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Abstract

Sharp nonparametric bounds are derived for counterfactual demands

and Hicksian equivalent variations. These “i-bounds” refine and extend

earlier results of Blundell, Browning and Crawford (2008). We show

that their bounds are sharp under the Weak Axiom of Revealed Pref-

erence (WARP). They do not require transitivity. The new bounds

are sharp under the Strong Axiom of Revealed Preference (SARP).

By requiring transitivity they can be used to bound welfare measures.
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The new bounds on welfare measures are shown to be operationalized

through algorithms that are easy to implement.

1 Introduction

Demand analysis is a powerful tool for the measurement of the behaviour and

distributional effects of counterfactual price and income changes. A policy

maker may, for example, be interested in the impact on the consumer’s well-

being of an introduction of a tax on the fat content of food or of a change

in the indirect taxes on gasoline. The common characteristic of such taxes is

that they change the relative prices faced by the consumer. How the consumer

reacts to this, by choosing an alternative consumption bundle, is subject of

the analysis of demand behaviour. Typically the researcher estimates the

unknown parameters of a parametric demand system and uses these estimates

to calculate pre- and post-reform demands and associated indirect utilities (see,

for example, Banks, Blundell and Lewbel, 1997). Comparing these indirect

utilities then allows the econometrician to evaluate the impact of the policy

reform on the consumer’s well-being. One particularly useful cardinalization of

the indirect utility function is Samuelson’s (1974) money metric indirect utility

function, which allows one to express the change in well-being in monetary

units. Depending on the base price that is used in the analysis, this approach

leads to the well-known compensating variation (base price equals the post-

reform prices) and equivalent variation (base price equals pre-reform prices)

that were proposed by Hicks (1939).

A major disadvantage of standard demand and welfare analyses is that

they rely on the functional specification of the indirect utility function that is

used. An alternative way to analyze policy reforms is based on the revealed

preference (RP) approach, whose foundations were laid down by Samuelson

(1938, 1948), Houthakker (1950), Afriat (1967), Diewert (1973) and Varian

(1982). The RP approach translates conditions for rational consumption be-

haviour into testable implications. These do not depend on any assumptions

about the specification of the consumer’s demand system or the particular

representation of her rational preferences. The major disadvantage of the RP

approach, however, is that the predictions of demand responses derived from

its restrictions are set-valued, i.e. it is only possible to recover bounds on

predicted demands.
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As a response Blundell, Browning and Crawford (2003, 2008) proposed

blending these two approaches by combining Engel curve estimation with RP

conditions. This has shown to be a productive technique. Firstly, it makes the

RP conditions applicable to the types of datasets which are widely available

to researchers (such as the Family Expenditure Survey from the UK or the

Consumption Expenditure Survey from the US). Secondly, the approach is

easy to implement and therefore contributes to the practical usefulness of RP

conditions. Finally, and principally, it allows for empirical RP analysis with

substantial discriminatory and forecasting power.1

However, whilst Blundell, Browning and Crawford (2008) showed how to

improve bounds on the demand responses to price changes, they did so with-

out fully exploiting all of the empirical implications of rational preferences.

Indeed, transitivity is not required for their bounds. We show that they are

sharp under the Weak Axiom of Revealed Preference (WARP). However, and

importantly, further improvements are, in general, possible if preferences can

also be assumed to satisfy transitivity.2 That is, if preferences satisfy the

Strong Axiom of Revealed Preference (SARP).

For welfare calculations transitivity is, in general, required. This is because

non-transitivity can lead to cycles and path-dependence if one attempts to

integrate back to utility constant welfare measures. In this paper, we refine and

extend the results of Blundell, Browning and Crawford (2003, 2008) to derive

sharp bounds on counterfactual demand responses and welfare calculations

under SARP.3 These bounds are “sharp for SARP”. For reasons which will

become clear we refer to these bounds as “iterated bounds”, or i-bounds. We

also show how the method originally presented in Blundell, Browning and

Crawford (2003) provides sharp nonparametric bounds on compensating and

equivalent variations.

