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Abstract

e theory of revealed preferences offers an elegant way to test the neoclassical model of utility maxi-
mization subject to a linear budget constraint. Inmany settings, however, the set of available consumption
bundles does not take the form of a linear budget set. In this paper, we adjust the theory of revealed pref-
erences to handle situations where the set of feasible bundles is finite. Such situations occur frequently
in many real life and experimental settings. We derive the revealed preference conditions for consistency
with utility maximization in this finite choice-set setting. Interestingly, we find that it is necessary tomake
a distinction between the cases where the underlying utility function is weaklymonotone, stronglymono-
tone and/or concave. Next, we provide conditions on the structure of the finite choice sets for which the
usual revealed preference condition (i.e. GARP) is still valid. We illustrate the relevance of our results by
means of an application based on two experimental data sets that contain choice behavior from children.
JEL Classification: C18, C91, D11, D12
Keywords: revealed preferences; finite choice sets; experimental economics

1 Introduction

e theory of revealed preferences provides an attractive methodology to verify whether a finite data set of
chosen consumption bundles from a collection of linear budget sets is consistent with the neo-classical model
of utility maximization. Revealed preference theory provides a number of advantages in comparison to other
(econometric) methods. First of all, revealed preference theory is nonparametric in the sense that it abstains
from imposing a functional specification of the utility function prior to the analysis. As such, the revealed
preference approach avoids that a specific behavioral model is rejected because of an erroneous functional
specification (while the actual consumption behavior is consistent with the model of utility maximization).
Second, revealed preference methods are particularly attractive from a practical point of view: for a given
data set, it allows for testing data consistency with the utility maximization model in a very straightforward
and quick way. A third important advantage of the revealed preference approach is that it can be meaning-
fully applied to small data sets. As such, by restricting the revealed preference test to repeated observations
from the same individual, it can avoid the (oen debatable) preference homogeneity assumptions across in-
dividuals. As a consequence, revealed preference theory provides an attractive methodology for many real
life applications and experimental settings.

*We thank Bill Harbaugh, Kate Krause, Timothy Berry, Sabrina Bruyneel, Laurens Cherchye, BramDeRock and SiegfriedDewitte
for generously providing us with their data sets. Many thanks to Laurens Cherchye for useful comments on an earlier dra of this
paper.
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thomas.demuynck@kuleuven.be. omas Demuynck gratefully acknowledges the Fund for Scientific Research - Flanders
(FWO-Vlaanderen) for his postdoctoral fellowship.

1



Finite choice sets Revealed preference theory was initially developed to deal with situations where choices
are made from linear budget sets.1 On the other hand, in many settings choice sets are inherently finite.

A first and obvious case where finite choice sets occur naturally is when the goods under consideration
can only be bought in discrete amounts. In such cases, the choice set can be represented as the intersection
of a linear budget set and the space Zn

+. is particular setting is studied in the recent paper by Polisson and
Quah (2013). Polisson and Quah show that for such choice sets, the standard revealed preference condition
(i.e. GARP) characterizes the data sets which are rationalizable by a utility function which is separable in an
unobserved good which can be consumed in continuous quantities. eir analysis differs from ours in two
ways. First of all, our focus is on more general discrete choice settings, i.e. we do not necessarily require that
the choice sets are constructed as the intersection of a discrete set and a linear budget set. Second, and more
important, we have a different focus. Our main goal is to obtain the set of revealed preference conditions that
characterizes the standard model of utility maximization when choices are made from finite choice sets. On
the other hand, Polisson and Quah (2013) look for the specific utility maximization model that underlies the
standard revealed preference condition (i.e. GARP).

A second setting where discrete choice sets in combination with revealed preferences are pertinent is for
experimental data. Indeed, revealed preference theory is remarkably well suited to analyze the rationality
of subjects in experimental settings. Its main advantage lies in the fact that experiments can be specifically
designed to allow for very powerful tests (e.g. by letting prices vary and keeping budgets constant across dif-
ferent choice problems). e usual procedure for such revealed preference experiments is to let the subjects of
the experiment solve a number of different exercises. For each exercise, the subject is endowed with a budget
(expressed as a number of tokens) and is informed on a vector of prices. Next, the subjects are instructed
to allocate their budget over a set of goods subject to the budget constraint defined by the income and the
prices.2 However, this experimental design may pose two potential problems. First of all, it requires that the
subjects understand the concepts of money, prices and income. Furthermore, he/she must also be able to
compute the total expenditure and compare it with the total available budget. is requirement is not always
satisfied, especially when the subjects under consideration are children.3 Second, revealed preference theory
usually requires that the entire available budget must be exhausted (i.e. the total expenditure should be equal
to the available budget). In settings where there are only two goods, this requirement can be met by rep-
resenting choice problems graphically as a 2–dimensional budget line.4 en, budget exhaustion can easily
be imposed by restricting the choices to lie on the budget line. However, if there are more than two goods,
graphical illustrations are no longer feasible (or much more difficult to represent). As such, the requirement
that the entire budget must be exhausted might require a lot of fine–tuning on the part of the subject. In
these settings, subjects are usually given calculators (or other computing devices) to check whether there are
any tokens le to spend. Nevertheless, this fine–tuning might still impose a considerable burden on the sub-
jects. In fact, this burden might become large enough such that it actually interferes with the optimality of
the choices.5

1Although the theory has been extended to deal with nonlinear budgets (See, for instance, Yatchew, 1985; Matzkin, 1991; Forges
and Minelli, 2009; Cherchye, Demuynck, and De Rock, 2012), none of these papers looks at the situation where choice sets are finite.
Recently Forges and Iehlé (2012) also discuss the revealed preference conditions when the available data only consist of a so called
“essential experiment” given by observed consumption bundles and a feasibility matrix. In such setting the experimental observer
only knows to which extent a bundle that has been chosen at some date is also available at another date.

2See, for example, Cox (1997), Andreoni and Miller (2002), Février and Visser (2004), Fishman, Kariv, and Markovits (2007),
Huck and Rasul (2008), Bruyneel, Cherchye, and De Rock (2012b) and Cherchye, Demuynck, and De Rock (2013) for similar ex-
perimental designs.

3is problem is also present in our empirical application which is based on experimental data obtained from choices by children.
4is setting can even be extended to include choices under uncertainty (Choi, Fisman, Gale, and Kariv, 2007).
5Indeed, if there are many goods, then the opportunity cost (i.e. additional time) that is needed to fine–tune the choices may

become quite large. is, in turn, might lead to situations where the subjects choose to lower the time spent on fine-tuning at the
expense of choosing a less–optimal bundle. e difficulty is clearly illustrated in an article by Mattei (2000) which reports on three
experiments. e second experiment involved choices from 100 business students who each had to solve 20 exercises. Each exercise
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An elegant solution to the two aforementioned problems is to design the experiment in such a way that
the subjects choose from a finite set of distinct bundles. Restricting the choice sets to be finite makes the
choices of the respondents much easier: they only have to pick one bundle from a finite collection of feasible
options. e first experimental study that uses this option is by Harbaugh, Krause, and Berry (2001) who
investigated the rationality of choice behavior by children. eir experimental design has been replicated by
several others (see for instance Burghart, Glimcher, and Lazzaro (2012) and List and Millimet (2008)). We
will also use their data set in our empirical application.

A third relevant case where choice sets are finite is when choices are made by picking a single item from
a finite set of distinct alternatives (e.g. the choice between different cars from a catalogue). In these settings,
it is useful to think of the different alternatives as representing different bundles of characteristics (e.g. the
price, the top speed, the fuel efficiency, etc.). Usually, these kind of discrete choice models are analyzed by
econometric methods which are based on limited dependent variables models (see for instance Train (2009)
for a thorough overview). Given this, our results can actually be seen as a first step towards an analysis of such
discrete choice characteristics models by nonparametric revealed preference techniques.6 Related to this, we
also like to point to the large choice theoretic (and behavioral) literature that models the choice behavior over
arbitrary (discrete) sets of alternatives, which need not necessarily be representable as bundles of goods or
characteristics. e main rationalizability concept in this setting is due to Richter (1966), who provided a
choice theoretic analogue to the ‘consumption based revealed preference literature’ founded by Samuelson
(1938, 1948) and Houthakker (1950). By developing a ‘consumption based’ revealed preference theory for
finite choice sets, we are in a certain sense building a bridge between these two largely separate literatures,
thereby opening the door for empirical applications of various other choice theoretic models.

