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Abstract. We introduce and axiomatize two quasi-orderings that extend pref-
erences on a set to its power set. First, a modified version of indirect utility
takes into account the number of maximal elements in the opportunity set.
This rule meets Puppe’s axiom of preference for freedom. Second, an averaging
rule takes into account the number of non-maximal elements in the opportunity
set. Such a rule satisfies the Gärdenfors principle. Axioms that involve no more
than two alternatives capture the differences between the two rules.
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1 Introduction

How should one extend a relation on a set towards a relation on the collection of subsets?
The answer on this question depends upon the particular problem at hand. Barberà,
Bossert and Pattanaik (2004) and Foster (2011) present overviews of the literature on
ranking sets of objects. Let us discuss some of the applications.

First, there is the attempt to rank opportunity sets on the basis of a preference relation
on the set of alternatives. Opportunity sets are subsets of the set of all outcomes from
which an agent chooses or obtains one outcome. The ranking of opportunity sets may
be based on the most preferred elements in each set, on the degree of freedom, or on
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for remaining shortcomings.
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the diversity or similarity of the different alternatives available in the opportunity set;
e.g. Pattanaik and Xu (1990, 1998, 2000), Sen (1993), Klemish-Ahlert (1993), Bossert
et al (1994). Next, in the aftermath of the Gibbard-Satterthwaite theorem on strategy-
proofness, mechanisms were studied that generate—for each reported preference profile—
a set of possible outcomes, over which a randomization device finally selects a particular
alternative, e.g. Barberà (1977), Roth (1985). Furthermore, matching theory presupposes
the agents to have preferences over sets. In the college admissions problem, colleges need to
have preferences over sets of students. In a context of many-to-many matching, Echenique
and Oviedo (2000) study the problem where workers can work at several firms and firms
want to match with several workers. Each of these cases invites the researcher to think
about ordering opportunity sets on the basis of a preference relation.

This note employs the axiomatic approach to the ordering of sets. Its contribution
is twofold. First, we appeal to the idea of preference for freedom as modeled by Puppe
(1996): each opportunity set contains at least one alternative such that its exclusion reduces
an agent’s well-being. Applied to a ‘simple’ setting with only two equally good options,
preference for freedom recommends the pair to be ranked strictly above the singletons. We
introduce a ranking rule in the spirit of the indirect utility rule1 that meets this simple
axiom. This new rule, that we label the indirect-utility-freedom rule, satisfies monotonicity
with respect to set inclusion (i.e. additional options do not deteriorate the opportunity set)
as well as Puppe’s axiom of preference for freedom.

Second, we contribute to the literature that does not endorse the axiom of monotonicity
on the basis of temptation, thinking cost, or limited attention; e.g. Gül and Pesendorfer
(2001), Lleras et al (2010), Masatlioglu et al (2010a,b). Here, we impose Barberà’s principle
and require that a pair is ranked strictly in between its best and its worst element. We
introduce a class of averaging rules that rank opportunity sets on the basis of their best
element and the number of non-best elements. As a consequence, such a rule is not sensitive
to each element in the opportunity set, this in contrast to the average Borda rule (Baigent
and Xu, 2004) and the uniform expected utility rule (Gravel et al, 2012).

We provide an axiomatization of the indirect-utility-freedom rule, the averaging rules,
and the indirect utility rule. We want to highlight that the differences between these three
rules are captured by simple axioms, i.e. axioms that involve no more than two different
alternatives. The difference between the indirect utility and the indirect-utility-freedom
rule boils down to whether or not a pair of equally good options is ranked strictly above
the singletons. The difference between the indirect utility rule and the averaging rules
boils down to the axiom of simple monotonicity versus Barberà’s principle. Simple axioms
are attractive since the intuition about well-being is likely to be firmer in ‘simple’ cases
than in more complex cases (e.g. Bossert et al, 1994). In this note, simple axioms provide
a guide to one of the above three rules.

The outline of the note is as follows. The next section introduces notation, recalls the
indirect utility rule, and defines two new ranking rules. Section 3 discusses nine axioms.
We provide further insights in the incompatibility of the axioms of independence and

1The indirect utility rule ranks opportunity sets according to a most preferred element.
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of Gärdenfors-averaging (Kannai and Peleg, 1984 and Fishburn, 1984). In particular,
Barberà’s principle in combination with a restricted version of independence implies the
Gärdenfors principle. Table 1 at the end of this section lists the axioms a rule satisfies
and summarizes the main results as it announces the characterizations of the three rules
discussed. Section 4 axiomatizes our averaging rule. Section 5 axiomatizes the indirect
utility rule and its refinement the indirect-utility-freedom rule.