For conciseness, we will only present and discuss theoretical results in our

1See Blundell (2005), Blundell, Browning and Crawford (2007) and Blundell, Kristensen

and Matzkin (2010) for recent contributions that build further on the basic insights of

Blundell, Browning and Crawford (2003, 2008). Blundell, Kristensen and Matzkin (2010)

is notable since it applies this approach to quantile demands and allows for unobserved

heterogeneity in individual demands.
2Note that in situations in which there are only two goods transitivity adds no further

restrictions to the weak axiom (see Rose, 1958).
3In terms of RP restrictions, the recovery of demand responses under Walras’ Law,

homogeneity of degree zero and negative semi-definiteness of the Slutsky matrix is equivalent

to imposition of the Weak Axiom of Revealed Preference (WARP), whereas the requirement

that these demands are consistent with full rationality amounts to the Strong Axiom of

Revealed Preference (SARP) (see Kihlstrom, Mas-Colell and Sonnenschein, 1976).
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following exposition. However, as we will also indicate, these results imply an

easy-to-implement method for defining tightest (iterated) bounds on Marshal-

lian demands and compensating and equivalent variations. Evidently, bringing

this method to observational data necessarily requires dealing with empirical

issues such as measurement error and (un)observed heterogeneity. Here, we

can refer to Blundell, Browning and Crawford (2003, 2008) and Blundell, Kris-

tensen and Matzkin (2010); these authors propose methodological extensions

for dealing with these issues that are directly applicable to the method we

introduce below.

The rest of the paper unfolds as follows. In Section 2, we introduce our

iterated bounds on the Marshallian demands for any number of goods, and

we provide an easily implemented method for computing these bounds. In

Section 3, we introduce the corresponding method for identifying the tightest

bounds on compensating and equivalent variations. Section 4 concludes.

2 Iterated bounds on Marshallian demands

To set the stage, we first briefly recall the concept of e-bounds introduced

by Blundell, Browning and Crawford (2008, henceforth BBC (2008)). Sub-

sequently, we take the sequential maximum power path idea for constructing

bounds on welfare measures developed in Blundell, Browning and Crawford

(2003, BBC (2003)) and use this to introduce the notion of iterated bounds

on Marshallian demands. We present an example to demonstrate that these

bounds can be used to improve upon the e-bounds if there are more than two

goods. Given this result, we next show that our iterated bounds procedure

leads to tightest bounds on Marshallian demands. We end this section by pre-

senting an algorithm to compute the iterated bounds. As we will indicate, this

algorithm essentially iterates a procedure originally proposed by BBC (2003),

which explains the name “iterated bounds”.

2.1 e-bounds

We assume  goods and consider a consumer with a (nonnegative) Marshallian

demand function q(p) for prices p ∈ R
++ and income  ∈ R++. Following

BBC (2008), we assume uniqueness of demands.

Assumption 1 (uniqueness of demands) The demand function q(p) :

R+1
++ → R

+ satisfies adding up, i.e. p
0q(p ) =  for all prices p and incomes

.
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Consider a set of  price vectors {p}=1 ; we say there are  observa-
tions. For a given price vector p we denote the -valued demand associated

with income  as q (), and we refer to the function q as the expansion path

that corresponds to the prices p. Again, we follow BBC (2008) by assuming

weak normality of q.

Assumption 2 (weak normality) If   , then q() ≥ q() for all p.

BBC (2008) address the following question: “Given a new budget {p  }
and a set of observed prices and expansion paths {pq ()}=1 , what val-
ues of q , which exhaust the budget (i.e. p

0
q = ), are consistent with

these observed demands and utility maximization?” Let us denote the bundles

that exhaust the new budget {p  } by (p  ) = {q ∈ R
+|p0q =

}.
To state BBC (2008)’s answer to their question, we first need to introduce

some revealed preferences (RP) concepts. We start by defining direct revealed

preference relations 0.

