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Abstra
t

This paper proposes an analyti
al formulation of dis
omfort in mass

transit and dis
usses its mi
ro-e
onomi
 properties. The formula we in-

trodu
e re�e
ts real situations fa
ed by the passengers, it has ni
e mathe-

mati
al properties and it is easy to 
ompute. The dis
omfort formulation

is used to analyze optimal s
heduling and pri
ing of transit in a dynami


model.

Keywords: publi
 transport, 
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1 Introdu
tion

The quality of mass transit and in parti
ular 
rowding has be
ome a severe

problem in several metropolitan areas in developing 
ountries, but also in Eu-

ropean 
ountries. In Paris and London it is hard to get into the metro or lo
al


ommuter trains in urban areas at peak times. As a 
onsequen
e, passengers

1



may 
hange their departure time, their route or mode in order to avoid ex
es-

sive 
ongestion. These 
hanges are 
ostly, the transit authority has di�
ulties

to asso
iate a money value to those 
osts.

Many metropolitan areas have adopted a se
ond best low pri
e poli
y to

attra
t 
ar users into publi
 transportation. This poli
y 
an be justi�ed (
f.

Parry and Small, 2009; Proost and Van Dender, 2008), but the ne
essary 
a-

pa
ity de
isions 
alling upon publi
 revenues have not always been adopted and

this resulted in severe 
ongestion in mass transit. In this paper, we fo
us on the


hara
terization of 
ongestion in mass transit.

Note that there are very few studies of 
ongestion in mass transit while

there are many studies of 
ongestion in private transportation. This may be

understood in the US where the use of publi
 transport is typi
ally low ex
ept

in some 
ities like New York and Boston. But this is more di�
ult to understand

for European 
ities where the fra
tion of 
ommuters 
an ex
eed 50% in the peak

period.

There is a long tradition in dealing with road 
ongestion. The so-
alled

BPR formula - Bureau of Publi
 Roads - is now the standard in the literature.

But the mi
ro-e
onomi
 theory of mass transit has not dealt frequently with


rowding and riding 
omfort. There are only a few ex
eptions in the literature.

Among those let us mention the pioneering 
ontribution of Kraus (1991), where

a distin
tion is made between the value of time for standing and for seated

passengers. Kraus and Yoshida (2002) fo
us on the 
ongestion on the rail plat-

form where passengers may have to wait for several trains before they 
an enter.

Several papers have integrated 
ongestion in publi
 transport in a multi-modal

model but treat this important issue in a simpli�ed way. Huang (2000) has 
om-

fort 
osts linearly in
reasing in the number of users and Rouwendal and Verhoef

(2004) have 
rowding as an in
reasing fun
tion of o

upan
y ratio. Many em-

piri
al studies 
on�rmed the importan
e of dis
omfort 
onditions in rail (see

Wardman and Whelan (2011)). Vu
hi
 (2005), provides a major 
ontribution

to the re
ent theory of transit but does not expli
itly deal with 
rowding in

urban transit. Jara-Díaz and Gs
hwender (2005) o�ers an informal dis
ussion

of 
rowding. Initial papers dealing with rail (and bus) transport were mainly


on
erned by the optimal servi
e frequen
y and vehi
le 
apa
ity (
f. Mohring,

1972; Jansson, 1980; Rietveld et al., 2001). An approa
h of 
ongestion in publi


transportation based on multi-prize 
ontests, has been proposed re
ently by de

Palma and Soumyanetra (2012).

The value of time (VOT) in mass transit depends on riding 
onditions. There

are mainly three di�erent situations a passenger may fa
e:

• A seat is available, and in that 
ase the value of time 
an be assumed to

be independent of the number of passengers in the vehi
le.

• The passenger has to stand but the vehi
le is not 
rowded. In that 
ase

the VOT will be higher but again 
onstant.

• The passenger has to stand and there are too many passengers in the

vehi
le. In that 
ase the VOT, or the riding 
onditions, would depend on
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the number of passengers.

