � � � ;K, from the density of b�t.1 For each draw k, compute b�kt �
Xtb� � b�bpt + b�kt and bskt = st(b�kt ; b�).

4. For each draw k, compute the Jacobian of the inverted market share system �t(bskt ; �) evaluated
at b�:

@�kt (bskt ; �))
@�0

�����
�=b�

and compute the average across all K draws

1

K

KX
k=1

@�t(bskt ; �))
@�0

����
�=b� : (13)

In our analysis below, we will use z4jt and z
5
jt to refer to the optimal instruments in, respectively,

the approximate and �exact�approach. Note that the approximate and the exact approach will be

identical only if @�t=@�0 is linear in b�t, which is not generally the case.
Further intuition on the optimal instruments for � can be obtained from the nested logit model,

since this model has an analytical solution for the inverted market shares (although we do not

consider this model in our Monte Carlo study). For the one-level nested logit model with nesting

parameters �g for each group g, the inverted market share function is �jt(st; �) = ln sjt=s0t �
�g ln sjjg;t, where s0t is the market share of the outside good, and ln sjg;t is the market share of

product j within group g. We have @�jt(bst; �)=@�g = � ln bsjjg;t, so the optimal instrument for
�g is the log of the predicted market share of the product within the group, either evaluated atb�t = 0 (approximate approach) or averaged over the empirical density of b�t (exact approach). Note
that the two-stage least squares estimator also uses the log of the predicted market shares within

1We take k draws from the normal approximation to the distribution of b�t, where the standard deviation b�� is
computed from the �rst stage. An alternative would be to sample directly from the empirical distribution b�t. In
case the distribution of �t is not known, sampling from the empirical distribution is more appropriate. In our Monte
Carlo simulations both approaches give nearly identical results.
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the group as an instrument, but using a linear prediction instead of exploiting the nested logit

functional forms.

To summarize, we �rst consider three sets of instruments based on standard approaches, z1jt,

z2jt and z
3
jt. We then consider two alternative sets of instruments, the approximate and exact

implementation of Chamberlain�s (1987) optimal instruments, z4jt and z
5
jt. The optimal instruments

also depend on the characteristics of all products, just like BLP�s original instruments (sums of

characteristics of other products). But they do this in a way that better exploits the functional

form implied by the model.

3 Monte Carlo Set-Up

3.1 Simulated Data-Generating Process

We consider a simple data-generating process. To demonstrate our main results on the performance

of instruments, we construct 1000 di¤erent data sets for T = 25 markets, and J = 10 products.

In some extensions we also consider the performance of instruments under varying sample sizes:

T = f12; 25; 50g with J = 10, and J = f5; 10; 20g with T = 25. Each data set consists of the

exogenous variables xjt and wjt and the endogenous variables sjt and pjt, as generated by the

model and the demand and cost unobservables �jt and !jt.

The model follows the assumptions set out in the previous subsections: random coe¢ cients logit

demand with competitive pricing. The vector of product characteristics that a¤ects both utility

and cost is xjt = (1; x1jt), where x
1
jt is drawn from a uniform distribution U(1; 2). The vector of

additional characteristics that only shift cost is wjt = (w1jt; w
2
jt; x

3
jt), all independently drawn from

a uniform distribution U(0; 1). The unobserved demand and cost characteristics are drawn from a

bivariate normal distribution "
�jt

!jt

#
s N

 "
0

0

#
;

"
1 0:7

0:7 1

#!
:

To generate the endogenous price variable, we use the competitive price speci�cation pjt =

xjt
1 + wjt
2 + !jt, and set the cost parameters equal to 
1 = (0:7; 0:7) and 
2 = (3; 3; 3). The

higher values for 
2 ensure that the cost shifters wjt have a strong impact on prices. They work

as strong instruments for the endogenous price variable as in Armstrong (2012). In an extension

we also consider the case where the cost shifters are weak instruments for price, by setting 
2 =

(0:3; 0:3; 0:3).

To generate the endogenous market shares, we set the mean valuations of the exogenous product

characteristics xjt = (1; x1jt) equal to � = (2; 2) and their standard deviations to � = (0; 1). Hence,

there is only consumer heterogeneity for the �rst product characteristic, and not for the constant.
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The mean valuation for the endogenous product characteristic price pjt is set equal to � = �2.
There is no consumer heterogeneity for the valuation of price in our main analysis, but we brie�y

consider this as an extension. The mass of consumers is Lt = 1 in each market t.