Definition 1 (direct revealed preference) If at prices p and income 
the consumer chooses q () and p

0
q () ≥ p0q (), then q ()0q ().

Transitivity of preferences then leads to the next concept of indirect re-

vealed preference relations .

Definition 2 (indirect revealed preference) If we have a sequence q ()

0 q () 
0q () · · · 0 q () 0 q (), then q ()  q ().

In our following exposition, we will consider two consistency conditions for

utility maximizing consumer behaviour: the Weak Axiom of Revealed Pref-

erence (WARP) and the Strong Axiom of Revealed Preference (SARP). It is

well-known that SARP is a necessary and sufficient condition for utility max-

imization, while WARP is only a necessary condition (see Varian, 1982 and

2006, for a detailed discussion).

Definition 3 (WARP and SARP)

(i) The demands q (),  = 1   , satisfy WARP if q ()
0 q () and

q () 6= q () then not q ()0 q () for any  and .
(ii) The demands q (),  = 1   , satisfy SARP if q () q () and

q () 6= q () then not q ()0 q () for any  and .
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Because WARP only uses direct revealed preference relations 0, while

SARP focuses on indirect revealed preference relations  (so exploiting tran-

sitivity of preferences), we obtain that SARP is a stronger condition than

WARP. As in BBC (2008), we will assume that the expansion paths q()

generate demands that are consistent with utility maximization. In RP terms,

this implies the following assumption.

Assumption 3 (SARP) For all  ∈ R++ the demands q(),  = 1     
satisfy SARP.

To formalize their notion of e-bounds, BBC (2008) use the concept of in-

tersection demands. To facilitate our following comparison of BBC (2008)’s

e-bounds with our iterated bounds, we here introduce these intersection de-

mands in a slightly different way, i.e. in terms of intersection incomes.

Definition 4 (intersection income) The intersection income ̃, for  ∈
{1     }, is the maximal income for which

∀q ∈ (p  ) : q
0q(̃)

The assumptions of uniqueness and normality ensure that each intersection

income ̃ is uniquely defined. More precisely, it is the income level such that

p0q(̃)=  . BBC (2008) refer to the corresponding value of the expansion

path, q(̃) as the intersection demand for observation .

Given all this, BBC (2008) define the support set

 (p  ) =

½
q :

q ∈ (p  )

{p p;q q(̃)}=1 satisfy SARP
¾
;

and they label the bounds on demand responses that are based on  (p  )

as e-bounds.

To end this section, we present a specific characterization of the support set

(p  ). As we will explain, this characterization will directly motivate

our following research question, i.e. define “iterated bounds” that improve

upon the e-bounds. Essentially, the next proposition distinguishes between

two cases for q ∈  (p  ): either q is different from the intersec-

tion demand q(̃) for any observation , or we have q = q(̃) for some

observation .4 The Appendix contains the proofs of all our results.

4Note that we make the (implicit) assumption that every observation  corresponds to a

different intersection demand q(̃). Dropping this assumption is actually straightforward,

but it would substantially complicate the statement of Proposition 1 without really adding

new insights. A similar qualification applies to Theorem 1.
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Proposition 1 (profitable characterization of  (p  )) For any q
in the budget set (p  ), we have that q is in the support set 

 (p  )

(i.e. meets the e-bounds) if and only if

(i) ∀ ∈ {1     } : p0q(̃)  p0q  or
(ii) ∃ ∈ {1     } : q = q(̃), and then p

0
q(̃)  p0q for all  ∈

{1    }\{}.