2 Notation, one old and two new rules

The set X of alternatives is finite and R is a transitive and complete (hence, reflexive)
binary relation on X. We write aR b instead of (a, b) ∈ R. The asymmetric and the
symmetric factors of R are denoted by P and I. A pair of alternatives that are equally
good is said to be an I-pair. A nonempty subset of A is interpreted as a possible opportunity
set that may be available to an individual equipped with the preference relation R. The
collection of nonempty subsets of X is denoted by Ω. We abuse notation—recall that R
is defined on X—and we write

ARx (resp., xRA),

with x in X and A in Ω as a shorthand for

aRx for each a in A (resp., xR a for each a in A).

An option a in the opportunity set A is said to be R-maximal if aRA. For each A in Ω,
let maxA denote the set of R-maximal elements in A. Since X is finite, the set maxA is
nonempty. Let A− denote the subset A−maxA. Hence, each opportunity set A decomposes
into (maxA)∪A−. We now recall the indirect utility rule %I and we introduce the indirect-
utility-freedom rule, denoted by %IF . The relation %IF keeps the strict ranking �I and
refines the indifference relation ∼I .

Definition 1. Let R be a complete and transitive relation on X. Let Ω be the collection
of opportunity sets. The indirect utility rule, denoted by %I , is defined as

A %I B if |A ∩max(A ∪B)| > 0,

for each pair A and B of opportunity sets. The indirect-utility-freedom rule, denoted by
%IF , is defined by

A %IF B if |A ∩max(A ∪B)| ≥ |B ∩max(A ∪B)|,

for each pair A and B of opportunity sets.

The indirect utility rule and the indirect-utility-freedom rule are both complete relations
on the collection Ω. Although strongly in the spirit of the indirect utility rule, the indirect-
utility-freedom rule meets Puppe’s axiom of preference for freedom: dropping one of the
best options in an opportunity set always decreases its ranking.
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We now prepare the introduction of the averaging rule. Let a and b be two alternatives
in X with aPb. Let d(a, b) in N0 denote the length k of the longest sequence b1, b2, . . . , bk = b
of different alternatives in X − {a} that satisfy

aP b1R b2R b3R · · ·R bk.

The number d(a, b) measures the gap between the alternatives a and b. Averaging implies
that opportunity set {a, b1, b2, b3, . . . , bk} has a lower rank than {a} and a higher rank than
{b}. In case aPbPc with a, b, and c in X, then d(a, c) = d(a, b) + d(b, c). We will write dR
instead of d in case a reference to the relation R is needed.

Definition 2. Let R be a complete and transitive relation on X. Let Ω be the collection of
opportunity sets. Let ϕ : N0 → N0 be a map that satisfies superadditivity, i.e. f(k + k′) ≥
f(k) + f(k′) for each k, k′ in N0. The ϕ-rule, denoted by %ϕ, is defined as follows.

• If A ∼I B and |A−| = |B−|, then A ∼ϕ B,

• If A ∼I B and |A−| < |B−|, then A �ϕ B,

• If A �I B and |A−| ≤ |B−|+ ϕ(d(max(A),max(B))), then A �ϕ B,

• If A �I B and |A−| > |B−|+ ϕ(d(max(A),max(B))), then A 6�ϕ B.

If two opportunity sets are equally good according to the indirect utility rule, then the
set with the smallest number of non-maximal elements is the better. On the other hand,
the averaging rule and the indirect utility rule disagree in case the number of non-maximal
elements in the set with the highest indirect utility is too high. The rule %ϕ is not complete.

3 Nine axioms

We briefly discuss nine axioms. Throughout, % is a transitive and reflexive binary relation
on Ω. The asymmetric and the symmetric factors of % are denoted by � and ∼. We start
with six axioms that involve the ranking of opportunity sets with no more than two distinct
alternatives each. As indicated by Bossert et al (1994) and Foster (2011) the intuition on
ranking small sets might be on a more sound basis than the ranking in more complex cases.
The interpretations of this type of axioms are indeed straightforward.

