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Abstract 

Many transport and other service problems come down to simple network choices: what mode and/or route to 

take, when some of the routes and modes are congested and their use can be priced or not priced by different 

operators. The operators can have different objectives  and face different market environments: public or private 

monopoly, private duopoly, etc.. This standard problem has been studied in many variants, mostly using the 

assumption of perfect substitutability between alternatives, so that in the deterministic Wardrop equilibrium, all 

routes that are used have the same generalized cost. This paper examines in more detail the role of the 

substitutability assumption using varying degrees of unobserved individual heterogeneity. Users of a network 

consume transport services, which are differentiated in two ways. There are objective differences in quality 

(length of route, congestion level) perceived in the same way by all users but there are also individual 

idiosyncratic preferences or unobserved heterogeneity (e.g. in modal choice) for transport services. The resulting 

stochastic equilibrium is analysed on a simple parallel network for four types of ownership regimes: private 

ownership, coordinated public ownership, mixed public-private and public Stackelberg leadership.  First we 

synthesize the literature and prove rigorously that when total demand is fixed and there is congestion, then by 

controlling one route a government can achieve the First Best allocation , irrespective of whether the second route 

is privately operated or unpriced. This result holds whatever the level of substitutability and whatever the levels of 

congestion on the two routes. Secondly, we rank ownership regimes when the government cannot control the 

pricing of any route. If there is no congestion, no pricing is obviously best and second best is to have only the 

inferior route privately priced. If there is congestion and the heterogeneity in the preferences is limited, it is still 

best to have the more congestible route privately tolled.  

Keywords: network equilibrium, imperfect competition, imperfect substitutability,  second best pricing , 
modal choice, transport policy   

JEL : R48,R41,L11,L12  
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1. INTRODUCTION 

Users of transport services choose between routes or modes on the basis of objective characteristics 

and on the basis of subjective preferences. Objective characteristics are common to all users and 

consist of the quality of the transport link (length), the level of congestion and the access charge. The 

subjective preferences are individual specific. Both elements are important for the optimal pricing of 

the transport alternatives but most of the transport pricing literature has neglected the individual 

heterogeneity. The main ambition of this paper is to bridge this gap and analyse how the degree of 

heterogeneity in preferences affects the optimal pricing results.  

How to organize the pricing of the different routes and modes such as to maximize welfare has been 

the subject of many contributions in the literature. Optimal pricing requires that the different routes on 

the network are all priced at their marginal social cost, as this guarantees an efficient allocation of 

users over the different mode and route alternatives. However often not every alternative can be 

priced and some links are priced by private monopolies pursuing different objectives. This raises 

interesting second best pricing issues: is it better for the transport regulator to allow pricing of some or 

all alternatives by private firms rather than to have no pricing at all? This is the problem of the pay 

lane. And what is the best pricing strategy when he can price part of the network but the rest is 

controlled by a private monopolist? For example, given the choice between congested private 

transport, such as roads or airlines, and uncongested public transport, such as rail, how should 

government price rail?  

Most of the literature has dealt with this question implicitly using the assumption of perfect substitution 

between alternatives.  Alternatives can differ in levels of congestion, comfort and operator type, so 

that there is imperfect competition, but whenever all users have the same preferences for these 

characteristics, the user equilibrium is deterministic and can rely on the Wardrop principle. Many 

papers concentrate on the case of a parallel network. de Palma and Leruth (1989) study a duopoly 

that first chooses capacities on their link and then set prices. Both Verhoef, Nijkamp, Rietveld (1996) 

and de Palma and Lindsey (2000) analyze imperfect competition in a deterministic setting between 

two competing parallel roads with congestion, assuming different ownership structures. Using social 

surplus to measure allocative efficiency, they find that a private duopoly can actually be more efficient 

than a mixed public-private one.  De Borger, Proost and Van Dender (2005) examine toll competition 

between governments on a congested parallel network. Price competition in a duopoly where firms 

offer perfect substitutes but have congested access is also studied by Van Dender (2005). Scotchmer 

(1985) looks at price competition between congestible facilities in a symmetric setting when total 

demand is fixed.  Other authors also study price competition between different operators on 

congested serial networks (De Borger, Dunkerley and Proost(2008),  Mun and Ahn (2008)). 

A second type of approach considers differences in preferences between users but the preferences 

are known and non stochastic. Small and Yan (2001) consider mixed ownership regimes on a 

congested parallel network, where consumer heterogeneity is accounted for by different values of 

time. They find that, when one route is untolled, accounting for consumer heterogeneity improves the 

performance of second best pricing on the other route, and that in some cases, no tolling at all may 

be preferable to a profit maximising toll on one route. Verhoef and Small (2004) extend this approach 

to a linked parallel and serial network. Liu et al (2009) consider a congested highway competing with 

an uncongested public transit system, In their model consumer heterogeneity is again introduced 

through a continuous value of time (VOT) distribution but total demand is fixed. They develop revenue 
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neutral pricing schemes for the complete network, which result in positive tolls on the highway and 

negative fares for public transport. 

When we drop the assumption of perfect substitutability between alternatives we need to rely on 

models that have idiosyncratic preferences, where the preference for a route or link is individual 

specific. This modelling of preferences has been the basis of the discrete choice approach in 

transport demand analysis. The approach to modelling imperfect competition with idiosyncratic 

preferences is surveyed in Anderson, de Palma and Thisse (1992). de Palma and Proost (2006) use 

this method to study competition between symmetric variants. Introducing imperfect substitutability 

between alternatives via idiosyncratic differences in individual preferences generates different results 

for two reasons. Firstly, offering more options generates welfare and, secondly, each variant has 

some intrinsic market power. Dunkerley, de Palma and Proost (2009) apply this type of model to 

study an asymmetric duopoly of airlines. In their study, private firms compete for customers and 

access to the firms can be congested but this cannot be controlled by the firms. Any policies aimed at 

reducing congestion, such as tolling or capacity expansion can only be imposed externally. Melo 

(2014)  studies the entry and pricing decisions of different congestible service providers to the same 

destination. His paper concentrates on the private provision solution only but uses a more general 

demand formulation.  