Inspection of Proposition 1 reveals that the definition of e-bounds nowhere

exploits transitivity of preferences, which is captured by the indirect revealed

preference relations . Specifically, any q ∈  (p  ) can be charac-

terized in terms of direct revealed preference relations 0, i.e. it satisfies

p0q(̃) =  = p
0
q (i.e. q

0q(̃)),

which follows from the definition of the intersection demands, and

p0q(̃)  p
0
q (i.e. not q(̃)

0q),

which follows from Proposition 1. Putting it differently, e-bounds only use

the empirical restrictions that are implied by WARP consistency. However,

as indicated above, utility maximizing behaviour requires SARP consistency,

which generally involves further restrictions than WARP consistency.5 There-

fore, in what follows we will define iterated bounds that do fully exploit the

restrictions implied by transitivity of preferences. Essentially, this will require

generalizations of the concepts intersection income and intersection demand

that are based on the relations  (instead of 0).

2.2 i-bounds

We define iterated bounds, or i-bounds, as bounds on demand responses based

on a support set  (p  ) that accounts for all possible incomes  (rather

than only ̃), i.e.

 (p  ) =

½
q :

q ∈ (p  )

{p p;q q()}=1 ; ∈R++ satisfy SARP
¾


Because this set  (p  ) considers all demands on the expansion paths

5In this respect, one may also state that e-bounds are best WARP-based bounds but not

best SARP-based bounds.
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q, it is the tightest (i.e. smallest) SARP-based support set by construction.

In turn, this implies that i-bounds are tightest bounds on demand responses.

However, as it is formulated here, the set  (p  ) is not directly useful from

a practical point of view: for each , it requires considering infinitely many

points on every expansion path. To derive an operational characterization

of  (p  ), we will make use of the following notion of most informative

income.

Definition 5 (most informative income) The most informative income b,
for  ∈ {1     }, is the maximal income for which

∀q ∈ (p  ) : qq(b)
i.e. there exist        such that q 0 q() 

0 q() . . . 
0 q()

0 q(b).
This concept of most informative income extends the earlier notion of in-

tersection income by using indirect revealed preference relations  instead of

(only) direct revealed preference relations 0. Because the relations  include

the relations 0 by construction, we obtain b ≥ ̃. As before, the assump-

tions of uniqueness and weak normality imply that most informative incomesb are uniquely defined. However, in contrast to intersection incomes, there is
no closed formula for computing most informative incomes. Fortunately, as we

will discuss in Section 2.3, we can define an easy-to-implement (finite and ef-

ficient) algorithm to compute b by iterating the procedure for computing the
intersection incomes. Analogous to before, we will refer to the associated value

of the expansion path, q(b), as the most informative demand for observation
.

The next result provides a characterization of the set  (p  ) that par-

allels the one of  (p  ) in Proposition 1. It also provides a specific

definition of  (p  ) in terms of the most informative incomes b. In prac-
tical applications, this allows for constructing the set  (p  ) once these

most informative incomes have been identified.

Theorem 1 For any q in the budget set (p  ), we have that q is in

the support set  (p  ) (i.e. meets the i-bounds) if and only if

(i) ∀ ∈ {1     } : p0q(b)  p0q  or
(ii) ∃ ∈ {1     } : q = q(b) and then p0q(b)  p0q for all  ∈
{1    }\{}.
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We conclude this section by Example 1, which demonstrates that BBC

(2008)’s support set  (p  ) (yielding e-bounds on demand responses)

need not coincide with the smallest SARP-based support set  (p  ) (yield-

ing iterated or tightest bounds on demand responses). The example also illus-

trates the central intuition behind this result. Specifically, it presents expan-

sion paths where, for some  ( = 1 in Example 1), the most informative incomeb is strictly above the intersection income ̃, which implies that there exists
q with qq(b) but not q0q(b). Because the set  (p  ) must
satisfy SARP, this yields the restriction p0q(b)  p0q  which is stronger
than p0q(̃)  p0q (because b  ̃). In turn, this effectively excludes

from the set  (p  ) some q that belongs to the set 
(p  ). This

demonstrates that, in general, we can have  (p  ) (  (p  ).

As a final note, we emphasize that we need more than two goods for

 (p  ) (  (p  ). Indeed, as indicated above, the support set

 (p  ) exploits the empirical restrictions implied by WARP consis-

tency. And it is well-known that WARP and SARP have the same empirical

content if there are only two goods (see Rose, 1958), so that we always get

 (p  ) =  (p  ) in this case.