Extension imposes that the ordering of the singleton opportunity sets reflects the order-
ing of the alternatives. This axiom is typical for rules that take indirect utility into account.
The quantity approach, in contrast, considers singleton opportunity sets as equally good
(cf. Pattanaik and Xu, 1990).

Extension. For each x and y in X, we have {x} % {y} if and only if xR y.

Simple monotonicity. For each x and y in X with x 6= y, we have {x, y} % {x}.
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I-pair preference. For each x and y in X with x 6= y, we have

x I y =⇒ {x, y} � {x}.

I-pair indifference. For each x and y in X with x 6= y, we have

x I y =⇒ {x, y} ∼ {x}.

The axiom of I-pair indifference does not value the ‘freedom’ when a second equally
good option becomes available and, hence, conflicts with Puppe’s axiom of preference for
freedom.

Barberà’s principle. For each x and y in X, we have

xP y =⇒ {x} � {x, y} � {y}.

Barberà’s principle conflicts with simple monotonicity. In case the set X of alternatives
is a convex subset of the Euclidean space Rn and R is continuous, then Barberà’s principle
‘converges’ to I-pair indifference when x converges to y. Hence, I-pair indifference is more
in the spirit of Barberà’s principle (the combination of I-pair preference and Barberà’s
principle is not considered). In this note, however, the set X is assumed to be finite.
Combining Barberà’s principle and I-pair indifference implies the axiom of extension. The
next ‘simple’ axiom involves three different alternatives.

Simple indirect indifference. For each triple, x, y, and z, of different alternatives in
X, we have

xP y R z =⇒ {x, y} ∼ {x, z}.
Simple indirect indifference requires that the best elements are dominant in ranking

pairs (see also Bossert et al, 1994). We now present three axioms that are more complex
as they consider arbitrary opportunity sets. The axiom of independence requires that
comparisons between opportunity sets are maintained when these opportunity sets expand
or contract in the same way.

Independence. For each A and B in Ω and for each x in X − (A ∪B), we have

[(maxA)Rx and (maxB)Rx] =⇒ [A % B ⇐⇒ A ∪ {x} % B ∪ {x}].

Consider two opportunity sets. The ranking between these two opportunity sets does
not depend upon alternatives that are not preferred to the R-maximal alternatives of the
two opportunity sets: the addition (or removal) of such an alternative to (or from) both
opportunity sets does not change their ranking. This axiom is related to the axiom of weak
independence of Bossert et al (1994). Let us illustrate the strength of this axiom.

Lemma 1. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Independence and Simple monotonicity. Then, % satisfies
monotonicity, i.e., for each A and B in Ω, we have A ⊇ B implies A % B.
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Proof. Let A ⊇ B. If A = B, then the reflexivity of % implies that A % B. If A ⊃ B,
write the options in A in R-decreasing order

a1Ra2R · · ·RakR b1R · · · ,

with k in N and b1 in maxB. Use simple monotonicity to obtain {a1, a2} % {a2}. Use
independence and obtain the following sequence of weak inequalities:

{a1, a2, a3} % {a2, a3} % {a3},

{a1, a2, a3, · · · , ak} % {a2, a3, · · · , ak} % · · · % {ak},

In each line, the final inequality follows from simple monotonicity. The transitivity of
% implies {a1, a2, a3, · · · , ak} % {ak}. Again, use independence to add b1 and simple
monotonicity to obtain

{a1, a2, a3, · · · , ak, b1} % {a2, a3, · · · , ak, b1} % {ak, b1} % {b1}.

The next options to be added are not R-better than b1. Let c be an option in A−B such
that b1Rc. From independence and simple monotonicity it follows

{a1, a2, a3, · · · , ak, b1, c} % {ak, b1, c} % {b1, c} % {b1}.

Proceed by adding all further options in A − B. Conclude that (A − B) ∪ {b1} % {b1}.
Conclude the proof by adding the options in B − {b1}. 2

Independence lifts simple monotonicity to monotonicity for arbitrary sets. In a similar
way, the axiom of independence lifts Barberà’s principle to the Gärdenfors principle ac-
cording to which the addition of a better (resp. worse) option improves (resp. deteriorates)
the opportunity set. The next lemma provides a formal statement.