3.2 Computational Details

Weminimize the GMM objective function using the Knitro 800 InteriornDirect algorithm in Matlab.
Following Dubé, Fox and Su (2012), we use the MPEC algorithm with an analytic Jacobian and

Hessian of both the objective function and the equilibrium constraints. For each of the 1,000

generated data sets, we estimate the model using 10 di¤erent starting values. So in practice we

estimate the model 10,000 times (and we do this for �ve di¤erent instrument sets, and various

data-generating processes). For each of the 1,000 generated datasets, we select the results based on

the starting values that give the lowest value for the objective function. We approximate the market

share integrals (3) using a Sparse Grid quadrature rule as given by (5), where �i are appropriate

weights (see Heiss and Winschel (2008)). We use 9 nodes so that the unidimensional integral is

exact for polynomials up to degree 17.

In our extensions (section 5), we compare the MPEC with the NFP algorithm (using a very

tight convergence criterion for the contraction mapping, following Dubé, Fox and Su (2012). Fur-

thermore, we then also consider alternative approximations of the market share integrals using

pseudo Monte Carlo (pMC) integration as given by (4).

4 Bias and E¢ ciency: Standard versus Optimal Instruments

We �rst compare the performance of standard and optimal instruments when cost-shifters are strong

instruments for price (sections 4.1 and 4.2). We then consider a perhaps more typical situation where

only weak instruments for price are available (section 4.3). Finally, we consider small and large

sample performance of the optimal instruments (section 4.4).

4.1 Monte Carlo Results with Standard Instruments

As already discussed in section 2, we consider three �standard� instrument sets, similar to the

instruments used in earlier Monte Carlo studies and most applied work. The �rst set of instruments

is z1jt = (xjt; wjt), where xjt = (1; x1jt) and wjt = (w1jt; w
2
jt; w

3
jt). The three cost shifters aim

to identify the endogenous price e¤ect � (as suggested by Armstrong (2012)) and the standard

deviation of the random coe¢ cient �. The second set z2jt adds polynomials of xjt and wjt (squares

and interactions), resembling the instrument set of Dubé, Fox and Su (2012). Finally, the third set

is z3jt = (xjt; wjt;
P
k 6=j xkt), so it adds BLP�s sums of other product characteristics. As compared

with the �rst instrument set, the cost shifters may prove more useful to identify �, whereas the

12



Table 1: Bias and E¢ ciency with Standard Instruments

z1jt z2jt z3jt
True Bias RMSE Bias RMSE Bias RMSE

�0 2 0.295 1.739 -0.087 0.787 0.115 1.175

�1 2 -0.291 1.584 0.032 0.617 -0.119 1.097

� -2 -0.028 0.137 0.007 0.053 -0.009 0.075

�1 1 0.088 1.316 -0.100 0.549 0.011 0.817

Bias is the average parameter estimate minus the true parameter, over the 1000 generated data sets. RMSE
is the root mean squared error. Estimates are based on the MPEC algorithm and Sparse Grid integration.
The three �standard�instrument sets are z1jt = (xjt; wjt); z

2
jt = z

1
jt plus polynomial squares and interactions

of xjt and wjt; and z3jt = (xjt; wjt;
P

k 6=j xkt).

BLP instruments may be more useful to identify �. For all three instrument sets, the cost shifters

are strong instruments for price, i.e. they have a strong impact on marginal costs (
2 = (3; 3; 3),

as discussed in section 2.5).

Table 1 reports the bias and root mean squared error (RMSE) of all parameter estimates

obtained from the Monte Carlo simulations. The bias is simply the average parameter estimate (over

the 1,000 generated data sets) minus the true parameter value. Most parameters have moderate

small sample bias. The �rst instrument set z1jt gives the largest bias, roughly about 10% (e.g.

bias of 0.088 for � while its true value is � = 1). The second and third instrument sets result

in somewhat lower bias for most parameters, suggesting some identifying power of the additional

instruments (polynomials of xjt and wjt in z2jt and sums of characteristics
P
k 6=j xkt in z

3
jt).

While standard instruments result in fairly moderate bias, the e¢ ciency of the GMM estimator

appears to be highly problematic. Table 1 shows that there is a very high RMSE for most para-

meters. Consider the �rst instrument set z1jt. For the �rst product characteristic x
1
jt, the mean

valuation �1 = 2 has a RMSE of 1.584, and the standard deviation �1 = 1 has a RMSE of 1.316.

For the constant, the mean valuation �0 = 2 has an equally large RMSE of 1.739. The only para-

meter with a reasonably low RMSE is �, the mean price valuation (RMSE of 0.137 while � = �2).
This is because the cost shifters are strong instruments and price is responsible for most variation

in market shares in our data-generating process. The RMSE�s drop by a factor of more than 2

in the second instrument set z2jt (with the polynomials) and by a factor of slightly less than 2 in

the third instrument set (z3jt). This again suggests that the additional instruments have some extra

identifying power. Yet for both instruments sets, the RMSE remains on average higher than half

of the true parameter value (with the exception of the price parameter).