Example 1 We consider the support set (p  ) for p = (3 2 4)

and  = 15. Suppose we observe two expansion paths q1 and q2, which are

associated with the prices p1 = (4 3 2) and p2 = (2 4 3).

Suppose we have the intersection incomes ̃1 = 135 and ̃2 = 158, with

corresponding intersection demands

q1(̃1) = (2 05 2) and q2(̃2) = (23 205 1)

Next, we assume the following most informative incomes. Let b1 = 15  ̃1,

with

q1(b1) = (2 1 2)
while b2 = e2 and, thus, q2(̃2) = q2(b2). We remark that an expansion path
q1(1) containing both q1(b1) and q1(̃1) does not conflict with our earlier
assumptions.

We can then show that  (p  ) (  (p  ). To obtain the result, it

suffices to show that there exists q with

q ∈ (p  ) and q ∈ (p  )

For the current example, this applies to q = (1 2 2) (which effectively meets
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p0q = ). First, we can verify that q ∈ (p  ): the demands

q  q1(̃1), q2(̃2) satisfy SARP (with q 0 q2(̃2) 0 q1(̃1)). On the

other hand, we also obtain q0 ∈ (p  ): the demands q  q1(b1), q2(b2)
do not meet SARP, which a fortiori implies q ∈ (p  ); in particular,

we get q
0q2(b2)0q1(b1)0q .6

2.3 An algorithm for computing most informative in-

comes

The following algorithm uses the approach in BBC (2003) to define the most

informative incomes ̂1     ̂ and, thus, also the corresponding demands

q1(̂1)    q (̂ ).

Algorithm 1 (computing most informative incomes)

Input: {p  } and {p1    p ;q1 (1)     q ( )}.
Output: ̂1     ̂ .

Step 0: Set  = 0 and  = {1      |p0q1 (1) =      p
0
q ( ) = }.

Step 1: Set +1 = {max∈ ( :  = p0q1 ())     max∈ ( :  = p0q ())}.
Step 2: If +1 ≡  then set {̂1     ̂} = +1 and stop. Else set  = +1

and go to Step 1.

Note that Step 0 of this algorithm delivers the intersection incomes ̃,

which BBC (2008) originally considered to define their e-bounds on Marshal-

lian demands. To define our most informative incomes b (and so i-bounds on
Marshallian demands), we iterate this procedure in Steps 1 and 2. This itera-

tion implies that most informative incomes may effectively exceed intersection

incomes (i.e. b  ̃). As explained in our discussion of Example 1, such an

instance effectively obtains  (p  ) (  (p  ).

The following lemma states two important properties of Algorithm 1.

Lemma 1

(i) Algorithm 1 converges in a finite number of steps.

(ii) For any  we have q(̂) ≥ q ()⇔ qq () for any q ∈ (p  )

6For completeness, we add that the set  (p   ) is not empty, as is easily verified.

10



Property (i) shows that the algorithm is feasible in finite time, which is a

minimal requirement for practical applicability. Next, property (ii) states that

each demand q(̂) represents the ‘highest point’ on the expansion path q
that is revealed worse than any bundle in the support set (p  ).

Two further remarks are in order. First, our earlier assumptions ensure

that any income level computed in Step 1 of Algorithm 1 is uniquely defined.

As such, computing any set +1 is straightforward. Moreover, one can show

that the worst-case complexity of this algorithm is  3, which means that the

algorithm is efficiently implemented.7

Second, it is interesting to note that Algorithm 1 can also be used to ex-

tend the ‘best’ SARP-based test that was originally proposed by BBC (2003).8

Specifically, using information on expansion paths q ( = 1   ), these au-

thors define a best possible test for SARP consistency of a particular quantity

bundle q () (with  ∈ {1  }) that is conditional on some a priori de-
fined (revealed preference) ordering of the observations. Algorithm 1 provides

the basis for an alternative ‘best’ test: we can use the algorithm to define

the set (p  ), so that we can subsequently check whether q () ∈
(p  ) (i.e. q () is SARP consistent) or q () ∈ (p  ) (i.e.

q () is SARP inconsistent). It can be verified that this alternative test

actually is formally identical to the one of BBC (2003), except for the im-

portant difference that it does not require a prior ordering specification - it

simultaneously considers all possible ( !) orderings of the  observations.

