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Abstract

This paper proposes an analytical formulation of discomfort in mass
transit and discusses its micro-economic properties. The formula we in-
troduce reflects real situations faced by the passengers, it has nice mathe-
matical properties and it is easy to compute. The discomfort formulation
is used to analyze optimal scheduling and pricing of transit in a dynamic
model.
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1 Introduction

The quality of mass transit and in particular crowding has become a severe
problem in several metropolitan areas in developing countries, but also in Eu-
ropean countries. In Paris and London it is hard to get into the metro or local
commuter trains in urban areas at peak times. As a consequence, passengers



may change their departure time, their route or mode in order to avoid exces-
sive congestion. These changes are costly, the transit authority has difficulties
to associate a money value to those costs.

Many metropolitan areas have adopted a second best low price policy to
attract car users into public transportation. This policy can be justified (cf.
Parry and Small, 2009; Proost and Van Dender, 2008), but the necessary ca-
pacity decisions calling upon public revenues have not always been adopted and
this resulted in severe congestion in mass transit. In this paper, we focus on the
characterization of congestion in mass transit.

Note that there are very few studies of congestion in mass transit while
there are many studies of congestion in private transportation. This may be
understood in the US where the use of public transport is typically low except
in some cities like New York and Boston. But this is more difficult to understand
for European cities where the fraction of commuters can exceed 50% in the peak
period.

There is a long tradition in dealing with road congestion. The so-called
BPR formula - Bureau of Public Roads - is now the standard in the literature.
But the micro-economic theory of mass transit has not dealt frequently with
crowding and riding comfort. There are only a few exceptions in the literature.
Among those let us mention the pioneering contribution of Kraus (1991), where
a distinction is made between the value of time for standing and for seated
passengers. Kraus and Yoshida (2002) focus on the congestion on the rail plat-
form where passengers may have to wait for several trains before they can enter.
Several papers have integrated congestion in public transport in a multi-modal
model but treat this important issue in a simplified way. Huang (2000) has com-
fort costs linearly increasing in the number of users and Rouwendal and Verhoef
(2004) have crowding as an increasing function of occupancy ratio. Many em-
pirical studies confirmed the importance of discomfort conditions in rail (see
Wardman and Whelan (2011)). Vuchic (2005), provides a major contribution
to the recent theory of transit but does not explicitly deal with crowding in
urban transit. Jara-Diaz and Gschwender (2005) offers an informal discussion
of crowding. Initial papers dealing with rail (and bus) transport were mainly
concerned by the optimal service frequency and vehicle capacity (cf. Mohring,
1972; Jansson, 1980; Rietveld et al., 2001). An approach of congestion in public
transportation based on multi-prize contests, has been proposed recently by de
Palma and Soumyanetra (2012).

The value of time (VOT) in mass transit depends on riding conditions. There
are mainly three different situations a passenger may face:

e A seat is available, and in that case the value of time can be assumed to
be independent of the number of passengers in the vehicle.

e The passenger has to stand but the vehicle is not crowded. In that case
the VOT will be higher but again constant.

e The passenger has to stand and there are too many passengers in the
vehicle. In that case the VOT, or the riding conditions, would depend on



the number of passengers.

Similar situations were considered in Lam et al. (1999), where they distinguish
between three discrete situations in their empirical analysis. The development
of tractable micro-economic theory that includes riding comfort and crowding
in mass transit could benefit from a mathematical expression reflecting these
alternative comfort situations. Our paper deals only with the stylized case of a
homogeneous population that wants to make a fixed number of trips between an
origin and a destination but can be generalized to the case of variable demand for
trips, to the case of a network and to the case of a heterogeneous population. It
offers also new options to plan and better optimize the capacity of mass transit.
To the best of our knowledge, public transportation congestion is not modeled
in commercial software which describes public and private transportation. The
functional form we propose may help to remedy this situation. It is simple,
tractable and can be explained intuitively.

In the next section we propose the discomfort function and analyze its prop-
erties. In Section 3, we use our formulation to analyze the properties of user
equilibrium and optimal scheduling and pricing in a dynamic mass transit model
for the case of a uniform desired arrival time. In Section 4, the discomfort for-
mulation is used to analyze the scheduling in the case of a randomly distributed
desired arrival time. In Section 5, we discuss possible generalizations.