Contributions Our paper has several contributions. First of all, from a theoretical perspective, we derive a
number of revealed preference conditions that can be applied to settings where choices are made from finite
sets of distinct consumption bundles. Towards this end, we distinguish between four cases: rationalizability
by a weakly monotone utility function, rationalizabililty by a weakly monotone and concave utility function,
rationalizability by a strongly monotone utility function and rationalizability by a strongly monotone and
concave utility function. For each of these rationalizability concepts we obtain a different set of revealed
preference conditions. Interestingly, these different revealed preference conditions do not coincide. As such,
it is for example possible to find a data set that is rationalizable by a weakly monotone utility function but
not by a concave and weakly monotone utility function. is result is interesting, because such distinctions
can not be made when choices are obtained from linear budget sets. Indeed, a well known result in revealed
preference theory (Afriat’s theorem) tells us that in such cases, all four rationalizability concepts coincide (see
section 2 for more details). Next, we adapt an idea of Houtman and Maks (1985) and develop a goodness-of-
fitmeasure for our different revealed preference tests. emeasure coincides with the size of the largest subset
of the data set that still satisfies the relevant revealed preference conditions. In this way, it gives an indication
of the severity of violation in cases where the data set under consideration is not rationalizable. We also show
that our measure can be computed by solving a linear programming problem with binary variables.

Second, we provide a number of conditions on the finite choice sets for which it is allowed to neglect the
fact that choices are made from finite choice sets. In other words, we present a collection of assumptions such
that the standard revealed preference condition (i.e. GARP) is still valid for consistency with utility maxi-

consisted of allocating a given budget over 8 different commodities. He found that (despite the computer warning signal) 4 out of
100 students exceeded the budget by more than 1 percent, 47 subjects spent less than 99 percent of the budget and 6 subjects even
spent less than 90 percent of the budget. e third experiment was done using questionnaires by mail. For this experiment, Mattei
(2000) found that out of 320 respondents, 4 percent spent beyond 10 percent of the available budget and 12 percent spend less than
90 percent of the budget.

6e revealed preference conditions of the characteristics model in a continuous choice space were analyzed by Blow, Browning,
and Crawford (2008).
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mizing behavior. ese conditions can be used to design experimental settings for which the results can still
be analyzed using the standard revealed preference conditions. For example, we show that the experimen-
tal design of Harbaugh, Krause, and Berry (2001) satisfies the conditions such that GARP characterizes the
data sets that are consistent with utility maximization by a strongly monotone (and concave) utility func-
tion. However, we also show that is is not possible to strengthen this to utility maximization with a weakly
monotone (and concave) utility function. In other words, it possible that the data set violates GARP, but
the behavior was nevertheless generated by some weakly monotone utility function (e.g. a Leontief utility
function).

Finally, we show the relevance of our results by analyzing two experimental data sets that contain choices
made by children. We compare the empirical fit of the different rationalizability concepts and we compute
the goodness-of-fit measure. e first data set is from the previously mentioned experiment of Harbaugh,
Krause, and Berry (2001). e second is from Bruyneel, Cherchye, Cosaert, De Rock, and Dewitte (2012a).
For both data sets, we find that imposing weak monotonicity instead of strong monotonicity on the utility
functions improves the fit in terms of higher predictive success.

Outline In section 2, we give a brief summary of the most important results in revealed preference theory.
is discussion will be useful to position our results within the revealed preference literature. Section 3
contains the main theoretical results of this paper. It develops the revealed preference conditions for the
finite choice set framework. In section 4, we present some conditions for which the usual revealed preference
conditions coincide with our revealed preference conditions. Section 4 contains an empirical application of
our results to two experimental data sets. Finally, section 5 concludes. All proofs are in the appendix.

2 Revealed preference theory for linear budget sets

In this section, we present the basic revealed preference theory. is will be useful for comparison with the
results that will be established in sections 3 and 4.

To start, consider a finite collection of sets {Bt}t∈T , whereT is a finite set of observations,T = {1, 2, . . . , |T |}.
In this section, we assume that the choice sets take on the form of a linear budget set,

Bt = {q ∈ Rn
+|ptq ≤ mt},

In words, the choice set Bt contains all bundles q ∈ Rn
+ that can be bought with a certain income mt > 0

at prices pt ∈ Rn
++. In the next sections, we will consider the setting where each budget set Bt consists of a

finite number of distinct bundles.
A data set S = {Bt,qt}t∈T then consists of a finite number of budget sets and for each budget set Bt a

bundle qt from this set, i.e. qt ∈ Bt. e idea is that qt is the bundle which is chosen from the budget set
Bt. Usually, it is assumed that qt lies on the boundary of Bt, i.e. ptqt = mt.7 Given this, data sets are also
frequently written as {pt,qt}t∈T in the understanding that the underlying budget set is implicitly given by:

Bt = {q ∈ Rn
+|ptq ≤ ptqt}.

e following defines the standard rationality concept in revealed preference theory.

Definition 1 (Rationalizability). Adata setS = {Bt,qt}t∈T is rationalizable by the utility functionu : Rn
+ →

R if for all t ∈ T ,

qt ∈ argmax
q∈Bt

u(q).

7In most experimental settings, this condition is additionally imposed.
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In words, a data set S is rationalizable by the utility function u if for each observation t ∈ T , the chosen
bundle qt maximizes the utility function u(.) over the budget set Bt.

A utility function u(.) : Rn
+ → R is weakly monotone if q ≥ q′ implies u(q) ≥ u(q′) and q ≫ q′ im-

plies u(q) > u(q′).8 A utility function u : Rn
+ → R is strongly monotone if q ≥ q′ implies u(q) ≥ u(q′)

and q > q′ implies u(q) > u(q′). e utility function u : Rn
+ → R is locally non-satiated if for every

open neighborhood N of q there is a bundle q′ ∈ N ∩ Rn
+ such that u(q′) > u(q). Strong monotonicity is

stronger than weak monotonicity (as it rules out situations like Leontief utility functions) which, in turn, is
stronger than local non–satiation. e utility function u : Rn

+ → R is concave if for all q and q′ ∈ Rn
+ and

all α ∈ [0, 1], u(αq+ (1− α)q′) ≥ αu(q) + (1− α)u(q′).

Given these properties on the utility function, it is possible to define different rationalizability concepts,
e.g. rationalizability by a strongly monotone and concave utility function, or rationalizability by a weakly
monotone utility function. As will be demonstrated in eorem 1 below, if budget sets are linear, then all
these rationalizability concepts coincide. However, as we will demonstrate in the following sections, this
equivalence breaks down when choice sets are finite.

Before we characterize the data sets that are rationalizable, we first define the Generalized Axiom of Re-
vealed Preference (GARP) (see Varian (1982)).

Definition 2 (GARP). e data set S = {Bt,qt}t∈T satisĕes theGeneralized Axiom of Revealed Preference
if there exists a binary relation R such that for all observations t, v and s ∈ T :

1. If ptqt ≥ ptqv , then qtRqv .

2. If qtRqv and qvRqs, then qtRqs.

3. If qtRqv , then it is not the case that pvqv > pvqt.

e relation R is called the revealed preference relation. Condition 1 in Definition 2 states that qt is
revealed preferred to qv whenever ptqt ≥ ptqv , i.e. when qv belongs to the budget set Bt. Indeed, in this
case, qt was chosen while qv was also available. Condition 2 imposes transitivity on the revealed preference
relation. e closing condition 3 says that if qt is revealed preferred to qv , then it is not the case that qv was
chosen while qt was in the interior of the budget Bv . GARP can be easily verified using Warshall (1962)’s
algorithm to compute the transitive closure (see Varian (1982) for an algorithm).