Lemma 2. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Independence and Barberà’s principle. Then, for each
opportunity set A and for each option x and y in X, we have

xPAPy implies A ∪ {x} � A � A ∪ {y}.

Proof. Let a ∈ maxA. Then, according to Barberà’s principle, {x, a} � {a}. Use
independence to add the further elements of A and obtain A∪{x} � A. Similarly, Barberà’s
principle implies {a} � {a, y}. From independency it follows that A � A ∪ {y}. 2

Lemma 2 provides a further comment on the Kannai-Peleg (1984) impossibility result:
when independence is unconditional (i.e., the conditions maxARx and maxBRx are
dropped), then an incompatibility with the Gärdenfors principle occurs. See also Fishburn
(1984) and Barberà and Pattanaik (1984). Lemma 2 underpins the Gärdenfors principle
by the combination of independence and Barberà’s principle.
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Two further axioms close this section.

Composition. For each A and B in Ω and for each z in X − (A ∪B), we have

A % B and (maxB)Pz =⇒ A % B ∪ {z}.

The ranking of two opportunity sets does not change when an option dominated by
the worst-off set is added to this worst-off set. Apply this axiom to A = B = {x} and
obtain that “{x} % {x, z} as soon xP z” which is close to ‘one’ part of Barberà’s principle
({x} � {x, z} as soon xP z). Furthermore, this axiom is related to the robustness axiom
of Bossert et al (1994) and ensures that a lack of indirect utility cannot be compensated
by adding worse alternatives.

Finally, consider two different sets (X ′, R′) and (X,R) of alternatives equipped with a
preference relation and a map f : X ′ → X. Then, f is said to be d-preserving if for each
a and b in X ′ with aP ′b we have f(a)Pf(b) and dR′(a, b) = dR(f(a), f(b)). Let Ω′ and Ω
be the corresponding collections of opportunity sets. It seems natural that a d-preserving
map f lifts the ordering of alternatives towards the ordering of opportunity sets: for each
pair A and B in Ω′ we have

A %′ B if and only if f(A) % f(B).

Neutrality restricts this idea to the case where X ′ is a subset of X and R′ is the restriction
of R to A. For example, if for one particular I-pair {a, b} we have {a, b} ∼ {a}, then
neutrality implies that simple indirect indifference holds. Obviously, neutrality is a very
weak axiom.

Neutrality. Let X ′ be a subset of X and let f : X ′ → X be a d-preserving injection.
Then, for each pair A and B of subsets of X ′ we have

A % B if and only if f(A) % f(B).

Barberà et al (2004) discuss related versions of this axiom of neutrality. The next table
indicates which axioms are satisfied by the rules discussed in this note. A ‘+’ or a ‘∗’
means that the rule satisfies the axiom. A ‘−’ means that the rule violates the axiom.
Each column, when restricted to the axioms indicated by a ∗, presents an axiomatization.
The proofs are discussed in the next sections. Each of the three ranking rules satisfies
extension, simple indirect indifference, independence, composition, and neutrality.
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%I %IF %ϕ

1. Extension ∗ ∗ +
2. Simple monotonicity ∗ ∗ −
3. I-pair preference − ∗ −
4. I-pair indifference ∗ − ∗
5. Barberà’s principle − − ∗
6. Simple indirect indifference + + ∗
7. Independence ∗ ∗ ∗
8. Composition ∗ ∗ +
9. Neutrality + + ∗

Table 1. Three rules and nine axioms.

The differences between the three rules boil down to the simple axioms in rows 2-5.
Start from indirect utility, drop I-pair indifference, impose I-pair preference, and obtain
the indirect-utility-freedom rule. Start from indirect utility, drop simple monotonicity,
impose Barberà’s principle, and obtain an averaging rule.

4 Barberà’s principle and averaging

The averaging rules %ϕ satisfy the axioms as listed in Table 1. Here, we start from these
axioms and we build up the averaging rule. The main idea is to reduce an opportunity set
to its best element and the number of worse elements.

Lemma 3. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Extension, I-pair indifference, Simple indirect indifference,
and Independence. Consider two opportunity sets A and B. Then,

• if a belongs to maxA, then A ∼ {a} ∪ A−;

• if A %I B and |A−| = |B−|, then A % B.