Figure 1 visualizes the problems with the e¢ ciency of the GMM estimator under standard

instruments, and also reveals a new problematic fact. The �gure shows three histograms (one for

each instrument set) for the taste parameter �1, based on the 1000 generated data sets. Consistent
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Figure 1: Histograms for �̂1 with standard instruments as in Table 1

Instrument set z1jt Instrument set z2jt Instrument set z3jt

with Table 1, there is moderate bias (with a peak of the distribution around the true value �1 = 1)

but a very high dispersion and fat tails, especially for the �rst instrument set z1jt. Figure 1 also

reveals another striking problem: there is a large spike in the distribution for the estimates of �1

around 0.2 Estimates close to 0 occur in 30% of the cases with the �rst instrument set z1jt, and in

about 15% of the cases for the second and third instrument sets z2jt and z
3
jt.

To summarize, all three sets of �standard� instrument sets result in parameter estimates that

are moderately biased, highly imprecise and unstable (in the sense of spikes in the distribution of

�1 around 0). These �ndings are consistent with other recent studies that report su¢ cient detail on

point estimates, bias or RMSE, such as Knittel and Metaxoglou (2012) and Skrainka (2012). We

now turn to Chamberlain�s (1987) optimal instruments, and show that the e¢ ciency and stability

of the estimates drastically improves.

4.2 Monte Carlo Results with Optimal Instruments

As discussed in detail in section 2, Chamberlain�s (1987) optimal set of instruments consists of the

expected value of the derivatives of the structural error term with respect to the parameter vector.

Intuitively, the optimal instruments are as the third set of �standard�instruments, but where the

sums of other product characteristics are replaced by either (12) for Berry, Levinsohn and Pakes�

(1999) approximation, or by (13) for our exact implementation. We label the approximate set of

optimal instruments by z4jt and the exact set by z
5
jt.

In nonlinear models, the optimal set of instruments is not feasible since it depends on the para-

meters. We therefore need to perform a �rst stage to obtain an initial estimate of these parameters.

We consider two approaches for the �rst stage. First, we obtain an initial estimate (b�; b�; b�) for the
random coe¢ cients logit model based on standard instruments, i.e. the earlier set z1jt. Second, we

obtain an initial estimate of the linear parameters b� and b� from a simple logit model (with � = 0)

2 It is interesting to note that the spikes around 0 increase when we set the true �1 to lower values.
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Table 2: Bias and E¢ ciency with Optimal Instruments

z4jt z5jt
Parameter True Bias RMSE Bias RMSE

�0 2 0.000 0.466 -0.003 0.446

�1 2 -0.003 0.328 0.001 0.278

� -2 -0.0005 0.042 -0.0004 0.042

�1 1 -0.001 0.192 -0.003 0.142

Bias is the average parameter estimate minus the true parameter, over the 1000 generated data sets. RMSE
is the root mean squared error. Estimates are based on the MPEC algorithm and Sparse Grid integration.
The two instrument sets z4jt and z

5
jt are Chamberlain�s (1987) optimal instruments, i.e. xjt for �, bpjt for �,

and (11) for �, evaluated at �rst stage random coe¢ cients logit estimates with standard instruments z1jt. The
�rst set z4jt is an approximation of (11) evaluated at b� = 0, the second set z5jt is an �exact implementation�

using an estimated normal distribution for �.

and use a guess for b�. The second approach does not seem standard, but it avoids a computationally
expensive �rst stage (which in any case leads to rather imprecise estimates).

First stage based on random coe¢ cients logit Table 2 shows the bias and RMSE of all

parameters for the approximate set (z4jt) and the exact set (z
5
jt) of instruments, evaluated at an

initial estimate (b�; b�; b�) based on standard instruments z1jt. The table shows several striking facts.
First, small sample bias decreases by a factor of more than 10, even when compared to the

results from z2jt, which gave the lowest bias among the three standard instrument sets in Table

(1). Second, there is a spectacular increase in the e¢ ciency of the estimates. The RMSE decreases

by a factor of at least 2 for the linear parameters �. But the RMSE especially decreases for the

nonlinear taste parameter �1 = 1. While the standard instruments gave a RMSE of 1.316 (z1jt),

0.549 (z2jt) and 0.817 (z
3
jt), the optimal instruments result in a RMSE of 0.192 (z

4
jt) and 0.142 (z

5
jt).

The RMSE decreases only slightly for the price valuation �. This is because the price parameter

was already estimated precisely, since the standard deviation for this characteristic was set to zero.

