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Abstract. We characterize a new quasi-ordering on the collection of oppor-
tunity (or choice) sets. This new rule combines two criteria: the individual
preferences on the universal set of options and the number of maximal options
in the opportunity set. This new rule is compared with the indirect utility
approach, and is further refined towards the leximax rule defined by Bossert,
Pattanaik, and Xu (Journal of Economic Theory, 63, 1994).
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1 Introduction

Consider a finite set X of alternatives and a complete and transitive (preference) relation
on X. An opportunity set is a nonempty set of (available) alternatives. The literature
on opportunity freedom tries to identify the value of opportunity sets. We refer to Bar-
berà, Bossert and Pattanaik [1] and to Foster [4] for an overview. Let us recall two basic
approaches: the cardinality approach interprets the cardinality of an opportunity set as
a measure of freedom while the indirect utility approach evaluates an opportunity set by
the value of its best element. Methods that take both components of well-being—quantity
and quality of the alternatives—into account were proposed and characterized by Bossert,
Pattanaik and Xu [2].

This note reconsiders the effect of indifferences between options when ranking opportu-
nity sets. Let us take the example of an opportunity set that collects twelve equally good

∗We thank Geert Dhaene, Johan Quaegebeur, and Luc Van Liedekerke for fruitful discussions. The
authors are solely responsible for remaining shortcomings.
E-mail: Tom.Potoms@ulb.ac.be and luc.lauwers@econ.kuleuven.be.
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options, to which is added a stark thirteenth option, e.g. the option of being beheaded at
dawn1. With respect to this extra option, Pattanaik and Xu [6, p. 179] write:

“We believe that even people who share the libertarian belief in the intrinsic
value of freedom will agree that ‘normally’ this (option) would not constitute
an increase in the agent’s freedom.”

This view criticizes the axiom of strict monotonicity according to which an opportunity set
is ranked above its subsets. The cardinality rule and the four rules proposed by Bossert et al
[2]—the leximax, the cardinality-first lexicographic, the preference-first lexicographic, and
the dominance relation—all consider cardinality relevant and satisfy strict monotonicity.
According to these rules, the addition of this thirteenth option increases the level of well-
being. The indirect utility approach, on the other hand, proposes indifference between an
opportunity set and one of its best options and, therefore, completely ignores the dimension
of freedom in the well-being attached to the opportunity set.

We try to reconcile these concerns and propose the following rule. If the best alternative
in opportunity set A is better than the best alternative in opportunity set B, then A
represents a higher level of well-being than B. If the best alternatives are equally good,
then we count the number of maximal options in both sets. The opportunity set with
the highest number of maximal options represents the higher level of well-being. We label
this rule as the indirect-utility-indifference rule. In the above example, a plausible ranking
is obtained: the value attached to an opportunity set (i) does not increase when this
thirteenth option is made available, and (ii) decreases when one of the twelve better options
is deleted. In case the preference relation on X is antisymmetric, then each indifference
set is a singleton and this rule coincides with the indirect utility approach. Therefore, the
indirect-utility-indifference rule refines the indirect utility approach only in the presence
of indifferences. In real life, however, because the set X of alternatives might be large, the
preference relation of the individual might consider different options as (almost) equally
good, which could cause (potentially large) indifference classes to appear. In such cases,
the indirect-utility-indifference rule still maintains some degree of freedom alongside the
individual preference relation. Moreover, the indirect-utility-indifference rule meets the
above mentioned criticism: when a bad option becomes available the level of well-being
does not increase.2

Our main result provides an axiomatization of the indirect-utility-indifference rule
(Proposition 1). One of the axioms, which we label simple indirect preference, requires
for each pair x and y of different options, that

x is equally good as y =⇒ {x, y} is ranked above {y}.
1This example is used by Sen [8], who argues that we should take the preferences of the individual into

account when assessing the freedom of an individual, see also Foster [3] and Puppe [7].
2Foster [4] introduces the k-censored freedom ranking, according to which opportunity sets with car-

dinality equal to or larger than k are equally good: when the k + 1’th option becomes available the level
of well-being does not increase. In contrast, the level of censoring that occurs in the indirect-utility-
indifference is controlled by the preference relation and depends upon the opportunity set.
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Information about how the preference relation ranks two options is used to rank two
small opportunity sets. The indirect-utility-indifference rule obviously meets this axiom.
The indirect utility method, on the other hand, satisfies the axiom of simple indirect
indifference: for each pair x and y of different options, we have

x is equally good as y =⇒ {x, y} is equally good as {y}.