Proof. Write the options in A and B in R-decreasing order: a1Ia2I · · · IakPc1Rc2R · · ·Rc`
for A and b1Ib2I · · · IbnPd1Rd2R · · ·Rd` for B, with k, n ≥ 1. Apply I-pair indifference and
independence to obtain that max(A) ∼ {a1}. Use independence and add the options in A−.
The first item follows. Applied to B, we have max(B) ∼ {b1}. From (maxA)R(maxB)
it follows that a1Rb1. Extension implies that {a1} % {b1}. Hence, (maxA) ∼ {a1} %
{b1} ∼ (maxB). Simple indirect indifference implies {a1, c1} ∼ {a1, cm} ∼ {a1, dn}, for
each 1 ≤ m,n ≤ `. Repeated use of independence implies

{a1, c1, c2} ∼ {a1, cm, dm′} ∼ {a1, dn, dn′},

for each 1 ≤ m,m′, n, n′ ≤ `; and that {a1}∪A− % {b1}∪B−. The second item follows. 2
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Hence, {a} ∪ B ∼ {a} ∪ C provided aP (B ∪ C) and |B| = |C|. Furthermore, if
aP (B ∪C) and |B| < |C|, then {a} ∪B � {a} ∪C. Indeed, assume that B ⊂ C and that
the options in C − B are R-bottom ranked in C. Next, use the Gärdenfors principle: the
addition of bottom ranked alternatives lowers the ranking of the opportunity set.

We now strengthen the axiom of extension to the combination of Barberà’s principle
and I-pair indifference.

Lemma 4. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Barberà’s principle, I-pair indifference, Simple indirect
indifference, and Independence. Let A be an opportunity set for which A− is nonempty.
Then, {a} � A � {b}, with a an R-maximal and b an R-minimal option in A.

Proof. Write the options in A in R-decreasing order: aIa2I · · · IakPb1Rb2R · · ·Rb`Rb.
Lemma 2 implies that {a} ∼ maxA. Barberà’s principle implies {a} � {a, b1} � {b1}.
Use independence and add b2,

{a} � {a, b2} � {a, b1, b2} � {b1, b2} � {b2},

where the first and the final inequality follow from Barberà’s principle. Continue by adding
b3, b4, . . .. Finally, use A ∼ {a} ∪ A−. 2

Let % satisfy simple indirect indifference, independence, and Barberà’s principle. For
each pair a and b of alternatives with aP b we have

{a} � {a, b} ∼ {a, z1} � {b},

for each alternative z1 with aP z1. Now, add different ‘bad’ alternatives z1, z2, . . . to the
singleton {a} and obtain a decreasing sequence

{a} � {a, z1} � {a, z1, z2} � · · · � {a, z1, z2, . . . , zk}.

Let k be the largest number for which {a, z1, z2, . . . , zk} � {b}, hence

{a, z1, z2, . . . , zk, zk+1} 6� {b}.

Obviously, k depends upon the particular alternatives a and b, and we write k = k(a, b).
Also, k(a, b) ≥ d(a, b). Indeed, if there exists a decreasing sequence

aP b1R b2R b3R · · ·R b`−1R b` = b,

with ` = d(a, b), then

{a, z1, z2, . . . , z`} ∼ {a, b1, b2, b3, . . . , b`−1, b`} � {b}.

Now, add neutrality. It follows that k(a, b) = k(a′, b′) for each pair a′ and b′ with a′ P b′

and d(a′, b′) = d(a, b). Hence, k only depends on d(a, b) and we write k(a, b) = ϕ(d(a, b)).
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Finally, the map ϕ is superadditive: ϕ(k + k′) ≥ ϕ(k) + ϕ(k′). Indeed, consider three
alternatives a, b, and c that satisfy aP bP c. Then, d(a, c) = d(a, b) + d(b, c). Denote
k = d(a, b) and k′ = d(b, c). Then,

{a, z1, . . . , zϕ(k)} � {b} while {a, z1, . . . , zϕ(k), zϕ(k)+1} 6� {b}, and

{b, z′1, . . . , z′ϕ(k′)} � {c} while {b, z′1, . . . , z′ϕ(k′), z′ϕ(k′)+1} 6� {c}.

Independence implies that ϕ(d(a, c)) ≥ ϕ(k) + ϕ(k′). The next proposition summarizes.