It turns out that GARP is equivalent to rationalizability by a well behaved utility function. e proof of
the theorem can be found in Varian (1982) and is based on previous results from Afriat (1967).

eorem 1 (Afriat’s theorem). Consider a data set S = {Bt,qt}t∈T where each set Bt (t ∈ T ) is a linear
budget set. en the following conditions are equivalent:

1. e data set S is rationalizable by a locally non–satiated utility function.

2. e data set S satisĕes GARP,

3. For all t ∈ T , there exist numbers φt and λt > 0 such that for all t, v ∈ T ,

φt − φv ≤ λvpv(qt − qv).

8For two vectors q and q′, we write q ≥ q′ if every element of the vector q is as least as large as the corresponding element of
the vector q′. We denote q > q′ if q ≥ q′ and q ̸= q′. Finally, we have that q ≫ q′ if every element of q is strictly larger than the
corresponding element of q′.
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4. e data set S is rationalizable by a concave, (continuous) and strongly monotone utility function.

e above theorem shows that rationalizability by a locally non–satiated utility function is equivalent to
GARP. Next, the equivalence between the second and fourth condition states that GARP is also equivalent to
rationalizability by a concave, strongly monotone and continuous utility function. e equivalence between
the first and fourth condition actually shows that it is impossible to reject concavity and strong monotonicity
of the utility function without rejecting utility maximization by a locally non–satiated (and, hence, weakly
monotone) utility function. In other words, if budget sets are linear, then all the different rationalizability
concepts which are nested between the properties of ‘local non–satiation’ and ‘strict monotonicity and con-
cavity’ coincide. In the next section, we will show that this property no longer holds if the choice sets Bt are
finite. In other words, the equivalence between the first and fourth condition turns out to be a consequence
from the fact that choice sets take the shape of linear budget sets.

e linear inequalities in the third condition are the so called Afriat inequalities. ese have a nice in-
terpretation when the underlying rationalization is concave. Indeed, if, for example, S = {Bt,qt}t∈T is
rationalizable by a concave and strongly monotone utility function u(.) and if we take the simplifying as-
sumption that u(.) is differentiable, then from concavity of u(.) we have that for all t and v,

u(qt)− u(qv) ≤ ∇qu(qv)(qt − qv). (1)

Here ∇qu(qv) is the gradient of u(.) at the bundle qv . Strict monotonicity requires that ∇qu(qv) ≫ 0.
Next, the first order conditions for the utility maximization problem imply that,

∇qu(qv) = λvpv, (2)

where λv is the strictly positive Lagrange multiplier corresponding to the budget constraint. en, if we
substitute equality (2) into inequality (1) and if we set φt = u(qt) and φv = u(qv), we effectively obtain the
Afriat inequalities.

e Afriat inequalities form a set of linear inequalities. As such, they provide a second set of conditions
by which it can be verified whether a data set is rationalizable.

3 Revealed preference theory for finite choice sets

In the previous section we considered the case where each choice set Bt takes on the form of a linear budget
set. However, as explained in the introduction, in many contexts, individuals choose by picking one out of
a finite number of distinct consumption bundles. To model this setting, we assume from now on that each
choice set Bt consists of a finite number of distinct bundles Bt = {b1

t , . . . ,b
Kt
t } ∈

∏Kt
i=1Rn

+. Here Kt is
the size of the choice set Bt, which may depend on the observation t ∈ T .

As in the previous section, we denote by qt the observed choice from the setBt, i.e. qt ∈ {b1
t , . . . ,b

Kt
t }

and we denote a data set S as {Bt,qt}t∈T . e concept of rationalizability in this setting is identical to the
definition of the previous section: the data set S = {Bt,qt}t∈T is rationalizable by the utility function u(.)
if for all t ∈ T ,

qt ∈ argmax
q∈Bt

u(q).

In contrast to the linear budget case, rationalizability by a locally non-satiated utility function is no longer a
useful concept when choice sets are finite. e reason is that choice sets do not contain open subsets. For this
reason, we will restrict ourselves to the two most natural strengthenings of local non–satiation, namely weak
and strong monotonicity.

We will make a distinction between four different notions of rationalizability: (i) rationalizability by a
weakly monotone utility function, (ii) rationalizability by a strongly monotone utility function, (iii) rational-
izability by a weakly monotone and concave utility function and (iv) rationalizability by a strongly monotone
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and concave utility function. In principle, it is possible to obtain for all four rationalizability concepts, re-
vealed preference restrictions both in terms ofGARP-like conditions and in terms ofAfriat-type inequalities.9
However, we will restrict ourselves to GARP-like conditions for the first two rationalizability concepts (the
cases without concavity) and we will restrict ourselves to the Afriat-type conditions for the rationalizability
concepts with concavity.10 e reason for doing this is twofold. First, from a theoretical viewpoint, it turns
out that the conditions that we present are the most intuitive for the rationalizability concept under con-
sideration. e other revealed preference conditions are much more difficult to interpret. Second, from an
empirical viewpoint, it turns out that the omitted revealed preference conditions are computationally much
more difficult to verify and therefore less useful in practice.

Weakly monotone rationalizability Let us start with rationalizability by a weakly monotone utility func-
tion. First, we introduce the Weakly Monotone Axiom of Revealed Preference (WMARP).

Definition 3 (WMARP). A data set S = {Bt,qt}t∈T satisĕes the Weakly Monotone Axiom of Revealed
Preference if there exists a binary relation R such that for all t, v and s ∈ T ,

1. If there exists a bundle bk
t ∈ Bt such that bk

t ≥ qv then qtRqv .

2. If qtRqv and qvRqs, then qtRqs.

3. If qtRqv then for all bk
v ∈ Bv it is not the case that bk

v ≫ qt.

Similar to GARP, we can interpret R as representing the revealed preference relation. e first condition
states that if qt was chosen from Bt and if there is another bundle in Bt, say bk

t such that bk
t ≥ qv , then qt

is revealed preferred to qv . is step combines the usual revealed preference idea (if a bundle qt is chosen
while another bundle bk

t was also available, then it is at least as good as this second bundle) with the property
of monotonicity (as bk

t ≥ qv , bk
t is at least as good as qv). e second condition imposes transitivity on the

revealed preference relation. Finally, the third condition requires that if qt is revealed preferred to qv , it is not
the case that there is an option inBv , saybk

v , such thatbk
v ≫ qt. e intuition behind this is straightforward:

if the third condition is not satisfied, then it would have been better to choose bk
v instead of qv , as it contains

strictly more than the option qt which is at least as good as qv .
Given the definition of WMARP, we can state our first result. All the proofs of the theorems can be found

in the appendix.

eorem 2. Consider a data set S = {Bt,qt}t∈T . en the following conditions are equivalent:

• e data set S is rationalizable by a weakly monotone (and continuous) utility function.

• e data set S satisĕes WMARP.

Strongly monotone rationalizability e characterization of rationalizability by a strongly monotone util-
ity function is similar to the case of weak monotonicity. Consider the following Strongly Monotone Axiom
of Revealed preference (SMARP).

Definition 4 (SMARP). A data set S = {Bt,qt}t∈T satisĕes the Strongly Monotone Axiom of Revealed
Preference if there exists a binary relation R such that for all t, v and s ∈ T ,

1. If there exists a bundle bk
t ∈ Bt such that bk

t ≥ qv then qtRqv .
9As an example of Afriat-type restrictions for the cases of rationalizability by a weakly or strongly monotone utility function, we

refer to the proofs of eorems 2 and 3.
10e complementary revealed preference conditions can be obtained from the authors upon request.
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2. If qtRqv and qvRqs, then qtRqs.