In this paper we focus on the impact of imperfect substitution on pricing and demand allocation on a 

congested parallel transport network using a discrete choice approach. Capacity investment decisions 

are not modelled, although the role of the closely related congestion parameter is analysed. Given a 

single government, which can potentially make policy interventions on different links, we examine the 

policy implications of publicly and privately operated and untolled alternatives. The results of our 

stochastic model are compared to the corresponding deterministic results; these differ from those of 

de Palma and Lindsey (2000) due to the assumption of fixed total demand.  

On our duopoly transport network, we have two types of results. First when the government is able to 

control pricing on one route, then it is always possible to achieve the First Best demand allocation. 

This result holds whatever the degree of substitutability of the two alternatives and whatever the 

degree of congestability. This result is not new but we synthesize and generalize the literature and 

offer a rigorous proof.  

The second result concerns the case where the government can control whether the operator of a 

route can implement a toll or not, but not the level of the toll.  Here we offer a ranking of the welfare of 

alternatives where only one of the two routes can be given to a private monopolist. First, whenever 

there is no congestion, it is better to have no private pricing at all. If one route needs to be privatised, 

it is better to privatize the route with inferior quality.  Adding congestion, changes the trade-off faced 

by the user when deciding which route to take.  When all users value the routes in the same way (no 

stochastic preferences) , the superior quality route  should be privatised as long as there is sufficient 

capacity on the lower quality route. In this case, while some users will be forced to take the inferior 

route, the remaining users of the best route will have improved travel times and the toll revenues will 

also have increased welfare. However, if the inferior route is also prone to congestion, the overall 

positive welfare contribution may no longer hold and it is better to leave both routes untolled. In the 

stochastic setting, a more complex relationship between congestibility on the two routes and the 

strength of consumer preferences determines whether it is welfare enhancing to privatise one of the 

routes. In general, the arguments from the deterministic case for privatising the best route, if it is the 
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more congestible route, continue to hold, but with the caveat that consumer preferences for diversity 

should not be too large 

We proceed in this paper as follows. We first discuss the model set up paying particular attention to 

the general setting and the duopoly results in the presence of idiosyncratic preferences. In section 3 

we analyze in detail the case of two parallel routes and where the government can control the pricing 

on at least one route. In section 4 we dig deeper into the role of substitutability and congestion and 

rank the different ownership regimes. In this section we also offer second best results for the case 

where the government itself cannot price any of the roads.  In section 5 we conclude. 

 

2. MODEL SETTING 

The starting point for this model is the allocation of users over a simple parallel network with two 

competing routes from origin O to destination D as shown in Figure 1.  

 

Figure 1 Generalised parallel network for 2 routes 

Users travel from O to D and consume transport services to do this. These transport services are 

differentiated in that they offer a different level of quality, as perceived by all users, and users also 

have their own individual preferences for transport services. As discussed below, all users are 

constrained to select one route, although in principle this restriction can be overcome by including an 

outside option of not travelling. Each route linking O and D has marginal and fixed costs associated 

with its operation and may be controlled by different operators: private or public or be untolled.  

For transport networks, the obvious interpretation is to consider alternative routes or modes for the 

same origin – destination but this need not be so. Each of the alternatives can be a different 

destination, the alternatives that differ not only in terms of the quality of transport but also in the 

quality of the destination. What we need, however, is that each individual chooses only one 

alternative and that each alternative has only one operator setting the price. If we have a transport 

operator setting an access price to the transport network and another firm setting access prices to the 

destination we have a serial network structure instead of a parallel structure. 

2.1. Users of transport services 

The focus of this paper is the role of substitutability in the allocation of users over the simple network 

when there are qualitative differences between the two routes and at least one route is congested. 

The underlying economic framework for the model we use is based on the structure proposed by de 
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Palma and Proost (2006)
2
.  For our purposes, it is sufficient to concentrate on the utility a user derives 

from taking a particular route and his subsequent route choice.  

Starting from a fixed, total population of N individuals, the indirect utility function conditional on the 

use of route i (i=1,2) by one individual is given by 

 
i i i i i iV a n p         (1) 

where the first term (Γ) reflects his total income. The utility he obtains from transport alternative i is 

represented by a constant term ia , which can be regarded as a quality parameter and is the same for 

all users. It is associated with the transport route itself or with the final destination, if this is different for 

each alternative. Congestion time losses are assumed to be a linear function of total consumption 

 ( in ) of that transport alternative, so that the total transport time needed for one trip equals  i in , 

where i  is again an objective parameter, representing the congestibility of the route
3
.  By definition, 

the congestion parameter cannot be negative ( 0i  ), and is zero only when a route is uncongested. 

A price ip  is also charged by the operator for use of route i. We assume that this will be equal to the 

marginal operating cost ( ic ) associated with the route if there is no toll. Hence, the toll can always be 

interpreted as the mark-up over marginal operating cost and users of an untolled route are in fact 

subject to a minimum charge of ic . This approach merely serves to simplify the following analysis and 

does not affect the results. Finally, the user’s idiosyncratic preferences for transport services are 

denoted by the random term i , where  is a strictly, positive scale parameter, which reflects the 

strength of consumers preferences for variety. The probability that an individual chooses to take route 

i is given by Prob( , )i i jV V j    , where each individual is constrained to travel unless a non-

participation utility level is specified
4
. Then, assuming the i are i.i.d. Gumbel distributed, this 

probability can be expressed as 

 

1,2

exp

 (0,1) 1,2

exp

i i i i

i

j j j j

j

p n a

i
p n a









   
 
    

  
 
 


 (2) 

 For our duopoly network, with fixed total demand, N, the demands for routes 1 and 2 can be simply 

expressed as 1 1n N   and  2 11n N  . When there is congestion on at least one of these 

routes, equation (2) becomes an implicit expression for the probability that a user selects a given 

route (and hence the demand for that route). Indeed, we mainly use the probability 1  in our analysis 

and may refer to this as the demand for route 1. Equation (2) can then usefully be rewritten as 

  
1

1 1 2( ; ) 1 expp p p 


        (3) 

                                                      
2
 The reader is referred to this paper for a full description of the general equilibrium framework that is behind this model. 

3
 This parameter can be regarded as inversely related to capacity. 

4
 Including an outside option complicates the mathematics without really adding further insights. We therefore only present 

results for full participation. 
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where  1 2 1 2 1 2, , , , , ,a a c c     is the model parameter set, which is independent of the type of 

network operator, and   1

1 1 2 1 2 1 1 1 2 2 1( , , ; ) (1 )p p p p N N a a             .Therefore the 

demand exists  and is always a function of the differences in price (including marginal cost), 

congestion and quality between the two routes. This is the utility difference between the two 

alternatives. In Appendix A it is shown that, for given prices, there exists a unique user equilibrium.  