Similar situations were 
onsidered in Lam et al. (1999), where they distinguish

between three dis
rete situations in their empiri
al analysis. The development

of tra
table mi
ro-e
onomi
 theory that in
ludes riding 
omfort and 
rowding

in mass transit 
ould bene�t from a mathemati
al expression re�e
ting these

alternative 
omfort situations. Our paper deals only with the stylized 
ase of a

homogeneous population that wants to make a �xed number of trips between an

origin and a destination but 
an be generalized to the 
ase of variable demand for

trips, to the 
ase of a network and to the 
ase of a heterogeneous population. It

o�ers also new options to plan and better optimize the 
apa
ity of mass transit.

To the best of our knowledge, publi
 transportation 
ongestion is not modeled

in 
ommer
ial software whi
h des
ribes publi
 and private transportation. The

fun
tional form we propose may help to remedy this situation. It is simple,

tra
table and 
an be explained intuitively.

In the next se
tion we propose the dis
omfort fun
tion and analyze its prop-

erties. In Se
tion 3, we use our formulation to analyze the properties of user

equilibrium and optimal s
heduling and pri
ing in a dynami
 mass transit model

for the 
ase of a uniform desired arrival time. In Se
tion 4, the dis
omfort for-

mulation is used to analyze the s
heduling in the 
ase of a randomly distributed

desired arrival time. In Se
tion 5, we dis
uss possible generalizations.

2 De�ning dis
omfort fun
tions in mass transit

Time 
ost in publi
 transit depends on riding 
onditions. The most 
omfortable

situation is when a passenger has a seat. Not having a seat is not enjoyable but

a

eptable when there is no 
rowding and the trip is not too long. Dis
omfort

be
omes parti
ularly important when too many passengers have to stand.

Most important notation and assumed numeri
al values are provided in Ta-

ble 1. Let ns
denote the number of seats in the vehi
le and let nx

denote the

standing 
apa
ity. The standing 
apa
ity is sometimes de�ned by the manu-

fa
turer of the bus or by the regulating authority. But it is often ex
eeded at

peak times. Vu
hi
 (2005) distinguishes between �ve situations that range from

�independent standing, easy 
ir
ulation� when passenger density is less than

one by one meter square to �
rashes loads, possible injuries for
ed movements�

when there are 6.7 passengers per meter square (
f. Vu
hi
, 2005, Table 1.2,

page 12). Of 
ourse these standards vary when some passengers are 
arrying

some luggages or strollers. We assume that the standing 
apa
ity still allows

passengers to travel in 
omfortable 
onditions. What matters here is not how

it is de�ned but that the dis
omfort of standing is in
reasing with the number

of passengers. So, the total seating and 
omfortable standing 
apa
ity of the

vehi
le is ns + nx
. We de�ne user 
osts for a given standard trip that takes a

given time. The user 
ost of the nth passenger, is given by

C(n) =

{
α0 if n ≤ ns

α1 + b ec(n−ns
−nx)

if n > ns,
(1)
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Figure 1: In-vehi
le average 
ost for the passengers (based on values in Table 1).

where b and c are positive parameters that re�e
t how 
rowding impa
ts time


ost. The user 
ost for those who 
an sit is α0. The user 
ost for the passenger

that have to stand is given by the se
ond line in (1). It is equal to α1, where

α0 < α1, unless n > nx + ns
(the vehi
le is 
rowded) and then it in
reases

strongly. The total 
ost 
orresponding to (1) is

TC(n) =

{
nα0 if n ≤ ns

ns α0 +
(
α1 + b ec(n−ns

−nx)
)
(n− ns) if n > ns.

(2)

The average 
ost is AC(n) = TC(n)/n, and the marginal so
ial 
ost is obtained

by di�erentiation of (2) with respe
t to n, i.e. SC(n) = d TC(n)/d n, ex
ept at
point n = ns

where it is not de�ned. These fun
tions are illustrated on Figure 1.

Noti
e that both C(n) and SC(n) are dis
ontinuous at point ns
, and de�ned

using a 
onditional statement. In pra
ti
e a 
ontinuous formulation is generally

preferred, whenever possible. In Appendix A, we dis
uss possible issues on how

to approximate Eq. 1 with a smooth fun
tion.

1

For n < ns+nx
and a positive value of parameter c the term with exponential

is very small and 
an be negle
ted. As the number of passengers in
reases and

be
omes higher than the �
apa
ity� of the vehi
le (ns + nx
), 
rowding in
reases

and this is 
aptured in the exponential term.