3. If qtRqv then for all bk
v ∈ Bv it is not the case that bk

v > qt.

e only difference between WMARP and SMARP lies in the closing condition 3: for SMARP, the in-
equality bk

v ≫ qt is weakened to bk
v > qt.

As the following theorem shows, SMARP characterizes the data sets that are rationalizable by a strongly
monotone utility function.

eorem 3. Consider a data set S = {qt, Bt}t∈T . en the following conditions are equivalent:

• e data set S is rationalizable by a strongly monotone (and continuous) utility function.

• e data set S satisĕes SMARP.

Both conditionsWMARP and SMARP can easily be verified by using a simple adaptation of the algorithm
presented by Varian (1982) which is the standard method to verify GARP.

Weakly monotone and concave rationalizability e characterizations in eorems 2 and 3 were obtained
by using variations onGARP (i.e.WMARP and SMARP). For rationalizations with a concave utility function,
it will be easier to use conditions which are based on the Afriat inequalities.

In order to grasp the intuition behind these conditions, let us assume that S = {Bt,qt}t∈T is rational-
izable by a weakly monotone and concave utility function. Further, assume for convenience that u is also
differentiable.11 en, by concavity of the function u, we have that for all observations t and v ∈ T and all
bundles bk

t ∈ Bt and bj
v ∈ Bv :

u(bk
t )− u(bj

v) ≤ ∇qu(b
j
v) (b

k
t − bj

v). (3)

Now, define the numbers φk
t = u(bk

t ), φ
j
v = u(bj

v) and vectors pjv = ∇qu(b
j
v). For the latter, we have that

pjv > 0 because u is weakly monotone. en, substituting these values in (3) gives:

φk
t − φj

v ≤ pjv(b
k
t − bj

v).

is gives a set of Afriat–type inequalities. We augment these Afriat inequalities with a second set of con-
ditions: given that qt = bk

t was chosen while another bundle bj
t was also feasible at t ∈ T , it must be that

φk
t = u(bk

t ) = u(qt) ≥ u(bj
t ) = φj

t . Hence, we also require that for all observations t ∈ T and all j ≤ Kt,
if qt = bk

t , then φk
t ≥ φj

t .

Definition 5 (WMCARP). A data set S = {Bt,qt}t∈T satisĕes the Weakly Monotone and Concave Axiom
of Revealed Preference if for all t ∈ T and bk

t ∈ Bt there exist numbers φk
t and vectors pkv > 0 such that for

all t, v ∈ T :

φk
t − φj

v ≤ pjv(b
k
t − bj

v) and,

if qt = bk
t then, φk

t ≥ φj
t for all j ≤ Kt.

Given this definition, we can give our characterization for rationalizability by a weakly monotone and
concave utility function.

eorem 4. Consider a data set S = {Bt,qt}t∈T . en the following conditions are equivalent:

• e data set S is rationalizable by a weakly monotone (continuous) and concave utility function.

• e data set S satisĕes WMCARP.
11If u is not differentiable, it suffices to replace the gradients∇qu(b

k
t ) with a suitable subdifferential (see for instance Rockafellar

(1970)).
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Stongly monotone and concave rationalizability Now, in order to characterize the case where u is strongly
monotone and concave, the only thing that we need to modify is the condition pjv > 0, which now becomes
pjv ≫ 0.

Definition 6 (SMCARP). A data set S = {Bt,qt}t∈T satisĕes the Strongly Monotone and Concave Axiom
of Revealed Preference if for all t ∈ T and bk

t ∈ Bt there exist numbers φk
t and vectors pkv ≫ 0 such that for

all t, v ∈ T :

φk
t − φj

v ≤ pjv(b
k
t − bj

v),

if bk
t = qt then, φk

t ≥ φj
t for all j ≤ Kt.

is gives our last characterization.

eorem 5. Consider a data set S = {Bt,qt}t∈T . en the following conditions are equivalent:

• e data set S is rationalizable by a strongly monotone (continuous) and concave utility function.

• e data set S satisĕes SMCARP.

Both SMCARP and WMCARP are expressed as a set of linear inequalities.12 As such, they can easily be
verified using suitable linear programming methods.

Goodness-of-fit Above revealed preference tests (WMARP, SMARP, WMCARP and SMCARP) tell us
whether or not a data set is consistent with utility maximizing behavior for various conditions on the un-
derlying utility function. However, as convincingly argued by Varian (1990), in many cases, nearly optimiz-
ing behavior is just as good as optimizing behavior. As such, it would be useful to have some indication
that says how close a given data set is to being rationalizable if it violates the revealed preference conditions.
Usually, nearly optimizing behavior is measured by using a goodness–of–fit measure. e most popular
goodness–of–fit measure in the revealed preference literature is without doubt Afriat (1973)’s critical cost ef-
ficiency index. Intuitively, the critical cost efficiency index measures the amount by which each budget must
be minimally adjusted in order to remove all GARP violations. Although this concept makes sense when
choice sets are linear budgets, it is less suited when choice sets are finite.

Amore interesting goodness–of–fitmeasure in our setting is theHoutman andMaksmeasure (HM–measure)
(see Houtman and Maks, 1985)). e HM–measure gives the size of the largest subset of observations (i.e.
the largest subset of T ) which is still consistent with the revealed preference conditions under consideration.
For example, the HM-measure for GARP looks at the largest subset of T , say A, such that {Bt,qt}t∈A still
satisfies GARP.

A difficulty with the HM–index is that it is in general difficult to compute. In particular, the problem
is known to be NP–hard (Houtman and Maks, 1985; Dean and Martin, 2008). Despite this difficulty, we
will show that it is possible to compute the HM–index for our revealed preference tests by using binary pro-
gramming methods. Although binary programming methods are known to have exponential worst time
complexity, they can be solved relatively fast for small to moderately sized problems.

Let us first focus on WMARP. In order to present the optimization program that will compute the HM-
measure, we first introduce for every two observations t and v ∈ T two numbers xt,v and yt,v in {0, 1}. More
specifically, we define for all t, v ∈ T :

• xt,v = 1 if there is a bk
t ∈ Bt such that bk

t ≥ qv ; and xt,v = 0 else.
12e condition that pjt > 0 can be met by requiring that the sum of the elements in pjt should be strictly positive.
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• yt,v = 1 if there is a bk
t ∈ Bt such that bk

t ≫ qv ; and yt,v = 0 else.

Now, given these numbers we consider the following linear binary program:

OP.HM-WMARP

max
At,Zt,v

∑
t

At

s.t. At xt,v ≤ Zt,v ∀t, v ∈ T

Zt,v + Zv,w ≤ 1 + Zt,w ∀t, v, w ∈ T

1− Zt,v ≥ Av yv,t, ∀t, v ∈ T

At, Zt,v ∈ {0, 1} ∀t, v ∈ T.

In order to grasp the idea behind the program, letA be the largest subset of T that still satisfies WMARP.
Let the variableAt be equal to 1 if t ∈ A and letAt be equal to 0 if t /∈ A. Observe that the objective function
effectively maximizes the size of A.

e three restrictions of the program then guarantee that the data set S = {Bt,qt}t∈A satisfiesWMARP.
e intuition behind the variablesZt,v is that they capture the revealed preference relation for the observations
t, v ∈ A. In particular, if t, v ∈ A and qtRqv , then Zt,v = 1. Indeed, the first condition imposes that when
t ∈ A (i.e. At = 1) and qtRqv (i.e. xt,v = 1), then Zt,v = 1. e second condition imposes transitivity on
the revealed preference relation (i.e. if Zt,v = 1 and Zv,w = 1, then Zt,w = 1). Finally, the last condition
requires that when Zt,v = 1 (i.e. qtRqv) then either v /∈ A or yv,t = 0 (i.e. there is no bj

v ∈ Bv such that
bj
v ≫ qt).

eorem 6. If n is the solution to the programOP.HM-WMARP, then the largest subset of T , sayA, for which
the data set {Bt,qt}t∈A satisĕes WMARP is of size n.