As a matter of fact, the difference between the indirect-utility-indifference rule and the
indirect utility approach boils down to the choice between these two axioms. Start from
our axiomatization of the indirect-utility-indifference rule, replace the axiom of simple
indirect preference by simple indirect indifference, then an axiomatization of the indirect
utility method pops up. This extra result provides further support for the axioms that we
use.

Section 2 introduces notation and axioms. Section 3 introduces the indirect-utility-
indifference rule. Proposition 1 provides an axiomatization. Lemma 3 axiomatizes the
indirect utility approach. Furthermore, we provide a link to a rule proposed by Pattanaik
and Xu [6]. We also show that the five axioms in Proposition 1 are independent. Section
4 weakens our position to restrict attention to the maximal options in an opportunity set.
We introduce a rule that in addition to the maximal options also takes the second best
options into account. As a matter of fact, each truncation of the leximax rule defines an
ordering on the collection of opportunity sets.

2 Notation and axioms

The set X of alternatives is finite. Let R be a transitive and complete (hence, reflexive)
binary relation on X. The asymmetric and the symmetric factors of R are denoted by
P and I. A nonempty subset of X is interpreted as a possible opportunity set that may
be available to an individual equipped with the preference relation R. The collection of
nonempty subsets of X is denoted by Ω. An option a in the opportunity set A is said
to be R-maximal if aRx for each x in A. For each A in Ω, let max(A) denote the set
of R-maximal elements in A. Since X is finite, the set max(A) is nonempty. We abuse
notation—recall that R is defined on X—and we use

ARx (resp., xRA),

with x in X and A in Ω as a shorthand for

aRx for each a in A (resp., xR a for each a in A).

Let% be a transitive and reflexive binary relation on Ω. The asymmetric and the symmetric
factors of % are denoted by � and ∼. We follow the axiomatic approach and define a
relation % on Ω by means of a list of axioms or properties of the relation % on Ω. We
present and discuss eight axioms.
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Monotonicity. For each A and B in Ω, we have A ⊇ B implies A % B.3

If the opportunity set shrinks, then the level of well-being does not increase. Enlarging the
choice set does not hurt the agent due to a more complex selection process. The restriction
of this axiom to opportunity sets that have no more than two distinct elements is labeled
as ‘simple’ monotonicity.

Simple monotonicity. For each x and y in X, we have {x, y} % {x}.
Indifference. For each subset A of X and for each x and y in X − A, we have

x I y =⇒ A ∪ {x} ∼ A ∪ {y}.
Replace in an opportunity set an alternative with an alternative that is equally good.
Then, the levels of well-being of the original and of the new opportunity set coincide. This
axiom is related to ‘neutrality’ or ‘anonymity’: the particular content of an alternative is
not important, only its ranking position matters. When the preference relation R is linear
—i.e., x I y implies that x and y coincide—then this axiom is met in a trivial way.

Independence. For each A and B in Ω and for each x in X − (A ∪B), we have

[max(A)Rx] =⇒ [A % B ⇐⇒ A ∪ {x} % B ∪ {x}].
Consider two opportunity sets. The ranking between these two opportunity sets does
not depend upon alternatives that are not preferred to the R-maximal alternatives of the
better opportunity set. The addition (or removal) of such an alternative to (or from) both
opportunity sets does not change their ranking. This axiom is related to the axiom of weak
independence of Bossert et al [2].