If there are less than ns
passengers then they all have a seat and the marginal

passenger 
ontributes to total travel 
ost by α0. If the number of passengers

is between ns
and nx

, the marginal so
ial 
ost is almost 
onstant and equal to

α1. For more than nx
passengers the marginal so
ial 
ost in
reases re�e
ting


rowding and the di�
ulty to get into the vehi
le. Noti
e that user 
ost is not

the same for all passengers: those who have a seat have lower travel 
ost.

1

Instead of the term exp(c (n−ns
−nx)) in Eq. 1 one 
ould use exp(c max(n−ns

−nx, 0)).
Appendix B shows that both formulations lead to similar impa
ts.

4



Parameter Comment Illustrative value

α0 VOT with seat 6 ($/hour)

α1 VOT without seat 9 ($/hour)

β Early arrival penalty 5 ($/hour)

γ Late arrival penalty 12 ($/hour)

ns
Number of seats 20 (seat)

nx
Standing 
apa
ity (legal) 30 (passenger)

ns + nx
Vehi
le 
apa
ity (legal) 50 (passenger)

b, c Dis
omfort parameters (0.3, 0.3)

ti Departure time of train i �

T Travel time 0.25 (hour)

Table 1: Parameter values.

3 User equilibrium, s
heduling and optimal pri
-

ing with identi
al desired arrival time

In this se
tion we explore optimal s
heduling and pri
ing in a simple dynami


model where some users want to travel via mass transit from one origin to a

given destination. We study �rst the simpler 
ase of identi
al desired arrival

times.

The obje
tive is to illustrate how 
rowding in rail or bus system forms in

peak hours. On the side of passengers, we assume a group of N individuals who

have the same desired arrival time window (t, t), and who in
ur a s
hedule delay


ost whenever they arrive too early (before time t) or too late (after time t) at
their destination. Let t denote the a
tual arrival time of a given passenger. We


onsider the following penalty fun
tion:

f(t) =





(t− t)β if t < t

0 if t < t < t

(t− t) γ if t > t,

(3)

where β and γ are the s
hedule delay parameters, respe
tively, for early and

late arrival. It is usually assumed that β < γ, i.e. the penalty of an early

arrival is lower than the penalty of a late arrival. When the travel speed in

the rail system is 
onstant, we 
an assume without loss of generality that the

arrival times are also the departure times of the train. As in Kraus and Yoshida

(2002), we assume su

essive departures of the train at times ti = t+ δ i, where
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i = . . . ,−2,−1, 0, 1, 2, . . . , and δ is the te
hni
al time interval between two

departures. Denote by ni the number of passengers that sele
t the train at

time ti. We take a simple 
on�guration where all passengers take the train in

the same (single) station and have the same destination. We dis
uss the user

equilibrium, the system optimum and the optimal pri
ing 
ase.

3.1 User equilibrium

At a user equilibrium, ea
h passenger's obje
tive is to minimize his own travel


ost plus s
hedule delay 
ost, 
alled generalized user 
ost. If there is no 
rowding

(unlimited 
apa
ity) then the best solution for all passengers is to take a train

that departs in time interval (t, t). With 
rowding, ea
h passenger will trade o�

the s
hedule delay 
ost with dis
omfort 
ost to sele
t the best departure time.

At equilibrium no passenger will have an in
entive to 
hange his departure time.

The individuals will not take into a

ount their external 
osts, so that the user

equilibrium may di�er from the system optimum. The total in-vehi
le 
ost in

train i is TC(ni), and the average 
ost is TC(ni)/ni, where ni the loading of

train i. Taking into a

ount the s
hedule delay 
ost, the generalized user 
ost in

train i is C(ni)+f(ti). At equilibrium no passenger has an in
entive to swit
h to

another train and this obtains when generalized user 
osts are equalized among

all trains. Formally, we have

C(ni) + f(ti) = c,

where c is the generalized user 
ost in all the trains.

2

3.2 System optimum

The optimum distribution of users over trains minimizes total transport 
ost,

i.e.

∑
i (TC(ni) + f(ti)ni), where ni represents the number of users of the

train leaving at time ti. Travel 
ost 
onsidered here is based on the MAS 
ost

fun
tion given in (1) that represents the dis
omfort 
osts as a fun
tion of arrival

order. Total number of users is �xed and we have

∑k
i=1 ni = N . The optimal

o

upan
y rate in ea
h train is determined so that total 
osts are minimized.