Figure 2 con�rms these �ndings and gives interesting new insights. Compared with the his-

tograms in Figure 1, it is immediately clear that the distribution of �1 has a much sharper peak.

Furthermore, the spikes around �1 = 0 have almost completely disappeared, so the estimator

becomes considerably more stable.
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Figure 2: Histograms for �̂1 with optimal instruments as in Table 2

Instrument set z4jt Instrument set z5jt

Note that the exact instruments (z5jt) improve the e¢ ciency compared to the approximate

instruments (z4jt), but the gains are small. Furthermore, we also performed a third stage, i.e. re-

estimated the model with optimal instruments based on the new estimates (results not reported).

While such a third stage further reduces the RMSE, the e¢ ciency improvements are very small.

This was also true for further stages we considered. Hence, it appears a second stage is su¢ cient

to implement optimal instruments, and further stages do not justify the additional computational

burden.

To summarize, an optimal set of instruments drastically reduces parameter bias. But the gains

in the e¢ ciency and stability of the estimates are perhaps even more spectacular, in light of the

problems with standard instruments reported earlier. The gains especially relate to the estimation

of �1, the standard deviation of the taste parameter. Intuitively, Chamberlain�s (1987) optimal

instruments prove especially powerful to identify the nonlinear parameters, as they exploit the

nonlinear functional forms of the model. To obtain these gains, it is su¢ cient to perform a second

stage, and no further stages appear necessary. Nevertheless, a computationally costly �rst stage

with ine¢ cient instruments is required to obtain the optimal instruments. We now show how this

may be avoided by implementing a much simpler linear �rst stage.

First stage based on simple logit We reconsider the approximate (z4jt) and the exact instru-

ment set (z5jt), but now evaluated at an initial estimate (b�; b�) of the simple logit model (with
�1 = 0) and with a guess for b�1, i.e. the absolute value from a draw of the standard normal dis-

tribution.3 The optimal instruments for the linear parameters � and � obviously remain the same,

since they do not depend on the demand parameters. From (10), they are just equal to xjt andbpjt. The optimal instrument for �1 will be di¤erent, but it will still be a function of the product
3We also considered alternative initial valuations for b�, i.e. b� t 0 and b� = b�. This gave similar �ndings, though

sometimes an additional stage was needed to obtain the full gains in precision.
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characteristics (as BLP�s original sums of characteristics). These instruments avoid estimating a

full random coe¢ cients model in a �rst stage, which is computationally demanding and in any case

yields imprecise parameter estimates.

Table 3: Bias and E¢ ciency with Optimal
Instruments from Linear First Stage Logit

z4jt z5jt
Parameter True Bias RMSE Bias RMSE

�0 2 -0.003 0.447 -0.003 0.445

�1 2 0.000 0.280 0.001 0.278

� -2 0.000 0.042 0.000 0.042

�1 1 -0.002 0.143 -0.002 0.139

Bias is the average parameter estimate minus the true parameter, over the 1000 generated data sets. RMSE is
the root mean squared error. Estimates are based on the MPEC algorithm and Sparse Grid integration. The
two instrument sets are optimal instruments as in 2, but now evaluated a �rst stage simple logit estimates

for the linear parameters, and an initial guess for the nonlinear parameter �1.

Table 3 and Figure 3 show the results. Quite remarkably, the bias and RMSE is almost identical

as those presented in Table 2 and Figure 2. Optimal instruments based on a �rst-stage simple logit

and initial guess for b�1 apparently give the same performance as optimal instruments based on
a computationally expensive �rst-stage random coe¢ cients logit. The reason for the comparable

performance is that the �rst-stage estimates of the random coe¢ cients model were rather imprecise

and contained a nontrivial mass of �1 at zero. Note also that the exact instrument set z5jt again

performs better in terms of RMSE than the approximate instrument set z4jt, but the di¤erence is

almost negligible.

Figure 3: Histograms for �̂1 with standard instruments as in Table 3

Instrument set z4jt Instrument set z5jt
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In sum, these �ndings suggest one may avoid estimating a computationally demanding �rst-

stage random coe¢ cients logit. It is su¢ cient to only estimate a simple �rst-stage logit with an

initial guess for �1. In practice, researchers could set their guess for �1 at a comparable order of

magnitude as the estimate of b�1.
4.3 Weak Instruments for Price

Up to now, we have assumed that the cost shifters have a strong impact on marginal costs 
2 =

(3; 3; 3), so they serve as strong instruments for the endogenous price variable. In practice, it may

be di¢ cult to �nd product-speci�c cost shifters as price instruments, as stressed by BLP and the

subsequent literature. It is therefore of interest to consider the performance of Chamberlain�s (1987)

optimal instruments when good cost shifters are not available. We incorporate this by considering

a situation where the cost shifters only have a weak impact on marginal costs, 
2 = (0:3; 0:3; 0:3).