The first lemma shows that the axiom of monotonicity is implied by the combination
of simple monotonicity and independence.

Lemma 1. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Independence and Simple monotonicity. Then, % satisfies
Monotonicity.

Proof. Let A ⊇ B. If A = B, then the reflexivity of % implies that A % B. If A ⊃ B, let
a1 ∈ max(A) and let b1 ∈ max(B). We distinguish two cases.

In case a1P b1, then a1 6= b1 and we use simple monotonicity to obtain {a1, b1} % {b1}.
Write the options that are in A and not in B in R-decreasing order: a1Ra2R · · ·Rak. Use
independence and obtain the following sequence of weak inequalities:

{a1, a2, b1} % {a2, b1} % {b1},
{a1, a2, a3, b1} % {a2, a3, b1} % {a3, b1} % {b1},

{a1, a2, a3, a4, b1} % {a2, a3, a4, b1} % {a3, a4, b1} % {a4, b1} % {b1},
...

(A−B) ∪ {b1} % · · · % {ak−2, ak−1, ak, b1} % {ak−1, ak, b1} % {ak, b1} % {b1}.
3If B is a subset (resp. strict subset) of A, we write A ⊇ B (resp. A ⊃ B).
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In each line, the final inequality follows from simple monotonicity. The transitivity of %
implies that (A− B) ∪ {b1} % {b1}. Apply independence and add the options that are in
B − {b1}. Conclude that A % B.

In case a1Ib1, take a1 = b1 and a2 ∈ max(A − B). Use simple monotonicity to obtain
{a2, b1} % {b1}. Similar to the first case, repeated independence results in:

{a2, a3, b1} % {a3, b1} % {b1},
{a2, a3, a4, b1} % {a3, a4, b1} % {a4, b1} % {b1},

{a2, a3, a4, a5, b1} % {a3, a4, a5, b1} % {a4, a5, b1} % {a5, b1} % {b1},
...

(A−B) ∪ {b1} % · · · % {ak−2, ak−1, ak, b1} % {ak−1, ak, b1} % {ak, b1} % {b1}.

Again, it follows that A % B. 2

Extension. For each x and y in X, we have {x} % {y} if and only if xR y.

Extension imposes that the ordering of the singleton opportunity sets reflects the ordering
of the alternatives. This axiom is typical for rules that take indirect utility into account.
In contrast, the quantity approach considers singleton opportunity sets as equally good
(cf. Pattanaik and Xu [5]).

Composition. For each A and B in Ω and for each x in X − (A ∪B), we have

A % B and max(B)Px =⇒ A % B ∪ {x}.

The ranking of two opportunity sets does not change when an option dominated by the
worst-off set is added to this worst-off set. This axiom is related to the robustness axiom
of Bossert et al [2] and ensures that a lack of indirect utility cannot be compensated by
adding worse alternatives.

We show that the axiom of indifference is implied by simple monotonicity, extension,
composition, and independence. Furthermore, the imposition of these four axioms par-
titions the collection Ω. Each partition class collects the opportunity sets with the same
indirect utility and the same number of maximal elements. These partition classes filter out
the information—indirect utility and the number of maximal elements—that we consider
relevant for the ranking of opportunity sets.

Lemma 2. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Simple monotonicity, Composition, Independence, and
Extension. Then,

(i) for each A and B in Ω, we have

max(A) I max(B) and |max(A)| = |max(B)| =⇒ A ∼ B.

(ii) the relation % satisfies Indifference.
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Proof. Lemma 1 implies that % satisfies monotonicity. Let A and B be two opportunity
sets that satisfy the premise of the first statement in the lemma. We proceed in three
steps.

Step 1. Monotonicity, extension, composition, and independence imply that A ∼ max(A).