3 Equivalent and compensating variations

In this section, we use the results outlined above to define tightest bounds on

equivalent and compensating variations. We first present formal definitions

of compensating and equivalent variations. Subsequently, we show how to

compute tightest bounds on these welfare measures by using our results of the

previous sections.

Suppose the policy maker wants to compare two situations characterized by

different price regimes: p ∈ R
++ represents original (observed; pre-reform)

7For the sake of brevity, we do not include a formal proof of this statement here, but it

is available upon request.
8BBC (2003) originally introduced a (best) test based on the Generalized Axiom of

Revealed Preference (GARP) rather than SARP (which we consider here, following BBC

(2008)). However, it is straightforward to adapt their ideas to obtain a best SARP-based

test. See, for example, Varian (1982 and 2006) for the subtle difference between SARP and

GARP.
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prices and p ∈ R
++ represents new (unobserved; post-reform) prices. Income

is the same in the two situations, i.e.  =  . Let  (p ) be the expenditure

function that associates minimal expenditure with prices p and utility . By

construction, rational consumer behaviour implies  (p ) =  (p  ) =

 (= ) (where we assume that the total budget is fixed). Then, we get the

following definitions.

Definition 6 (equivalent and compensating variations)

(i) Equivalent variation  =  (p )−  (p ) =  (p )−  

(ii) Compensating variation  =  (p  )−  (p  ) =  −  (p  ).

Tightest bounds for EV. To bound EV, we need tightest bounds on

 (p ). Let 
 denote the tightest (= ‘highest’) lower bound and  the

tightest (= ‘lowest’) upper bound, so that  ≤  (p ) ≤  . The next

algorithm computes  and  . (In the algorithm, we make use of the vectors

P ∈ R of which all components are zero except for the -th component,

which equals one.)

Algorithm 2 (computing iterated bounds on  )

Input: {p  } and {p1    p ;q1 (1)     q ( )}.
Output:  and  .

Step 1: Use Algorithm 1 to compute the most informative incomes ̂1     ̂ .

Step 2: Set  (p  ) = ∅. For all  ∈ {0      − 1}, consider every se-
lection of  mutually different 1      ∈ {1     } and −1− mutu-
ally different +1     −1 ∈ {1     }. If the vectors p p1    p,
P+1     P−1 are linearly independent, then define the unique solution

q ∈ R of the system p0q =  , p
0
1
q = ̂1, . . . , p

0

q = ̂,

P0+1q = 0    P
0
−1q = 0, and add q to  (p  ).

Step 3: Set  (p  ) = ∅. Compute  (p  ) = (p  )∩ (p  ).
Step 4: For every q ∈  (p  ), use Algorithm A (resp. Algorithm B) of

BBC (2003) to compute q (resp. 

q
).

Step 5: Set  = minq∈ (p  ) 

q
and  = maxq∈ (p  ) 


q
.
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Tightest bounds for CV. To bound  , we need to define bounds on

