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Abstract

We focus on the revealed preference conditions that characterize the collection of finite data sets that are con-
sistent with the maximization of a weakly separable utility function. From a theoretical perspective, we show
that verifying these revealed preference conditions is a difficult problem, i.e. it is NP—~complete. From a practical
perspective, we present an integer programming approach that can verify the revealed preference conditions in a
straightforward way, which is particularly attractive in view of empirical analysis. We demonstrate the versatility
of this integer programming approach by showing that it also allows for testing homothetic separability and weak
separability of the indirect utility function. We illustrate the practical usefulness of the approach by an empirical
application to Spanish household consumption data. Finally we also present statistical tests that deal with stochas-
tic issues such as measurement error and unobserved heterogeneity.
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The universe cannot be dealt with in one stroke and so a bit has to be broken off and treated
as if the rest did not matter.

Afriat, 1969

1 Introduction

We focus on the revealed preference conditions for consistency of a finite data set with the maximization
of a weakly separable utility function. Our main contribution is twofold. First, we show that verification
of these revealed preference conditions is a difficult problem. In particular, the problem is NP—complete,
which essentially means that it cannot be solved in polynomial time. As we will discuss below, this ac-
tually motivates our second contribution. Specifically, we show that the revealed preference conditions
can be verified by means of elementary integer programming procedures, which are easily implemented
in practice. We demonstrate the versatility of this integer programming approach by showing that it can
also assess homothetic separability and weak separability of the indirect utility function. We illustrate
our approach by applying it to a Spanish panel data set. Finally, we also consider extending our inte-
ger programming approach to account for stochastic issues such as measurement error in the data and
unobserved preference heterogeneity underlying the observed consumption behavior.

Demand analysis is a powerful tool for the measurement of the behavioral and distributional effects
of counterfactual price and income changes. For example tax changes alter the relative prices faced by
the consumer. How the consumer reacts to this, by choosing an alternative consumption bundle, is
subject of the analysis of demand behavior. Typically the researcher estimates the unknown parameters
of a parametric demand system and uses these estimates to calculate pre- and post-reform demands and
and its corresponding welfare implications (see, for example, Banks, Blundell, and Lewbel (1997)).

In this respect, weak separability of the utility function is a frequently used assumption in both the-
oretical and applied demand analysis. A group of goods is said to be weakly separable if the marginal
rate of substitution between any two goods in the group is independent from the quantities consumed
of any good outside this group (Leontief, 1947; Sono, 1961). Weak separability has several convenient
implications.! First of all, it allows for representing consumption in terms of two stage budgeting. This
means that, in order to determine the demanded quantities of the goods in the separable group, it suf-
fices to know the prices of the goods in this group and the total within-group expenditure. Further,
weak separability is a crucial condition for the construction of group price and quantity indices. Such
aggregates can be useful, for example, to compute group cost of living indices to be used in the welfare
analysis. Finally, from an empirical point of view, weak separability significantly reduces the number of
parameters of the demand system to be estimated in practical applications.?

Considering these advantages for both theoretical and empirical work, an important issue concerns
empirically testing the validity of the separability assumption (prior to effectively imposing it). In the
literature, there are two approaches to test for weak separability. One approach uses econometric tech-
niques to verify certain parameter restrictions given a specific demand model. Although this approach
is fairly flexible in terms of the demand model that is used, it also poses a number of problems.

!See also Deaton and Muellbauer (1980) for a more thorough discussion.

*In this respect, it is important to point out the importance of employing a correct separability structure in empirical de-
mand modeling. On the one hand, using a too narrow structure (i.e. omitting goods that should be included in the separable
grouping) leads to an omitted variables problem, which consequently produces inconsistent parameter estimates in the esti-
mated demand model. On the other hand, including redundant goods in the separability structure may inflate the variances
of the parameters, which causes inefficient parameter estimates.



First, the separability restriction is often tested using Wald or likelihood ratio test procedures, which
require estimating the full (unrestricted) demand model. Consequently, these tests may suffer from a
degrees of freedom problem in the sense that too many parameters must be estimated given the amount
of data.’ Next, if the hypothesis of weak separability is rejected, it is impossible to verify whether this
implies a rejection of weak separability as such or, instead, a rejection of the specific functional form
imposed on demand a priori. In other words, if the null hypothesis of weak separability is rejected, this
may well be due to the use of a wrong functional form rather than a non-separable utility structure
per se.* Finally, most econometric tests for separability are based on separability of the indirect utility
function (i.e. separability in prices), which does not imply separability of the direct utility function (i.e.
separability in quantities).®

An alternative approach to test for weak separability is based on revealed preference theory. In
several seminal contributions to the literature, Afriat (1969), Varian (1983) and Diewert and Parkan
(1985) developed revealed preference conditions that characterize the collection of data sets that are
rationalizable by a (weakly) separable utility function.® The revealed preference approach remedies dif-
ferent problems associated with the econometric approach. First, the revealed preference conditions can
meaningfully be applied to data sets with as few as two observations, which avoids the degrees of freedom
problem discussed above. Further, the revealed preference approach abstains from imposing a specific
functional form on the utility functions. As such, the tests are insensitive to model misspecification.
Finally, the revealed preference approach does not require additional assumptions like homotheticity of
the subutility function or separability of the indirect utility function (although such additional assump-
tions can be imposed and tested; see below).

Unfortunately, the revealed preference conditions have the drawback that they take the form of a
set of nonlinear, quadratic inequalities, which are very hard to verify. In order to avoid this problem,
several heuristics have been proposed that provide separate sufficient and necessary conditions for data
consistency with weak separability (see Section 2 for an overview). The lack of an efficient algorithm
to verify the revealed preference conditions raises the question whether such an algorithm exists at all.
In this study, we show that the answer is no. In particular, we prove that the verification of the re-
vealed preference conditions for weak separability is an NP—complete problem. This NpP—completeness
result implies that it is impossible to find a polynomial time algorithm that verifies whether a data set
is consistent with the maximization of a weakly separable utility function (unless one can prove p =
~p). This indicates that we should better look for a widely applied and (for moderately sized problems)
reasonably quick non-polynomial time algorithm to verify the revealed preference conditions. Given

>The degrees of freedom problem could in theory be circumvented by instead using Lagrange multiplier tests. However,
similar to Wald tests, Lagrange multiplier tests require a consistent estimate of the covariance matrix. Although it is relatively
easy to obtain such estimates, these are often biased in small samples, implying that the Lagrange multiplier test may suffer
from a small sample bias.

*Imposing separability conditions on a particular functional form might lead to additional difficulties. In particular, Black-
orby, Primont, and Russell (1978) showed that testing for separability using several econometric specifications based on local
approximations of the true model (i.e. flexible functional forms) is actually equivalent to testing a much stronger condition.
For example, it turns out impossible to test separability for the translog model without imposing the much more stringent
assumption of additive separability. Barnett and Choi (1989) confirmed this result by means of Monte Carlo simulations.

> A well known sufficient condition to obtain that direct and indirect separability coincide is that the subutility function is
homothetic. We refer to Blackorby and Russel (1994) for more discussion.

®The revealed preference conditions for weak separability have been used in many different types of applications. See,
for example, Swofford and Whitney (1987, 1988), Barnhart and Whitney (1988), Patterson (1991), Belongia and Chrystal
(1991), Choi and Sosin (1992), Swofford and Whitney (1994), Jones and Mazzi (1996), Cox (1997), Fisher and Fleissig (1997),
Rickertsen (1998), Spencer (2002), Fleissig and Whitney (2003, 2008), Swofford (2005), Serletis and Rangel-Ruiz (2005), Jones,
Dutkowsky, and Elger (2005), Jha and Longjam (2006), Blundell, Browning, and Crawford (2007), Hjertstrand (2007, 2009),
Elger, Jones, Edgerton, and Binner (2008), Elger and Jones (2008), and Drake and Fleissig (2008).



this, we present an easy-to-implement (non-polynomial time) integer programming procedure to ver-
ify the revealed preference conditions. Our approach exploits the equivalence of the generalized axiom
of revealed preference (GaRrp) and a set of mixed integer inequalities. Such an integer programming
approach has proven very useful in the literature that applies revealed preference theory to collective
consumption models, which studies the behavior of multi-person households, and in the literature that
investigates the testable implications of general equilibrium models.” We extend the insights from this
literature to the model of utility maximization with a weakly separable utility function. This provides a
further demonstration of the usefulness of integer programming techniques to deal with computational
issues related to the practical implementation of revealed preference conditions.

From a theoretical point of view, the core motivation for adopting an integer programming approach
is that this is a widely accepted and a well known approach to handle Np-complete problems. Besides
this, we also have a number of other motivations. First of all, our approach can be applied to data sets
with any number of observations. Second, any mixed integer program provides an exact solution in
finite time. Hence, our approach provides a way to verify the necessary and sufficient conditions for
a given data set to be consistent with maximization of a weakly separable utility function. Until now,
all existing heuristics either provide a necessary or a sufficient condition. Our algorithm is the first to
provide an exact solution. A third important argument pro our integer programming approach is that
it provides a versatile framework for analyzing testable implications of different model specifications:
we will show that our approach can easily accommodate for homotheticity of the subutility functions,
and that we can readily adjust our integer programming procedure to test for separability of the indirect
utility function.

We demonstrate the practical usefulness of our approach by applying it to data drawn from the En-
cuesta Continua de Presupestos Familiares (ECPF), a Spanish household survey. In this application we
first investigate the performance of our integer programming formulation. We do this by comparing it
to Varian’s three step procedure, which provides separate necessary and sufficient conditions for weak
separability (see below for more details). We also study the computational performance of the integer
programming formulation. Secondly, we compare the empirical fit of the four alternative model specifi-
cations mentioned above: the standard utility maximization model, the model that additionally imposes
weak separability, the homothetic separability model, and the model that assumes a weakly separable
indirect utility function. Specifically, following a recent proposal of Beatty and Crawford (2011), we
evaluate these different model specifications in terms of their ‘predictive success.

As a final contribution, we show how our approach can be used to design simple statistical tests for
weak separability that account for measurement error and unobserved preference heterogeneity in the
data. Indeed, the main part of our paper focuses on ‘sharp’ tests of weak separability, which does not
take into account stochastic issues such as measurement error and unobserved preference heterogene-
ity. Dealing with measurement error in the context of revealed preference tests has been well-studied;
see, for example Varian (1985) and Epstein and Yatchew (1985). In this paper we extend and integrate
the test procedure that was recently developed by Fleissig and Whitney (2008) and Jones and Edgerton
(2009) into our integer programming approach to treat measurement error. Next, unobserved prefer-
ence heterogeneity is mainly a problem when working with cross-sectional data, since this implies that
the data need to be ‘averaged’ to subsequently conduct the empirical analysis in terms of ‘representa-
tive’ agents. As we also show in our empirical application, a panel data set allows us to perfectly deal
with this source of heterogeneity, since we can perform our revealed preference tests to each household

"See Cherchye, De Rock, and Vermeulen (2007, 2009, 2011a), Cherchye, De Rock, Sabbe, and Vermeulen (2008), and
Cherchye, Demuynck, and De Rock (2011c) for integer programming characterizations of household consumption models
and Cherchye, Demuynck, and De Rock (2011e) for integer programming characterizations of general equilibrium models.



separately. Nonetheless, heterogeneity may still arise if household preferences vary over time. To take
this into account we use the random utility model with additive heterogeneity that was originally put
forward by Brown and Matzkin (1998). While it is clear that our statistical tests are only a first step in
a fully-fledged stochastic analysis, we do believe that they demonstrate once more the versatility of our
approach.