The indirect utility function (1) is only defined when there is a feasible solution to the consumer’s 

optimisation problem. More specifically, we assume that there is at least one alternative i for which the 

generalised cost i i ip N  is smaller than the total income  .  

The CES provides an alternative to the Logit formulation used here as the substitutability between 

alternatives can also be varied easily. But, as discussed in Anderson et al. (1992), the CES can be 

derived as a discrete choice model, with (adapting their original setting to add quality): 

 i i i iV n ln p      , which leads to a CES demand system, with endogenous quality. First, 

note that the CES suffers from the same IIA ( Independence of Irrelevant Alternatives) restriction as 

the Logit (that is, the ratio of two demands is independent of the demand for other alternatives). 

Second, while the total demand is constant for the Logit, it is the total budget share that is constant for 

the CES, an equally debatable constraint. Third, using Roy’s identity, we get for the CES, the 

individual conditional demand Y/pi. This expression can be interpreted as the proportion of times (per 

month, for example), route i is used (up to a multiplicative factor). The inclusion of an outside 

alternative in the Logit, requires to add an alternative O is added, such that: 0 0 0V a e   , where 

a0 denotes the quality of the outside alternative. The Logit  approach seems to be superior (with 

respect to the CES), since it is more structural and flexible. 

Independent of the type of operators of the routes and their price setting behaviour, there are three 

facets of our network that will be important in the analysis of demand allocation. First, there are cost 

and quality parameters from which transport users derive utility and the values of these parameters
5
 

may vary across the network. Second, alternatives may differ in their congestibility. Third, consumers 

may have idiosyncratic preferences for transport services. We make a number of assumptions in 

order to study these aspects of the model in more detail. Specifically, we denote route 1 as being 

intrinsically better than route 2, when the difference between the non- stochastic quality component of 

utility from transport services on the two routes is greater than the difference in costs
6
  (

   1 2 1 2 0a c a a c c       ).  Next, we assume that at least one of the routes is congested, 

so that 1 2 0   . Finally, allowing consumers to have idiosyncratic preferences for transport 

services (μ>0), means that the degree of substitutability between routes may vary with consequently 

imperfect substitution between routes. This is the basis of the model presented above. When there is 

perfect substitutability, we rely on the standard deterministic approach, subject to the constraint of 

fixed total demand. 

                                                      
5
 The parameters are symmetric as we use the same parameter set to describe each route but these are asymmetric in the 

values they can take. 

6
 It is assumed throughout that the marginal and fixed costs are specified for each route and are therefore the same whatever 

the status of the operator (private or public) of a given route. 
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In addition, the results for a network without congestion clearly represent a limiting case for our set-up 

and we include and discuss these results throughout the following sections. A summary table of the 

results for the cases with congestion can be found in Appendix B. 

Having established the route characteristics and consumer behaviour, we next turn our attention to 

the operators of the network. 

2.2. Transport service providers 

Transport services on the simple network described above can be provided by different types of 

operators, with different objectives. They can be tolled by the government (PUB), a private operator 

(PRIV) or be effectively untolled (FREE)
7
. From a road privatisation and tolling policy perspective, it is 

therefore instructive to analyse the effect of the different operators on pricing, transport volumes and 

welfare, when there is congestion and imperfect substitution on the network. The possible 

combinations to be considered on the network are presented in  

Table 1. 

 

Description Operator route 1 Operator route 2 Section 

First Best PUB PUB 3.1 

Priced at marginal 

operator cost 

FREE (no operator) FREE (no operator) 3.2 

Monopoly PRIV FREE (no operator) 3.3 

Duopoly PRIV PRIV 3.4 

Second Best FREE (no operator) PUB 3.5 

Mixed Nash PUB  PRIV  3.5 

 

Table 1 Duopoly regimes 

In all of the above regimes, prices are set simultaneously.  Although, in theory, we could consider two 

Stackelberg scenarios as both the government and the private operator could act as leader, it turns 

out that, due to the assumption of fixed total demand, there are no first mover incentives. In the next 

section, we consider each of these combinations and determine how they can affect the setting of 

transport policy. 

  

3. RESULTS FOR SIMPLE PARALLEL NETWORK 

If a government’s policy objective is to achieve the First Best demand allocation, its options can be 

summarised in a simple proposition. 

                                                      
7
 In fact, as discussed in Section 2.1, this corresponds to an exogenous toll equal to marginal cost ci. 
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Proposition 1   

When the total demand is fixed, the First Best  can be decentralized by a toll on only one route , there 

exists a unique, stochastic user equilibrium for  two congested routes. The First Best can be achieved  

when government either 

i) Controls pricing of both routes; 

ii) Controls the price of one route while the other route is unpriced; 

iii) Controls the price of one route while the second route is priced by a private monopoly. 

We develop this proposition in the following sections. It is discussed further in Section 3.5. and  the 

full proof is given in Appendix A.  

Note that constant total demand is crucial for this proposition. This is indeed a strong assumption 

necessary for some parts of PROP 1. Existence and uniqueness of an equilibrium are likely to hold 

with elastic demand. However, when demand is elastic, two things may go wrong: too many drivers in 

total; and too many drivers on one route (wrong split, as in the case of inelastic demand). As a 

consequence, it is likely that two instruments are needed in general (one toll on each route) to 

decentralize the social optimum. Computations in the stochastic case (Logit) are much more involved, 

and it is not obvious that an analytical solution could be derived. 

 

3.1.  First Best (PUB-PUB) 

In terms of government policy, achieving the First Best demand allocation is often the desired goal. In 

the First Best, all quantities (here transport volumes) can be chosen freely and the only constraints 

are the production possibilities. The same result can, however, be achieved when the government 

cannot directly control quantities but can impose a toll to optimise the welfare of all users over both 

routes. In this case, using (1), the (per capita) welfare for a given demand and price is defined as the 

sum of consumer surplus plus the producer surplus, both per capita.  