We keep all other parameters to generate the 1000 data sets the same as before.

Table 4 compares the performance of a standard set of instruments z1jt with that of an optimal

set z4jt. As expected, both sets of instruments result in more small sample bias and higher RMSE

than their twin counterparts of Table 1 and Table 3. Nevertheless, the optimal instruments still

outperform the standard instruments. In particular, the RMSE drops considerably, especially for

the constant �0 (from 3.834 to 1.500) and the nonlinear taste parameter �1 (from 2.185 to 0.760).

The bias of these two parameters also decreases substantially (though it increases somewhat for the

other parameters �1 and �).4 Finally, there is again a large spike around 0 for �1 with standard

instruments. With optimal instruments the spike is much smaller (histogram not reported).

Table 4: Bias and E¢ ciency with Weak Price
Instruments

z1jt z4jt
Parameter True Bias RMSE Bias RMSE

�0 2 1.052 3.834 -0.032 1.500

�1 2 0.041 0.664 -0.111 0.404

� -2 0.098 0.533 0.165 0.441

�1 1 0.457 2.185 0.033 0.760

Bias and RMSE over 1000 generated data sets. Estimates are based on the MPEC algorithm and Sparse
Grid integration. The results are parallel to Table 1 (for z1jt) and Table 3 (for z

4
jt), except that the cost

shifters are weak instruments for price (
2 = (0:3; 0:3; 0:3)).

To conclude, when the cost shifters are only weak instruments for price, the optimal instruments

4Note however that the bias for � is twice as large when we treat price as an exogenous variable (i.e. when we do
not use the weak cost shifters as price instruments).

18



still outperform the standard instruments, especially in terms of e¢ ciency and stability. Neverthe-

less, the precision is much lower than when cost shifters are strong instruments for price. This is

consistent with Armstrong (2012)�s conclusion on the importance of strong cost-side instruments

to correct for endogeneity bias (although he considers imperfect competition and does not attempt

to estimate �1).5

4.4 Small and Large Sample Performance

We �nally ask how bias and precision change as the sample increases, either because of more

products J or a larger number of markets T . As noted by Stock, Wright and Yogo (2002), the

performance of an estimator does not improve under weak instruments. We therefore return to the

case where cost shifters are strong instruments for the endogenous price variable, 
2 = (3; 3; 3).

Table 5 considers small and large sample performance based on the optimal instrument set z4jt (as

in Table 3). The top panel considers three sample sizes for the number of products, J = f5; 10; 20g
and �xes T = 25. The bottom panel considers three sample sizes for the number of markets,

T = f12; 25; 50g and �xes J = 10. Table 5 shows that the bias and precision improve both when J
or when T increases. In particular, when the number of products J increases by a factor of 4 (from

5 to 20), the RMSE for all parameters tends to decrease by a factor of 2, a gain in the order of
p
J .

Similarly, when the number of markets T increases by a factor of 4 (from 12 to 50), the RMSE also

appears to decrease by a factor of 2, a gain in the order of
p
T .

5We also extended our analysis to allow for a random coe¢ cient on the endogenous price variable, rather than on
the exogenous characteristic x1jt. We �nd that optimal instruments still reduce the RMSE (by more than half). The
estimates are generally less precise than in the model with a random coe¢ cient on x1jt, because the endogeneity of
prices carries over through the nonlinear part of utility.
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Table 5: Small and Large Sample Performance with Optimal
Instruments

Number of Products

T = 25 J = 5 J = 10 J = 20

Parameter True Bias RMSE Bias RMSE Bias RMSE

�0 2 -0.019 0.647 -0.003 0.447 -0.016 0.315

�1 2 0.015 0.446 0.000 0.280 0.008 0.191

� -2 0.000 0.065 -0.000 0.042 0.001 0.031

�1 1 -0.023 0.223 -0.002 0.143 -0.009 0.124

Number of Markets

J = 10 T = 12 T = 25 T = 50

Parameter True Bias RMSE Bias RMSE Bias RMSE

�0 2 -0.046 0.700 -0.003 0.447 -0.010 0.308

�1 2 0.012 0.476 0.000 0.280 0.004 0.194

� -2 0.004 0.065 -0.000 0.042 0.001 0.031

�1 1 -0.020 0.276 -0.002 0.143 -0.004 0.095

Bias and RMSE over 1000 generated data sets. Estimates are based on the MPEC algorithm and Sparse
Grid integration. The instrument set is z4jt. The top panel varies the number of products J , the bottom

panel varies the number of markets T .