Proposition 1. Let R be a complete and transitive relation on the set X. Let the transitive
and reflexive relation % on Ω satisfy Barberà’s principle, I-pair indifference, Simple indirect
indifference, Independence, and Neutrality. Then, there exists a superadditive map ϕ :
N0 → N0 such that % extends %ϕ.

Remark 1 (Independence of the five axioms). For each axiom that occurs in the previous
proposition, we present a transitive and reflexive relation on Ω that violates this axiom
and satisfies the other four axioms.

• The trivial ordering considers each opportunity set equally good and violates Bar-
berà’s principle.

• Replace I-pair indifference with I-pair preference and extension, obtain a rule that
refines %ϕ. This rule violates I-pair indifference.

• Let X = {a, b, c}. Define R by aPbPc. Impose extension, Barberà’s principle, and
independence. Let {a, b} � {a, c} and {b} ∼ X � {a, c}. As R is a linear order, this
rule satisfies I-pair indifference. This rule violates simple indirect indifference.

• Let ϕ : X2 → N0 be map for which ϕ(a, b) 6= ϕ(a′, b′) while d(a, b) = d(a′, b′) for at
least one quadruple a, b, a′, b′ of options in X. The rule %ϕ violates neutrality.

• Let the cardinality of X be at least four. Pairs and singletons are compared ac-
cording to Barberà’s principle, I-pair indifference, and simple indirect indifference.
Opportunity sets of cardinality three or more are considered equally good. This rule
violates independence.

5 Indirect utility and preference for freedom

We provide an axiomatization of the indirect utility rule %I and the indirect-utility-freedom
rule %IF . The difference between these two rules is captured by ‘I-pair indifference’ and
‘I-pair preference’. We close this section with three remarks: we return to a rule proposed
by Pattanaik and Xu (1998), we show the independency of the axioms used to characterize
the indirect-utility-freedom rule, and we provide a further refinement towards the leximax
rule of Bossert et al (1994).
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The next lemma is the starting point: the imposition of simple monotonicity, extension,
composition, and independence partitions the collection Ω. Each partition class collects
the opportunity sets with the same indirect utility and the same number of maximal ele-
ments. These partition classes filter out the information—indirect utility and the number
of maximal elements—that might be relevant for the ranking of opportunity sets.

Lemma 5. Let R be a complete and transitive relation on X. Let the transitive and
reflexive relation % on Ω satisfy Simple monotonicity, Composition, Independence, and
Extension. Then, for each A and B in Ω, we have

maxAI maxB and |maxA| = |maxB| =⇒ A ∼ B.

Proof. Lemma 1 implies that % satisfies monotonicity. Let A and B be two opportunity
sets that satisfy the premise of the statement in the lemma. We proceed in three steps.

Step 1. Monotonicity, extension, composition, and independence imply that A ∼ maxA.

Proof. Since A ⊇ maxA, monotonicity implies A % maxA. We now focus on the reverse
inequality, maxA % A. If maxA happens to coincide with A, this inequality follows from
the reflexivity of %. Otherwise, let x ∈ A−maxA. Hence, for each a in maxA we have aP x
and, by extension, {a} � {x}. Monotonicity and transitivity imply maxA � {x}. Since
maxA % maxA, composition implies maxA % maxA∪{x}. In case A−maxA contains an
option y different from x, then maxA % maxA∪ {y}. Furthermore, independence implies

maxA ∪ {y} % maxA ∪ {x} ∪ {y}.

From transitivity it follows that maxA % maxA ∪ {x, y}. Repeat this argument for each
z in A−maxA and obtain maxA % A.

Step 2. Let a1Ia2I . . . Ian. Opportunity sets with k of these options are equally good.

Proof. If k = 1, then extension implies that {ai} ∼ {a1} for each i = 2, 3, . . . , n. Next, we
consider k = 2. Apply independence to {a1} ∼ {a2} and obtain that {a1, ai} ∼ {a2, ai}
for each i /∈ {1, 2}. Apply independence to {a1} ∼ {ai} with i 6= 1 and obtain that
{a1, aj} ∼ {ai, aj} with j /∈ {1, i}. Conclude that each pair {ai, aj} of options (i 6= j) is
equally good as {a1, a2}. Continue this argument to obtain the statement.

Step 3. Conclude that A ∼ B and that % satisfies indifference.