Section 2 introduces the revealed preference conditions for rationalizability under a weakly separa-
ble utility function and presents our NP—completeness result. Section 3 presents our integer program-
ming approach. Section 4 discusses our empirical application. Section 5 considers the extension of our
integer programming method to account for stochastic issues such as measurement error and unob-
served preference heterogeneity. Section 6 concludes.

2 Revealed preference conditions

To set the stage, we briefly recapture the known revealed preference conditions for the standard utility
maximization model and for the model that additionally imposes weak separability on the utility func-
tion. These results will be useful for our discussion in the following sections. In this section, we also
state our NP—completeness result.

Standard utility maximization. Consider a finite data set D = {p¢; X }+e 7, which consists of strictly
positive price vectors p; € R’ , and nonnegative consumption bundles x; € R’ for consumption
observations t in a (finite) set T. This data set D is said to be rationalizable if there exists a well-behaved
(i.e. increasing, continuous and concave) utility function u : R’} — R such that, for all observations
teT,

Xy € arg max u(x) s.t. pix < pexXy.

In other words, for each observation ¢ it must be the case that the consumed bundle x; maximizes the
utility function u over the set of all affordable consumption bundles.

Next, consider the following concepts. The direct revealed preference relation RP over the set {x; }se 1
is defined by x,RPx, if p;x; > pix,. In words, we have that x,RPx, if x; was chosen while x, was
also affordable. The indirect revealed preference relation R is the transitive closure of the relation R”;
x;Rx, if there exist bundles x,,, X;, . .., X, such that x,RPx,,, x,,RPx,, ..., x,,RPx,. Finally, we say
that {py, X} satisfies the Generalized Axiom of Revealed Preferences (Garp) if for all x,Rx, it is not
the case that p,x, > p,X;. In words, if X; is indirectly revealed preferred to x,, then it is not the case
that x, was more expensive than x; when x, was bought.

Using these concepts, we can state the following result, which is probably the single most important
theorem in revealed preference theory.

Theorem 1. [Varian (1982), based on Afriat (1967)]

The following statements are equivalent:
(i) The data set D = {py, X; }sc is rationalizable,
(ii) The data set D = {py, X; }eT satisfies GARP,
(iii) There exist strictly positive numbers Ay and numbers Uy such that, for all t,v € T,

Ut - Uv S Avpv(xt - XV)'



(iv) There exist numbers u; such that forallt,v € T

ifu, > uy, then pix; < piXy,
ifu, > uy, then piX; < piXy.

Condition (ii) states that GARP is necessary and sufficient for rationalizability. Condition (iii) pro-
vides an equivalent characterization of utility maximization in terms of so—called Afriat inequalities.
Intuitively, these Afriat inequalities allow us to obtain an explicit construction of the utility levels and
the marginal utility of income associated with each observation f: they define a utility level U; and a
marginal utility of income A; (associated with the observed income p;x;) for each observed x;. Condi-
tion (iv) is a reformulation of GARP in the way it is usually presented in the closely related nonparametric
production literature (see Varian (1984)); in this setting this formulation is known as the ‘strong axiom
of cost minimization’® The basic idea behind this condition is very simple: if the utility at observation
v exceeds the utility at observation ¢ (i.e. u, > (>)u;), then it is not the case that x, was more expensive
than x, when x; was bought (i.e. p;x; < (<)psXy). Otherwise, the rational individual would not be
utility maximizing at ¢, because (s)he could also afford the preferred bundle x,.

Theorem 1 provides three methods to verify whether a data set is rationalizable. The first method was
originally suggested by Varian (1982) and focuses on verifying the Garp condition. The method consists
of three steps, which comply with the three steps in the definition of Garp. The first step constructs
the relation RP from the data set D = {Pt, Xt }ter. A second step computes the transitive closure of
R. Here, Varian suggests using Warshall (1962)’s algorithm, which provides an efficient procedure for
computing transitive closures. The third step verifies if p,x, < p,x; whenever x;Rx,. If this is the
case, the data set satisfies GARP and is, therefore, rationalizable. Due to its efficiency, this procedure
is very popular in applied work. The second and third method verifies the rationalizability conditions
by testing feasibility of either the Afriat inequalities in condition (iii) or the inequalities in condition
(iv). The Afriat inequalities are linear in the unknowns U; and A;, which implies that their feasibility
can be verified using elementary linear programming methods (see Afriat (1967) and Diewert (1973)
for discussions of this method). In a similar vein, feasibility of the inequalities in condition (iv) can be
checked by solving a linear programming problem (in the unknowns u;) applied to the contrapositive
statement of this condition.

Weak separability. To introduce the notion of weak separability, we first partition the set of goods N =
{1,...,n} in two groups. Accordingly, we can split any given consumption bundle into two separate
bundles. The first bundle x contains all consumption quantities of the goods from the first group and
the second bundle y captures the remaining goods. We denote the full consumption bundle as (x,y).
Likewise, we can split any price vector into a price vector of all goods in the first group p and a vector of
prices for the goods in the second group q. Now, consider a data set D = {py, q¢; X¢, Y+ }rer- We say that
this data set is rationalizable by a weakly separable utility function if there exists a well-behaved utility
function u and a well-behaved subutility function s such that, for all observations t € T,

(X1, y1) € arg max u(x,s(y)) st px—+ay < pix+ qiye.

Varian (1983) provides the following characterization of behavior that is rationalizable by a weakly
separable utility function.

8This condition is related to the notion of semi-strict quasi-concavity, see Hjertstrand (2008).



Theorem 2. [Varian (1983)]

The following statements are equivalent:

(i) The data set D = {py, Qs; Xt, Yt e is rationalizable by a weakly separable utility function.

(ii) Forallt € T there exist nonnegative numbers S; and strictly positive numbers 0y such that, for all t,
v e T,

S—8§, < 6qu(yt - YV)v (ii.1)
{pP1,1/8s; %4, St Her satisfies GARP. (ii.2)

(iii) For allt € T, there exist nonnegative numbers S; and Uy and strictly positive numbers &; and A; such
that, forall t,v € T,

Si—8§ < aqu(yt - YV)a (iii.1)

1
Ut — Uv S Av pV(Xt — Xv> + K(St — SV) . (1112)

(iv) Forallt € T, there exist numbers Sy and u; and strictly positive numbers &8; such that, forallt,v € T,

S—=8, < 5va(Yt - YV)a (iv.1)
1 1
if uy > uy, then pix; + gst < pixy + gsw (iv.2)
t t
. 1 1 .
ifu, > u, then pix; + gSt < pxy + gsv. (iv.3)
t t

In contrast to the conditions in Theorem 1, the conditions in this theorem are not easily verified.
The main problem is that, when checking (ii.2), the ‘prices’ 1/8; and the corresponding ‘quantities’ Sy,
which must satisfy condition (ii.1), are unobserved. This is also reflected in condition (iii.2), which is a
set of quadratic inequalities.

The literature brings forward several methods to test the weak separability conditions. Probably the
best known alternative is Varian (1983)’s three step procedure. In the first step, this method tests GARP
consistency of the data set D = {p, qs; X, ¥ }re1- If the data fail GARp, they are not rationalizable and,
hence, we can reject weak separability.9 By contrast, if the data set satisfies GARP, the second step tests
whether the data set {q, y }+e 1 satisfies GArp. This GARP condition is equivalent to condition (ii.1). If
GARP consistency is rejected in this second step then, again, the data set is not rationalizable by weak
separability. Finally, the third step verifies GARP of a data set {p¢, 1/8}; X, V} }ter for some specific
values 8} and S; that satisfy condition (ii.1). If for this last step GARP is not rejected, then we conclude
that the data are consistent with weak separability.

Unfortunately, Varian (1983)’s test is not an exact one. In particular, it is possible that a data set is
rationalizable by a weakly separable utility function even if the algorithm does not reach this conclusion.
Simulation results indicate that this may actually occur quite frequently; see, for example, Barnett and
Choi (1989), Fleissig and Whitney (2003), Hjertstrand (2009) and our empirical application in Section 4.
The problem is that the third step of the procedure fixes the values of both §; and V} in an arbitrary
way. In this respect, however, certain values may be more probable than others. This idea provides

°In fact, if the data set fails to satisfy GaRP, then it is not rationalizable by any utility function, whether it is weakly separable
or not.



the intuition behind the linear program developed by Fleissig and Whitney (2003). In particular, these
authors determine the values of 1/8; and V; based on the theory of superlative index numbers (see
Diewert (1976, 1978)). A superlative index number provides an exact index number for some order
approximation of the underlying (in casu homogeneous) utility function s. However, this test is again
only sufficient but not necessary for weak separability to hold.

An alternative testing strategy is explored by Swofford and Whitney (1994), Elger and Jones (2008)
and Fleissig and Whitney (2008), who use nonlinear programming methods to solve (iii.1) and (iii.2)
simultaneously. This is done by reformulating the problem as a nonlinear minimization problem sub-
ject to a number of linear and nonlinear restrictions. The data set is then rationalizable if the global
optimal solution of this problem is equal to zero. Alas, nonlinear programming problems (with nonlin-
ear restrictions) become computationally burdensome even for moderate sized problems.!’ A second
problem with such programming problems is that they do not always yield an optimal solution: most
algorithms search for local optima, which need not be globally optimal (unless some additional concav-
ity assumptions are true). Generally, finding a global optimum requires a fine grid search over the set
of initial values. But even a very fine grid search cannot exclude that weak separability is rejected while
the assumption effectively holds. We refer to Hjertstrand (2009) for a Monte Carlo comparison of the
different test procedures cited in this paragraph.

An NP-completeness result. Consider a data set D = {py, qy; X, ¥t e For any such data set, we can
ask the question whether this data set is rationalizable by a weakly separable utility function (i.e. whether
it satisfies the conditions of Theorem 2). Basically, this decision problem asks whether any arbitrary data
set is rationalizable by a weakly separable utility function.