1,2 1,2

log exp ( )
j j j j j

j j j

j j

p N a F
W p c

N




 

        
         

     
                   (4) 

where the jF  are the fixed costs for the construction of each route. From (2), the demand for route 1 

is a function of the prices on the two routes. Again noting that 2 11   , (4) can be differentiated to 

obtain the optimal price on route 1, taking the price on route 2 as given, so that 

       1
1 1 2 2 1 1 1 2

1 1

1 0
W

p c p c N N
p p

 


           

                    

 (5) 

or  

 1 1 2 2FBp c N N           (6) 

with the interpretation that, in the First Best, the difference in the toll (mark-up over marginal cost) 
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should be equal to the difference in external congestion costs
8
. The duopoly demand, given by (3), is 

a function of the difference in price only and, hence, (5) specifies the First Best demand uniquely. 

Clearly one solution to this equation is that a toll equal to resource cost  plus external cost is imposed 

on each route, such that 1 1 1 1p c N   
 
on route 1 and we assume that this is the case in our First 

Best scenario, in order to make comparisons with the pricing regimes imposed by other operators. 

The fact that only the difference in price is important for the First Best allocation implies that it should 

be possible for a government to achieve the First Best when it can only control one route. We return 

to this later. 

By definition the First Best demand probability for route 1 is given by  

 
1

1 1 expFB

FB


    , where      (7)

  

the demand for the two routes clearly depends on the difference in the model parameters: marginal 

cost  1 2c c c   , the quality of the route  1 2a a a   and the level of congestion 

 1 1 2 2NP N   , which is a function of capacity.  Since the congestion function explicitly depends 

on the demand level, the expression for 1  given by (7) is an implicit function, which can be shown to 

have a unique solution
9
. This is illustrated in Figure 2 below where we denote the right hand side of 

(7) by 1( ; )iZ n  , for some given set of parameter values  1 2 1 2 1 2, , , , , ,i a a c c    . Further 

assuming that route 1 is always intrinsically better than route 2 in the sense that 0a c   , we 

can investigate how the different model parameters affect the level of demand for route 1; in particular 

the role of congestion. We consider three different cases with parameter sets 1 , 2   and 3 .  

                                                      

8
 In the more general case, the solution is   0

j

j j j j

j i

p c N
p




   


 . Again, setting the mark-up on each route equal to 

the external congestion cost on that route is a solution, it is not unique since we can always write 
1

1

N
N i

ik kp p





 
 

 
 . The 

optimal demand is, however, uniquely specified. 
9
 The left hand side of (7) is non-negative, strictly increasing and vanishes at zero. The right hand side is non-negative and 

strictly decreasing and tends to zero as n tends to infinity. Both functions are continuous. Hence there is exactly one fixed 
point for every given set of parameters. 
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Figure 2 Unique First Best demand for route 1 under different levels of congestion  

 1 1( ; )Z n  corresponds to the case where route 1 is less congested than route 2. Under our 

assumption that route 1 is the intrinsically better route, it follows from (7) that route 2 must be more 

congestible than route 1 ( 2 1  ). Here we find that the use of route 1 is much larger than that of 

route 2. This accords with our intuition: route 1 is the more generally preferred, higher quality, less 

congested route. 1 2( ; )Z n  represents the case where both routes are equally congested, so that

1 1 2 2

FB FB     (or not congested at all). It can then be directly seen from (7), that the demand in this 

case is given by   
1

1 1 expFB c a 


      
, which is the same as the uncongested demand  (

0

1P )  and is clearly always greater  than one half when 0a c   . Hence, the optimal flow on 

route 1 is larger than on route 2. However, equal congestion also implies that 
1 2 1 2/ ( )FBP    

and thus for the case 1 2( ; )Z n  to occur, we further require that route 2 is still more congestible than 

route 1
10

. Finally, 1 3( ; )Z n  represents the case where route 1 is more congested than route 2. In this 

case, the demand for route 1 could become smaller than route 2. This would occur when route 1 is 

the more congestible route ( 1 2  ) and this congestability outweighs the quality advantage of route 

1. Otherwise, when the quality advantage of route 1 is sufficiently large or route 2 is slightly more 

congestible than route 1, then the demand for route 1 may still be greater than N/2
11

.    

 

                                                      

10
 The exact condition on the model parameters is in fact   

2 1
ln a c       . 

11
 The condition for 

1
1 2

FB

P   is that 
1 2

( )a c N       
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Turning now to the role of consumer preferences for diversity, the First Best demand under perfect 

substitution ( 0  ), can be written as 
 
2

1

1 2

2

2

FB N a c
n



 

 



 

and, reformulating equation (7), 

noting that 
1 1

FB FBn N  , we obtain 

 

1

1 2 1 1

1

2( )
1 exp

FB FB

FB
n n

n N
 





        
     .

   (8) 

For a given set of model parameters, the stochastic demand will always be less than the deterministic 

demand, when route 1 is preferred, since some users have a stronger intrinsic preference for route 2. 

A corresponding result holds when route 2 is preferred. It is also clear from (8) that the stochastic and 

deterministic First Best only coincide when demand is equal on both routes
12

, although the optimal 

pricing rules are the same (see Table 2 and Appendix B).  

. 
Finally, the First Best welfare is given by 

 

   

     

1 2
1 1 1 2 2 2 1 1 1 1

1 2
1 1 1 1 2 1 1 2

log

log 2

FB

F F
W a c N N

N

F F
a c N N

N

   

   


           


         

  

It can be shown that, (at least if 
1 2

( )a c N      so that 
1

1 2
FB

P  ), then First Best Welfare 

increases when there is greater consumer preference for diversity. As µ increases, this preference 

outweighs the intrinsic benefits or congestion effects of a particular route and more travellers are able 

to opt for their preferred route.  

This section has clearly illustrated that the relative magnitudes of the intrinsic model parameters, 

including congestability, and the degree of consumer heterogeneity affect the distribution of demand 

over the network as well as welfare. We return to this theme in section 4, when we look in more detail 

at the roles of these two parameters in a comparative statics exercise. 