Proof. Since A ⊇ max(A), monotonicity implies A % max(A). We now focus on the
reverse inequality, max(A) % A. If max(A) happens to coincide with A, this inequality
follows from the reflexivity of %. Otherwise, let x ∈ A − max(A). Hence, for each a in
max(A) we have aP x and, by extension, {a} � {x}. Monotonicity and transitivity imply
max(A) � {x}. Since max(A) % max(A), composition implies max(A) % max(A) ∪ {x}.
In case A−max(A) contains an option y different from x, then max(A) % max(A) ∪ {y}.
Furthermore, independence implies

max(A) ∪ {y} % max(A) ∪ {x} ∪ {y}.

From transitivity it follows that max(A) % max(A) ∪ {x, y}. Repeat this argument for
each z in A−max(A) and obtain max(A) % A.

Step 2. Let a1Ia2I . . . Ian. Opportunity sets with k of these options are equally good.

Proof. If k = 1, then extension implies that {ai} ∼ {a1} for each i = 2, 3, . . . , n. Next, we
consider k = 2. Apply independence to {a1} ∼ {a2} and obtain that {a1, ai} ∼ {a2, ai}
for each i /∈ {1, 2}. Apply independence to {a1} ∼ {ai} with i 6= 1 and obtain that
{a1, aj} ∼ {ai, aj} with j /∈ {1, i}. Conclude that each pair {ai, aj} of options (i 6= j) is
equally good as {a1, a2}. Continue this argument to obtain the statement.

Step 3. Conclude that A ∼ B and that % satisfies indifference.

Proof. From Step 1 we learn that A ∼ max(A) and B ∼ max(B). Furthermore, all options
in max(A) ∪ max(B) are equally good and |max(A)| = |max(B)|. Step 2 implies that
max(A) ∼ max(B). Use transitivity of % to conclude that A ∼ B.

Finally, consider statement (ii). Obtain opportunity set B by replacing options in A with
options that are equally good. It follows that A and B satisfy the premise of the first
statement, and are equally good. 2

The next two axioms provide different answers to the question of how to rank a pair of
equally good options against one single option.

Simple indirect preference. For each pair, x and y, of different alternatives in X, we
have

x I y =⇒ {x, y} � {x}.
The level of well-being attached to a pair of equally good options is higher than the level of
well-being attached to a singleton that selects one of these options. This axiom is weaker
than the axiom of simple strict monotonicity proposed by Bossert et al [2] according to
which each pair {x, y} is strictly better than {x}.
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Simple indirect indifference. For each pair, x and y, of different alternatives in X, we
have

x I y =⇒ {x, y} ∼ {x}.
The level of well-being attached to a pair of equally good options is equal to the level of
well-being attached to a singleton that selects one of these options.

3 One option versus two equally good options

We recall the indirect utility rule %I and we introduce the indirect-utility-indifference rule,
denoted by %II . We provide an axiomatization of both rules which demonstrate how the
difference between these two rules is captured by ‘simple indirect indifference’ and ‘simple
indirect preference’. We close this section with two remarks: we return to a rule proposed
by Pattanaik and Xu [6] and we show the independency of the axioms used to characterize
the indirect-utility-indifference rule.

Definition 1. Let R be a complete and transitive relation on X. Let Ω be the collection
of opportunity sets. The indirect utility rule, denoted by %I , is defined by

A %I B if max(A)Rmax(B).

The indirect-utility-indifference rule, denoted by %II , is defined by

A %II B if

{
max(A)P max(B), or

max(A) I max(B) and |max(A)| ≥ |max(B)|.

The relation %II keeps the strict ranking �I and refines the indifference relation ∼I .
Both rules satisfy monotonicity, extension, composition, and independence. Lemma 2 is
the starting point in their characterizations.

Proposition 1. Let R be a complete and transitive relation on the set X. There is only
one transitive and reflexive relation % on Ω that satisfies Simple monotonicity, Composi-
tion, Extension, Independence, and Simple indirect preference. It is the indirect-utility-
indifference rule.

Proof. It is easy to check that %II satisfies the axioms. Next, let % satisfy the axioms.
We have to prove that % coincides with %II . We proceed in different steps.