2 Defining discomfort functions in mass transit

Time cost in public transit depends on riding conditions. The most comfortable
situation is when a passenger has a seat. Not having a seat is not enjoyable but
acceptable when there is no crowding and the trip is not too long. Discomfort
becomes particularly important when too many passengers have to stand.

Most important notation and assumed numerical values are provided in Ta-
ble 1. Let n® denote the number of seats in the vehicle and let n* denote the
standing capacity. The standing capacity is sometimes defined by the manu-
facturer of the bus or by the regulating authority. But it is often exceeded at
peak times. Vuchic (2005) distinguishes between five situations that range from
“independent standing, easy circulation” when passenger density is less than
one by one meter square to “crashes loads, possible injuries forced movements”
when there are 6.7 passengers per meter square (cf. Vuchic, 2005, Table 1.2,
page 12). Of course these standards vary when some passengers are carrying
some luggages or strollers. We assume that the standing capacity still allows
passengers to travel in comfortable conditions. What matters here is not how
it is defined but that the discomfort of standing is increasing with the number
of passengers. So, the total seating and comfortable standing capacity of the
vehicle is n® + n®. We define user costs for a given standard trip that takes a
given time. The user cost of the n'" passenger, is given by

Cln) = {ao s 1)

a1 +becn=nT=n") i g s s,
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Figure 1: In-vehicle average cost for the passengers (based on values in Table 1).

where b and c¢ are positive parameters that reflect how crowding impacts time
cost. The user cost for those who can sit is «g. The user cost for the passenger
that have to stand is given by the second line in (1). It is equal to a1, where
ap < ai, unless n > n® + n® (the vehicle is crowded) and then it increases
strongly. The total cost corresponding to (1) is

nag ifn<n®

nfag+ (ar +bem ")) (n—n®) if n >t

TC(n) = { (2)

The average cost is AC(n) = TC(n)/n, and the marginal social cost is obtained
by differentiation of (2) with respect to n, i.e. SC(n) = dT'C(n)/dn, except at
point n = n® where it is not defined. These functions are illustrated on Figure 1.
Notice that both C(n) and SC(n) are discontinuous at point n®, and defined
using a conditional statement. In practice a continuous formulation is generally
preferred, whenever possible. In Appendix A, we discuss possible issues on how
to approximate Eq. 1 with a smooth function.!

For n < n®+n” and a positive value of parameter ¢ the term with exponential
is very small and can be neglected. As the number of passengers increases and
becomes higher than the “capacity” of the vehicle (n® + n*), crowding increases
and this is captured in the exponential term.

If there are less than n® passengers then they all have a seat and the marginal
passenger contributes to total travel cost by «q. If the number of passengers
is between n® and n*, the marginal social cost is almost constant and equal to
a1. For more than n” passengers the marginal social cost increases reflecting
crowding and the difficulty to get into the vehicle. Notice that user cost is not
the same for all passengers: those who have a seat have lower travel cost.

!Instead of the term exp(c (n —n®—n?)) in Eq. 1 one could use exp(c max(n —n®—nZ,0)).
Appendix B shows that both formulations lead to similar impacts.



Parameter Comment Tllustrative value
ap VOT with seat 6 ($/hour)
a; VOT without seat 9 ($/hour)
Early arrival penalty 5 ($/hour)
Late arrival penalty 12 ($/hour)
ns Number of seats 20 (seat)

n” Standing capacity (legal) 30 (passenger)
n® +n” Vehicle capacity (legal) 50 (passenger)
b, c Discomfort parameters (0.3, 0.3)

t; Departure time of train 4 -
T Travel time 0.25 (hour)

Table 1: Parameter values.

3 User equilibrium, scheduling and optimal pric-
ing with identical desired arrival time

In this section we explore optimal scheduling and pricing in a simple dynamic
model where some users want to travel via mass transit from one origin to a
given destination. We study first the simpler case of identical desired arrival
times.