Proof. From Step 1 we learn that A ∼ maxA and B ∼ maxB. Furthermore, all options
in maxA∪maxB are equally good and |maxA| = |maxB|. Step 2 implies that maxA ∼
maxB. Use transitivity of % to conclude that A ∼ B. 2

Proposition 2. Let R be a complete and transitive relation on the set X. There is only one
transitive and reflexive relation % on Ω that satisfies Simple monotonicity, Composition,
Extension, Independence, and I-pair preference. It is the indirect-utility-freedom rule.

Proof. It is easy to check that %IF satisfies the axioms. Next, let % satisfy the axioms.
We have to prove that % coincides with %IF . We proceed in different steps.
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Step 1. Simple monotonicity, Composition, Independence, and Extension imply

maxAP maxB =⇒ A � B.

Proof. Let a ∈ maxA. For each b in B, we have aP b and {a} � {b} (use extension).
In case B = {b}, we obtain {a} � B. Otherwise, let b and b′ be two different options in
B. Use independence to obtain {a, b′} � {b, b′}. In combination with {a} ∼ {a, b′} (use
Lemma 2) it follows that {a} � {b, b′}. Repeat this argument for each option in B different
from b and b′ and, again, conclude that {a} � B. Monotonicity implies A % {a}. From
the transitivity of % it follows that A � B.

Step 2. Add I-pair preference to obtain

maxAI maxB and |maxA| > |maxB| =⇒ A � B.

Proof. Let A′ be a strict subset of maxA with cardinality equal to |maxB|. Lemma 2
(ii) implies that B ∼ A′. Hence, it is sufficient to show that A � A′. Now, according
to the I-pair preference principle we have {x, y} � {x} with x in A′ and y in A − A′.
Independence, simple monotonicity, monotonicity (Lemma 2), and transitivity imply that
A � A′.

Step 3. Conclusion.
Lemma 2 partitions the collection Ω into classes of opportunity sets that are equally good
according to %IF . In order to complete the proof, it suffices to check whether these different
partition classes are ordered in the ‘right’ way. This can be done by checking the following
exhaustive list:

• maxAP maxB,

• maxAI maxB and |maxA| > |maxB|,

• maxAI maxB and |maxA| = |maxB|.

Step 1 (Step 2, Lemma 2) tackles the first (second, third) item. Conclude that the
relation % coincides with %IF . 2

Let us now compare the indirect-utility-freedom rule and the indirect utility method.
Lemma 6 shows that the difference between I-pair preference and I-pair indifference is
able to capture the difference between these two rules. Indeed, replace in Proposition 2
the axiom of I-pair preference by I-pair indifference. The following characterization shows
up.

Lemma 6. Let R be a complete and transitive relation on X. There is only one transitive
and reflexive relation on Ω that satisfies Simple monotonicity, Composition, Extension,
Independence, and I-pair indifference. It is the indirect utility rule.

12



Proof. The indirect utility rule satisfies the five axioms. To show the converse, we first
prove the following statement: for each A in Ω, we have

a1 ∈ maxA =⇒ A ∼ {a1}.

Let A = {a1, a2, a3, . . . , ar} with a1Rai for each i = 2, 3, . . . , r. If r = 1, the statement
is immediate. In case r > 1, then the following iteration holds. First, {a1} ∼ {a1, ai} for
each i = 2, . . . , r. Indeed, we have either a1Iai or a1Pai. The indifference between {a1}
and {a1, ai} follows from either I-pair indifference, or extension, composition, and simple
monotonicity. Next, apply independence (add aj) to obtain

{a1, ai, aj} ∼ {a1, aj}, with i, j = 2, 3, . . . , r and i 6= j.

From the transitivity of % it follows that {a1} is indifferent to each triple subset {a1, ai, aj}
of A. By repeated application of independence we obtain that {a1} and A are equally good.