We can construct a similar program to compute the largest consistent subset of T that satisfies SMARP.
In order to do so, we only need to modify the values of yt,v in the following way:

• yt,v = 1 if there is a bk
t ∈ Bt such that bk

t > qv , and yt,v = 0 else.

Let us now look at the HM-index for the WMCARP and SMCARP tests. For WMCARP, we use the fol-
lowing program:

OP.HM-WMCARP

max
φk
t ,At,pkt

∑
t

At

s.t. φk
t − φj

v ≤ pjv(b
k
t − bj

v) + (1−At) ∀t, v ∈ T

if qt = bk
t then φk

t ≥ φj
t ∀t ∈ T

At ∈ {0, 1} ∀t ∈ T

pkt > 0 ∀t ∈ T

Again, the intuition is to set At equal to one if and only if t ∈ A. en, if At = 1, we see that the conditions
reduce to the usual WMCARP conditions. However, ifAt = 0, the first set of conditions are trivially satisfied
(observe that we can always rescale the variables φk

t and pkt ). As such, WMCARP is only imposed on the
subset A of observations.
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eorem 7. If n is the solution to the program OP.HM-WMCARP, then the largest subset of T , say A, such
that the data set S = {Bt,qt}t∈A satisĕes WMCARP is of size n.

In order to compute the HM index for SMCARP, we can use the program OP.HM-WMCARP except that
now we need to strengthen the final condition pkt > 0 to pkt ≫ 0.

4 GARP for finite choice sets

In this section, we present a number of conditions on the finite budget sets {Bt}t∈T such that GARP is
still a necessary and sufficient condition for rationalizability. ese conditions could be used to design an
experiment with finite choice sets for which the usual GARP condition can still be used to analyze the choice
behavior of the subjects.

e GARP condition is expressed in terms of price vectors. In order to apply this, we need to introduce
suitable price vectors. e easiest way to do this is to assume that all alternatives from the set Bt are situated
on the same budget hyperplane. is will be our first assumption.

Assumption 1. For all t ∈ T there exists a price vector pt ∈ Rn
++ and an incomemt ∈ R++ such that for all

bk
t ∈ Bt:

ptb
k
t = mt.

Next, given that Assumption 1 is satisfied, we consider the following additional assumption.

Assumption 2. For all t, v ∈ T and all bk
v ∈ Bv :

• Ifmt ≥ ptb
k
v , then there exists a bundle bj

t ∈ Bt such that,

bj
t ≥ bk

v .

• Ifmt > ptb
k
v , then there exists a bundle bj

t ∈ Bt such that,

bj
t > bk

v .

Assumption 2 requires that if a bundle from a choice set Bv satisfies ptb
k
v ≤ mt, then there is always a

bundle in Bt which is (strictly) larger.
e following shows that under Assumptions 1 and 2, GARP and SMARP coincide. A similar result was

also presented by Harbaugh, Krause, and Berry (2001) but was not proven as such.

eorem 8. If Assumptions 1 and 2 are satisĕed, then a data set S satisĕes SMARP if and only if it satisĕes
GARP.

If we take into account eorem 1, we also see that eorem 8 implies that under Assumptions 1 and 2,
SMARP is a necessary and sufficient condition for rationalizability by a concave (continuous) and strongly
monotone utility function. As such, it indirectly follows that a data set will satisfy SMARP (or GARP) if and
only it also satisfies SMCARP.

Now, in order to encompass the setting of a weakly monotone utility function, we must impose a third
assumption.

Assumption 3. For all t, v ∈ T and all bk
v ∈ Bv , ifmt > ptb

k
v , then there is a bundle bj

t ∈ Bt such that

bj
t ≫ bk

v .
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e significance of Assumption 3 in relation to Assumption 2 will become clear later on. Assumptions 1,
2 and 3 together imply the equivalence between GARP and WMARP.

eorem 9. If Assumptions 1, 2 and 3 are satisĕed, then a data set S satisĕes WMARP if and only if it satisĕes
GARP.

Again taking into account eorem 1, we also see that eorem 9 implies that under Assumptions 1,
2 and 3, WMARP is a necessary and sufficient for rationalizability by a concave (continuous) and strongly
monotone utility function, and consequentially, GARP, WMARP, SMARP, WMCARP and SMCARP will all
be equivalent.

Assumption 3 cannot be le out in eorem 9 because it is possible to find a collection of choice sets
that satisfies Assumptions 1 and 2 but not Assumption 3 and which leads to a data set S = {Bt,qt}t∈T that
violates GARP but is nevertheless rationalizable by a weak monotone (and concave) utility function.

Figure 1: Illustration of eorem 9
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Figure 1 provides an example. ere are two choice setsB1 = {b1
1,b

2
1} andB2 = {b1

2,b
2
2}. ese choice

sets satisfy Assumptions 1 and 2 but violate Assumption 3. We assume that b1
1 is chosen from B1 (q1 = b1

1)
and b2

2 is chosen from B2 (q2 = b2
2). It is easy to see that these choices violate GARP. As such, eorem 8

says that these choices are not rationalizable by a strongly monotone (and concave) utility function (because
they violate SMARP). However, it is easy to show that the choices are rationalizable by a weakly monotone
(and concave) utility function. For example, the dashed curve provides an indifference curve which ratio-
nalizes all choices.

In order to see the relevance of the different assumptions, we take a closer look at the experimental de-
sign of Harbaugh, Krause, and Berry (2001) which will also be further analyzed in the next section. Figure
2 presents their experimental design. ere are 11 choice sets consisting of the different points on the dis-
tinct budget lines. It is easy to verify that the choice sets satisfy both Assumptions 1 and 2. As such, GARP
will be equivalent to SMARP and SMCARP. is also means that it is impossible to distinguish between
rationalizability by a strongly monotone utility function and rationalizability by a strongly monotone and
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Figure 2: Experimental design of Harbaugh, Krause, and Berry (2001)
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concave utility function. On the other hand, the choice sets do not satisfy Assumption 3. As such, GARP
will (in general) not be identical to WMARP and therefore, it might give us the opportunity to distinguish
between rationalizability by a weakly monotone utility function and rationalizability by a weakly monotone
and concave utility function. is feature will be demonstrated in the next section.

5 Application

We illustrate the usefulness of our results on the basis of two experimental data sets which use finite choice
sets. e first is the data set from Harbaugh, Krause, and Berry (2001). e second is the data set from
Bruyneel, Cherchye, Cosaert, De Rock, and Dewitte (2012a). Both data sets deal with choices made by chil-
dren. As mentioned in the introduction, letting children choose from infinite budget sets is indeed problem-
atic, because of difficulty that they may have in dealing with concepts like budgets and prices. We first give
a brief description of the two data sets (more information can be found in the respective papers). Next, we
present the different measures by which we will compare the different tests: pass rate, power and predictive
success. Finally, we present and discuss our findings.

Brief dataset description e experiment from Harbaugh, Krause, and Berry (2001) contains information
on 128 children (31 second grade students, 42 sixth grade students and 55 college undergraduates). Each
child had to choose from 11 different choice sets (|T | = 11). Each choice set contains different bundles of
chips and juice (the choice sets are illustrated in Figure 2). As already discussed in section 4, these choice sets
satisfy Assumptions 1 and 2. As such, we have that GARP, SMARP and SMCARP will give identical results.
However, it can still be useful to compare the outcome of these tests with WMARP and WMCARP.

e second experiment, from Bruyneel, Cherchye, Cosaert, De Rock, and Dewitte (2012a), contains in-
formation about choice behavior from 100 children (39 kindergarten respondents of about 5 years old, 31
third graders of about 8 years old and 30 sixth graders of about 11 years old). Each child was invited to solve
nine successive choice problems (|T | = 9). Each choice set contained 7 distinct consumption bundles of three
goods: grapes, mandarins and letter biscuits. e budget sets where chosen such that each bundle within the
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same budget lay, approximately, on the same hyperplane. e structure of these different hyperplanes can be
found in Bruyneel, Cherchye, Cosaert, De Rock, and Dewitte (2012a).