 (p  ). Because q (p ) is assumed to be the observed (pre-reform)

demand, we can use the bounds for the cost function  (qp) (that gives

the minimal cost for obtaining a bundle on the same indifference curve as q
at prices p - this function is equivalent to the expenditure function evaluated

at the utility level  generated by q and prices p .
9

Implementation. The algorithms are very easy-to-implement and will ef-

ficiently compute  and  . More precisely, we can refer to our discussion

on the efficiency of Algorithm 1 in the previous section, which carries over to

BBC (2003)’s Algorithms A and B (which are formally similar to Algorithm

1). Next, Theorem 1 implies that the closure of (p  ) is a convex set

defined by linear constraints. Steps 2 and 3 of Algorithm 2 then compute the

extreme points (or vertices) of this convex set. Essentially, defining each such

extreme point boils down to finding the unique solution of a system with 

linear constraints that follow from the characterization of the convex set. That

is, the budget constraint (i.e. p0q = ), the constraints corresponding to

a selection of  observations (i.e. p01q = ̂1 , . . . , p
0

q = ̂) and −1−

positivity constraints (i.e. P0+1q = 0    P
0
−1q = 0).

10

Some of the solutions of Step 2 do not necessarily belong to the support

set  (p  ), which is why we need the additional Step 3 to obtain only

the relevant points (i.e. the extreme points). Finally, by construction the set

 (p  ) is finite and discrete, which implies that Step 4 of Algorithm 2 is

computable in finite time.

Example 2 illustrates the different steps of Algorithm 2. The following

lemma formally states that the algorithm effectively compute the tightest

bounds on EV.

Lemma 2 (iterated bounds are tightest) The values  and  produced

by Algorithm 2 define tightest bounds on EV.

Example 2 Figure 1 graphically illustrates the intuition behind Algorithm 2.

For simplicity, we focus on a setting with only two goods and three observed

9The algorithms A and B of BBC (2003) can be used to obtain tightest bounds.
10Although Step 2 is directly implementable, we also note that it should not be the most

efficient way to compute the extreme points of our convex set. Indeed, given that this

set is characterized by linear constraints, computing these extreme points is equivalent to

finding all basic feasible solutions of a system of linear equations. Alternative algorithms for

computing these basic feasible solutions are available in the Operations Research literature.
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price vectors (i.e. three expansion paths). The upper-left panel of the figure

shows the support set  (p  ), which corresponds to the bold line segment.
11

The set  (p  ) is characterized by the most informative incomes ̂1 ̂2 and

̂3, which are obtained through Step 1 of Algorithm 2. The corresponding set

of extreme points  (p  ) = {1 2}; this set is constructed in Steps 2
and 3 of Algorithm 2. The upper-right and lower-left panels of Figure 1 then

show the inner and outer bounds for the indifference curves associated with,

respectively, q1 and q2.
12 In turn, this defines the lower bounds q1 and

q2 and the upper bounds 

q1

and q2, which are generated in Step 4 of

Algorithm 2. Finally, the lower-right panel of Figure 1 shows the resulting

values of  and  , which are obtained in Step 5 of Algorithm 2. Here, we

have  = min{q1 q2} = q1 = q2 and 
 = max{q1  q2}= q1.

4 Conclusion

In this paper we have refined and extended the results of Blundell, Browning

and Crawford (2003, 2008). We defined tightest “iterated” (nonparametric)

bounds on counterfactual Marshallian demands that apply to any number of

goods. These bounds are sharp under the strong axiom of revealed preference,

SARP.We were thus able to show they provide sharp bounds for counterfactual

welfare measures.

We have established a complete toolkit for a powerful nonparametric wel-

fare analysis based on Hicksian compensating and equivalent variations. We

show that our iterated bounds method involves computational algorithms that

are easily implemented.

11Since there are only two goods in this example, the support set  (p   ) actually

coincides with BBC’s support set  (p   ), which are characterized by intersection

demands (see Proposition 1). (Correspondingly, the most informative incomes ̂1 ̂2 and

̂3 equal the intersection incomes e1 e2 and e3.) As explained above, the sets  (p   )
and  (p   ) need not coincide in case there are more than two goods. We choose

to focus on a two-goods setting here as this allows us to better illustrate the mechanics of

Algorithm 2.
12These bounds for indifference curves are (implicitly) constructed in Algorithms A and

B of BBC (2003). We refer to these authors for a detailed discussion on the construction

method. See in particular their Figure 7.