3.2. No pricing on any route (FREE-FREE) 

Untolled routes are a situation often encountered in practice. To simplify the analysis, we have 

assumed in this case that both routes are priced at marginal operating cost i ip c , so no operator 

makes a profit. From (3), it can be seen directly that the demand for route 1 is given by the implicit 

function 

 

1

1 1 2 2
1 1 expFF c N N a

P
 





       
   

  
  (9) 

Congestion is the only externality that requires correction here. So, when there is equal congestion on 

both routes (
1 1 2 2    in (9)), the FREE-FREE demand allocation is the same as the First Best 

(case 1 2( ; )F n  from the previous section). If we again assume that route 1 is intrinsically better than 

                                                      

12
 Indeed, the demand is only equal on both routes (P=1/2) when the parameters are such that 1 2( )a c N      .  
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route 2, it can then be shown, that, when congestion is lower (respectively higher) on route 1, the 

FREE-FREE demand for this route is too high (low) compared with the First Best. Here we notice an 

important difference with the perfect substitution case where there is no consumer heterogeneity.(

0  ). In that case the demand for route 1, 
1

FFn , is given by    2 1 2N a c     and the 

FREE-FREE demand for route 1 is always too high, whatever the congestion levels.  

 

3.3. Duopoly with private operator and untolled route (PRIV-FREE) 

A second situation that a government may encounter, is a network with one privately operated and 

tolled route and one untolled route. For this scenario, the monopolist operates route [1] and sets the 

access charge, p1, while route [2] is untolled (price equals marginal cost). Using (3), the demand 

function can be written as  
1

1
1 expPF

PRIV FREEP


   , where, in this case, 

1 2 1 1 2 2( )
PRIV FREE

p c N N a  




      
   

 
   (10) 

The private operator of route 1 maximises his profits, according to 

  1 1 1 1 1,p c N F       (11) 

and sets his price so that  1 1
1 1 1

1 1

0
d

N p c N
dp p

 
    


  (12) 

Then differentiating (10) directly, we obtain 

 

 
 

1

1

1 2

1 1

1
0.

1

p
N


 


  

  
  

    

  

Substituting this expression in (12) and re-arranging, results in the equilibrium price  

 
 

 1 1 1 2 1

11
p c N


     


  (13) 

This result confirms our intuition. Firstly, the profit margin is increasing in  : a preference for diversity 

protects the private monopolist. Secondly, the margin is increasing in the “total” level of congestion     

( 1 2  ): more congestion on its own network decreases the incentives for the monopolist to lower 

its price as the extra demand it can attract will be discouraged by increasing congestion losses. The 

more congestion there is on the unpriced route 2, the less the monopolist has to fear from leakage 

effects when he increases his price.  

In addition 

 1 1 2 2

1

2 ( ) 1

1
PRIV FREE

c a N N  




      
   

 
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and it can be seen from (7) and the above that the PRIV-FREE demand for route 1 is always smaller 

than optimal, independent of  the level of congestion
13

 and route characteristics. Moreover, since 

route 2 is priced at marginal operator cost (c2), PRIV FREEp  is always higher than in the first best (

1 1 2 2FBp c N N        ).  The private operator is always able to charge a price on route 1 that 

is higher than the First Best because of the consumer heterogeneity and hence the price difference 

between the two routes is always too high. The only way to raise demand on route 1 to the optimal 

level is for the government to impose a toll on route 2. 

3.4. Private operators on both routes (PRIV-PRIV) 

If both routes are now privately run, the operator on route 1 behaves in the same manner as in the 

previous section, where route 2 was untolled, although the demand function he faces is different as it 

now depends on the price charged by the private operator of route 2.  The Nash price equilibrium is 

now given by 

 
1 1 1 2 1

1

( )
1

p c NP


    


    (14) 

The private operator sets the toll on his route in the same way, whether the competing route is or is 

not tolled. It is apparent from the symmetry of  that 1 1 2 2p p     and, since 1 2 1P P  , 

1 2 2 2P p P p     , so that the demand for route 1 is an increasing function of the price on route 

2. Thus, when the operator of route 2 increases his price from zero, 1  increases and it is then clear 

from (14) that the price on route 1 also increases. The private operator will not reduce his price, once 

the operator of route 2 imposes a non-zero toll, as he will gain customers at the existing price. It is in 

fact in his interest to further raise his own toll as, although this will have an impact on how many 

customers switch routes, it will still increase his profits. 

The demand probability for route 1 can be written in the usual form  
1

1
1 expPP

PP


    where  

 
 

1

1 2 1 2 2

1 1

( )(2 )
1

PP c a N N
 

   
 

           
  

  (15) 

To gain further insights into which operator sets the highest toll or has the largest market share, we 

can draw on the analysis of Dunkerley, de Palma and Proost (2009). In that paper it was shown that, 

for an asymmetric duopoly without congestion, the firm with the higher facility rank parameter, 

B a c   , would have a larger share of the profits and a greater market share. Indeed, the larger 

the B, the greater the difference in profits and market share between the two firms.  

The price difference between the routes in this case is  

                                                      

13
 Indeed, if 

1 1

PF FB   , this implies 
PF FB  , with the resulting condition

    
1

1 2 1 1 1 22 1 0PF FB PFN N   


       , which cannot hold.   
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 

  1 2 1 2

1 11

PRIV PRIVp c N
 

         
 

   (16) 

According to this specification, the price difference can be higher or lower than the First Best price 

difference, depending on the relative importance of the congestion and consumer heterogeneity 

model parameters. In terms of achieving the First Best by using other means than tolling, such as 

investing in capacity on a route (and thereby reducing its congestion parameter), we can consider 

whether there exists a set of model parameters, for which the PRIV-PRIV and First Best equilibria are 

equivalent.  This is indeed possible in both the deterministic and non-deterministic cases by adjusting 

the quality or capacity (as measured by α) of one of the two routes. This is in contrast to the PRIV-

FREE set-up where tolling is the only available tool.  

 

3.5. Discussion of Proposition 1  

Figure 3 demonstrates how the First Best allocation can be achieved by tolling (or subsidizing) the 

untolled route 2, when route 1 is free (case FREE-FREE) or privately operated (case PRIV-FREE). 

The results are shown for the case when route 1 is more congested than route 2. When the situation 

is reversed, the free route can be tolled (as indicated by the parentheses). 

 

In Figure 3, the horizontal line “FIRST BEST” indicates the optimal demand level on route 1. 

Government can only control the price of route 2 (p2). There are two possible cases: either demand 

on route 1 is too high (upper curve, which is only the case for FREE-FREE) or too low (lower curve). 