The objective is to illustrate how crowding in rail or bus system forms in
peak hours. On the side of passengers, we assume a group of N individuals who
have the same desired arrival time window (¢,), and who incur a schedule delay
cost whenever they arrive too early (before time t) or too late (after time ?) at
their destination. Let ¢ denote the actual arrival time of a given passenger. We
consider the following penalty function:

t-—t)p ift<t
f® =<0 ift<t<t (3)
(t—t)y ift>t,
where 5 and v are the schedule delay parameters, respectively, for early and
late arrival. It is usually assumed that S < +, i.e. the penalty of an early
arrival is lower than the penalty of a late arrival. When the travel speed in
the rail system is constant, we can assume without loss of generality that the
arrival times are also the departure times of the train. As in Kraus and Yoshida
(2002), we assume successive departures of the train at times ¢; = ¢+ ¢, where



i =...,—2,—-1,0,1,2,..., and 0 is the technical time interval between two
departures. Denote by n; the number of passengers that select the train at
time t;. We take a simple configuration where all passengers take the train in
the same (single) station and have the same destination. We discuss the user
equilibrium, the system optimum and the optimal pricing case.

3.1 User equilibrium

At a user equilibrium, each passenger’s objective is to minimize his own travel
cost plus schedule delay cost, called generalized user cost. If there is no crowding
(unlimited capacity) then the best solution for all passengers is to take a train
that departs in time interval (£,7). With crowding, each passenger will trade off
the schedule delay cost with discomfort cost to select the best departure time.
At equilibrium no passenger will have an incentive to change his departure time.
The individuals will not take into account their external costs, so that the user
equilibrium may differ from the system optimum. The total in-vehicle cost in
train ¢ is TC(n;), and the average cost is TC(n;)/n;, where n; the loading of
train 4. Taking into account the schedule delay cost, the generalized user cost in
train i is C'(n;)+ f(t:). At equilibrium no passenger has an incentive to switch to
another train and this obtains when generalized user costs are equalized among
all trains. Formally, we have

C(ni)+ f(t;) =7,

where € is the generalized user cost in all the trains.?

3.2 System optimum

The optimum distribution of users over trains minimizes total transport cost,
ie. Y. (T'C(ni)+ f(ti)n;), where n; represents the number of users of the
train leaving at time ¢,. Travel cost considered here is based on the MAS cost
function given in (1) that represents the discomfort costs as a function of arrival
order. Total number of users is fixed and we have Zle n; = N. The optimal
occupancy rate in each train is determined so that total costs are minimized.
We can formulate this problem as an unconstrained minimization program if
we substitute for n;, = Zf;ll n;. If the optimum solution is an interior solution
where n; > n®, we can use first-order condition for a given train ¢ (where
i=1,...,k—1), that is

SC(n;) + f(t:) = SC(ng) + f(tk).

2If there are k trains, s = 1...k, we have a system of k+1 nonlinear equations: k equations,
one for each train stating C(n;) + f(¢;) = ¢, plus the condition that each user chooses only
one train ny + --- 4+ nip = N. The unknowns are the train loadings n; and the generalized
travel cost ¢. To find a solution to this problem, it suffices to solve the first k& equations by
considering ¢ as a parameter, and then find the value of ¢ that yields the condition on the
total number of users. The solution is clearly unique.




This condition implies that, at the optimum, the marginal cost of a new pas-
senger in-vehicle 7 is equal to the marginal social gain obtained from removing
the same user from vehicle k. The optimality conditions form a set of n — 1
non-linear equations that can be solved numerically. We illustrate the user
equilibrium and the system optimum in Table 2 using again the parameters of
Table 1. Remember that in-vehicle travel cost is C'(n) - T, where T is the travel
time, here equal to 15 minutes. In the same table we also illustrate the solution
where the users are distributed uniformly over the trains (one third of the total
population in each train).