Step 1. The axioms of Lemma 2 (simple monotonicity, composition, independence, and
extension) imply

max(A)P max(B) =⇒ A � B.

Proof. Let a ∈ max(A). For each b in B, we have aP b and {a} � {b} (use extension).
In case B = {b}, we obtain {a} � B. Otherwise, let b and b′ be two different options in
B. Use independence to obtain {a, b′} � {b, b′}. In combination with {a} ∼ {a, b′} (use
Lemma 2) it follows that {a} � {b, b′}. Repeat this argument for each option in B different
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from b and b′ and, again, conclude that {a} � B. Monotonicity implies A % {a}. From
the transitivity of % it follows that A � B.

Step 2. Add simple indirect preference to obtain

max(A) I max(B) and |max(A)| > |max(B)| =⇒ A � B.

Proof. Let A′ be a strict subset of max(A) with cardinality equal to |max(B)|. Lemma 2
(ii) implies that B ∼ A′. Hence, it is sufficient to show that A � A′. Now, according to
the simple indirect preference principle we have {x, y} � {x} with x in A′ and y in A−A′.
Independence, simple monotonicity, monotonicity (Lemma 2), and transitivity imply that
A � A′.

Step 3. Conclusion.
Lemma 2 partitions the collection Ω into classes of opportunity sets that are equally good
according to %II . In order to complete the proof, it suffices to check whether these different
partition classes are ordered in the ‘right’ way. This can be done by checking the following
exhaustive list:

• max(A)P max(B),

• max(A) I max(B) and |max(A)| > |max(B)|,
• max(A) I max(B) and |max(A)| = |max(B)|.

Step 1 (Step 2, Lemma 2) tackles the first (second, third) item. Conclude that the relation
% coincides with %II . 2

Let us now compare the indirect-utility-indifference rule and the indirect utility method.
Lemma 3 shows that the difference between simple indirect preference and simple indirect
indifference is able to capture the difference between these two rules. Indeed, replace in
Proposition 1 the axiom of simple indirect preference by simple indirect indifference. The
following characterization shows up.

Lemma 3. Let R be a complete and transitive relation on X. There is only one transitive
and reflexive relation on Ω that satisfies Simple monotonicity, Composition, Extension,
Independence, and Simple indirect indifference. It is the indirect utility rule.

Proof. The indirect utility rule satisfies the five axioms. To show the converse, we first
prove the following statement: for each A in Ω, we have

a1 ∈ max(A) =⇒ A ∼ {a1}.

Let A = {a1, a2, a3, . . . , ar} with a1Rai for each i = 2, 3, . . . , r. If r = 1, the statement
is immediate. In case r > 1, then the following iteration holds. First, {a1} ∼ {a1, ai} for
each i = 2, . . . , r. Indeed, we have either a1Iai or a1Pai. The indifference between {a1}
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and {a1, ai} follows from either simple indirect indifference, or extension, composition, and
simple monotonicity. Next, apply independence (add aj) to obtain

{a1, ai, aj} ∼ {a1, aj}, with i, j = 2, 3, . . . , r and i 6= j.

From the transitivity of % it follows that {a1} is indifferent to each triple subset {a1, ai, aj}
of A. By repeated application of independence we obtain that {a1} and A are equally good.

Now, use extension and conclude the lemma. 2

Lemma 3 is in line with Foster’s [4] axiomatization of the indirect utility approach.
In the above formulation of Lemma 3, the axiom of independence can be weakened to
semi-independence:

Semi-independence. For each A and B in Ω and for each x in X − (A ∪B), we have

[max(A)Rx] =⇒ [A % B =⇒ A ∪ {x} % B ∪ {x}].
Nevertheless, the above formulation of Lemma 3 is, for obvious reasons, intentional. Our

characterizations of the indirect utility rule and the indirect-utility-indifference rule have
four axioms in common: simple monotonicity, composition, extension, and independence.
Let us impose these four axioms. The way in which a pair of equally good options is
ranked against one of these options distinguishes the indirect utility rule from the indirect-
utility-indifference rules. In case the level of well-being attached to a pair of equally good
options is considered higher than the level attached to one of these options, the indirect-
utility-indifference rule comes forward. In case such a pair is considered equally good as a
singleton opportunity set, the indirect utility rule comes forward.