14



Figure 1: Illustration of Algorithm 1

Appendix

Proof of Proposition 1

By construction we have q
0q(̃) for any q ∈ (p  ). If q ∈

(p  ) and q 6= q(̃) for all , then SARP consistency for q0q(̃)
implies that p0q(̃)  p0q (i.e. not q(̃)

0q). Next, if q = q(̃) ∈
(p  ) for some , then SARP consistency requires the same for all

observations  6= .

Conversely, take any q ∈ (p  ), then p
0
q(̃)  p0q for all  (i.e.

condition (i) holds) excludes q(̃)q . So a rejection of SARP requires

qq(̃) and p
0
q(̃) ≥ p0q (i.e. q(̃)0q). But this last inequality is

excluded by assumption, and thus q ∈  (p  ). A similar reasoning

holds for q = q(̃) (i.e. if condition (ii) holds).

Proof of Theorem 1

Suppose q ∈ (p  ) and q 6= q(b) for all . By construction we have
that qq(b) for any q ∈ (p  ). So SARP consistency requires that
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p0q(b)  p0q . Next, assume that q = q(b) ∈ (p  ) for some .

Then, SARP consistency requires the same for all  6= .

Conversely, take any q ∈ (p  ) and suppose that p
0
q(b)  p0q for

all  (i.e. condition (i) holds). Then, normality implies for all  ≤ b that
p0q() ≤ p0q(b)  p0q . Therefore, by Definition 5 and the above, we
cannot have q()q . As such, there can be a rejection of SARP only if, for

some income , we have qq() and p
0
q() ≥ p0q . Suppose, then, that

we do have such a rejection, i.e. there exists an income  for which qq()

and p0q() ≥ p0q . Since p0q(b)  p0q , normality implies that   b.
This gives us the wanted contradiction, since Definition 5 and the above then

exclude qq().

A similar reasoning holds for q = q(b) (i.e. condition (ii) holds), which
finishes the proof.

Proof of Lemma 1

Algorithm 1 is formally similar to Algorithms B of BBC (2003). In partic-

ular, Step 2 of these authors’ Algorithm B considers problems of the type

max∈ (q () :  = p
0
q ()), while Step 2 of our Algorithm 1 uses

max∈ ( :  = p
0
q ())  Because of weak normality (Assumption 2), we

have thatmax∈ ( :  = p
0
q ()) = argmax (max∈ (q () :  = p

0
q ())) 

Given this, we can straightforwardly adapt the proof of BBC (2003)’s Propo-

sitions 3 to obtain the result in Lemma 1.

Proof of Lemma 2

To bound EV and thus (p ), we need to find, for any q ∈ (p  ) the

nonparametrically constructed ‘revealed-preferred’ set  (q), which con-

tains all bundles to which q is preferred to, and the ‘not-revealed-worse’ set

 (q), which contains all bundles that are not revealed worse to q . (See

Varian (1982) for an extensive discussion of the sets  (q) and (q).)

Given our results in Section 2, we can define tightest bounds on EV by

computing q (resp. q ) for any q ∈ (p  ). Now, Proposition 1

implies that the closure of (p  ) is a convex set and, as discussed in the

main text,  (p  ) contains all the extreme points of this convex set. As

such, we get that any q ∈ (p  ) can be written as a convex combination

of elements of  (p  ), i.e. q =
P

 q (with   0 and
P

  = 1)

for q ∈  (p  ).
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Given this, and using convexity of preferences (represented by the sets

 (q) and  (q)), we get  (q) ⊆  (q) for at least one q ∈
 (p  ) and also that  (q) ⊆  (q) for at least one, possibly

different, q ∈  (p  ). As such, in order to nonparametrically identify the

lower bound  (respectively, upper bound ), we need to take the minimum

(respectively, maximum) of the lower (respectively, upper) bounds over all the

elements of  (p  ), i.e. 
 =minq∈ (p  ) 


q
and  =maxq∈ (p  )

qN.
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