It is interesting to contrast these intuitive �ndings with the results in Skrainka (2012). He

thoroughly considers small and large sample performance on a larger scale than we do. However,

he uses standard instead of optimal instruments (variants of our set z1jt and z
3
jt). With standard

instruments, he �nds that neither the bias nor the e¢ ciency improves even when the sample size

increases substantially, a �nding that we also con�rmed in our own calculations (not reported).

To conclude, the performance of the estimator improves with sample size under optimal in-

struments, but not under standard instruments. With a large sample, the bene�ts of optimal

instruments thus become even more striking.

5 Computational Performance: Standard versus Optimal Instru-

ments

Recent contributions by Dubé, Fox and Su (2012), Skrainka and Judd (2011) and Knittel and

Metaxoglou (2012) have largely focused on the computational performance of the aggregate random

coe¢ cients logit model. In this section we reconsider the relevance of these three methodological

contributions when optimal instruments are used. We �rst compare Dubé, Fox and Su�s (2012)

MPEC with BLP�s NFP (the contraction mapping), under both standard and optimal instruments.
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We then compare accurate polynomial-based integration (similar to Skrainka and Judd (2011))

with cruder pseudo Monte Carlo integration, again under both standard and optimal instruments.

Finally, we discuss problems of local minima and solver convergence when optimizing a nonlinear

objective function, as investigated by Knittel and Metaxoglou (2012).

5.1 Performance of MPEC and NFP

Su and Judd (2012) develop Mathematical Programming under Equilibrium Constraints (MPEC)

as an alternative to commonly used nested �xed point (NFP) algorithms. In the context of the

random coe¢ cients logit model, Dubé, Fox and Su (2012) derive numerical properties of the NFP

(contraction mapping) algorithm to invert market shares, and show how numerical error in the

inner loop propagates to the outer loop GMM objective function. The MPEC algorithm avoids

the inner loop, and may therefore perform both more precisely and faster. In their Monte Carlo

study, Dubé, Fox and Su (2012) make use of standard instruments. It is therefore interesting to

reconsider their results when optimal instruments are used. We also provide detail on the standard

instruments, since Dubé, Fox and Su (2012) only report elasticities.

Table 6: Performance of MPEC and NFP
algorithm

NFP

z1jt z4jt
CPU time: 37.64 90.63

True Bias RMSE Bias RMSE

�0 2 0.250 1.597 -0.003 0.447

�1 2 -0.241 1.380 0.000 0.280

� -2 -0.025 0.121 0.000 0.042

�1 1 0.066 1.208 -0.002 0.143

MPEC

z1jt z4jt
CPU time: 21.53 9.31

True Bias RMSE Bias RMSE

�0 2 0.295 1.739 -0.003 0.447

�1 2 -0.291 1.584 0.000 0.280

� -2 -0.028 0.137 0.000 0.042

�1 1 0.088 1.316 -0.002 0.143

Bias and RMSE over 1000 generated data sets. Estimates are based on Sparse Grid integration. The top
panel uses the NFP algorithm (BLP�s contraction mapping). The bottom panel uses MPEC, with results

identical to Table 1 (for z1jt) and Table 3 (for z
4
jt).
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Table 6 compares the performance of MPEC and NFP under both a standard instrument set

z1jt (similar to Dubé, Fox and Su (2012)) and an optimal instrument set z
4
jt. (Recall that our above

results were entirely based on MPEC, so the bottom panel duplicates results from Table 1 and

Table 3.) Table 6 shows that MPEC indeed substantially outperforms NFP in terms of CPU time,

both with standard and optimal instruments. But it is striking that the computational gains from

MPEC are much higher under optimal instruments (a drop in average CPU time from 90.63 to

9.31) than under standard instruments (drop in average CPU time from 37.64 to 21.53).

While MPEC thus involves clear computational gains, it does not improve bias or e¢ ciency

(RMSE). It is interesting to see that bias and e¢ ciency di¤er somewhat between NFP and MPEC

under standard instruments, but they are exactly the same under our optimal instruments. This

is reassuring since Dubé, Fox and Su (2012) derived that the two methods should in principle

produce exactly the same results. Their result is thus con�rmed with optimal instruments but not

with standard instruments, even though we set the convergence criterion of contraction mapping

NFP to a tight level of 10�12.

We conclude that MPEC indeed brings substantial CPU time savings, especially under opti-

mal instruments.6 It does not however improve the bias or the e¢ ciency (at least under a tight

convergence criterion for the inner loop).