In order to analyze this problem, we make use of the theory of computational complexity. This
theory classifies decision problems according to the time it takes to come to an answer “yes” or “no” for
a specific instance of a given decision problem.!' In our particular case, this boils down to answering
whether or not a data set D is rationalizable by a weakly separable utility function. Time is expressed
with respect to the size of the instance (i.e. the ‘size’ of the data set D). The two most important classes
of decision problems are the classes p and Np. The class p (polynomial) contains all decision problems
that are easy to solve, by using an algorithm with a number of steps that is polynomial in the size of the
instance. The class Np (nondeterministic polynomial) contains all problems that might be difficult to
solve (i.e. it might take exponential time to find a solution), but that are easy to verify (i.e. any given
solution to the problem can be verified in polynomial time).

Of course, any decision problem in the class P is also in NP. At present, however, it is not known if
the converse also holds. The generally accepted belief is that p # Np. A decision problem which is at least
as difficult to solve as any problem in the class NP is called Np-hard. A decision problem is NP—complete
if it is both Np-hard and in NP. NP-complete problems are among the most difficult problems in the
class Np. They are considered to be computationally intractable especially for large instances. In fact,
all known solution methods applicable to NP—complete problems suffer from exponential worst-time
complexity.

The following theorem shows that the decision problem associated with the rationalizability condi-
tions of Theorem 2 is NP—complete. The proof is given in Appendix A.

19See Jones, McCloud, and Edgerton (2007) and Hjertstrand (2009) for more discussion on this. As an example, an empirical
analyst handling a data set of 60 observations would have to solve an optimization problem with at least 3540 linear and 3540
nonlinear constraints to verify the conditions (iii.1) and (iii.2) in Theorem 2.

"For compactness, we here restrict to providing a brief informal introduction to the notion of NP-completeness. See Garey
and Johnson (1979) and Papadimitriou (1994) for a more detailed discussion.



Theorem 3. The question whether a given data set is rationalizable by a weakly separable utility function
is an NP-complete problem.

This result considers the general case without any restriction on the number of goods or observations.
Of course, it does not rule out specific instances for which verification of the rationalizability conditions
might be performed efficiently. Nevertheless, our result does indicate that it is highly improbable that the
problem of rationalizability by a weakly separable utility function can be solved by means of an efficient
algorithm (like, for example, linear programming).

Essentially, Theorem 3 implies that one should not waste time trying to construct a polynomial time
algorithm that verifies the conditions in Theorem 2 (unless one has taken up the ambitious task of show-
ing that p = Np). In turn, this suggests considering easy—to—implement non-polynomial time algorithms
for tackling the testing problem. Therefore, we next propose a widely used method called Mixed Integer
Programming (MIP).

3 'The mixed integer program

MIP problems look like standard linear programming problems except that certain variables are re-
stricted to be integer valued (in our case either 0 or 1). The MIP formulation has a number of advan-
tages. First of all, a MIP always has an exact result and, moreover, every local solution of a MIP is in
fact a global solution. This last property directly addresses the issue of finding a global optimum which
we argued is a problem for any of the nonlinear approaches discussed above. Second, as we will show
below, our MIP formulation provides a joint test of the necessary and sufficient conditions. This means
that such a MIP test is theoretically unbiased, and therefore, will by definition always outperform any
sequential procedure for implementing the weak rationalizability conditions from Theorem 2. Third,
MIP problems are a frequently used and widely accepted approach to handle Np—complete problems.
The development of specially tailored algorithms (including heuristics) to solve MIP problems forms an
important topic in the operations research literature (see, for example, Nemhauser and Wolsey (1999)).
As such, there now exist well performing software programs to solve such problems. In this respect, we
can also refer to our following empirical application, where we will show the application of our MIP
formulations for substantially large data sets. Finally, we demonstrate the flexibility of our approach
by deriving MIP conditions for two related rationalizability problems. First, we consider the specific
case where the subutility function is homothetic. Secondly, we focus on the case where separability is
imposed on the indirect utility function, i.e. the case of weak separability in prices. These two cases
are particularly interesting because they are widely used in econometric analyses involving separability
concepts (see also our discussion in the Introduction).

We proceed by translating conditions (iv.1)-(iv.3) to an integer programming setting. The basic idea is
to notice that conditions (iv.2)-(iv.3) are equivalent to the following set of conditions:

if u, > u, then §;pix; + S < §ipixy + Sy,
if u, > u;, then 6;psx; + S < 8;psxy, + S,.

This equivalence follows from multiplying both sides of the right hands side inequalities by &; (> 0).
As such, we see that the inequalities on both the right and left hand side become linear. We make use
of binary variables to capture the logical relation between the different inequalities. This leads to the
following mixed integer linear program.



CS.WS For all t, v € T, there exist numbers S, u; € [0, 1], §; €]0, 1] and binary variables X;,, € {0,1}
such that, for all observations tand v € T, 2

St =Sy < 8vay(yr — yv)s (cs.1)

ur — uy < Xy, (cs.2)

Xy — 1) < up — u,y, (cs.3)

Oipr(x: — %y) + (St — Sy) < XipAs, (cs.4)
(Xt — DA, < 8pu(x: —xy) +(S: = Sy). (cs.5)

Here, we let A; be some fixed and large number (larger than p;x; + 1). First of all, observe that the
restriction of S, u; and §; to the unit interval is harmless as it is possible to rescale these variables without
changing the revealed preference conditions (iv.1)-(iv.3). Condition (cs.1) reproduces condition (iv.1).
The interpretation behind the binary variables is that X; , should be equal to one if and only if u; >
u,. This requirement is formalized by conditions (cs.2) and (cs.3). Finally, conditions (cs.4) and (cs.5)
reformulate conditions (iv.2) and (iv.3) by making use of these binary variables. The following theorem
formalizes the equivalence between the above MIP conditions and the rationalizability conditions for
weak separability in Theorem 2. The proof is given in Appendix B.

Theorem 4. The data set D = {8:ps, 1; Xy, St} et satisfies (iv.2)-(iv.3) if and only if conditions (cs.2)-
(cs.5) have a solution.

Homothetic and indirect weak separability. The above MIP formulation is very flexible in terms of
incorporating additional (separable) preference structure. We illustrate this by considering two special
cases. The first case requires that the subutility function s is homothetic. The second case requires
separability of the indirect utility function.

A dataset D = {p, Qs; X¢, ¥t }re1 is rationalizable by homothetic separability if there exist a well-behaved
utility function u and a well-behaved and homothetic subutility function s such that, for all observations
teT,

(x1,¥:) € arg H)}E;X u(x,s(y)) s.t. piX + quy < peXs + Qryt.

The following theorem characterizes data sets that are consistent with homothetic separability. The re-
sult directly follows from combining Varian (1983)’s rationalizability conditions for a homothetic utility
function with Theorem 2.

Theorem 5. The following statements are equivalent:
(i) The data set D = {py, Qy; X¢, Yt bee is rationalizable by homothetic separability.

(ii)) For allt € T there exist nonnegative numbers U; and strictly positive numbers S; such that, for all

t,veT,
Sy
St — 8 < Qv(Yt - yv),
vJv
{pn %; Xt, yt} satisfies GARP.
St teT

The strict inequalities in cs.2 and cs.4 are difficult to handle. Therefore, in practice, we use a weak inequality and subtract
a very small but fixed number from the right hand side.
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(iii) For all t € T, there exist nonnegative U and strictly positive numbers S; and Ay such that, for all
ttveT,

Sy

S—=8, < CIV(Yt - yv)7

VSV
qQvyv

14

Uu,—-U, <A, pv(Xt - Xv) + (St - Sv)

(iv) Forallt € T, there exist numbers u; and strictly positive numbers S such that, for all t,v € T,

S .
Si—8§ < iqv(Yt_YV)v (iv.1)
qQvyv
if uy > uy, then pix; + %St < pixy + %Sw (iv.2)
t t
ifu, > uy, then psx; + %St < pXy + %Sv. (iv.3)
t t

In other words, to impose homotheticity of the subutility function, we only need to add the ad-
ditional (linear) restriction that §; = S;/q;y: to the earlier weak separability conditions. As such, by
substituting in the MIP problem CS.WS each occurrence of §; by S;/q;y: (or by imposing the additional
restriction that §; = S¢/qry:), we obtain a MIP formulation of the necessary and sufficient conditions
for homothetic separability. In view of our following empirical application, it is also worth noting that
Theorem 5 implies two necessary conditions for the data to be rationalized by homothetic separability.
More precisely, the whole data set D = {p, qs; X¢, ¥+ }re needs to satisfy GARP and, secondly, the data
{qs, ¥+ }er also needs to satisfy the homothetic axiom of revealed preference (HARP); see Varian (1983)
for a detailed discussion of HARP.

As a final result we state the revealed preference conditions for indirect weak separability. First of
all, let us normalize the prices p; and q; such that, for all t, p;x; + q;y: = 1. Then, we say that the data
set D = {p¢, Qs; X¢, Y1 }reT 1S rationalizable by indirect weak separability if there exist a well-behaved (i.e.
decreasing, convex and continuous) indirect utility function v and a well-behaved indirect subutility
function w such that, for all observations t € T,

{pt,qt} € argminv(p,w(q)) s.t. px; + qy; < 1. (1)

The next theorem gives a characterization of data sets that are rationalizable in terms of an indirect
weakly separable utility function. The result is obtained by combining the result in Theorem 2 with
Brown and Shannon (2000) ’s rationalizability conditions for an indirect utility function. See also Hjert-
strand and Swofford (2012) for a similar result.

Theorem 6. The following statements are equivalent:
(i) The data set D = {py, Qs; X, Yt e is rationalizable by indirect weak separability.

(ii)) For allt € T there exist numbers V; and W, and strict positive numbers Ay and &, such that, for all
ttveT,

Wi—Ww, > _(SVYV(qt - (lv)7 (v.1)
1
Vim Vo2 < (x0dpr = p) + g (W= W) ) (v2)
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If we introduce the variables S; = — W, and U; = —V;, we can reformulate (v.1)-(v.2) as:
Si—8§ < CSVYV(qt - qv)v (v.1)

Uu—-U, <A, (Xv(pt - pv) + (%(St - Sv)) . (v.2)

Observe that the conditions in this theorem are formally equivalent to the conditions (iii.1)-(iii.2)
in Theorem 2 with prices and quantities interchanged. Thus two necessary conditions for the data to be
rationalized by indirect separability are that the data sets {x;, y; Ps, Q¢ }re and {y, q; }re 1 both satisfy
GARP. Finally, from (v.1)-(v.2) and by a direct application of Theorem 4, we can show that the rational-
izability conditions in Theorem 6 are equivalent to the following set of MIP constraints:

CS.WSI There exist numbers S;, u, € [0,1], §; €]0, 1] and binary variables X;, € {0, 1} such that, for
allt,v € T,

S =S, < dvyv(ar —aqy), (csi1)

ur — uy < Xyy, (csi.2)

(Xiy — 1) < up — uy, (csi.3)

8xt(pr — Pv) + (St — Sv) < XiWAs, (csi4)
Xty — DA, < 8x(Pr — Pv) + (St = Sy). (csi.5)

Again, A; is a fixed number larger than p,x; + 1.