The difference between the user equilibrium and the system optimum is the
suboptimal allocation of users over vehicles. The system optimum is to load
the trains arriving too early or on time more or less like the trains arriving too
late and the occupancy rate is not too different from uniform (compare first
and third lines in Table 2). There are two forces in play: discomfort in the
vehicle and schedule delay cost. The optimal solution reaches the best trade off
between these two forces. The reduction of schedule delay cost made possible
by loading more passengers on the first trains is limited by the crowding it will
induce. Since early delay cost is smaller than late delay cost in the example of
Table 3 (first line) there are more passengers in the first train than in the third
one.

Consider now the user equilibrium. Users will make efforts to improve their
comfort and will try to minimize the user cost also by picking the wrong train.
They disregard the extra in-vehicle comfort costs they generate for the other
users. This leads to too full trains that arrive too early and just in time. In
the example of Table 2 (line 2) there is more crowding in the first and second
train and much less passengers in the third one. This suboptimal distribution
of passengers over the trains leads to a much higher total travel cost.

Comparing the uniform distribution of passengers over trains (third line)
with the system optimum tells us that, in our example, the inefficient allocation
over trains is less important in terms of efficiency than the efforts of the users
to improve their in-vehicle comfort. In this case, the travel cost in equilibrium
is higher by more than 35% than the cost obtained with the optimal loadings
of the trains. The travel cost in the uniform distribution is higher only by less
than 3%.

Notice however that the uniform distribution will not be as good as in this
illustration if the total population were smaller and capacity not fully used. In
that case it is natural to lower cost by putting more passengers in the middle
train since schedule delay cost is reduced but crowding is not increased. A
similar point is discussed below in Section 4.2 below.?

3.3 Optimal pricing

The source of inefficiency is the inefficient allocation of passengers over the
different trains. This requires a differentiation of the charges for the different

3 The interested reader may check the Mathematica notebook accompanying this paper
that we make available from http://perso.univ-1ille3.fr/"mkilani/codes/



Train loadings Average costs

1 2 3 C SD Total

—30 mins  on time  +30 mins ($/day /passenger)
System Optimum 53.5 55.1 414 2.08 1.70 3.78
User Equilibrium 61.5 63.3 25.3 3.75 1.36 5.11
Uniform 50.0 50.0 50.0 1.99 1.89 3.88

Table 2: Train loading and user costs under three alternatives (parameters from
Table 1). Abbreviations: “C” stands for crowding, and “SD” for schedule delay.
Travel time is 15 minutes.

trains so that the system optimum condition is satisfied
C(n;) + f(t;) = Clng) + f(t), i=1...,k—1

In order to internalize the crowding externalities we need to charge more the
trains with more crowding or alternatively those trains with the best arrival
times.

4 User equilibrium, scheduling and optimal pric-
ing with randomly distributed desired arrival
times

We turn now to the more general case where passengers differ in their desired
arrival time. We consider a uniform distribution as it allows to derive analytical
expressions. We start by studying the passenger choice facing two departure
times t4 and tp both located in time interval (0,1) and t4 < tp. Next we
optimize the departure times for multiple trains, and discuss pricing alternatives.
In order to simplify mathematical expressions, we assume that the travel time
is set equal to one.

4.1 User equilibrium and system optimum with 2 trains

Consider the choice between two trains. Train A leaves at t4 € (0, 1), while train
B leaves at tg where t4 < tp < 1. Assume that travel times are normalized to
zero (constant travel speed), and that the desired arrival times are continuously
distributed in (0,1), with density p. We first compute the equilibrium average
user costs for any t4,tp. In a second step we optimize the departure times. For



an equilibrium it is necessary that the last entrant is indifferent between the
two trains. Denote the departure time of the user indifferent between the two
trains A and B by t*. The most interesting case is where t* € (ta,tp). The
number of users of train A is pt*. The generalized cost of user t* is:

C§ = C(na)+ Bt —ta)
= C(pt")+p(t" —ta).

Similarly, the generalized cost for using train B, is

Cg = C(ng)+vy(ts—1t")
= Clp(I-t")+~(tp—t7).

The indifference condition for a user equilibrium reads:

Ct)+B@{" —ta) = Clp(l—1t7))+7 (s —1") (4)
or, (BNt = ytp+BtatCp(l—1t7))—C(pt").