5.2 Numerical Integration in the Market Share System

Most work since BLP has approximated the market share integrals (3) with pseudo Monte Carlo

(pMC) integration. Skrainka and Judd (2011) consider the performance of more accurate polynomial-

based integration methods; see also Heiss and Winschel (2008) for an analysis of di¤erent integration

methods for likelihood problems. Up to now, we made use of accurate Sparse Grid quadrature. We

now consider the performance of less accurate integration methods under our optimal instruments

and standard instruments. More speci�cally, we �rst generate our 1000 data sets using a highly

accurate Sparse Grid quadrature method that is exact to degree 69 to approximate the market

share integrals.7 We then estimate the model with less accurate Sparse Grid quadratures (with 19,

9 and 7 nodes) and with pseudo Monte Carlo integration (with 200, 100 and 50 draws). We use

optimal instruments, and will compare our �ndings with those of Skrainka and Judd (2011) who

use standard instruments.

Table 7 shows the following results. First, polynomial-based integration yields lower bias and

higher precision (lower RMSE) than pseudo Monte Carlo integration. For example, the RMSE of

�1 is about 0.14 for any of the polynomial-based methods; there are no gains from increasing the

6This is certainly the case for small scale problems. In larger scale applications, MPEC may become more
demanding in terms of memory usage.

7We can obtain an almost exact approximation because we have only one random coe¢ cient. With multiple
random coe¢ cients, a higher dimensional integral needs to be computed, making the approximation less precise. See
the above references for more discussion.
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nodes from 7 to 19. In contrast, the RMSE of �1 is 0.249 under pseudo Monte Carlo integration

with 200 draws, and it increases to 0.361 with 50 draws. Second, polynomial-based integration

is also considerably faster. Average CPU time is 12.47 with 19 nodes and 6.43 with 7 nodes. In

contrast, with pseudo Monte Carlo integration CPU time is 41.44 with 200 draws and 17.89 with 50

draws. In sum, pseudo Monte Carlo integration is a lot slower in computational terms and results

in a higher bias and RMSE for all parameters. At least for one-dimensional integration, these

�ndings indicate that polynomial-based methods are superior to pseudo Monte Carlo methods.

Using standard instruments, Skrainka and Judd (2011) obtain similar �ndings in terms of speed,

but they have no clear-cut conclusions regarding bias and RMSE.8

Table 7: Performance of pseudo Monte Carlo and
Polynomial-based Integration

Pseudo Monte Carlo Integration

# Draws=200 # Draws=100 # Draws=50

CPU time 41.44 29.18 17.89

Parameter True Bias RMSE Bias RMSE Bias RMSE

�0 2 -0.122 0.496 -0.205 0.536 -0.328 0.602

�1 2 0.097 0.336 0.166 0.382 0.266 0.444

� -2 0.005 0.043 0.010 0.044 0.015 0.047

�1 1 -0.089 0.249 -0.147 0.299 -0.236 0.361

Polynomial-based Integration

# Nodes=19 # Nodes=9 # Nodes=7

CPU time 12.47 8.00 6.43

Parameter True Bias RMSE Bias RMSE Bias RMSE

�0 2 -0.005 0.449 -0.005 0.449 -0.006 0.447

�1 2 0.002 0.280 0.002 0.281 0.003 0.278

� -2 0.000 0.042 0.000 0.042 0.000 0.042

�1 1 -0.004 0.143 -0.004 0.143 -0.004 0.139

Bias and RMSE over 1000 generated data sets. Estimates are based on the MPEC algorithm. To generate
the 1000 data sets, the market share integrals are approximated with a polynomial-based Sparse Grid
quadrature whith 35 nodes. To estimate the model, the market shares are approximated with pseudo Monte
Carlo integration (top panel) or Sparse Grid quadrature (bottom panel), for varying degrees of accuracy.

The instrument set is z4jt.

8We also investigated how numerical integration a¤ects the standard errors of the parameter estimates. With
standard instruments, we con�rm Skrainka and Judd�s (2011) curious �nding that standard errors are on average
lower under inaccurate pseudo Monte Carlo integration (with limited number of draws). In contrast, with optimal
instruments we obtain an intuitive pattern: standard errors become higher on average when the quality of integration
becomes cruder. Interestingly, with accurate integration the standard errors of the estimates are on average very close
to the standard deviation of the estimates across the 1,000 generated datasets. With crude integration the standard
errors are much higher.
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To conclude, with optimal instruments polynomial-based integration outperforms pseudo Monte

Carlo integration both in terms of mean squared error and computational speed. With optimal in-

struments, the standard deviations intuitively decrease as the market share is better approximated,

while the opposite holds with standard instruments.