4 Empirical application

We apply our integer programming tests to data drawn from the Encuesta Contunua de Presopuestos
Familiares (ECPF) Survey. The ECPF is a quarterly budget survey (1985-1997) that interviews about
3200 Spanish households on their consumption expenditures. For each household, the survey provides
consumption observations for a maximum of eight consecutive quarters. See Browning and Collado
(2001) and Crawford (2010) for a more detailed explanation of this data set. We exclude all households
with less than eight observations. In the end, this obtains a panel with 1585 households. The data set
covers consumption decisions for 15 (nondurable) goods: (i) food and non-alcoholic drinks at home,
(ii) alcohol, (iii) tobacco, (iv) energy at home, (v) services at home, (vi) nondurables at home, (vii)
nondurable medicines, (viii) medical services, (ix) transportation, (x) petrol, (xi) leisure, (xii) personal
services, (xiii) personal nondurables, (xiv) restaurant and bars and (xv) traveling holiday. We follow
Blundell, Browning, and Crawford (2007) and define the separable group to include all goods except
food (i.e. the separable group contains all goods except (i), (ii) and (xiv)). This separability assumption
is frequently used in empirical analysis of consumption behavior.

To avoid (debatable) preference homogeneity assumptions across similar households, our main anal-
ysis will focus on individual households. In other words, we test separability on a time-series data
set (with 8 observations) for every different household. This practice effectively accounts for inter-
household heterogeneity and, thus, optimally exploits the panel structure of our particular data set. At
this point, two preliminary remarks are in order. First, to assess the computational speed of our MIP
method, we will construct larger data sets by pooling households on the basis of similar characteris-
tics. This will also show the practical application of our MIP approach for substantially large data sets.
Next, in the following section we will show the possible extension of our MIP formulation to account
for stochastic issues such as measurement error and unobserved preference heterogeneity. Obviously,
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unobserved heterogeneity will generally be more important in applications that involve cross-sectional
data sets (different from our time-series data sets), which typically require strong homogeneity assump-
tions.

4.1 Evaluating the integer programming method

To assess the performance of our integer programming method, we will compare it with Varian’s three
step procedure. Next, another main focus is on evaluating the computational speed of our integer pro-
gramming approach for substantially large data sets. To this end, we will consider a preference ho-
mogeneity assumption that parallels an assumption often used in econometric demand analysis. This
will allow us to conduct our separability tests on data sets that bring together information on multiple
(similar) households.

Comparison with Varian’s three step procedure. Our MIP formulation provides exact conditions for
rationalizability by a weakly separable utility function. To evaluate the practical usefulness of our MIP
procedure, it is interesting to compare the associated test results with the ones generated by the frequently
used three step procedure of Varian (1983). As discussed in Section 2, the first two steps of Varian’s
procedure imply necessary conditions for rationalizability by a weakly separable utility function. The
first step verifies GARP consistency of the data set D = {py, q; X, ¥t }rer and the second step verifies
GARP consistency of the data set {q;, y: }+c1. Both steps are very easy to implement. Actually, if this two
step procedure can identify almost all non-rationalizable data sets (i.e. the test has a low type II error),
then this may plead for using this (efficiently implementable) procedure instead of our computationally
more demanding (necessary and sufficient) MIP procedure.

We find that 83% of our Spanish households (1323 out of 1585) meet the the two GARP conditions
of Varian’s two step procedure. By contrast, only 54% of the households (853 out of 1585) satisfy our
MIP conditions. In fact, 64% of the households that are not rationalizable by a weakly separable utility
function still satisfy Varian’s necessary conditions. In our opinion, this difference between the two test
procedures is rather significant.

Let us now turn to Varian’s sufficient conditions for weak separability. These conditions add one
step to the above two step procedure. Like before, it first verifies GARP consistency of the data sets D =
{Ps, r; X¢, yi }rerand {qs, y1 }re1. Subsequently, it verifies GARP consistency of a data set {py, 1/8;; x4, S }rer
for some specific values &y and S; that satisfy condition (ii.1). If in this last step GARP is not rejected,
then we conclude that the data set is rationalizable by a weakly separable utility function. We find that
40% of all households (636 out of 1585) pass this three step test. Thus, when compared to our test results
for the MIP conditions, 25% of all households that are effectively consistent with weak separability do
not satisfy Varian’s sufficient conditions. Once more, we find this difference quite big.

As a final exercise, we consider the ‘adjusted’ version of Varian’s sufficiency test that was introduced
by Fleissig and Whitney (2003). As discussed in Section 2, these authors use the theory of superlative
index numbers to define the Afriat numbers in the last step of Varian’s three step procedure. We find that
50% of the households (794 out of 1584) satisfy the resulting sufficient conditions for weak separability.!?
Thus, the difference with our MIP test results decreases quite substantially. However, we still have that
about 6.9% of the households that are consistent with weak separability do not pass this adjusted three
step test.

We applied the test using the chain-linked Fisher ideal quantity index. We performed robustness exercises using other
popular superlative index numbers but the results did not vary very much.
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Table 1: Computational speed

size of data set number of data sets passrate (mean) time (in seconds) var time

8 152 84 0.023 0.00001
16 87 5 0.099 0.0002
24 49 1 0.256 0.001
32 38 0 0.559 0.009
40 48 0 1.125 0.021
48 22 0 1.911 0.067
56 22 0 3.223 0.098
64 14 0 5.206 0.144
72 7 0 7.74 1.256
80 9 0 12.042 1.835
88 6 0 15.319 1.223
96 5 0 21.644 5.367
104 1 0 39.267 N.A.
120 2 0 50.543 13.256

At a more general level, we believe that these exercises also demonstrate that our exact MIP condi-
tions for weak separability can be fruitfully applied to assess (and compare) the empirical performance
of tests for weak separability that are not exact but very efficiently implementable. For example, for our
data set we conclude that Varian’s procedures generate test results that are considerably different from
our MIP results, while Fleissig and Whitney’s procedure delivers much more similar (and thus ‘better’)
results.

Computational speed. The above empirical application considers data sets with (only) 8 observations.
Not very surprisingly, for such small data sets the MIP method we propose comes to a test result very
rapidly. Here, it seems interesting to assess whether this ‘speediness’ also holds if we increase the size
of the data sets. As is well known, MIP problems might become increasingly hard to solve as the size
of the problem gets larger. To assess whether our MIP method also works well for substantially large
data sets, we assume identical preferences for all households with the same age of the male and female
household members. In practice, this means that we perform our separability tests on pooled data sets
containing all households with equally aged household members. A similar homogeneity assumption is
frequently used in econometric demand analysis, i.e. demand estimation is often conditioned on ages of
the household members as demographic factors.

As can be seen from Table 1, the size of our newly constructed data sets varies from 8 to 120 obser-
vations, with the average number of observations equal to 27.44. Clearly, this implies relatively big data
sets as compared to other data sets that have been considered in empirical revealed preference analysis.'*

The third column of Table 1 reports the pass rates for the data sets of different sizes. However, our
main interest here is in the fourth column of the table, which gives the average computation time of our
algorithm for the different data set sizes that we consider.'”> Generally, these results provide a fairly strong
case in favor of our MIP approach. For example, checking the revealed preference conditions for weak

HGee, for example, Cherchye, De Rock, Sabbe, and Vermeulen (2008) for a discussion on the typical size of data sets con-
sidered in empirical revealed preference analysis.

"We performed all our computations on a laptop computer with 2.4GHz clock speed and 4GB RAM with a standard con-
figuration. For solving the integer programming problem, we used the commercial solver CPLEX®.
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separability takes (on average) less than a second for data sets with up to 32 observations. However, if
we keep increasing the number of observations, the computational time increases rapidly. Nevertheless,
even for the largest data sets with 120 observations we obtain an outcome in less than a minute (on
average), which —in our opinion— is still reasonably fast.

4.2 Comparing alternative behavioral models

In this section we consider the four models introduced in Sections 2 and 3: the standard utility max-
imization model, the model that additionally imposes weak separability, the homothetic separability
model, and the model that assumes a weakly separable indirect utility function. We will evaluate the
different models in terms of their pass rates, discriminatory power and predictive success.

Test results: pass rates and power. Table 2 reports the pass rates of the four revealed preference tests.
About 91% of the households (1445 out of 1585) satisfy the revealed preference conditions for the stan-
dard utility maximization model (i.e. the conditions in Theorem 1). By contrast, only 853 households (or
approximately 54%) satisfy the revealed preference conditions for rationalizability by weak separability
(as given by Theorem 2). Remarkably, none (!) of the households satisfy the conditions for rationaliz-
ability by homothetic separability (see Theorem 5).'¢ This already indicates that weak separability and,
to a much greater extent, homothetic separability are rather stringent assumptions. Finally, 1264 house-
holds (or approximately 80%) pass the rationalizability conditions for indirect weak separability (see
Theorem 6), which is substantially more than for the other separability assumptions.

Our diverging results for weak separability and indirect weak separability can seem surprising to
some, as one may have expected these two assumptions to be about equally stringent. Still, our pass rate
results suggest that the latter assumption has a better empirical fit than the former one for our sample
of households. In a sense, this may be a useful result from the perspective of econometric applications,
which often invoke indirect weak separability (see our discussion in the Introduction). Our results reveal
that observed behavior is largely consistent with such indirect separability.

Table 2: Pass rate and Power (in percentages)

model pass rate power

mean min 1stquartile median 3rd quartile max
general ut. max. 91.17 11.13 0.0 0.2 6.5 19.9 68.4
weak separability 53.82 4782 43 31.3 48.5 64.1 98.9
homothetic separability 0 99.99 99.9 100 100 100 100
indirect separability 79.75 1599 0.0 0.9 12.8 27.3 80.9

Importantly, to meaningfully compare the different models, one should not merely consider the cor-
responding pass rates. For example, as the weak separability model is nested within the standard utility
maximization model, the former model will have a lower pass rate than the latter model by construction.
Indeed, Bronars (1987) and, more recently, Andreoni and Harbaugh (2008) and Beatty and Crawford
(2011) —rather convincingly— argue that revealed preference test results (indicating pass or fail of the

!$To investigate the source of these violations we checked whether the households satisfy the necessary conditions for ho-
mothetic separability (see Section 3). When checking whether the second of these conditions hold (i.e. homotheticity of the
subutility function) we found that, indeed, none of the households passes the corresponding test. This means that the data
{4, ¥t }+er cannot be rationalized by a homothetic utility function for any of the households, as required by homothetic sep-
arability.
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data for some behavioral condition) should be complemented with power measures to obtain a fair em-
pirical assessment of the rationalizability conditions under evaluation. Here, power is measured as the
probability of rejecting the revealed preference test given that the model does not hold. Favorable test
results (i.e. a high pass rate for some given data), which prima facie suggest a good empirical fit, have
little value if the test has little discriminatory power (i.e. the conditions are hard to reject for the data at
hand).