Remark 1. Pattanaik and Xu [6] define the ‘maximal set’ of an opportunity set A as the
collection of options in A that are best in terms of some preference on X that a reasonable
person may have. They propose to rank opportunity sets on the basis of the cardinalities
of their ‘maximal sets’. This rule can be retrieved as follows. Denote by P the collection
of the reasonable preferences and define an approval utility function u : X → {0, 1} by
u(x) = 1 if option x is R-maximal for at least one ordering R in P and u(x) = 0 otherwise.
Then, the indirect-utility-indifference rule based upon this ‘approval’ preference relation
(induced by u) coincides with the rule of Pattanaik and Xu.

Remark 2 (Independence of the five axioms). Let us list again our five axioms: simple
monotonicity, composition, extension, independence, and simple indirect preference. For
each axiom in this list we present a transitive and reflexive relation on Ω that violates this
axiom and satisfies the other four axioms.

• Refine %II as follows:

A % B if

{
A �II B or,

A ∼II B and |A−max(A)| ≤ |B −max(B)|.
According to %, non-maximal elements attach a negative effect to the opportunity
set. The ranking rule % violates simple monotonicity: if xPy, then {x} � {x, y}.

9



• The leximax rule (cf. the next section) ranks the pair {x, y} with xPy above {x}
and, hence, violates composition.

• Let a and b be two options. Let R be a preference relation on X such that each
option in X − {a, b} is preferred to a and to b. Define a rule % on Ω as follows. The
singletons {a} and {b} are not comparable. The remaining singletons are ordered
according to R. Sets with two or more options are ordered according to %II . This
rule violates extension.

• Let |X| ≥ 3. Restrict %II to the collection of singletons and pairs (hence, extension,
simple monotonicity, and simple indirect preference are satisfied). Let {a, b} be an
%II-maximal pair. Consider all the other opportunity sets equally good as {a, b}.
This rule violates independence.

• The indirect utility rule violates simple indirect preference.

4 First best, second best, third best, ..., leximax

The indirect-utility-indifference rule refines the indirect utility method as it considers the
number of maximal options in an opportunity set as relevant. In this section, we develop
a further refinement that also incorporates the second best options of an opportunity set.
As such, more information is used and a finer ranking procedure is obtained.

Before we introduce this refinement, we recall the leximax rule (Bossert et al, 1994).
Let X be the finite set of options and let R be a complete and transitive relation on X. Let
n = |X| be the number of different options in X. Let u : X → R++ be a representation of
the preference relation R on X. Each option obtains a positive utility. For each opportunity
set A = {a1, a2, . . . , ar} in Ω, we define an n-vector

u(A) = (u(a1), u(a2), . . . , u(ar), 0, . . . , 0),

that collects the utilities of the r options in A, extended with n − r zeros. The ordering
%L on Ω is based upon the leximax ordering ≥L on Rn: for each A and B in Ω,

A %L B if u(A) ≥L u(B).

The ordering %L does not depend upon the particular representation (provided u(x) > 0
for each x in X).

Let us slightly expand the notation. For each opportunity set A, the set max(A) collects
the R-maximal options in A. The set max(A−max(A)) collects the second best options in
A. In contrast to the set of maximal options, this collection of second best options might
be empty. Indeed, if max(A) = A, then max(A−max(A)) = ∅. For each opportunity set
A, let max2(A) collect the first best and the second best options in the opportunity set A:

max2(A) = max(A) ∪max(A−max(A)).
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The set max2(A) is not empty.
We now introduce the max2-rule, denoted by %2. This rule judges opportunity sets on

the basis of, subsequently, the value of a first best option, the number of first best options,
the value of a second best option, and the number of second best options. We use the
leximax ordering %L on Ω for its formal description. For each pair A and B of opportunity
sets, we have

A %2 B if max2(A) %L max2(B).