When demand on route 1 is too high, government can only correct the demand level away from point 

A to point B by subsidising route 2. The second situation arises when the demand for route 1 is too 

low. This will always be the case when route 1 is controlled by a private operator but can also occur 

when both routes are untolled. Then the government needs to set a high toll to discourage too high 

use of route 2.  
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Figure 3 Achieving the First Best demand allocation through government toll or subsidy 

In Figure 4 the effect of government actions on the difference in price between the two routes are 

summarised. The price difference ( 1 2p p p   ) is shown on the vertical axis and the price on route 

2, on which the government can intervene, on the horizontal axis.  Again, a horizontal line indicates 

the First Best solution. The price difference is always too high when one route is privately operated, 

regardless of the level of congestion. In the FREE-FREE case, when route 1 is the more highly 

congested, subsidising route 2 achieves 
FBp , whereas a toll is required when congestion is higher 

on this route (dotted line in figure). 

 



 

 

 

16 

 

Figure 4 The effect of government tolls (subsidies) on the price difference between routes 

 

4. THE ROLE OF SUBSTITUTABILITY AND CONGESTION 

4.1 Synthesizing the pricing rules  

Perhaps the most direct way in which the role of imperfect substitution and congestion can be 

understood is to consider their impact on the pricing rules implemented in the different scenarios. 

These rules are summarised in Table 2 for the case when route 1 is the “better” option in the sense 

that it is preferred to route 2 in objective characteristics ( 0a c   ) and when both routes are 

either congested ( 1 20, 0   ) or uncongested ( 1 2 0   )
14

. The shaded cells indicate where 

the First Best has been achieved. 

 

                                                      
14

 This differs slightly from our original set-up in Section 2, in which at least one route is assumed to be congested, in order to 
make the role of congestion clear in the most general case. It is in fact possible to allow the congestion parameter of one of 
the routes to be set to zero. 
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Route 1 Route 2 

Deterministic preferences Stochastic preferences 

No congestion congestion 
No 

congestion 
congestion 

FREE FREE No tolls No tolls No tolls No tolls 

PUB 

(First 

Best) 

PUB No tolls Toll
1
=MEC

1
 

Toll
2
=MEC

2
 

No tolls Toll
1
=MEC

1
 

Toll
2
=MEC

2
 

FREE PUB No tolls Toll
2
=MEC

2
-

MEC
1
 

No tolls Toll
2
=MEC

2
-MEC

1
 

PRIV FREE Toll
1
=mc

2
-mc

1
-ε Toll

1
=MEC

1
+α

2
n

1
 

Toll
1
=µN/n

2
 Toll

1
= µN/n

2
+MEC

1
+α

2
n

1
 

PRIV PRIV Δtoll= mc
2
-mc

1
-

ε 

Toll
1
=MEC

1
+α

2
n

1
 

Toll
2
=MEC

2
+α

1
n

2 

Toll
1
=µN/n

2
 

Toll
2
=µN/n

1
 

Toll
1
= µN/n

2
+MEC1+α

2
n

1
 

Toll
2
= µN/n

1
+MEC

2
+α

1
n

2
 

PRIV PUB 
Toll

1
=mc

2
-mc

1
-ε 

Toll
2
=0 

Toll
1
=MEC

1
+α

2
n

1
 

Toll
2
=MEC

2
+α

2
n

1
 

Toll
1
=µN/n

2
 

Toll
2
=µN/n

2
 

Toll
1
= µN/n

2
+MEC

1
+α

2
n

1
 

Toll
2
= µN/n

2
+MEC

2
+α

2
n

1
 

Table 2 Pricing results for two parallel routes 
16

 

We take each of the six scenarios in turn. In the top half of the table, the routes are either untolled or 

government run. When neither route is priced (FREE-FREE) and there is no congestion, there is no 

need for public intervention and the no toll case is First Best. This holds for both deterministic and 

stochastic preferences. Whenever there is congestion and in the absence of tolls, the First Best is not 

achieved. Next, when both routes are priced by the government (PUB-PUB), the tolls are set at 

marginal external congestion cost (MEC1, MEC2) and the First Best is achieved.  Finally, when only 

one route is controlled by the public sector, the other route is untolled and total demand is fixed, the 

First Best can be obtained by charging the difference in marginal external cost between the two links.  

Table 2 shows clearly that, when there are only government operators or untolled routes (the top half 

of the table), the pricing rules are the same, whatever the degree of consumer heterogeneity. This 

does not, however, mean that the stochastic and deterministic demands are identical since, as noted 

in Section 3.1, in the stochastic case consumer preferences for variety lead to fewer users selecting 

the “better” route. 

                                                      

16
 Marginal external costs on route i are denoted

i i iMEC n , where 
i in N  , for stochastic demand and 

i in for 

deterministic, 
imc represents marginal operating costs on route i (

ic in our model terminology). 

 



 

 

 

18 

Turning now to the scenarios in the bottom half of Table 2, where at least one route is privately 

operated, we see the effect of market power on the pricing rules. Firstly, the presence of congestion 

allows the private operator to set a toll that is greater than the marginal external cost on his route 

(columns 4 and 6). Secondly, consumer heterogeneity also results in higher tolls that exceed marginal 

external costs (columns 5 and 6), as consumer preferences for a given route mean that the operator 

can raise prices without losing many customers and hence increase profits.  

When only one route is privately tolled (PRIV-FREE), preferences are deterministic, and there is no 

congestion (column 3), the private monopoly can capture the whole market by charging a toll such 

that the travel cost on his route is just lower than the travel cost on the untolled route: he reduces the 

toll by an arbitrarily small factor, ε. This is First Best because the total social cost is minimized by 

having all users on route 1 which is objectively the best.  

Adding congestion on both routes (column 4), the private operator will first of all charge the MEC on 

his route, as this minimises total transport costs on the route. He then adds a mark-up equal to the 

additional congestion costs that consumers would face if they switched to the untolled route. It is only 

when there is private pricing involved that the pricing rules for stochastic preferences will be different 

from those for deterministic preferences. Imperfect substitutability is a source of market power for 

every operator. When there is one private operator (PRIV-FREE), stochastic preferences and no 

congestion, he charges the monopoly mark-up 2N n (column 5). If congestion is then added, the 

resulting toll combines the deterministic congestion pricing rule with the purely stochastic mark-up 

(column 6).  

For the case where both routes are privately operated (PRIV-PRIV), the First Best can still be 

achieved when there is no congestion and preferences are deterministic. In that case it is only the 

difference in tolls that matters and the operator of route 1 can adjust his toll so as to capture the entire 

market. The demand allocation becomes sub-optimal however, whenever there is congestion or 

preferences are stochastic.  Now both operators try to make the most of their intrinsic market power 

and/or the relative congestion on the two routes to maximise profits and set their tolls accordingly. 