For all revealed preference tests under evaluation, we compute a power measure for every individual
household. This measure quantifies discriminatory power in terms of the probability to detect random
behavior, and is based on Bronars (1987). More precisely, we simulated 1000 random series of eight
consumption choices by drawing, for each of the eight observed household budgets, a random quantity
bundle from a uniform distribution on the given budget hyperplane for the corresponding prices and
total expenditure. The power measure is then calculated as one minus the proportion of these randomly
generated consumption series that are consistent with the rationalizability conditions being evaluated.
The distribution of this power measure for the different models is given in Table 2. We see that the
standard utility maximization model has a rather low power. On average only about 11% of all random
data sets violate the revealed preference conditions of Theorem 1. By contrast, the power distribution
for the homothetic separability test is entirely centered around 1, with almost no spread. In other words,
nearly all random data sets fail this test, which confirms its stringency. Finally, the weak separability test
has reasonably high power while the power of the indirect weak separability test is fairly low.

This last finding suggests that, from an empirical point of view, indirect separability is much less
stringent than weak separability. That is, while the indirect weak separability model was associated
with a higher pass rate for the sample at hand, it seems that this better fit may simply be due to a lower
discriminatory power rather than a better model per se. Our following exercise accounts for the possible
trade-off between pass rate and power.

Predictive success. The above analysis compares the four behavioral models in terms of their pass rates
and discriminatory power. Beatty and Crawford (2011) recently suggested to combine these two (often
inversely related) performance measures into a single metric. More specifically, building further on an
original idea of Selten (1991), they suggest to assess the empirical performance of a model by a so—called
predictive success measure which, for a given household, is computed as the difference between the
pass rate (either 1 or 0) and 1 minus the power. By construction, this measure takes values between
-1 and 1. Negative values then suggest that the model under study is rather inadequate to describe the
household data at hand: the model provides a poor fit of the household behavior (pass rate is zero) even
though the model’s power is low (i.e. the model is difficult to reject empirically). Conversely, a high and
positive predictive success value points to a potentially useful model: it is able to explain the observed
consumption behavior (i.e. pass rate equals 1) while its power is high (i.e. the model would rapidly be
rejected in case of random behavior).

Table 3 presents some statistics of the predictive success measures associated with the four models
under study. We observe that the standard utility maximization model achieves the highest mean pre-
dictive success. However, the value of 0.023 is still very low. In general, the mean predictive success
values do not provide a strong empirical case in favor of one or the other model.

We obtain a more balanced picture when considering the quartile values. For the homothetic sep-
arability model, the predictive success measure is entirely centered around zero with (practically) no
spread. This result directly follows from the fact that this model has, for each household, a zero pass rate
combined with power (close to) unity. Next, the distributions of the predictive success measures are al-
most identical for the standard utility maximization model and the indirect weak separability model. In

16



other words, indirect separability seems to add little value (if any) over and above basic utility maximiza-
tion in terms of predictive success. Finally, the predictive success distribution of the weak separability
model seems to be bimodal: on the one hand, there are a lot of households with very negative predictive
success values for weak separability but, on the other hand, there are also a lot of households with large
and positive predictive success values. One interpretation is that the weak separability model performs
rather well empirically for one subgroup of households while it does a fairly poor job for other house-
holds. Given this, it can be useful to investigate which household characteristics determine the good
fit of the weak separability model. Because our empirical application is mainly meant to be illustrative,
we will not explore this route here, but we do see this as a potentially interesting avenue for follow-up
research.

A related point concerns the observation that the weak separability model dominates the indirect
weak separability model in terms of predictive success for the median, third quartile and maximum
values. This suggests that weak separability may effectively constitute an appropriate model to describe
the consumption behavior of most households in our sample. While it provides a worse fit than indirect
separability at the overall sample level, for those households that do pass the weak separability test the
higher discriminatory power effectively makes this model more useful from an empirical point of view.
That is, for many households we obtain a predictive success value that is substantially above zero.

Table 3: Predictive success

model mean min  Istquartile median 3rd quartile max
general ut. max. 0.023 -1 0 0.035 0.177 0.649
weak separability 0.016  —0.957 —0.414 0.139 0.444 0.964
homothetic separability 0 —0.001 0 0 0 0

indirect separability —0.042 -1 0 0.024 0.207 0.757

5 Stochastic issues

Until now, we considered the basic revealed preference test of weak separability. This is a ‘sharp’ test in
the sense that it does not take into account stochastic issues such as measurement error and unobserved
preference heterogeneity. It only tells us, for the data at hand, whether the households are exact opti-
mizers in terms of a weakly separable utility function. However, because stochastic issues are important,
this exactness is not innocuous. Interestingly, as we will show, it is fairly easy to extend our integer pro-
gramming approach to explicitly account for measurement error and unobserved heterogeneity. We will
illustrate the practical usefulness of these methodological extensions by recapturing the empirical appli-
cation of the previous section. For brevity we will only consider tests for weak separability. However, our
reasoning is also directly applicable to the models of homothetic separability and indirect separability.

5.1 Measurement error

When focusing on measurement error, there are two possible cases where the sharp test can produce a
wrong answer. In the first case, the true data are rationalizable but, due to the measurement error, the
observed data are not, i.e. we have a so called ‘false negative’ In the second case, the true data are not
rationalizable although the observed data are, i.e. we have a ‘false positive. We will show how to extend
our integer programming framework to develop a statistical test procedure that accounts for these two
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situations. Although our focus here will be on measurement error in the quantities, our analysis can
easily be adapted to take into account measurement error in the prices.!”
We consider the following optimization problem.

OP.WS
min F
6,84, Xe,0,F
s.t.
St =Sy < &vav(ye — yv) + 6F,
ur — uy < Xy,

Xy — 1) < up —uy,

Ope(xt — xy) + (St = Sv) < XivAr + 6,F,

(Xiy — DA, < 8ypy(x — %) + (8¢ = Sy) + 6,F,
St >0,

& > 0,

X:v € {0,1}.

When comparing this problem with the earlier program CS.WS, we observe that the optimal solution
of OP.WS, say F*, must be smaller than or equal to zero if and only if the data set is rationalizable by a
weakly separable utility function. In other words, the data set {p;, qr; X, y¢ }er satisfies CS.WS if and
only if F* < 0.

A false negative. Let (x;,y;) represent the observed quantities at observation t and assume that the
true quantities are given by (x}, y;), where

X; = X; + & and,

y;k = Yt+ Ut,

with &; and v; defining the unobserved measurement error.

If we have a false negative, then the true data set is rationalizable by a weakly separable utility function
(i.e. it satisfies the conditions of CS.WS), while the observed data set is not because the quantities are
measured with error. This means that the optimal solution of OP.WS is larger than zero for the actual
data but, if we had used the true quantities, then this solution value would not have exceeded zero. As
such, if the true data set is rationalizable, we should have that F* is not too large. The following theorem
formalizes this intuition by giving an upper bound on the optimal value of OP.WS. The proof is given
in Appendix C.

Theorem 7. Assume that {p¢, qi, X}, y| }er satisfies the constraints of CS.WS and let F* be the optimal
value of OP.WS for the observed data set {p;, s, X¢, Yt et Then,

F* < max {rr%ax pier — €); max qi(vr — vv)} )
RY Y

7See for instance Crawford (2010) and Cherchye, Demuynck, and De Rock (2011b) for examples of revealed preference
tests that take into account measurement error in the prices. Actually, as we will elaborate further on, our method to deal with
unobserved heterogeneity will be formally similar to one that accounts for measurement error in prices.
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This theorem motivates the following formulation of the null hypothesis that {p¢, qs, X}, y; }eer is
rationalizable by a weakly separable utility function:

Hp : F* < max {n}aXpt(st — &v);max qr(vr — Uv)} ;
RY v

Hp : F* > max {n%axpt(st — sv);n}ax q:(vr — vv)} )
vV vV

Itis directly apparent that a test of this null hypothesis for false negatives will be a conservative one. A
similar qualification applies to the test for false positives which will be developed below. The distribution
of the errors ¢ and v; is unknown, so we resort to a simulation procedure in order to implement the
hypothesis test. This procedure takes the following steps:

1. Compute the optimal value of OP.WS.

2. Simulate errors &, and v; drawn from some predefined distribution and calculate the value
max {max;, ps(&, — &); max;, q¢(v, — v;) }. We have 5000 draws (per household).

3. Compute the percentage of these values that exceeds the optimal value of OP.WS computed in the
first step.

4. If this percentage is smaller than «, then we reject the hypothesis that the true data set is rational-
izable by a weakly separable utility function for a significance level of a.

This test procedure is a variation of the one originally developed by Fleissig and Whitney (2008) and
Jones and Edgerton (2009).!8 In order to apply it, two issues must be resolved. First of all, the optimal
value of OP.WS must be computed. The optimization problem is nonlinear in the variable F and might
therefore be considered difficult. However, notice that if OP.WS has a feasible solution for a particular
value of F, then it also has a feasible solution for all values of F' > F. From this monotonicity condition,
it follows that we can solve the problem quite efficiently by using a binary search algorithm.!®

The second issue relates to specifying the structure and distribution of the errors €, and v;. In this
respect, we emphasize that the algorithm above is not pertained to a particular error structure or un-
derlying error distribution, but can, in fact, take on different error structures and any imaginable error
distribution. In our application, we choose a multiplicative error structure: &; = #,x; and v; = (;y;
where 7, and (; are diagonal matrices with the diagonals i.i.d. mean zero distributed. So even if other er-
ror structures, such as an additive one, are of course amenable, we choose a multiplicative structure here
because it effectively accounts for differences in the scale of expenditure across goods and observations.
As for the error distribution, our analysis will consider two different specifications for the distribution
of the diagonals of #, and {;: a normal and a uniform distribution, both characterized by their standard
deviation.?’ We choose to focus on these two distributions because they are defined in terms of a single

8See also Varian (1985) and Epstein and Yatchew (1985) for procedures to account for measurement error in revealed
preference tests.

YA binary search algorithm starts with an infeasible lower bound, Fe, and a feasible upper bound, F,, for the objective
function. For each step of the algorithm, the procedure evaluates whether the midpoint (F, + F¢)/2 is feasible. If it is, then in
the next iteration the upper bound F, is replaced by this midpoint. If the midpoint is not feasible, then the midpoint replaces
the lower bound F,. At each iteration of the algorithm, the range [Fp, F,], which contains the solution of the problem, is halved.
As such, the width of the interval decreases exponential in the number of iterations.