We 
an formulate this problem as an un
onstrained minimization program if

we substitute for nk =
∑k−1

i=1 ni. If the optimum solution is an interior solution

where ni > ns
, we 
an use �rst-order 
ondition for a given train i (where

i = 1, . . . , k − 1), that is

SC(ni) + f(ti) = SC(nk) + f(tk).

2

If there are k trains, i = 1 . . . k, we have a system of k+1 nonlinear equations: k equations,
one for ea
h train stating C(ni) + f(ti) = c, plus the 
ondition that ea
h user 
hooses only

one train n1 + · · · + nk = N . The unknowns are the train loadings ni and the generalized

travel 
ost c. To �nd a solution to this problem, it su�
es to solve the �rst k equations by


onsidering c as a parameter, and then �nd the value of c that yields the 
ondition on the

total number of users. The solution is 
learly unique.

6



This 
ondition implies that, at the optimum, the marginal 
ost of a new pas-

senger in-vehi
le i is equal to the marginal so
ial gain obtained from removing

the same user from vehi
le k. The optimality 
onditions form a set of n − 1
non-linear equations that 
an be solved numeri
ally. We illustrate the user

equilibrium and the system optimum in Table 2 using again the parameters of

Table 1. Remember that in-vehi
le travel 
ost is C(n) · T , where T is the travel

time, here equal to 15 minutes. In the same table we also illustrate the solution

where the users are distributed uniformly over the trains (one third of the total

population in ea
h train).

The di�eren
e between the user equilibrium and the system optimum is the

suboptimal allo
ation of users over vehi
les. The system optimum is to load

the trains arriving too early or on time more or less like the trains arriving too

late and the o

upan
y rate is not too di�erent from uniform (
ompare �rst

and third lines in Table 2). There are two for
es in play: dis
omfort in the

vehi
le and s
hedule delay 
ost. The optimal solution rea
hes the best trade o�

between these two for
es. The redu
tion of s
hedule delay 
ost made possible

by loading more passengers on the �rst trains is limited by the 
rowding it will

indu
e. Sin
e early delay 
ost is smaller than late delay 
ost in the example of

Table 3 (�rst line) there are more passengers in the �rst train than in the third

one.

Consider now the user equilibrium. Users will make e�orts to improve their


omfort and will try to minimize the user 
ost also by pi
king the wrong train.

They disregard the extra in-vehi
le 
omfort 
osts they generate for the other

users. This leads to too full trains that arrive too early and just in time. In

the example of Table 2 (line 2) there is more 
rowding in the �rst and se
ond

train and mu
h less passengers in the third one. This suboptimal distribution

of passengers over the trains leads to a mu
h higher total travel 
ost.

Comparing the uniform distribution of passengers over trains (third line)

with the system optimum tells us that, in our example, the ine�
ient allo
ation

over trains is less important in terms of e�
ien
y than the e�orts of the users

to improve their in-vehi
le 
omfort. In this 
ase, the travel 
ost in equilibrium

is higher by more than 35% than the 
ost obtained with the optimal loadings

of the trains. The travel 
ost in the uniform distribution is higher only by less

than 3%.

Noti
e however that the uniform distribution will not be as good as in this

illustration if the total population were smaller and 
apa
ity not fully used. In

that 
ase it is natural to lower 
ost by putting more passengers in the middle

train sin
e s
hedule delay 
ost is redu
ed but 
rowding is not in
reased. A

similar point is dis
ussed below in Se
tion 4.2 below.

3

3.3 Optimal pri
ing

The sour
e of ine�
ien
y is the ine�
ient allo
ation of passengers over the

di�erent trains. This requires a di�erentiation of the 
harges for the di�erent

3

The interested reader may 
he
k the Mathemati
a notebook a

ompanying this paper

that we make available from http://perso.univ-lille3.fr/~mkilani/
odes/
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Train loadings Average 
osts

1 2 3 C SD Total

−30 mins on time +30 mins ($/day/passenger)

System Optimum 53.5 55.1 41.4 2.08 1.70 3.78

User Equilibrium 61.5 63.3 25.3 3.75 1.36 5.11

Uniform 50.0 50.0 50.0 1.99 1.89 3.88

Table 2: Train loading and user 
osts under three alternatives (parameters from

Table 1). Abbreviations: �C� stands for 
rowding, and �SD� for s
hedule delay.