The form of C(n) precludes a general analytical solution but we can inspect
its properties numerically, as illustrated in Figure 2(a). The case of a small
small enough p (when all passengers have a seat and incur the same travel cost)
can be computed explicitly, since then C (pt*) = ag and C (p(1 —t*)) — ap.
Therefore, in this case, equation (4) reduces to:

B(t*—ta) = ~(tp—1t")
o ytp + Bta
B+7)

For v > (3, we have t* < 1/2. The reason is that transit users prefer to be one
minute too early rather than one minute too late. v > f is the usual assumption
and is empirically sound. This is the solution when congestion (crowding) does
not matter (p = 0). As the density parameter p increases there will be more
and more passengers in train B. We check from (4) that

dna <0, if Yytp + Bta

@ U e 0

and at the limit we have lim,_,; = 0.5, where #* denotes desired arrival time
with crowding for the passenger indifferent between train A and train B. As
expected, the effect of crowding is to equalize the number of users in each train.
This statement also means that an increase of total demand for mass transit
will decrease the number of users of train A if train A transports already more
than 50% of total demand.

In Figure 2(a) the two curves correspond to the number of users in train A,
under equilibrium and optimal regimes. When, the number of users is small (by
comparison to the vehicle capacity) external costs are small and the equilibrium
outcome is optimal. As the number of users increases, the comfort decreases,



Share of passengers in train A
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(a) Equilibrium and optimum train loadings in Train A. (b) Optimum pricing of train A.

Figure 2: Comparison of optimum and equilibrium when ¢4 = 0.2 and ¢t = 0.8
and other parameters from Table 1.

still, train A remains overused since each user considers his own cost, not the
external crowding cost imposed on the other passengers. As the number of
users continues to increase, crowding becomes the main concern and passengers
are almost equally split between the two trains, both at equilibrium and at the
optimum. This figure, however, hides a particular detail. From the fact that
equilibrium loadings converge to optimum, one may conclude that pricing is no
longer required in this case, or more precisely that optimum pricing of train A
is pa — 0, as p gets larger. This is a false conclusion. Indeed, optimum pricing
is increasing in p as shown in Figure 2(b). The reason is that as the number of
passengers increases, crowding increases strongly. Even if the difference in the
two quantities is small, it still induces an increasing differential in cost. At the
same time, one must be careful in the practical implication of this “theoretical
result”. Indeed, in practice the number of passengers is integer, so when two
quantities are close it means that they are equal, and indeed no pricing is needed
to adjust quantities. In the next section we study optimal departure times and
show that with optimized departure times and uniformly distributed arrival
times, price differentiation over time is again not needed.

4.2 Optimal departure times for k trains

For an early study of optimal time tables see de Palma and Lindsey (2001).
We treat the case of a single train. Total number of users is fixed and so is
the crowding discomfort and it plays no role in the optimization computation.
The total schedule delay cost is: f(fA y(ta —t)g(t)dt + ftlA B(t —ta)g(t)dt. The
minimum cost is obtained at departure time ¢4 that satisfies

ﬁ . Nearly =~- Nlate’ (5)
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where Nearly = ftlA g(t)dt, where N'@¢ = ['* g(t)dt, denotes the number of
passengers that arrive after their desired arrival time. When ¢(¢) is uniform
over (0,1), we get a simple solution: vt4 = 8 (1 —t4). Solving this equation
for t4 we find that the train should depart at time 8/(8 + 7). With k trains,
the same optimal solution applies in each subinterval. The first order condition

for a maximum gives the optimal departure time ¢; (for i = 1...k), that is

unif 1 ﬂ .
=1 |-, ©)
The main result is that when users only differ in their preferred arrival time
and the distribution of preferred arrival times is uniform, crowding does not
modify the optimal departure times. Notice however that when the distribution
of desired arrival times is not uniform, this result no longer holds.

For the sake of comparison, consider this alternative nonuniform distribution
of desired arrival times.

4pt if 0<t<1/2,
ht)=<4p(1—1t) if 1/2<t<1, (7)
0 elsewhere.