*Tn order to make the results for the two distributions easily comparable, we report the results of the uniform distribution
in terms of its standard deviation (and not its range, as is conventionally done).
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parameter only. Also, we believe that the normal and uniform distributions are sufficiently divergent
to meaningfully assess the robustness of our test results with respect to alternative error specifications.
Given this, however, we stress that any other error distribution is applicable, and that for large enough
data sets, one may also use a nonparametric estimation of demand to obtain a corresponding estimate
of the error distribution. See, for example, Epstein and Yatchew (1985) for an extensive discussion of
this possibility (including estimation properties) in a formally similar context.

Table 4 presents the result of our procedure for the 732 households that fail the ‘sharp’ weak separa-
bility test. The entries in the table give the percentage of households for which we reject the null hypoth-
esis of rationalizability by a weakly separable utility function for various levels of . As an example on
how to interpret these numbers, take the case where the errors are normally distributed with a standard
deviation of 0.35% and a significance level « of 0.05. Then, we have that the null of rationalizability by
weak separability is rejected for 2.6% of all households (that violated the ‘sharp’ conditions CS.WS). In
other words, almost 97% of the households are labeled as false negatives. Not surprisingly, Table 4 also
reveals that the number of households rejecting the null is decreasing drastically with the level of the
standard deviation. Also, the results for the two distributions are very similar, which indicates that our
results are robust with respect to the assumed error distribution.

Table 4: percentage of households for which Hy is rejected at the given significance level

Normal distribution Significance level
Standard deviation a=001 a=005 a=0.10
0.005/100 91.25 93.72 94.39
0.05/100 42.08 49.44 53.01
0.15/100 13.39 19.54 21.44
0.35/100 1.63 2.60 3.69
0.55/100 0.42 0.83 0.96
Uniform distribution Significance level
Standard deviation a=001 a=005 a=0.10
0.005/100 93.20 94.00 94.69
0.05/100 48.36 52.18 54.5
0.15/100 19.21 21.66 23.71
0.35/100 2.72 3.54 4.77
0.55/100 0.82 0.82 1.5

A false positive. A false positive means that the true data set is actually not rationalizable by a weakly
separable utility function but, due to measurement error, we conclude that the observed data set is ra-
tionalizable. In this case, the optimal solution of OP.WS should be less than or equal to zero, while
this value would be larger than zero if the true data set were used. As such, if the true data set is not
rationalizable, we would expect that F* is not too far below zero. The following theorem formalizes this
intuition. Like before, the proof is given in Appendix C.

Theorem 8. Assume that {p;, q¢, X}, yi }ter does not satisfy the constraints of CS.WS and let F* be the
optimal value of OP.WS for the observed data set {py, Qr, X¢, Yt }re1. Then,

)

F* > min {ntlin pi(ey — &); n}in qi(vy — vt)} .
v R
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This result allows us to formulate the following null hypothesis based on the null that the true data
{pPs, qr, X}, ¥{ }rer is not rationalizable by a weakly separable utility function.

Hy : F* > min {Htlin P& — &); Htlin qr(vy — Ut)} ;
v v

)

Hp :F* < min {Htlin pi(er — &); rlgin qi(vy — Ut)} )
v R

Thus, one rejects the null of no rationalizability for large negative values of F*. Analogous to above,
we use a simulation based procedure to implement the corresponding hypothesis test.

1. Compute the optimal value of OP.WS.

2. Simulate errors &; and vy drawn from some predefined distribution and calculate the value
min {min,, p;(& — &,); min; , q;(vy, — v;) }. We have 5000 draws (per household).

3. Compute the percentage of these values that are below the optimal value of OP.WS computed in
the first step.

4. If this percentage is smaller than «, then we reject the hypothesis that the true data set is not
rationalizable for a significance level of a.

Table 5 presents the results of the procedure for the 853 households that satisfy the sharp rational-
izability test. Like before, we consider both normal and uniform distributions. The results in Table 5
have a similar interpretation as the ones in Table 4. As an example, let us again consider the setting
with normally distributed errors with a standard deviation of 0.35%, and a significance level a of 0.05.
We then reject the null hypothesis of non-rationalizability for 62.28% of the households for which the
observed data did satisfy the sharp test. In other words, about 37% of the households can be labeled as
false positives. Again as one can expect, we conclude that the number of household rejecting the null
decreases if the standard deviation increases.

Finally, comparing the test results in Tables 4 and 5 may suggest that we should care much more
about false negatives than about false positives, if we believe measurement error is an issue for the data
at hand. However, drawing such a conclusion is misleading for several reasons. First of all, in order to
compare the two tests, we should control for the power of the different tests. This power will generally
depend on the nature of the data that are involved. For compactness, we choose not to explore this
power issue further in this paper. Second, the test results in the two tables pertain to distinct subsets of
observations, with possibly different characteristics. Finally, we observe that both tests are conservative
by construction. As such, for a given significance level, they only identify lower bounds on the numbers
of false positives and negatives. This also means that the true probability values (under the null) of the
test statistics are unknown, which makes the test results incomparable.

5.2 Unobserved heterogeneity

Apart from measurement error, a second stochastic issue concerns unobserved preference heterogeneity
underlying the consumption data. Preference heterogeneity is often prevalent in the context of cross-
sectional data that involve multiple consumers. Indeed, if cross-sectional data are ‘averaged’ to represent
the behavior a single ‘representative’ consumer, it may well be that this representative consumer does
not act as being rational, even though each individual consumer is separately rational (see for instance
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Table 5: percentage of households for which H is rejected at the given significance level

Normal distribution Significance level
Standard deviation a=001 a=005 a=0.10
0.005/100 97.54 98.23 98.23
0.05/100 80.61 83.42 84.62
0.15/100 67.33 70.03 71.91
0.35/100 60.29 62.28 63.10
0.55/100 54.76 58.06 59.58
Uniform distribution Significance level
Standard deviation a=001 a=005 a=0.10
0.005/100 98.24 98.24 98.48
0.05/100 83.10 84.61 86.02
0.15/100 69.45 71.80 73.44
0.35/100 62.40 63.10 63.46
0.55/100 58.17 59.46 60.40

Lewbel (2001) for a discussion). In our own application, however, we use a panel data set and test ratio-
nality for each household separately. By construction, this practice maximally accounts for preference
heterogeneity across households. Nonetheless, heterogeneity may still arise if household preferences
vary over time.

In what follows, we will present a method to account for preference heterogeneity in our integer
programming framework. We will illustrate this method for our sample of households, thus considering
the possibility of time-varying household preferences. We will abstract from measurement error in this
discussion. However, we hope it will be clear from the exposition that one can easily combine our method
to account for preference heterogeneity with the above one to incorporate measurement error.

In our method, we adopt the random utility model with additive heterogeneity that was originally
put forward by Brown and Matzkin (1998).2! This model assumes that household preferences are rep-
resented by the following utility function:

U(x,y) = u(x,s(y)) + ex + vy,

where the vectors € and v capture preference variation (e.g. over time). Attractively, even though the
model is fairly simple, it is effective in describing preference variation in an intuitive manner, through a
suitable specification of € and v (e.g. it can directly impose that heating provides more utility in winter
than in summer).??

In the above model specification, the random term ex + vy is measured in utility units. To accom-
modate for this, we choose to express the vectors € and v in monetary terms, by dividing them by the
marginal utility of income. This gives:

yz%andoz%,

*ISee also Beckert and Blundell (2008) for further analysis and extensions of this type of random preferences.

*For more elaborated models dealing with heterogeneity non-additively, we refer to Matzkin (2003) and Matzkin (2008).
To compactify our discussion and to enhance comparability with our measurement error procedures we opted not to focus on
these models in the current paper.
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with A the lagrange multiplier corresponding to the budget constraint of the utility maximization prob-
lem (i.e. the marginal utility of income).

Interestingly, this particular set-up entails a method to account for unobserved heterogeneity that
is formally similar to the one we used to deal with measurement error. We see this by defining the
first order conditions of the utility maximization problem associated with the random utility function
specified above. For a given set of prices p; and qy, these conditions are:

au(g;(y) = (P — 7)),
8u(?;,SS(Y) 3;5) = M(qr — 0y).

Thus, in terms of testable implications, the random utility model with additive heterogeneity is equiva-
lent to a standard utility maximization model with the price vectors p; and q; replaced by p; — y, and
d: — 0. In other words, the model is empirically equivalent to a model with measurement errors in the
prices, where the true prices are given by p; = p; — y, and qf = q; — 0, (with y, and o; price errors).
This allows us to treat our model with unobserved preference heterogeneity ‘as if” it were a model with
measurement error in the prices. As such we can easily compare the impact of our two types of stochastic
noise. Reformulating Theorem 7 then gives the following result.

Theorem 9. Assume that {p;,dq;,X:, Y} e satisfies the constraints of CS.WS and let F* be the optimal
value of OP.WS for the observed data set {p;, qi, Xt, Yt et Then,

F* < max {rr%ax—yv(xt - x,); Ir%ax—ov(qt - qv)} )
v RY

5

Analogous to before, this theorem motivates the next formulation of the null hypothesis that { p;, q¢, X¢, ¥t et
is rationalizable by a weakly separable utility function under unobserved preference heterogeneity:

Hp : FF < max {n%ax —y, (X — Xy); max —0o,(qr — qv)} :
7V 7v

H; :F* > max {Ir%ax -y, (Xt — Xy); max —o,(qr — qv)} .
v Ry

Again, we see that a test of this null hypothesis will be a conservative one. Like before, because the
distribution of the errors y, and o; is unknown, we need a simulation procedure to implement the test:

1. Compute the optimal value of OP.WS.

2. Simulate errors y, and oy drawn from some predefined distribution and calculate the value
max {maxw —y,(x; — x,); max;, —0,(qr — qy) }

3. Compute the percentage of these values that exceeds the optimal value of OP.WS computed in the
first step.

4. If this percentage is smaller than «, then we reject the hypothesis that the true data set is rational-
izable by a weakly separable but heterogeneous utility function for a significance level of a.
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Once more, our method can incorporate any possible distribution of the errors y, and ;. In prin-
ciple, it is possible to estimate the demand distribution nonparametrically if data sets are large enough.
We refer to Brown and Matzkin (1998) for a related discussion on identification and estimation issues for
the random utility model that we consider here. Similar to above, because our application uses a small
data set per household, we will focus on y, = 5, p; and 0; = (; q;, where 7, and {; are diagonal matrices
with the diagonals beingi.i.d. mean zero distributed. This specification is a realistic one if we believe that
heterogeneity shocks are larger for goods with higher prices (or, equivalently, if the associated marginal
utilities are higher). We again consider both normal and uniform distributions for the diagonals of #,
and (.

Table 6 reports the results of our simulations. Interestingly, we find that these results roughly parallel
the ones in Table 4, which pertained to measurement error in the quantities. For example, the number
of households rejecting the null is strongly decreasing in the standard deviation. As a conclusion, we
may state that, for the given sample of households and our specific modeling assumptions, the effect of
unobserved heterogeneity on our test results is largely similar to the effect of measurement error in the
quantities.