Travel time is 15 minutes.

trains so that the system optimum 
ondition is satis�ed

C(ni) + f(ti) = C(nk) + f(tk), i = 1 . . . , k − 1.

In order to internalize the 
rowding externalities we need to 
harge more the

trains with more 
rowding or alternatively those trains with the best arrival

times.

4 User equilibrium, s
heduling and optimal pri
-

ing with randomly distributed desired arrival

times

We turn now to the more general 
ase where passengers di�er in their desired

arrival time. We 
onsider a uniform distribution as it allows to derive analyti
al

expressions. We start by studying the passenger 
hoi
e fa
ing two departure

times tA and tB both lo
ated in time interval (0, 1) and tA < tB. Next we

optimize the departure times for multiple trains, and dis
uss pri
ing alternatives.

In order to simplify mathemati
al expressions, we assume that the travel time

is set equal to one.

4.1 User equilibrium and system optimum with 2 trains

Consider the 
hoi
e between two trains. Train A leaves at tA ∈ (0, 1), while train
B leaves at tB where tA < tB < 1. Assume that travel times are normalized to

zero (
onstant travel speed), and that the desired arrival times are 
ontinuously

distributed in (0, 1), with density ρ. We �rst 
ompute the equilibrium average

user 
osts for any tA, tB. In a se
ond step we optimize the departure times. For

8



an equilibrium it is ne
essary that the last entrant is indi�erent between the

two trains. Denote the departure time of the user indi�erent between the two

trains A and B by t∗. The most interesting 
ase is where t∗ ∈ (tA, tB). The

number of users of train A is ρ t∗. The generalized 
ost of user t∗ is:

CG
A = C (nA) + β (t∗ − tA)

= C (ρ t∗) + β (t∗ − tA) .

Similarly, the generalized 
ost for using train B, is

CG
B = C (nB) + γ (tB − t∗)

= C (ρ (1− t∗)) + γ (tB − t∗) .

The indi�eren
e 
ondition for a user equilibrium reads:

C (ρt∗) + β (t∗ − tA) = C (ρ (1− t∗)) + γ (tB − t∗) (4)

or, (β + γ) t∗ = γtB + βtA + C (ρ (1− t∗))− C (ρt∗) .

The form of C(n) pre
ludes a general analyti
al solution but we 
an inspe
t

its properties numeri
ally, as illustrated in Figure 2(a). The 
ase of a small

small enough ρ (when all passengers have a seat and in
ur the same travel 
ost)


an be 
omputed expli
itly, sin
e then C (ρ t∗) → α0 and C (ρ (1− t∗)) → α0.

Therefore, in this 
ase, equation (4) redu
es to:

β (t∗ − tA) = γ (tB − t∗)

t∗ =
γtB + βtA
(β + γ)

.

For γ > β, we have t∗ < 1/2. The reason is that transit users prefer to be one

minute too early rather than one minute too late. γ > β is the usual assumption

and is empiri
ally sound. This is the solution when 
ongestion (
rowding) does

not matter (ρ = 0). As the density parameter ρ in
reases there will be more

and more passengers in train B. We 
he
k from (4) that

dnA

dρ
< 0, if

γtB + βtA
(β + γ)

> 0.5,

and at the limit we have limρ→1 t̂
∗ = 0.5, where t̂∗ denotes desired arrival time

with 
rowding for the passenger indi�erent between train A and train B. As

expe
ted, the e�e
t of 
rowding is to equalize the number of users in ea
h train.

This statement also means that an in
rease of total demand for mass transit

will de
rease the number of users of train A if train A transports already more

than 50% of total demand.