Notice that fol g(t)dt = p, so we have the same number of users as in the case of
a uniform distribution. With distribution h(t), most users have desired arrival
time near 1/2. With only one train, Eq. (5) still applies, since there will be p
passengers in the train independently of its departure time. Using this condition
and the first order condition leads to

3
=
LB+ /B2y -B)

and we check that for § <, T8 € (0,1/2).

With two trains and more, we can no longer use condition (5). Instead, total
user cost, should be minimized with respect to departure times of the two trains.
Let SD(ta,tp) denote total schedule delay cost for all users when the departure
times of the two trains are at t4 and t¢p, respectively. The optimal departure
times minimize total cost TC(na) + TC(ng) + SD(ta,tp), where ns and np
denote the number of passengers in the first and second train, respectively.
Notice that these train loadings depend on departure times t4 and ¢z. Indeed,
for any given t4 and tp one has to find the user who is indifferent between the
two trains in order to compute n4 and ng. A solution to this problem cannot
be derived analytically, given the nonlinear expression of C(n), but may be
solved using a numerical procedure. For a numerical illustration,* computing the
solution with distribution h(t) defined above and parameter values in Table 1,
we find the solution values given in the second column in Table 3. Users are
almost split equally between the two trains ( = .499) and we check, as expected,
that ¢i0if < ¢h < ¢h < ¢ynif

4The computational details are given in the Mathematica notebook. See footnote 3.
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Optimizing over t4 and tp with

same fares (pa = pB) optimized p4 and pg =0
Average cost 8.68 7.61
ta 0.276 0.256
tp 0.587 0.558
t 0.499 0.472
% arriving late 31.38 29
pA - 1.439

Table 3: Optimizing over departure times and fares.

4.3 Optimal pricing for k trains

We know that optimal pricing depends in principle on the departure times as
they determine the levels of congestion and the external congestion costs. In a
few cases, prices do not matter. When there is only one train, congestion level is
fixed and prices do not matter as long as total demand is fixed. More generally,
for any set of departure times, optimal prices are always equal to the marginal
external congestion costs. When total demand is fixed only the differences in
marginal external congestion costs of the different trains matters. Also, with
a uniform distribution of desired arrival times there is no need for pricing to
decentralize the optimum. Indeed, in this case, departure times are given by
Eq. 6 and there are p/n passengers in each train. One can check that users with
desired arrival time at i/n are indifferent between train ¢ — 1 and train i. So,
the private decision leads to the optimal choice.

Then, to discuss the case of nonuniform distribution of arrival times, we
consider the case of two trains. Desired departure times distribution is g(t)
over (0,1). Total passenger cost has two parts: schedule delay cost and in-
vehicle cost which depend on the loadings. Let N4 and Np denote passengers
in trains A and B, respectively. Let the fares® in the two trains be pa and pg,

respectively, and let the train loadings be determined by N4 = pf(;5 g(t)dt and

Np = pj%l g(t)dt, where t € (0,1). The social planner can choose ¢ by setting
fares p4 and pp conveniently. Given #, the departure times of the two trains

can be determined on the basis of condition 5, respectively applied on (0,t¢) and

5When demand is not elastic, only one train need to be priced, with a value that may be
positive or negative. So in this discussion one may assume that p4 = 0 and only consider
fares on train B.

12



(t,1). Now let
t* = arg max gﬁ(f),
t

where SND(f) is total schedule delay cost for all passengers (in the two trains)
where fares are set to make passenger ¢ indifferent between the two trains and
where the departure times are based on condition 5 as explained above. So, ¢*
indicates the train loadings that yield the minimum total schedule delay cost.
Fares pa and pp obtained under this solution would be optimal fares when
crowding in the vehicles is not considered.