Table 6: percentage of households for which Hj is rejected at the given significance level

Normal distribution Significance level
Standard deviation a=001 a=005 a=0.10
0.005/100 94.28 95.50 95.78
0.05/100 58.45 64.03 67.57
0.15/100 29.84 35.42 38.69
0.35/100 9.26 14.17 16.76
0.55/100 2.86 5.04 6.95
Uniform distribution Significance level
Standard deviation a=001 a=005 a=0.10
0.005/100 95.64 9591 96.18
0.05/100 64.71 68.26 70.71
0.15/100 35.69 39.24 41.55
0.35/100 15.53 18.12 20.30
0.55/100 5.05 7.90 9.67

6 Conclusion

We considered the revealed preference conditions for weak separability. From a theoretical perspective,
we found that verifying these conditions is a difficult (= NP—complete) problem. Given this, we intro-
duced an integer programming approach to test data consistency with the conditions. We illustrated the
versatility of this approach by deriving formally similar integer programming tests for the cases of ho-
mothetic separability and indirect weak separability. Finally, we presented statistical tests that account
for measurement error in the data and unobserved preference heterogeneity underlying the observed
consumption behavior.

Further, we showed the empirical viability of our integer programming approach by providing an
application to Spanish household consumption data. In this application, we focused on separability
between food expenditures and other expenditures (on nondurables). An interesting observation was
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that indirect weak separability was associated with a higher pass rate than weak separability for the
sample of households at hand. However, we also found that the weak separability test had substantially
more discriminatory power than the indirect separability test. As a result, the weak separability model
was associated with a rather favorable predictive success measure (indicating a high degree of empirical
usefulness) for most households considered.

We see multiple avenues for further research. First of all, at the theoretical level, we have concen-
trated on the three most commonly used types of separability, which have been established and imple-
mented in the literature for a long time: weak separability, homothetic separability and indirect weak
separability. More recently, Blundell and Robin (2000) introduced the notion of latent separability, a
generalization of weak separability that provides an attractive empirical and theoretical framework for
investigating the grouping of goods and prices. Crawford (2004) has derived the revealed preference
conditions for latent separability. As in the weak separability case, the latent separability conditions are
nonlinear (quadratic) and thus hard to verify. We believe it would be interesting to explore whether
and to what extent the integer programming approach set out in the current paper may help to derive
necessary and/or sufficient testable (integer programming) formulations of Crawford’s conditions for
latent separability.

Next, at the methodological level, we focused our discussion by only considering revealed preference
tests for alternative separability specifications. If observed behavior is consistent with a particular spec-
ification (i.e. can be rationalized), then a natural next question pertains to recovering/identifying the
structural features of the model under consideration. For example, in the present context such recovery
can focus on identifying group (price/quantity) indices that are consistent with a separable representa-
tion of the utility structure. Because the revealed preference approach does not require a prior specifi-
cation for the utility functions, it addresses recovery questions by ‘letting the data speak for themselves’
(i.e. it only uses the information that is directly revealed by the data). See, for example, Afriat (1967) and
Varian (1982) for detailed discussions of revealed preference recoverability. These authors consider the
standard utility maximization model. By using the integer programming formulations developed in the
current paper, one can address similar recovery questions under alternative separability assumptions.?®
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Appendix A: proof of Theorem 3

Proof. In order to show that the problem of rationalizability by a weakly separable utility function is in
the class NP, we need to reduce a known NP-complete problem to this decision problem. For this we use
the problem of Monotone 3SAT (M3SAT; see Garey and Johnson (1979)).

M3SAT
INSTANCE: A set of binary variables by, . .., b; and a set of clauses Cy, ..., C,. Each clause Cy, { =
1,...,r, contains three literals /1 ¢, > o and I3 o and each literal either equals a variable or its negation.

The condition monotone refers to the fact that for every clause all literals within this clause are either
negated or unnegated.

QUESTION: Does there exist an assignment to the variables by, . .., b; (either 1 or 0) such that each
clause contains at least one literal with the values equal to 1?

Now, consider an instance of M3SAT. We first construct the set of observations T and the sets of goods
TandS.:

o For every literal [ o (/ = 1,...,rand k = 1,2, 3), we construct two observations t(k, ) and
v(k, ¢). These observations are gathered in the set T'.

29



Table 7: Prices and quantities for instance of weak separability

observation  g(t,k, /) G — {g(t,k, 0)} Gy — O(t,k,0) O(t,k, 0)
1
t(k, ¢) p|1 112 12 -
observation h(t k,0) He—{h(t,k,0)} h(v,k,?) H, —{h(v,k, )}
(k. 0) 512 13 11_; 12
observation  g(v,k,{) G Gy —{g(v,k, 0)}
v(k,0) p|1 12 12

observation h(t,k®2,0) H,—{h(t,k®2,0)} h(v,k,0) Hy, — {h(v,k,0)}
v(k, 0) 11 13 yll 12

o Foreveryliteral [ (¢ = 1,...,rand k = 1,2, 3), we create two goods g(t, k, £) and g(v, k, £).
o Foreveryliteral [ (¢ =1,...,rand k = 1,2, 3), we create two goods h(t, k, ) and h(v, k, {).

For two literals / and I/, we say that they are opposites if [ corresponds to a variable b; and I’ corre-
sponds to (1 — b;) or I corresponds to (1 — b;) and I corresponds to b; (i.e. I = (1 — I')). We consider
some special subsets of the set of goods.

o Gr={g(t,k,O)|k=1,2,3;0=1,...,r}
e G, ={gv,k,0)|k=1,2,3;4=1,...,r}.
o O(t,k,0) = {g(v,k’,ﬁ’)

o Hy={h(t,k,0)|k=1,2,3;0=1,...,r}.

the k-th literal in clause ¢ and the k’th literal
in clause ¢’ are opposites )

o Hy={h(v,k,0)|k=1,2,3;4=1,...,r}.

The goods in the separable group (bundle y) are the goods g(¢, k, ¢) and g(v, k, ¢). For kand ] € N
denote by k @ [ the number (k 4+ ) mod 3. The remaining goods are the goods for the non-separable
group (bundle x). The prices and quantities for each observation and good are summarized in the fol-
lowing tables forallk = 1,2,3and ¢ = 1, ..., r (prices are before the separator |, quantities after).

Here, the numbers p, 3 and v are given by:

p=14+35r, 3=16+42r, y=11+29r,

with r the number of clauses.

We have to show that M3SAT has a solution if and only if the data set constructed above is weakly
separable rationalizable. First let us assume that the data set is weakly separable rationalizable. Let
St(k,e) and S,k ¢y and Uy 1), Uy (k) be the Afriat numbers for the observations #(k, £) and v(k, £) that
correspond to this rationalization. The idea is to set the value of the variables in such a way as to guarantee
that the kth literal in the (th clause is equal to one whenever Sy ;) > S,k ¢). We need to verify that this
is possible and that this leads to a solution of M3SAT. The following facts will be helpful.
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Fact 1. Forallk,k' = 1,2,3 and ¢,¢' = 1,...,r, if the kth literal in the (th clause and the k'th literal in
the {'th are opposites, then S, ¢y > Sy ¢1)-

Proof. We have that:
S ) = Su(kt) < i) D) [Yetk o) — Yoikoo)]

=8yup) [~1— 1+ (=2+1—1/p) [O(t,K,€') N (G, — {gv,k, O)})|]
<0

O

Fact2. Forall¢,¢' = 1,...,rand k, k' = 1,2, 3 if the kth literal in the (th clause and the k'th literal in
the {'th clause are opposites then it is not the case that both Sy ¢) > Syk.¢) and Sy 1y > Sy 01y

Proof. If, on the contrary, Sy ¢) > Syk,¢) and Sy ¢y > Syx ¢y, we would have that (by fact 1):

St(k,e) = Suk,e) > Stk 0ry 2 Sukr 1) > St(k,0)s
a contradiction. O

Facts 1 and 2 show that above construction above can be performed (i.e. it is never the case that two
opposite literals have the value of one). The following fact demonstrates that it provides a solution to
M3SAT.

Fact3. Forall{ = 1,...,r, there s at least one value k = 1,2, 3 such that Sy ¢) > S,k ¢)-
Proof. Let us first show thatforallk = 1,2,3and £ = 1,..., 7, Uykr) > Uyke1,0)- Indeed,

Upkarn,0) — Usht) < M) Pehg) [Kotkat,o) — Xeko)] + M) Aoy [Yoiko1,0 — Yeko)]

) p—14+(2—1+1/p)[O(tk,€) N (G — {g(v. k,(})|
O 34+ (2—141/y)+(1—2)

<oy lp—1+6r—3+2—1]
= /\t(k,é) [(14 + 357’) + 6r — (16 + 427’)] <0

Now, consider the identity

0=[Uykare — U] + [Uskaz) — Uikor,0] + [Unkano) — Uskon,o)]
+ [Ut(k,z) - Uv(k,é)] + [Ut(k@u) - Uv(k@u)] + [Ut(k@Q,Z) — Uv(k@z,@]

The first three terms on the right hand side are negative, hence,

0 < [Urke) — Uiy + [Uskarr,0) — Unikato)] + [Unikaz,e) — Usikar,o)]

Ao Ay2,0) Mz
<LY rg =S, + A g _s, i 0 Tg s,
0y(1,0) [ (1.6) (1’6)] Su(ke1,0) [ 1(2,0) (2,12)] Bus.0 [ t(3,0) (3,5)]
As such at least for one k = 1, 2, 3 it must be that S, ») > S,(k.¢)- O
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Now, consider a ‘yes” instance of M3SAT. We need to construct Afriat numbers S and ¢ for each
observation that satisfy the the conditions for rationalizability by weak separability (see Theorem 2). Let
us start by constructing a binary relation . For k, k' = 1,2,3and ¢,¢' = 1, ..., rif the k-th literal in
the /th clause and the k’th literal in the ¢'th clause are opposites, we set v(k, ¢) > t(k’,¢'). Further, for
allk =1,2,3and ¢ = 1,.. ., rif the kth literal in the ¢th clause has the value 1, we set t(k, ¢) >~ v(k, {).
These are the only comparisons in >. Observe that > has no cycles and any path in > contains no more
than 4 observations.

Let M; be the set of =-maximal elements of T":

My={acT| Abe T, b~ a}.