Finally, in the last row of Table 2, we see that the First Best can also be achieved when one of the two 

routes can be publicly operated (PRIV-PUB), as discussed in Section 3.5. Since total demand is fixed 

and given the profit maximising behaviour of the private operator, the government can always set a 

toll so that the difference in tolls is equal to the difference in marginal external costs between the two 

routes.  

4.2 Comparative statics  

The pricing rules presented in Table 2 result in different levels of demand on the two routes, 

according to the type of operator, level of congestion and degree of imperfect substitution. The effect 

of increasing the degree of imperfect substitution on demand, for fixed levels of congestibility on the 

two routes, is illustrated in Figure 5. This figure allows us to give a relative ranking of different regimes 

compared to the First Best. As usual, we take route 1 to be the intrinsically better route
17

 . The 

deterministic demands are shown on the axis where 0  . In this case, the demand for route 1 is 

                                                      

17
 For illustrative purposes we further impose that 

1 2
( )a c N       so that 0FB   and the First Best demand is 

always greater than one half. For 0FB  , the curves asymptote from below. 
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always too high when both routes are untolled (FREE-FREE) and too low when one route is privately 

operated (PRIV-FREE).  In Section 3.2, we saw that the stochastic FREE-FREE demand for route 1 

coincided with the First Best only when there was equal congestion on both routes. Since the 

deterministic FREE-FREE demand is too high on the intrinsically better route 1, as µ increases, more 

users will prefer to take route 2 until, at some point both routes are equally congested. As the strength 

of consumer preferences continues to increase, this effect outweighs congestion or quality aspects of 

route choice.  A similar story arises for the private duopoly (see Section 3.4). In this case, when route 

2 is more congested, the market power exerted by the operator of the “better” route 1, due to 

congestion, leads to a suboptimal demand, as he sets a very high toll to maximise profits. This 

advantage gradually diminishes as consumer heterogeneity becomes stronger. It should be noted 

here that, whenever one route is privately operated, then, once µ  becomes large enough, the 

generalised price of using this route will become too large: i i i ip N a    . Demand will then 

drop to zero. 

 

Figure 5 Effect on demand of increasing consumer heterogeneity (μ) when route 1 is 
intrinsically better than route 2 and there is congestion 

There are two ways in which we can consider the impact of increasing congestion on the network: 

either the total congestibility of the network increases, but the relative level of congestibility on the two 

routes remains unchanged; or the congestion parameter associated with each route increases 

independently. In the former case, we can write total congestion as  1 2      and examine the 

effect of increasing the scale parameter γ
18

.  Then, for all degrees of consumer heterogeneity, we find 

                                                      

18
 We can then regard the analysis of the previous section as effectively corresponding to the case 1  . 
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that, for the case  0a c   , the demand for route 1 decreases under all operator regimes, as the 

role of congestion becomes more important than the intrinsic advantage that route 1 enjoys
19

.   

If, instead, we consider the effect of increasing total congestibility by increasing the congestion 

parameter for one route, while keeping the other fixed, this gives rise to a number of additional 

interesting results. Again, these are subject to the participation constraint, as the tolls on the two 

routes cannot become infinitely large. Firstly, for the deterministic case, when the level of congestion 

on route 1 is too low, all consumers will prefer to take this route, whatever the level of congestion on 

route 2. This is in contrast to the stochastic case, where consumer preferences for diversity mean that 

some consumers will always take route 2. The stochastic results are illustrated in Figure 6. Increasing 

the congestion parameter of route 1 ( 1 )
20

, for any fixed level of congestability on route 2 ( 2 ), leads 

to a decrease in the demand for route 1, for all operator regimes and all levels of consumer 

heterogeneity.   

 

Figure 6 Effect on demand of increasing the congestibility of route 1 (α1) when route 1 
intrinsically better than route 2, the congestibility α2 of route 2 is fixed, µ>0 and ∆a-∆c>0 

It is clear from the figure that it is possible to achieve the First Best demand by changing the 

congestability (capacity) of a given route for a given level of consumer preferences for diversity, when 

both routes are free or both are privately operated 
21

.  
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 At some point the generalised cost of travel on each route becomes too high compared to consumer income and demand 

drops to zero, as the participation constraint of a consumer on a given route is exceeded (
i i i i

p N a    ). Exactly when 

this occurs will clearly depend on   and the other model parameters. 

 
20

 For the deterministic case, there is a minimum level of congestion on route 1, below which all N users will take this route. 
There is no such minimum in the stochastic case. 

21
 A corresponding set of results are obtained if α1 is fixed and α2 is varied. 
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4.3 Some second best results in the case government cannot 
control pricing  

From a government policy perspective, it may be the case that the government is unable to implement 

the First Best on a duopoly network by any of the means we have explored in this paper: imposing 

tolls or subsidies or changing the quality or capacity of one of the routes. But if the government does 

have the option to allow one of the routes to be privately operated, should it allow this, and on which 

route? 

 

Proposition 2 

Assume the total demand is fixed and that route 1 is intrinsically better than route 2, ( 0a c   ), 

so that there exists a unique, stochastic user equilibrium, and assume government cannot price any 

of the two routes, then: 

a) if there is no  congestion, the First Best solution always entails no pricing at all. -  privatisation of a 

route is always second best and in that case  it is socially preferable to price route 2 rather than route 

1.  

b) if preferences are deterministic and there is congestion, then if route 1 is the more congestible one

1 2( )  , it is preferable to toll route 1. However, if route 2 is also quite congestible, then it is better 

not to toll either route. 

c) if preferences are stochastic and there is congestion, then if route 1 is the more congestible 

1 2( )  , or consumer preferences for diversity are small, it is preferable to toll route 1. 

Proof: See Appendix C available upon request  

 

When there is no congestion, then all users can take their preferred route based on the objective 

quality of the route and their own intrinsic preferences. Tolling route 1 would raise more tax revenue 

as there is more demand for this route but this would not compensate for the loss in consumer surplus 

of those individuals who could no longer afford to use the better route. Hence, if a route must be 

privatised, then it should be route 2, although this may not be very attractive to a private operator. 