Crowding is minimized when all the passengers are equally split between the
two trains. If we start from the situation where only schedule delay cost matters
and increase progressively the importance of crowding, the marginal passenger
moves from # to the median passenger # (we have f(f g(t)dt = f; g(t)dt =1/2).
A numerical illustration is given in the last column of Table 3. Comparing
with the situation where the optimization of prices is not possible we see that
departures times are slightly advanced. There are more passengers in the second
train, and this allows more passengers to arrive earlier. Average user cost is (of
course) smaller when prices are optimized.®

5 Conclusion

This paper has developed an analytical expression for the discomfort in mass
transit. Our expression distinguishes between passengers with a seat and those
who have to stand. For those who have to stand, the discomfort will depend
on the number of standing passengers compared to the capacity of the vehicle.
This formulation helps to derive optimal timetables and optimal user charges.
The model presented in this paper is very simple and many improvements can
be envisaged. In particular, we have omitted the waiting time and the fact
that when a train arrives, heavily congestion, only a fraction of passengers
are able to enter. The remaining passengers have to wait for the next train,
incurring an extra waiting time. For empirical applications, the parameters
of the model should be estimated in order to derive a congestion function for
public transportation, comparable to the BPR function widely used for private
transportation.
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A Approximation of the MAS formula

A drawback of the MAS formula discussed in this paper is that it is not contin-
uous at point n°. Also, the conditional statement in definition (1) may lead to a
complications in the practical implementation of the MAS formula. Whenever
possible a smooth function is preferred. A continuous alternative may be ob-
tained by replacing the original function by a good approximation. We discuss
here how one can construct a function ¢ that approximates the user cost given
in Eq. (1).

There are several approximation procedures and techniques available. These
are generally simple to apply to unidimensional functions. We use two standard
techniques, a simple Chebyshev interpolating polynomials and a sophisticated
implementation in Mathematica.” Both of these solutions are illustrated on
Figure 3.

For Chebyshev polynomials, we have used the standard procedure as given
in Algorithm 6.2 in Judd (1998). Let us denote this approximation function by
1¢. The result shown in Fig. 3(a) with m = 150 (number of interpolation points)
and n = 50 (polynomial degrees). The approximation quality remains poor, due
mainly to the discontinuity at n°. Increasing further the number of interpolation
points does not improve the quality of the approximation. Increasing the degree
of the interpolating algorithm leads to an instability in the output function and
makes the computation much more complicate. The quality of this approxima-
tion is not good, and there are two problems. For some values of n, particularly
around n®, the values it generates aren’t close to those of C'(n). This can be
confirmed by measuring the error approximation fOGO |C(n) — °(n)|dn. The
second problem is that an equation of the form ¢°(n) = A, where A is positive
number may have more than one solution (depending on the values of A). This
occurs because the approximation here does not preserve the monotonicity of
C(n). Definitely ¢° is not a good choice for the approximation of C(n).

The sophisticated approximation is denoted !. Fig. 3(b) shows both C and
Y'. In this case we obtain a better approximation. In particular, The error
between the approximation and the original function is small. It is clear that
¥*(n) fits the original function C(n) much better than ¢°. This observation
may be confirmed by computing the error measure fOGO |C(n) —¥*(n)|dn.

"The latter uses divided differences to construct Lagrange or Hermite interpolating poly-
nomials.
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(a) Chebyshev polynomials. (b) 9(n) formulation or interpolation.

Figure 3: Approximation of user cost function.

The explicit formula is actually a quiet long expression that can be handled
by computers but not really useful for direct analytical usage. We can, however,
provide a relatively simple formula that is comparable with respect to the error
generated to the second approximation provided above. Indeed using the same
notation as above, the function given by

a1 — Qo +bet (n—n®—n%) (8)

MAS _
1/1 (n) =ap + 14+ ea(n®—n)

is a good approximation for the user cost as defined by Eq. 1. It is comparable
to the function ¢®(n) defined above but has the merit of being very simple and
avoids all conditional expressions. Apart, the problem of multiple solutions (as
discussed for the case of 1)*) it could be used for practical purposes.

B Comparison with max function

The formulation in Eq. 1 uses the exponential form to take into account the
fact that loadings below n° + n” does not generate crowding. One may won-
der whether we can replace the term b exp(c(n — n® — n%)) by the simpler
b exp(c max(n —n® —n®),0). Figure 4 shows that both expressions give similar
curves for user cost and average cost (the dashed curve is the one using the max
function).
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Figure 4: Comparison with initial formulation (bold curves) and max formula-
tion (dashed curves) .
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