Pass rate, power and predictive success In order to assess the empirical fit of the different revealed prefer-
ence tests, we rely on three measures: the pass rate, the power and the predictive success. Next, we also look
at the HM–measure.

e pass rate gives the percentage of all children that pass a certain revealed preference test. Of course,
a higher pass rate implies a better fit as more children have made choices that can be rationalized. However,
it is important to take into account the nestedness of the different tests. In particular, every data set that
satisfies SMCARP wil also satisfy SMARP, WMCARP and WMARP, every data set that satisfies SMARP will
also satisfy WMARP and every data set that satisfies WMCARP will also satisfy WMARP. e reason for this
is simply that every data set which is rationalizable by a certain utility function, will also be rationalizable by a
utility function with weaker properties. For example, if my choices are rationalizable by a strongly monotone
and concave utility function, then they will also be rationalizable by a weakly monotone utility function. is
nestedness implies, for example, that WMARP will have the highest pass rate of all revealed preference tests.
However, this is only because it imposes the weakest set of restrictions on the underlying utility function.

On the other hand, since the main aim of revealed preference theory is to provide an accurate description
of real consumer behavior, it is oen favorable to look at more restrictive models. Otherwise stated, if a
characterization is overly permissive, then it is unable to discriminate between real consumption data on
the one hand and other non-rational behavior on the other hand, i.e. it has no discriminatory power. e
strictness of a revealed preference test is usually measured by the power of the revealed preference test. e
higher the power, the better the test is able to discriminate between irrational and rational behavior. Basically,
the power of a revealed preference test measures the probability that non-rational choice behavior passes a
certain revealed preference test.

Usually, power is computed using the procedure set out in Bronars (1987) which is based on Becker
(1962)’s notion of non-rational, random behavior. For linear budget sets, the Bronars power measure is com-
puted by constructing a high number of random data sets. Each random data set is constructed by drawing
for each observation, a vector of random budget shares from a uniform distribution on the budget hyper-
plane. ese budget shares then define the consumption bundle for the given observation. e power of the
revealed preference test is then given by the percentage of these random data sets that violate the revealed
preference condition. For example, if the power of GARP is equal to 0.9, then 90% of the random data sets
violate GARP.

In our finite choice setting, we follow a modified version of the Bronars procedure. First, we generate
1000 random data sets. Each random data set is constructed by drawing, from each choice set Bt (t ∈ T ) a
bundle qt at random (using a uniform distribution on {b1

t , . . . ,b
K
t }).13 is gives us 1000 random data sets

{Bt,qt}t∈T . e power of a revealed preference test is then computed as the percentage of these random
data sets that fail the revealed preference test under consideration.

Using a similar reasoning as for the pass rates, it is easy to see that for two nested models, the power of
the more restrictive model will be higher than the power for the more general model: if a random data set
violates the weaker test, then it will also violate the more restrictive test. is implies, for example, that the
power of WMARP will be lower than the power of all other revealed preference tests. In order to avoid these
conflicting findings (high pass rates together with low power or low pass rates together with high power), we
also use a measure that combines both pass rate and power into a single metric: the predictive success. e
measure of predictive success was recently introduced and axiomatized by Beatty and Crawford (2011) and

13As an alternative, one could test the revealed preference conditions on all possible data sets and compute from this the fraction of
all possible data sets that lead to a violation of the revealed preference conditions. However, assuming a relatively quick computation
of 2 seconds per generated data set, this would lead us to a total computation time of about 400 days.
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is based on an original proposal of Selten (1991). It is easily computed as the difference between the pass rate
and one minus the power:

predictive success = pass rate − [1− power].

e predictive success measure increases in both pass rate and power. As such, higher predictive success
implies a better empirical fit. e interpretation of the predictive success measure is quite intuitive. In the
best case scenario, both pass rate and power are equal to one, which gives us a predictive success of one. In
such case, all observed data sets pass the revealed preference test while all random data sets are rejected by
the test. In this sense, the revealed preference test is perfectly able to distinguish between actual and random
behavior. In the worst case scenario, both pass rate and power are equal to zero, which gives us a predictive
success of minus one. In this case, all observed data sets are rejected by the revealed preference test while
all random data sets pass the test. In other words, the model explains random behavior perfectly but not the
actual behavior. In intermediate cases, the measure of predictive success is found somewhere between minus
one and plus one. A predictive success above zero points to a test which describes the observed data sets
better than a model based on pure random behavior. A negative predictive success indicates a setting where
the revealed preference test under consideration explains better random behavior than the actual observed
behavior. A predictive success of zero implies that the test explains random behavior as good as the actual
observed behavior (i.e. the test is unable to discriminate between random and observed behavior).

Results e pass rate, power and predictive success for the two experiments for the different revealed pref-
erence tests are given in Table 1. Let us first have a look at the results from the experiment of Harbaugh,
Krause, and Berry (2001). As mentioned in Section 3 above, the experimental design is particular in the
sense that the choice sets satisfy both Assumptions 1 and 2. By eorem 8 this implies that GARP, SMARP
and SMCARP are all equivalent. As the table shows, this is indeed the case. Interestingly, the pass rates of
both WMARP (82%) and WMCARP (71%) are significantly higher than the pass rates of these other tests
(54%). Furthermore, this increase in pass rates is not offset by an equal decrease in power. As a consequence,
the highest predictive success is forWMARP (0.726) andWMCARP (0.708). e predictive success of GARP,
SMARP and SMCARP is considerably lower (0.542).

Let us now look at the results for the experiment of Bruyneel, Cherchye, Cosaert, De Rock, and De-
witte (2012a). ese choice sets do not satisfy Assumptions 2 and 3. We already argued that these cases are
extremely interesting. Beside discriminating between rationalizability by a weakly and strongly monotone
utility function, we are also able to discriminate between situations where the data set is rationalizable by a
(strongly or weakly) monotone utility function on the one hand and situations where the data set is rational-
izable by a (strongly or weakly) monotone and concave utility function on the other hand. Also notice that in
this setting, GARP does not necessarily correspond to any ‘nice’ rationalizability concept (although it is still
a sufficient condition for rationalizability by a strictly monotone and concave utility function). Nevertheless,
we also give the results for GARP as it is frequently used in the literature. As for the previous experiment,
we see that the pass rates for WMARP (71%) and WMCARP (55%) are higher than for SMARP (43%) and
SMCARP (40%), which is the lowest. en, if we also take into account the power, we see that WMCARP
has the highest predictive success (0.429) of all models and is closely followed by WMARP (0.415). ese
numbers are higher than the predictive success of the other two models (0.358 for SMARP and 0.333 for SM-
CARP). As such, similar to the experiment of Harbaugh, Krause, and Berry (2001), we see that the revealed
preference tests which only impose weak monotonicity instead of strong monotonicity, give a better fit of the
observed behavior in terms of higher predictive success.

Let us now have a look at the goodness–of–fit of the different tests in terms of theHM–measure. Figures 3
and 4 give the distribution of theHM–index for the different revealed preference tests for the two experiments.
e black histogram gives the distribution of the HM–measure for the randomly generated data sets which
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Table 1: Results for pass rate, power and predictive success
Data set GARP WMARP SMARP WMCARP SMCARP

Harbaugh et al. Pass rate 0.547 0.828 0.547 0.719 0.547
Power 0.995 0.898 0.995 0.989 0.995
Pred succ 0.542 0.726 0.542 0.708 0.542

Bruyneel et al. Pass rate 0.40 0.71 0.43 0.55 0.40
Power 0.969 0.705 0.928 0.879 0.933
Predictive success 0.369 0.415 0.358 0.429 0.333

were also used for computing the power. As such, it actually gives the distribution of the HM–measure under
the hypothesis of random behavior. e gray histogram, on the other hand, gives the distribution of the
HM–measure for the actual data sets.