For all observations a in M, we set S, = 4. Let M be the set of >-maximal elements in T" — M;. For
alla € Mo, set S, = 3. Next, let M3 be the set of >-maximal elements in T — (M; UM, ) and set S, = 2
for all a € Ms. Finally let My be the set of >=-maximal element in " — (M; U M2 U M3) and set for all
a € My, S, = 1. Itis easy to see that M; U Ma U M3 U My = T, hence all observations are allocated a
value. Observe that when the kth literal in the /th clause equals one, then Sy ¢) > S,k ). Finally, for all
1 :
m , where r is the number of clauses.
We need to proof two things. First we need to verify that all Afriat inequalities hold for every two
observations in the set {t(k, £), v(k, £), t(K', '), v(K', ') }; xr=1 2.3.0.0r=1...., (i-e. condition (ii.1) of The-
orem 2). Second, we need to show that the data set {py, 1/, X, Sw}wer satisfies GARP (condition
(ii.2)). For the first, it is a straightforward but cumbersome exercise to verify every possible combina-
tion of states. Here, we refer to supplement 1 of this appendix. Now, let us verify the second claim.
Consider the direct revealed preference relation RP for the data set {p,, 1/8,; Xy, Sw}wer. We have
following results.

k=1,2,3and{ =1,...,r,setd;; ) = 1 and set §y(x ) =

Fact 4. Forallk = 1,2,3and { = 1,...,r, we have that the observation t(k, () is directly revealed
preferred to the observation v(k ® 1, /) (i.e. (t(k,£),v(k® 1,£)) € RP).

Proof. We have that:

Pe(ko) [Xe(kr) — Kv(kat,e)] + [Sttk,0) — Sviker,0)]

Oi(k.0)
=5 +(1-1/v=2)+2—=1) + [Sqke) — Svkar,0)]
>3-2-3=16442r—5>0

O]

Fact 5. Forallk =1,2,3and{ = 1,...,r, (v(k,0),t(k,£)) € R” if and only if S\.¢) > Six,e) (Which
implies that the kth literal in the (th clause is equal to zero).

Proof. We have that,

1 1
Prii) (o) ~ X)) + 5 [Suk) = Sk = S [Suty = Stk -
This is positive or negative depending on the sign of S,(x ¢) — Sy(k¢)- O

Fact 6. The relation RP contains no comparisons except for the cases mentioned by Facts 4 and 5.

Proof. See supplement 2 of this appendix. d
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Now, assume a violation of GARP. Above Facts show that this implies the following cycle for some
L=1,...,n

(t(1,0),v(2,0)), (v(2,0),t(2,0)), (£(2,£),v(3,¢))
(v(3,2),t(3,2)), (t(3,€),v(1,0)), (v(1,0),t(1,¢)).

Fact 5 shows that in this case S,(1.¢) > Si(1,0)> Sy(2,¢) = Si(2,0) and Sy3.¢) > Sy(3,¢)- This can only be
the case if all literals in the clause ¢ are zero, a contradiction. O

Supplement 1. Case 1: (t(k,¢), t(k', ("))

P p+(1—2)—I—(l—2—l/p)\g—(’)(t,k,é)ﬁO(t,k’,é’)]
ik e =Yik0) = 4o 14 p) (0(1 K 6) 1 (G, O K )

>p—1—6r=14435r—6r>3 > St(k’,l’) — St(k,ﬁ)

Case 2: (v(k, £),v(K', 1))

Sy, 0) Ao (k,t) (Vv ) — Yko)) = Ouiiery [P+ (1 = 2)]
14+ 35r—1
= W >3 2> Sv(k/,é’) - Sv(k,f)

Case 3: (t(k, 0),v(K', "))

p+(1/p)[O(t k1) N {g(v, k', ') }]
Sk, 0) Qe ) Yooy — Vi) = +(1=2)1(Gy — O(t, k, ) N {g(v, K, £'}|
+(2 -1+ 1/]3) |O(t7 kv l) N (gv - {g(V7 klvgl)}”

>p—1=14+35r—-1>3> Sv(k/,g/) — St(k,Z)

Case 4: (v(k,£),t(K', ")) and the kth literal in the /th clause and the k'th literal in the ¢'th clause have
opposite signature. First of all, observe that —1 > S,/ ¢y — S,k ¢)-
Then:

_ pl—1/p—1)+(1-2)
‘Sv(k,ﬁ)qv(k,ﬁ) [Yt(k’,ﬁ’) - YV(k’,K’)] - 8v(k,€) +(1 _9_ 1/p) ‘(gv - {g(v, k, 6)}) N O(t, k’,é’)\
—1—-1-6r

> 31 7r >—12> St(k/7e/) — Sv(k,ﬁ)

Case 5: (v(k, ), t(k’,¢')) and the kth literal in the /th clause and the kth literal in the ¢'th clause do not
have opposite signature.

5 s p+(1-2)

v(k,€) Dv(k,0) [Yt(k’,ﬁ’) - YV(k’,E’)] = Oy(k,0) +(1 . 1/p . 2) ‘(gv o {g(v, k, E)}) N O(t, k/,g/)|
S p—1—-06r 13+29r
T 3+Tr 3 4+7r

>3 2> Syk ey — Sukp)
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Supplement 2. Case 1: (¢(k,¢), t(k', ("))

Pi(k,0) [Xt(k,z) — Xt(k’,ﬁ’)] + [St(u) - S:(k',w)]

Oik.0)
= —3+(3—=2)+ [Syke) — S0
< -16—-42r+1+3<0

Case2: (t(k,0),v(K',0)) with ¢ # 0.

Puko) [Xekr) — Koo + [St(k,e) — Suii,0]

Oik.0)
=—3+B-1D+1-1/9—-2)+2—1) + [Sike) — Svir 0]
< 16-42r+2+1+3<0

Case 3: (t(k, (), v(k,())

1
o) b4 - X, + — S - S,
ko) Xk = Xotko] + g [Siko = Sk

= 5+B-D+0Q-1/y—-1)+

Sty — S,
RO

<-16—42r+2+3<0

Case4: (t(k,0),v(k®2,¢))

1
o) X - X, +— S -5,
ko) X0 = Xutkezo] + 5 Sk — Swsen]

1
=—3+B-D+0-1/p-2)+1+ PN [St(k,e) — Svike2,0)]
t(k,0)

<-16—-42r+2+1+3<0

Case 5: (v(k,0),v(K, 0"))

1
Pu(k,0) [Xv(k,e) - Xv(k’,ﬁ’)] + m [Sv(k,f) - Sv(k/,ef)]

Oy(k,0)
< —11-29r+ 1+ (3+7r)3 <0

=-n+(2-1) [Sutk.0) = Suiire)]
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Case 6: (v(k, £), t(K, ¢")) with £ # €',

1
8v(k,0)

=1-3)+B-2)—9p+2—-1+1/y)+

Pu(k,0) [Xv(u) - Xt(k’,é’)] + [Sv(k,e) - St(k/,e/)]

1
St [Sutk,0) — Stiir ]

)

<—-11-29r+14+3+7)3<0

Case7: (v(k,0),t(k& 1,0))

1
Puk0) [Xoikr) — Xekao1,0)] + W [Svike) — Stkan,0)]

)

=(1-3)+(3-2)—p+(2-1+1/p) +

Sokr — S
kD) [ (k,0) t(kEBl,é)]

< —11-29r+1+ (34713 <0

Case 8: (v(k,0),t(k®2,¢0))

Py(k,0) [Xv(k,e) - Xt(k@2,€)] + [Sv(k,e) — St(k@2,£)]

Oy(k.0)

=(1-2)—p+(2-1+1/n)+

L Suen — Sieno)
8ot v(k,£) — Ot(kep2,0)

<—11-29r+1+(34+7)3<0

Appendix B: proof of Theorem 4

Proof. Assume that the data set D = {8,py, 1; Xy, St }rer satisfies (iv.1)-(iv.3). It is always possible to
rescale the values u; such that, forall t € T, u; < 1. Forall t,v € T, define X;,, = 1 ifand only if u; > u,
(i.e. Xty = 01if uy < u,) . We must show that conditions (cs.2)-(cs.5) hold. By definition, conditions
(cs.2) and (cs.3) are always satisfied. Let §;pix; + St > §;pix, + S,. Then form the contraposition of
(iv.3)we obtain that u, > u; can not occur. As such, u; > u, and thus X;,, = 1. This demonstrates
that condition (cs.4) holds. Next, assume that X;, = 1, which is equivalent to u; > u,. From condition
(iv.2), we then obtain that §,p,x, + S, < &,p,x; + S;. This shows that (cs.5) is also satisfied.
For the reverse, assume that (cs.2)-(cs.5) has a solution. We need to show that D satisfies (iv.2)-(iv.3).
If 6ipsx; + St > 6/pixy + Sy, we have, from (cs.4), that X;, = 1. Condition (cs.3) then requires that
u; > u,. This demonstrates condition (iv.3). Next, if u; > u,, then X;, = 1 (from (cs.2)) and using
condition (cs.5) we see that §,p,x, + S, < §,pyX; + S;. As such, condition (iv.2) is also satisfied.
O

35



Appendix C: proof of Theorems 7 and 8

Proof of Theorem 7. Assume that {p;, q;; X}, y; }ier satisfies the conditions in CS.WS. Then there
exist numbers S; and u;, strict positive numbers §; and binary numbers X; ,, such that:

St =Sy < dva(y; — 7).

U — uy < Xyy,

(Xt,v - 1) < Up — Uy,

Opi(xy — x5) + (St = S) < Xi Ay,

(Xey — DA, < 8py(x; —x7) + (St = S)).

Then, given that x; = x; + & and y; = y; + v;, we obtain that:

St — Sy < Sy — yv) + Svav(vr — vy),

u — uy < Xy,

(Xt,v - 1) < us — uy,

0pi(x: — %) + (St = Sy) < XivAr + 0ipe(ey — &),

(Xt — DA, < 8,pu(x: —Xy) + (St = Sy) + 8vpy(er — &).

From this, we see that max {max;, p,(& — &,); max;, q,(v; — v,)} is a feasible solution for OP.WS,
from which the theorem follows.

Proof of Theorem 8. Assume that {p¢, qs; X, ¥t }reT satisfies the conditions in CS.WS. Then there exist

numbers S; and u;, strict positive numbers §; and binary numbers X; , such that the optimal solution F
of OP.WS satisfies:

St =S < dvav(y:t — yv) + O.F,

u — uy < Xy,

Xey — 1) < up — uy,

Opi(xe — xy) + (St — Sy) < XiAr + O4F,

Xty — DA, < 8,pu(x: — %) + (St = Sy) + &,F.

This implies that for all £ and v:

F> S _qv(Yt_YV)>
v
S;— S
F>pi(x —x,) + t5 . — Xt Ay,
t
S;— S
F > (Xt,v - 1)Av - pv(xt - Xv) - t8 -
v
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As the data set {p;qs, X}, y; }+er is not rationalizable, a similar reasoning as above shows that there must
be a t and v such that at least one of the following inequalities holds

S — S
d - qv(Yt - YV) > qv(vt - Uv)a

oy
S;— S
pt(Xt - Xv) + d S - - Xt,vAt > pt(sv - 81/)7
t

S — S
(Xt,v - 1>Av - pv(Xt - Xv) - t(s k > pv(st - sv)'
v

Therefore, we can conclude that at least

F > min {ntlin qv(vy — vv);ntlinpv(st — sv))} .
v RY

)
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