5.3 Local Minima of a Nonlinear Objective Function

Knittel and Metaxoglou (2012) extensively document that the GMM estimates of the random

coe¢ cients logit depend on the optimization algorithm, may converge to local minima and are

therefore highly dependent on the starting values. See also Skrainka (2012) for a thorough review of

the computational problems. As discussed in section 3, we minimize the GMM objective function

using the Knitro 800 InteriornDirect algorithm with appropriate options. For each of the 1,000

generated data sets, we estimate the model using 10 di¤erent starting values and select the estimates

that result in the lowest value for the objective function.

We have separately looked into more detail at the sensitivity of the results from di¤erent start-

ing values. We con�rm Knittel and Metaxoglou (2012)�s �nding that the algorithm often converges

to di¤erent point estimates and function values. This is the case for the standard instruments z1jt
reported in Table 1, but it holds to a much lesser extent for the optimal instruments z4jt reported

in Table 3. To see this, Table 8 shows the standard deviation of the estimates and function values

under 10 di¤erent starting values, averaged over the �rst 50 generated datasets. These standard

deviations would be zero if the objective function does not have multiple local optima. Interest-

ingly, the standard deviations are about 5 times lower with optimal instruments than with standard

instruments, showing the results are less sensitive to starting values with optimal instruments. An-

other striking �nding relates to the convergence of the solver. With optimal instruments, the solver

reported convergence to a (local) optimum in all 500 (50� 10) cases. With standard instruments,
the solver reported nonconvergence (�local infeasibility�) in 37 cases.9

9We discarded these outcomes in Table 8 and our earlier tables.
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Table 8: Standard Deviations of Point Estimates from Di¤erent
Starting Values

z1jt z4jt
Parameter St. Dev. St. Dev.

�0 0.117 0.028

�1 0.140 0.024

� 0.007 0.001

�1 0.108 0.019

Function Value 0.029 1.07E-13

Mean of the standard deviations of point estimates obtained over 10 di¤erent starting values for 50 data
sets. We generate data and estimate the model as in Table 1 and 3.

In sum, under optimal instruments the objective function shows considerably fewer local min-

ima, so that the results become less sensitive to the choice of starting values. Nevertheless, there is

still some variation over starting values. This just con�rms the inherent non-linearity of the GMM

objective function for the random coe¢ cients model. Careful checking of di¤erent starting values

and solver convergence therefore remains warranted regardless of the adopted instrument set.

6 Conclusion

We have shed new light on the performance of Berry, Levinsohn and Pakes�(1995) GMM estimator

of the aggregate random coe¢ cient logit model. Based on an extensive Monte Carlo study, we have

shown that the use of Chamberlain�s (1987) optimal instruments overcomes most of the problems

that have recently been documented with standard, non-optimal instruments. Optimal instruments

reduce small sample bias, but they prove even more powerful in increasing the estimator�s e¢ ciency

(root mean squared error) and stability (avoiding spikes at zero for the standard deviation of the

taste parameters). Other recent methodological advances (MPEC, polynomial-based integration of

the market shares) greatly improve computational speed, but they are only successful in terms of

bias and e¢ ciency when combined with optimal instruments. Finally, with optimal instruments

the GMM objective function is less �at resulting in less local minima, but careful searching for a

global minimum still remains warranted.

These �ndings suggest that practitioners should apply optimal instruments when estimating

aggregate random coe¢ cients logit models. These instruments are generated from within the model,

as they depend in a speci�c way on the product characteristics of the own and other products.

Applying optimal instruments does not imply that researchers should not search for good cost-side

instruments to estimate the endogenous price e¤ects. As shown by Armstrong (2012), and con�rmed

in our setting, good cost-side instruments are important to obtain precise estimates of the price
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parameter and indirectly also for the other parameters.

We conclude with some cautionary warnings. Optimal instruments guarantee a strong per-

formance of the aggregate random coe¢ cients logit model when the data-generating process is

known and satis�es strong (but common) assumptions. It is not clear to which extent these as-

sumptions are satis�ed in real data sets, and whether optimal instruments still achieve the same

powerful performance (in terms of bias, e¢ ciency and computational speed). First, we assumed a

data-generating process where the product-speci�c unobservable is uncorrelated with the observed

product characteristics of all products. If this assumption is not satis�ed, optimal instruments

may need modi�cation. See Crawford (2011), Ackerberg and Crawford (2009) for recent progress

on instruments when product characteristics are endogenous. Second, even if product character-

istics are exogenous, they may be correlated across products, which may require modi�cation of

the optimal instruments. Third, we assumed the endogenous variables, prices and market shares,

are generated based on known functional forms, from the random coe¢ cients logit with a normal

distribution for the random coe¢ cients. In practice, the functional forms are not known so that the

model may be misspeci�ed. It therefore remains a very interesting topic for future research to assess

the performance of random coe¢ cients model with real data or more realistic simulated data.
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