In Figure 2(a) the two 
urves 
orrespond to the number of users in train A,

under equilibrium and optimal regimes. When, the number of users is small (by


omparison to the vehi
le 
apa
ity) external 
osts are small and the equilibrium

out
ome is optimal. As the number of users in
reases, the 
omfort de
reases,

9
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Figure 2: Comparison of optimum and equilibrium when tA = 0.2 and tB = 0.8
and other parameters from Table 1.

still, train A remains overused sin
e ea
h user 
onsiders his own 
ost, not the

external 
rowding 
ost imposed on the other passengers. As the number of

users 
ontinues to in
rease, 
rowding be
omes the main 
on
ern and passengers

are almost equally split between the two trains, both at equilibrium and at the

optimum. This �gure, however, hides a parti
ular detail. From the fa
t that

equilibrium loadings 
onverge to optimum, one may 
on
lude that pri
ing is no

longer required in this 
ase, or more pre
isely that optimum pri
ing of train A

is pA → 0, as ρ gets larger. This is a false 
on
lusion. Indeed, optimum pri
ing

is in
reasing in ρ as shown in Figure 2(b). The reason is that as the number of

passengers in
reases, 
rowding in
reases strongly. Even if the di�eren
e in the

two quantities is small, it still indu
es an in
reasing di�erential in 
ost. At the

same time, one must be 
areful in the pra
ti
al impli
ation of this �theoreti
al

result�. Indeed, in pra
ti
e the number of passengers is integer, so when two

quantities are 
lose it means that they are equal, and indeed no pri
ing is needed

to adjust quantities. In the next se
tion we study optimal departure times and

show that with optimized departure times and uniformly distributed arrival

times, pri
e di�erentiation over time is again not needed.

4.2 Optimal departure times for k trains

For an early study of optimal time tables see de Palma and Lindsey (2001).

We treat the 
ase of a single train. Total number of users is �xed and so is

the 
rowding dis
omfort and it plays no role in the optimization 
omputation.

The total s
hedule delay 
ost is:

∫ tA

0
γ(tA − t)g(t)dt+

∫ 1

tA
β(t− tA)g(t)dt. The

minimum 
ost is obtained at departure time tA that satis�es

β ·N early = γ ·N late, (5)
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where N early =
∫ 1

tA
g(t)dt, where N late =

∫ tA

0 g(t)dt, denotes the number of

passengers that arrive after their desired arrival time. When g(t) is uniform

over (0, 1), we get a simple solution: γ tA = β (1− tA). Solving this equation

for tA we �nd that the train should depart at time β/(β + γ). With k trains,

the same optimal solution applies in ea
h subinterval. The �rst order 
ondition

for a maximum gives the optimal departure time ti (for i = 1 . . . k), that is

tunifi =
1

k

[
β

β + γ
+ (i− 1)

]
. (6)

The main result is that when users only di�er in their preferred arrival time

and the distribution of preferred arrival times is uniform, 
rowding does not

modify the optimal departure times. Noti
e however that when the distribution

of desired arrival times is not uniform, this result no longer holds.

For the sake of 
omparison, 
onsider this alternative nonuniform distribution

of desired arrival times.

h(t) =





4 ρ t if 0 ≤ t ≤ 1/2,

4 ρ (1− t) if 1/2 < t ≤ 1,

0 elsewhere.

(7)

Noti
e that

∫ 1

0 g(t)dt = ρ, so we have the same number of users as in the 
ase of

a uniform distribution. With distribution h(t), most users have desired arrival

time near 1/2. With only one train, Eq. (5) still applies, sin
e there will be ρ
passengers in the train independently of its departure time. Using this 
ondition

and the �rst order 
ondition leads to

th1 =
β

β +
√
β(2γ − β)

,

and we 
he
k that for β < γ, T g ∈ (0, 1/2).
With two trains and more, we 
an no longer use 
ondition (5). Instead, total

user 
ost should be minimized with respe
t to departure times of the two trains.

Let SD(tA, tB) denote total s
hedule delay 
ost for all users when the departure

times of the two trains are at tA and tB, respe
tively. The optimal departure

times minimize total 
ost TC(nA) + TC(nB) + SD(tA, tB), where nA and nB

denote the number of passengers in the �rst and se
ond train, respe
tively.

Noti
e that these train loadings depend on departure times tA and tB. Indeed,
for any given tA and tB one has to �nd the user who is indi�erent between the

two trains in order to 
ompute nA and nB. A solution to this problem 
annot

be derived analyti
ally, given the nonlinear expression of C(n), but may be

solved using a numeri
al pro
edure. For a numeri
al illustration,

4


omputing the

solution with distribution h(t) de�ned above and parameter values in Table 1,

we �nd the solution values given in the se
ond 
olumn in Table 3. Users are

almost split equally between the two trains (t = .499) and we 
he
k, as expe
ted,
that tunif1 < th1 < th2 < tunif2 .