Now, use extension and conclude the lemma. 2

Lemma 6 is in line with Foster’s (2011) axiomatization of the indirect utility approach.
In the above formulation of Lemma 6, the axiom of independence can be weakened to
semi-independence:

Semi-independence. For each A and B in Ω and for each x in X − (A ∪B), we have

[maxARx] =⇒ [A % B =⇒ A ∪ {x} % B ∪ {x}].2

Nevertheless, the above formulation of Lemma 6 is, for obvious reasons, intentional.
Our characterizations of the indirect utility rule and the indirect-utility-freedom rule have
four axioms in common: simple monotonicity, composition, extension, and independence.
Let us impose these four axioms. The way in which a pair of equally good options is ranked
against one of these options distinguishes the indirect utility rule from the indirect-utility-
freedom rules. In case the level of well-being attached to a pair of equally good options
is considered higher than the level attached to one of these options, the indirect-utility-
freedom rule comes forward. In case such a pair is considered equally good as a singleton
opportunity set, the indirect utility rule comes forward.

Remark 2. Pattanaik and Xu (1998) define the ‘maximal set’ of an opportunity set A
as the collection of options in A that are best in terms of some preference on X that
a ‘reasonable’ person may have. They propose to rank opportunity sets on the basis of
the cardinalities of their ‘maximal sets’. This rule can be retrieved as follows. Denote
by P the collection of the reasonable preferences and define an approval utility function
u : X → {0, 1} by u(x) = 1 if option x is R-maximal for at least one ordering R in P
and u(x) = 0 otherwise. Then, the indirect-utility-freedom rule based upon this ‘approval’
preference relation (induced by u) coincides with the rule of Pattanaik and Xu.

2Starting from the axiom of independence, the condition maxBRx is dropped and the ‘if and only if’
in the conclusion is weakened to ‘if, then’.
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Remark 3 (Independence of the five axioms). Let us list again our five axioms: simple
monotonicity, composition, extension, independence, and I-pair preference. For each axiom
in this list we present a transitive and reflexive relation on Ω that violates this axiom and
satisfies the other four axioms.

• Refine %IF as follows:

A % B if

{
A �IF B or,

A ∼IF B and |A−| ≤ |B−|.

According to %, non-maximal elements attach a negative effect to the opportunity
set. The ranking rule % violates simple monotonicity: if xPy, then {x} � {x, y}.

• The leximax rule of Bossert et al (1994)—see remark 4—ranks the pair {x, y} with
xPy above {x} and, hence, violates composition.

• Let a and b be two options. Let R be a preference relation on X such that each
option in X − {a, b} is preferred to a and to b. Define a rule % on Ω as follows. The
singletons {a} and {b} are not comparable. The remaining singletons are ordered
according to R. Sets with two or more options are ordered according to %IF . This
rule violates extension.

• Let |X| ≥ 3. Restrict %IF to the collection of singletons and pairs (hence, extension,
simple monotonicity, and I-pair preference are satisfied). Let {a, b} be an %IF -
maximal pair. Consider all the other opportunity sets equally good as {a, b}. This
rule violates independence.

• The indirect utility rule violates I-pair preference.

Remark 4 (First best, second best, ..., leximax). We close this section by introducing a
further refinement of the indirect-utility-freedom rule.

Let us recall the leximax rule (Bossert et al, 1994). Let X be the finite set of options
and let R be a complete and transitive relation on X. Let n = |X| be the number of
different options in X. Let u : X → R++ be a representation of the preference relation R
on X, each option obtains a positive utility. For each opportunity set A = {a1, a2, . . . , ar}
in Ω, we define an n-vector

u(A) = (u(a1), u(a2), . . . , u(ar), 0, . . . , 0),

that collects the utilities of the r options in A, extended with n − r zeros. The ordering
%L on Ω is based upon the leximax ordering ≥L on Rn: for each A and B in Ω,

A %L B if u(A) ≥L u(B).

The ordering %L does not depend upon the particular representation provided u(x) > 0
for each x in X.
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The link between %L and %IF is as follows. The indirect-utility-freedom rule first cuts
away from the opportunity set the alternatives that are not R-maximal sets and then
compares the remaining sets by means of %L. More formally, A %IF B if (maxA) %L

(maxB).
The rule %IF can be further refined. The set max(A−) collects the second best options

in A. Let max2(A) = max(A)∪max(A−) collect the first best and the second best options in
the opportunity set A. Define the rule %2 as follows. For each pair A and B of opportunity
sets, we have

A %2 B if max2(A) %L max2(B).

In the same spirit, one can define the maxk-rule that takes the first, second, third, ..., and
kth-best options into account. The max1-rule corresponds to the indirect-utility-freedom
rule; the maxn-rule to the leximax rule.
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