As can be seen, the distributions of the real data sets have much more mass at higher values of the
HM–measure compared to the distribution generated by the random data sets. In this sense, it can be safely
stated that the hypothesis of random behavior is rejected for all models under consideration. As expected,
the distribution of the HM–measure for the weakest test (WMARP) is most skewed to the right, but so is the
distribution of the HM-measure when WMARP is applied to the randomly generated data sets.

Figure 3: Distribution of HM–index for random and actual data for the data sets of Harbaugh et al.
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Figure 4: Distribution of HM–index for random and actual data for the data sets of Bruyneel et al.
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What do we learn from all this? Our application has both a methodological and an empirical contribution.
From a methodological point of view, we believe that our application demonstrates the usefulness of our
revealed preference characterizations to deal with choicemodels when choice sets are finite. It also shows how
to use pass rates, power, predictive success and goodness–of–fit (HM–measure) to compare the empirical fit
of the different revealed preference tests.

Next at the empirical level, we have shown that rationalizability by a weakly monotone utility function
may provide a better fit to actual observed behavior. In other words, the assumption that utility is increasing
in the quantity of all goods is not supported by our findings. On the other hand, we found that all models
perform considerably better than the model which is based on pure random behavior.

6 Conclusion

We developed a revealed preference analysis for situations where choices are made from a finite collection of
bundles. is setting occurs in many real life and experimental settings.

First of all, we have shown that when choices are made from finite choice sets, then different rationaliz-
ability concepts will have different revealed preference restrictions. is makes it possible to test for various
conditions on the utility function, like strong monotonicity or concavity. We have also shown how an ex-
isting goodness–of–fit measure (the Houtman and Maks measure) can easily be computed for our revealed
preference tests.

Next, we have put forward a number of conditions for which our revealed preference conditions still
coincide with the usual GARP condition. is result may be relevant for experimental researchers who do
not wish to let their results depend on the specific conditions that are imposed on the utility function.
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Finally, we applied our results using two experimental data sets that collect choices by children. We have
shown that strong monotonicity may not be the best assumption to describe the actual choice behavior of
children.

We see several avenues for follow up research. First of all, to focus our discussion, we have concentrated
on testing rationalizability for basic conditions on the utility function, i.e. monotonicity and concavity. How-
ever, it is possible to obtain revealed preference conditions for even more stringent conditions on the utility
function, like homotheticity or additivity (see Varian (1983) for such revealed preference conditions in the
case of linear budget sets). A natural follow up research would be to derive the revealed preference conditions
for such kind of utility functions when the choice sets are finite.

A second interesting subject for follow up research is the recovery or identification of the underlying pref-
erences (or utility function) and to forecast behavior in new choice situations (see Varian (1982) for recovery
in the linear budget set setting). As for the setting considered in the paper, recovery could proceed using the
revealed preference relation as obtained from the definitions of WMARP and SMARP or the ‘utility’ values
of φj

t as obtained from the definitions of WMCARP and SMCARP.
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A Proofs

Proof of eorem 2

Assume that S = {Bt,qt}t∈T is rationalizable by a weakly monotone utility function. Let us show that S
satisfies WMARP.

We proceed by first defining the relation R as in the definition of WMARP and then we verify that this
relation effectively satisfies the three conditions in the definition. Define qtRqv if u(qt) ≥ u(qv). In order
to see that R satisfies the first part in the definition of WMARP, assume that bkt ≥ qv . en obviously, by
weak monotonicity, u(bk

t ) ≥ u(qv). Next, as qt was chosen from Bt, we also have that u(qt) ≥ u(bk
t ).

erefore, u(qt) ≥ u(qv) and therefore qtRqv . e second part of the definition follows from the fact that
if u(qt) ≥ u(qv) and u(qv) ≥ u(qs), then also u(qt) ≥ u(qs). Now, for the third part of the definition, let
qtRqv (i.e. u(qt) ≥ u(qv)) and assume, towards a contradiction, thatbk

v ≫ qt. en asqv was chosen from
Bv , we have that u(qv) ≥ u(bk

v). Next, from bk
v ≫ qt and weak monotonicity of the utility function, we

have that u(bk
v) > u(qt). A such, u(qv) > u(qt). is contradicts with the assumption that u(qt) ≥ u(qv).

Now, assume thatS satisfiesWMARP.We need to show that it is also rationalizable by a weaklymonotone
utility function.

Consider the n-dimensional unit vectors,

e1 = (1, 0, . . . , 0);

e2 = (0, 1, . . . , 0);

. . .

en = (0, 0, . . . , 1);

Next, define the functions at : Rn
+ → R in the following way:

at(q) = min
k≤Kt

(
max

i
ei(q− bk

t )

)
is function satisfies the property that at(q) ≤ 0 if and only if there is a k ≤ Kt such that q ≤ bkt and
at(q) < 0 if and only if there is a k ≤ Kt such that q ≪ bkt .

e function at is weakly monotone. Indeed if q′ ≥ (≫)q, then maxi ei(q
′ − bk

t ) ≥ (>)maxi ei(q−
bk
t ) for all i = 1, . . . , n and therefore, at(q′) ≥ (>)at(q). Next, at(q) is also continuous as it is given by the

the maximum of the minimum of continuous functions. We also have that for all t ∈ T , at(qt) = 0. Indeed,
at(qt) ≤ 0 because qt ≤ qt. Now, if on the contrary at(qt) ≪ 0 this would mean that there is a k ≤ Kt

such that qt ≪ bk
t , which would contradict WMARP.

Let at,v = at(qv). We use the following definition of Cyclical Consistency.
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Definition 7 (CC). Consider a set of numbers S = {at,v}t,v∈T . e set S is said to be cyclically consistent (CC)
if there exist a binary relationW such that:

1. if at,v ≤ 0, then tWv,

2. if tWv and vWw, then tWw,

3. if tWv then it is not the case that av,t < 0.

Lemma 1. e data set S = {Bt,qt}t∈T satisĕes WMARP if and only if {at,v}t,v∈T satisĕes CC.

Proof. Assume that S satisfies WMARP and let R be its revealed preference relation as defined in its defini-
tion. Assume that W is the relation as in the definition of CC. Let us first show that all three conditions of
CC are satisfied if we take tWv if and only if qtRqv .

For the first, let at,v ≤ 0. is means that at(qv) ≤ 0 or equivalently qv ≤ bk
t for some k ≤ Kt.

However, by the first condition in the definition of WMARP, this implies that qtRqv and, therefore, tWv.
Hence, condition 1 in CC is satisfied.

e second condition in the definition of CC follows immediately from the second condition in the def-
inition of WMARP.

For the third condition let tWv which implies qtRqv . is implies that for no k ≤ Kv , bkv ≫ qt.
Assume on the contrary that av,t < 0. is implies that there is a k ≤ Kv such that ei(qt − bk

t ) < 0 for all
i = 1, . . . , n. However, this implies that qt ≪ bk

t which contradicts with the requirement of WMARP.
e proof that CC implies WMARP can be shown along the same lines.

Now, by a theorem of Fostel, Scarf, and Todd (2004) we have that CC is equivalent to the existence of
numbers φt such that,

φt − φv ≤ λvav,t.

Consider the function

u(q) = min
t

φt + λtat(q)

is function is continuous (as it is the minimum of continuous functions), it is weakly monotone (because
at(.) is weakly monotone for all t ∈ T ) and we have that for all t ∈ T , u(qt) = φt. In order to see this,
notice that u(qt) ≤ mint φt + λat(qt) = φt. Now, if on the contrary u(qt) > φt, then there must be an
observation v ∈ T such that φv + λvav,t > φt, a contradiction.