4

The 
omputational details are given in the Mathemati
a notebook. See footnote

3

.
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Optimizing over tA and tB with

same fares (pA = pB) optimized pA and pB = 0

Average 
ost 8.68 7.61

tA 0.276 0.256

tB 0.587 0.558

t 0.499 0.472

% arriving late 31.38 29

pA � 1.439

Table 3: Optimizing over departure times and fares.

4.3 Optimal pri
ing for k trains

We know that optimal pri
ing depends in prin
iple on the departure times as

they determine the levels of 
ongestion and the external 
ongestion 
osts. In a

few 
ases, pri
es do not matter. When there is only one train, 
ongestion level is

�xed and pri
es do not matter as long as total demand is �xed. More generally,

for any set of departure times, optimal pri
es are always equal to the marginal

external 
ongestion 
osts. When total demand is �xed only the di�eren
es in

marginal external 
ongestion 
osts of the di�erent trains matters. Also, with

a uniform distribution of desired arrival times there is no need for pri
ing to

de
entralize the optimum. Indeed, in this 
ase, departure times are given by

Eq. 6 and there are ρ/n passengers in ea
h train. One 
an 
he
k that users with

desired arrival time at i/n are indi�erent between train i − 1 and train i. So,

the private de
ision leads to the optimal 
hoi
e.

Then, to dis
uss the 
ase of nonuniform distribution of arrival times, we


onsider the 
ase of two trains. Desired departure times distribution is g(t)
over (0, 1). Total passenger 
ost has two parts: s
hedule delay 
ost and in-

vehi
le 
ost whi
h depend on the loadings. Let NA and NB denote passengers

in trains A and B, respe
tively. Let the fares5 in the two trains be pA and pB,

respe
tively, and let the train loadings be determined by NA = ρ
∫ t̃

0 g(t)dt and

NB = ρ
∫ 1

t̃
g(t)dt, where t ∈ (0, 1). The so
ial planner 
an 
hoose t̃ by setting

fares pA and pB 
onveniently. Given t̃, the departure times of the two trains


an be determined on the basis of 
ondition 5, respe
tively applied on (0, t̃) and

5

When demand is not elasti
, only one train need to be pri
ed, with a value that may be

positive or negative. So in this dis
ussion one may assume that pA = 0 and only 
onsider

fares on train B.
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(t̃, 1). Now let

t̃∗ = argmax
t̃
S̃D(t̃),

where S̃D(t̃) is total s
hedule delay 
ost for all passengers (in the two trains)

where fares are set to make passenger t̃ indi�erent between the two trains and

where the departure times are based on 
ondition 5 as explained above. So, t̃∗

indi
ates the train loadings that yield the minimum total s
hedule delay 
ost.

Fares pA and pB obtained under this solution would be optimal fares when


rowding in the vehi
les is not 
onsidered.

Crowding is minimized when all the passengers are equally split between the

two trains. If we start from the situation where only s
hedule delay 
ost matters

and in
rease progressively the importan
e of 
rowding, the marginal passenger

moves from t̃ to the median passenger t (we have
∫ t

0
g(t)dt =

∫ 1

t
g(t)dt = 1/2).

A numeri
al illustration is given in the last 
olumn of Table 3. Comparing

with the situation where the optimization of pri
es is not possible we see that

departures times are slightly advan
ed. There are more passengers in the se
ond

train, and this allows more passengers to arrive earlier. Average user 
ost is (of


ourse) smaller when pri
es are optimized.

6

5 Con
lusion

This paper has developed an analyti
al expression for the dis
omfort in mass

transit. Our expression distinguishes between passengers with a seat and those

who have to stand. For those who have to stand, the dis
omfort will depend

on the number of standing passengers 
ompared to the 
apa
ity of the vehi
le.

This formulation helps to derive optimal timetables and optimal user 
harges.