In the same spirit, one can define the maxk-rule that takes the first, second, third, ..., and
kth-best options into account. The max1-rule corresponds to the indirect-utility-indifference
rule; the maxn-rule to the leximax rule. The following axioms of robustness and indepen-
dence are tailored to characterize the max2-rule.

Robustness2. For each A and B in Ω and for each x in A, we have

A % B and max2(A)Px =⇒ A− {x} % B.

Options that are dominated by max2(A) do not matter when ranking A against B. Apply
this axiom with B = A and obtain that max2(A) % A.

The max2-rule does not satisfy independence. Consider four options that satisfy aPbPcPd.
Then {a, c} �2 {a, d}, while {a, b, c} ∼2 {a, b, d}. The entrance of option b destroys the
decisive role of options c and d. The max2-rule satisfies the following modification.

Independence2. For each A and B in Ω and for each x in X − (A ∪B), we have

[max2(A)Rx] =⇒ [A % B ⇐⇒ A ∪ {x} % B ∪ {x}].

We also introduce the axioms of simple strict monotonicity (Bossert et al, 1994) and
simple indifference.

Simple strict monotonicity. For each x and y in X, we have {x, y} � {x}.

Simple indifference2. For each k in N and for each list, x, y, z1, z2, . . . , z2k, of alternatives
in X, with z1Iz2I · · · Iz2k, we have

{x} % {y} ⇐⇒ {x, z1, z2, . . . , zk} % {y, zk+1, zk+2, . . . , z2k}.

As the options zi are all equally good, there are at most two utility levels involved in each
opportunity set. Therefore, we refer to this axiom as ‘simple’, although the opportunity
sets might contain more than two options. If two equally large opportunity sets select all
options but one in the very same indifference class, then the opportunity sets are ranked
according to the options outside this indifference class. This axiom is satisfied by the
leximax rule, but not by the indirect utility method and the indirect-utility-indifference
rule.
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Lemma 4. Let R be a complete and transitive relation on the set X. There is only one
transitive and reflexive relation % on Ω that satisfies Extension, Monotonicity, Simple strict
monotonicity, Robustness2, Independence2, and Simple indifference. It is the max2-rule.

Proof. The max2-rule satisfies the six axioms. Next, let % satisfy the six axioms. We have
to show that % coincides with %2. Robustness2 and monotonicity imply that A ∼ max2(A).
Consider two opportunity sets A and B. We use the following notation:

max(A) = {a1, a2, . . . , ak}, max2(A)−max(A) = {a′1, a′2, . . . , a′l},
max(B) = {b1, b2, . . . , br}, max2(B)−max(B) = {b′1, b′2, . . . , b′s}.

Recall that l and s might be equal to zero. Now, assume that max2(A) %L max2(B). In
order to show that A % B, we have to check five cases: (i) a1Pb1; (ii) a1Ib1 and k > r;
(iii) a1Ib1 and k = r and a′1Pb

′
1; (iv) a1Ib1 and k = r and a′1Ib

′
1 and l > s; (v) a1Ib1 and

k = r and a′1Ib
′
1 and l = s. In each case, the relation % should rank A and B in the right

way.

We only tackle the third case: a1Ib1 and k = r and a′1Pb
′
1 imply A � B.

Extension implies {a′1} � {b′1}. Apply simple indifference to obtain

max(A) ∪ {a′1} � max(B) ∪ {b′1}.

Now, use independence2 to add the options b′2, b
′
3, . . . , b

′
s, use robustness2 and the transi-

tivity of %, and conclude
max(A) ∪ {a′1} � max2(B).

Use monotonicity and transitivity to obtain that max2(A) % max(A) ∪ {a′1} � max2(B).

The other cases are tackled in a similar way. 2
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