Now, let us show that u rationalizes the data set. Assume, towards a contradiction that u(bk
t ) > u(qt)

for some k ≤ Kt. en

u(bj
t ) = min

v
uv + λvav(b

j
t ),

≤ ut + λvat(b
j
t ),

≤ ut.

e last inequality comes from the fact that bj
t ≤ bj

t , hence, at(bk
t ) ≤ 0.
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A.1 Proof of eorem 3

Assume that the data set S = {Bt,qt}t∈T is rationalizable by a strongly monotone utility function u. Let us
show that S satisfies SMARP.

Define the binary relation R as qtRqv if and only if u(qt) ≥ u(qv). To verify the first condition of
the definition of SMARP, assume that bk

t ≥ qv . en from rationalizability u(qt) ≥ u(bk
t ). Next, from

monotonicity of the utility function, u(bk
t ) ≥ u(qv). As such, we have that u(qt) ≥ u(qv) and therefore

qtRqv .
To verify the second condition, assume that qtRqv and qvRqs. en we have that u(qt) ≥ u(qv) ≥

u(qs), which gives qtRqs.
For the third condition, assume that qtRqv , which implies u(qt) ≥ u(qv). Now, if on the contrary bj

v >
qt for some j ≤ Kv , then by strong monotonicity, u(bj

v) > u(qt) and as such, u(qv) ≥ u(bj
v) > u(qt),

which gives us a contradiction.
To see the reverse, let S = {Bt,qt}t∈T satisfy SMARP. Consider the vectors ei such that

e1 = (1, ε, . . . , ε);

e2 = (ε, 1, . . . , ε);

. . .

en = (ε, ε, . . . , 1);

Here ε is a small but positive number.
Define the function at such that:

at(q) = min
k≤Kt

(
max

i
ei(q− bk

t )

)
.

Now, it is easy to see that if there is a k ≤ Kt such that q ≤ bk
t , then at(q) ≤ 0. Also if there is a v ∈ T such

that qv ̸≤ bk
t for all k ≤ Kt, we can set ε small enough such that at(qv) > 0. In other words, we can make

ε small enough such that for all v ∈ T , at(qv) ≤ 0 if and only if qv ≤ bkt for some k ≤ Kt. Also, notice that
at(qt) = 0 as otherwise qt < bk

t for some k ≤ Kt, which contradicts SMARP. Also, the function at is easily
seen to be strongly monotone and continuous.

Lemma 2. e set {at,v}t,v is cyclically consistent if and only if {Bt,qt}t∈T satisĕes SMARP.

Proof. Let {Bt,qt}t∈T satisfy SMARP and let R be the revealed preference relation. Define the relation W
such that tWv if and only if qtRqv . Let us show that W satisfies the definition of CC.

First, let at,v ≤ 0. is means that there is a k ≤ Kt such that qv ≤ bk
t . However, this implies that

qtRqv and therefore tWv as was to be shown. e second condition follows from transitivity of the relation
R.

For the third condition, let tWv which implies qtRqv . Now, if on the contrary av,t < 0, we know that
there is a k ≤ Kt such that qt ≤ bk

v . Now, if qt = bk
v , we have that av(qt) = 0, which is a contradiction. As

such, it follows that qt < bk
v . However, this contradicts with SMARP.

e remaining part of the proof is similar to that of eorem 2.

Proof of eorems 4 and 5

We only prove eorem 4. e proof of eorem 5 is very similar. e first part of the proof is established
in the text. It is shown that the first condition implies the second. For the reverse, let us assume that the data
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set S = {Bt,qt}t∈T satisfies WMCARP. Next, define the function

u(q) = min
t∈T,k≤Kt

φk
t + pkt (q− bk

t ).

is function is continuous, concave and weakly monotone. Let us show that it rationalizes the data.
First of all, we show that u(bk

t ) = φk
t . e inequality u(bk

t ) ≤ φk
t follows simply from the definition of u.

Now, if on the contrary u(bk
t ) < φk

t , then there must exist an observation v ∈ T and j ≤ Kv such that
φj
v + pjv(bk

t − bj
v) < φk

t . is contradicts WMCARP.
Now in order to show thatu(.) rationalizes the data setS = {Bt,qt}t∈T assume, towards a contradiction,

that there is a t ∈ T and j ≤ Kt such that u(bk
t ) > u(qt). en if qt = bj

t it follows thatφk
t > φj

t . However,
this contradicts with the second condition of WMCARP.

Proof of eorem 6

Assume that n is the solution to OP.HM-WMARP. Consider the set A = {t|At = 1}, where At solves the
program. Clearly, A has size n. We need to show that {Bt,qt}t∈A satisfies WMARP. Define qtRqv if and
only if Zt,v = 1 and t, v ∈ A.

We proceed by verifying all three conditions ofWMARP for the data set {Bt,qt}t∈A. For the first, assume
that bk

t ≥ qv for some k ≤ Kt. en by definition xt,v = 1. If At = 1, the first constraint gives us that
Zt,v = 1, hence, qtRqv . For the second condition, assume that qtRqv and qvRqw. en the second
constraint gives us that Zt,v and Zv,w = 1. As such, Zt,w = 1, which shows that qtRqw. Finally, for the
third condition, if qtRqv , then Zt,v = 1. e third constraint of the optimization problem then gives that
we cannot have that both Av = 1 and yv,t = 1. As such, it is not the case that v ∈ A and bjv > qt for some
bjv ∈ Bv . erefore the third condition of WMARP is also satisfied.

For the other implication, assume that A is the (a) largest consistent subset of T that satisfies WMARP.
It is easy to verify that setting At = 1 and Zt,v = 1 if qtRqv and t, v ∈ A is a feasible solution to the
optimization problem. Now, towards a contradiction, if the optimal value of the program is larger than |A|,
then by the first part of the proof, there should exist a set W with |W | > |A| such that {Bt,qt}t∈W satisfies
WMARP. However, this violates the assumption that A is the largest of such sets.

Proof of eorem 7

Assume that n is the solution to the above program and let A be the largest subset of T that still satisfies
WMCARP. Let At = 1 if and only if t ∈ A. en we see that all restrictions are satisfied, hence, we have
that At is a feasible solution, hence

∑
tA(t) ≤ n. On the other hand, assume towards a contradiction that

n >
∑

tAt and let
∑

tA
∗
t be the optimal value of the program. en define Z = {t|A∗

t = 1}. en, we see
that for all t, v ∈ Z

qt = bk
t then φk

t ≥ φj
t

φk
t − φj

v ≤ pj
v(b

k
t − bj

v)

As such, we see that Z satisfies WMCARP. is contradicts with the maximality of A.

Proof of eorems 8 and 9

We only prove eorem 8. e proof of eorem 9 is very similar.
Assume that the data set S = {Bt,qt}t∈T satisfies Assumptions 1 and 2. Let us show that if S satisfies

GARP, then S also satisfies SMARP. Let R be the revealed preference relation as given in the definition of
GARP. We show that R also satisfies all conditions in the definition of SMARP. First, if bk

t ≥ qv for some
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t ∈ T and k ≤ Kt, we have that mt = ptb
k
t ≥ ptqv and therefore qtRqv . e second condition of

SMARP follows immediately from the second condition of GARP. Now, for the third condition, assume on
the contrary that qtRqv and bj

v > qt for some v ∈ T and j ≤ Kv . But then, pvqv = pvb
j
v > pvqt which

violates GARP, a contradiction. Conclude that S satisfies SMARP.
For the other implication, assume that S satisfies SMARP and letR be a revealed preference relation that

satisfies the definition of SMARP.We show thatR also satisfies the definition of GARP. For the first condition,
assume that ptqt ≥ ptqv . However, by Assumption 2, this implies that bk

t ≥ qv for some k ≤ Kt. As such,
qtRqv as was to be shown. e second condition of GARP follows immediately from the second condition of
GARP. For the third condition, let qtRqv and assume on the contrary that pvqv > pvqt. From Assumption
2 this implies that bj

v > qt for some j ≤ Kv . However, this contradicts SMARP. As such, GARP must be
satisfied.
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