The model presented in this paper is very simple and many improvements 
an

be envisaged. In parti
ular, we have omitted the waiting time and the fa
t

that when a train arrives, heavily 
ongestion, only a fra
tion of passengers

are able to enter. The remaining passengers have to wait for the next train,

in
urring an extra waiting time. For empiri
al appli
ations, the parameters

of the model should be estimated in order to derive a 
ongestion fun
tion for

publi
 transportation, 
omparable to the BPR fun
tion widely used for private

transportation.
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A Approximation of the MAS formula

A drawba
k of the MAS formula dis
ussed in this paper is that it is not 
ontin-

uous at point ns
. Also, the 
onditional statement in de�nition (1) may lead to a


ompli
ations in the pra
ti
al implementation of the MAS formula. Whenever

possible a smooth fun
tion is preferred. A 
ontinuous alternative may be ob-

tained by repla
ing the original fun
tion by a good approximation. We dis
uss

here how one 
an 
onstru
t a fun
tion ψ that approximates the user 
ost given

in Eq. (1).

There are several approximation pro
edures and te
hniques available. These

are generally simple to apply to unidimensional fun
tions. We use two standard

te
hniques, a simple Chebyshev interpolating polynomials and a sophisti
ated

implementation in Mathemati
a.

7

Both of these solutions are illustrated on

Figure 3.

For Chebyshev polynomials, we have used the standard pro
edure as given

in Algorithm 6.2 in Judd (1998). Let us denote this approximation fun
tion by

ψc
. The result shown in Fig. 3(a) withm = 150 (number of interpolation points)

and n = 50 (polynomial degrees). The approximation quality remains poor, due

mainly to the dis
ontinuity at ns
. In
reasing further the number of interpolation

points does not improve the quality of the approximation. In
reasing the degree

of the interpolating algorithm leads to an instability in the output fun
tion and

makes the 
omputation mu
h more 
ompli
ate. The quality of this approxima-

tion is not good, and there are two problems. For some values of n, parti
ularly
around ns

, the values it generates aren't 
lose to those of C(n). This 
an be


on�rmed by measuring the error approximation

∫ 60

0 |C(n) − ψc(n)|dn. The

se
ond problem is that an equation of the form ψc(n) = A, where A is positive

number may have more than one solution (depending on the values of A). This
o

urs be
ause the approximation here does not preserve the monotoni
ity of

C(n). De�nitely ψc
is not a good 
hoi
e for the approximation of C(n).

The sophisti
ated approximation is denoted ψl
. Fig. 3(b) shows both C and

ψl
. In this 
ase we obtain a better approximation. In parti
ular, The error

between the approximation and the original fun
tion is small. It is 
lear that

ψs(n) �ts the original fun
tion C(n) mu
h better than ψc
. This observation

may be 
on�rmed by 
omputing the error measure

∫ 60

0 |C(n)− ψs(n)|dn.

7

The latter uses divided di�eren
es to 
onstru
t Lagrange or Hermite interpolating poly-

nomials.
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(b) ψ(n) formulation or interpolation.

Figure 3: Approximation of user 
ost fun
tion.

The expli
it formula is a
tually a quiet long expression that 
an be handled

by 
omputers but not really useful for dire
t analyti
al usage. We 
an, however,

provide a relatively simple formula that is 
omparable with respe
t to the error

generated to the se
ond approximation provided above. Indeed using the same

notation as above, the fun
tion given by

ψMAS(n) = α0 +
α1 − α0

1 + ea(ns
−n)

+ b ec (n−ns
−nx)

(8)

is a good approximation for the user 
ost as de�ned by Eq. 1. It is 
omparable

to the fun
tion ψs(n) de�ned above but has the merit of being very simple and

avoids all 
onditional expressions. Apart, the problem of multiple solutions (as

dis
ussed for the 
ase of ψs
) it 
ould be used for pra
ti
al purposes.

B Comparison with max fun
tion

The formulation in Eq. 1 uses the exponential form to take into a

ount the

fa
t that loadings below ns + nx
does not generate 
rowding. One may won-

der whether we 
an repla
e the term b exp(c (n − ns − nx)) by the simpler

b exp(c max(n−ns −nx), 0). Figure 4 shows that both expressions give similar


urves for user 
ost and average 
ost (the dashed 
urve is the one using the max
fun
tion).
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urves) and max formula-

tion (dashed 
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