Adding congestion  changes the trade-off faced by the user when deciding which route to take.  When 

all users value the routes in the same way, the superior route 1 should be privatised as long as there 

is sufficient capacity on route 2. In this case, while some users will be forced to take the inferior route, 

the remaining users of route 2 will have improved travel times and the toll revenues also increase 

welfare. However, if route 2 is also prone to congestion, the overall positive welfare contribution may 

no longer hold and it is better to leave both routes untolled. In the stochastic setting, a more complex 

relationship between congestibility on the two routes and the strength of consumer preferences 

determines whether it is welfare enhancing to privatise one of the routes. In general, the arguments 

from the deterministic case for privatising route 1, if it is the more congestible route, also hold, but with 

the caveat that consumer preferences for diversity should not be too large. 
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5. CONCLUSIONS 

In this paper we have studied in detail the role of stochastic consumer preferences and congestion in 

the allocation of demand on parallel networks and more particularly the performance of different 

combinations of operators that price their link in the network.  In general, when compared with the 

deterministic case, demand on the intrinsically better route is found to be lower when preferences are 

stochastic. For the simple parallel duopoly, it is the difference in prices between the two routes that 

determine  demand.  Hence it is possible for a government to achieve the First Best demand 

allocation if it can impose tolls on one of the two routes. The presence of congestion on the network 

leads to market power for private operators, who are able to charge a mark-up over marginal external 

cost.  In the stochastic case, additional market power results from the intrinsic preferences of the 

users for a given route. For a private monopoly, this means that prices are always too high and 

demand too low and it can be preferable to leave both routes untolled.  However, on a congested 

network, if one route must be privately operated, it is generally better that the intrinsically superior 

route is selected. When there is a private duopoly or both routes are unpriced, it is possible that the 

First Best demand allocation can be achieved, depending on the relative magnitudes of the model 

parameters, including congestion and the degree of consumer preferences for diversity. Increasing 

the capacity of an alternative or improving its quality then become potential policy options when 

pricing is not available.  

This analysis provides, in a simplified network, useful insights for government policy options on 

transport networks with alternatives that differ in a complex way (congestability, quality and 

unobserved heterogeneity).  The simple duopoly results could also be generalised to the setting 

where users first choose their mode of transport and then select one alternative among  an identical 

set of alternatives within that mode.  It would then be possible to show under what conditions, the 

First Best can still be achieved. As future work it would be valuable to apply the model to an empirical 

example with more asymmetry. A further interesting theoretical extension would be to model a  more 

complex network including  serial links. 
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APPENDIX A: Proof of Proposition 1  

 Part (i) then follows directly from Section 3.1. When the government operates one route, route 1 say, 

it still maximises welfare according to (5), taking the price on route 2 as given. Hence, when route 2 is 

unpriced, then this enters equation (5) as 2 2p c and the optimal government toll is then 

 1 1 1 1 2 11p c N N      . This is the PUB-FREE scenario in  

Table 1. Similarly, a private operator of route 2 maximises his profit, taking the price on route 1 as 

given, so that 2 2 1 1 2

1

(1 )( )p c N


     


. This corresponds to the PUB-PRIV set-up. The 

government then sets a toll of 1 1 1

1

p c N


  


to satisfy (5). Since in both cases, the difference in 

price is the First Best one, the First Best demand follows automatically
23

. QED. 

 

The existence of a demand equilibrium ( 1 ) can be established using the Brouwer Fixed Point 

Theorem. The function  
1

( p, ) 1 expZ 


    in equation (3) has a fixed point if the set of 

probability demands 1 A   is a compact set. It can be shown that there is a one to one 

correspondence between the probability demand and the difference in price between the two routes, 

such that 

 

 
 

1

1 2

1 1

1
0

1

d

d p
N


 


  

  
  

  

   (A1) 

Further, if the set of prices available to the firms, i ip S , are compact, convex sets, then any linear 

combination of these prices is also a compact, convex set. Then the candidate demand equilibrium 

(3) exists.  

It is reasonable to assume that each firm sets his price i i i ip N a     so that the consumer’s 

total transport costs are less than income and utility gain from use of the route, to avoid zero demand, 

where   is consumer income. Similarly, the firm will choose i ip c , to cover marginal costs. We 

know from (A1) that there is a one-to-one relationship between p and 1 . Hence, 

 ,max ( )i i i ip c a N      is a compact, convex set. Thus we need only show that the 

welfare function of the government and the profit function of the private operator is quasi-concave 

(see Anderson et al 1992) for the candidate equilibrium to be the unique Nash solution. The quasi 

concavity of the profit function has been shown elsewhere (e.g. de Palma and Proost, 2006 ) and is 

not repeated here. Turning to the welfare function  
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 It can be shown that there is no first mover advantage for either party. Since total demand is fixed and each player knows 
that the other will set his price optimally, the government can always choose a toll to achieve the First Best demand 
allocation. Similarly, since the government always sets its toll as a function of the private operator’s toll regardless of 
whether the tolls are set simultaneously or one operators acts first, the private operator can do no better than to behave like 
a monopolist and maximise his profit taking the government’s behaviour as given. 
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1,2 1,2

log exp ( )
j j j j j

j j j

j j

p N a F
W p c

N




 

        
         

     
    

And assuming without loss of generality that the government controls at least route 1 and takes the 

price on route 2 as given, then we know that, at the equilibrium: 

        1
1 1 2 2 1 1 1 2

1 1

1 0
W

p c p c N N
p p

 


           
                    (A2) 

Differentiating a second time, 

 

      
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1
1 1 2 2 1 1 1 22 2

1 1

1 1
1 2

1 1

1

1 ( )

W
p c p c N N

p p

N
p p

 

 

 
          

  
   
  

   (A3) 

Evaluatiing equation A3 at the extremum, results in 

 

2
2

1 1
1 22

1 1 1

( )
W

N
p p p

 
  

    
   

                                      (A4) 

The second term on the RHS is clearly negative. It remains to show that the first term is non-positiive. 

By definition  
1

1 1 2( , ; ) 1 expp p 


   
 

 where   1

1 1 2 1 2 1 1 2 2( , , ; ) ( )p p p p N N a             .  

Differentiating with respect to , we obtain 

 

 

1
1 1

1 1

1

1 1 1 1 1 2

(1 )

(1 ) (1 )( ) 0

p p

N  


 
  

 

       

 

since 
11

1 2

1 1

1 ( )N
p p

   
   

  
.Hence 1 1p  is non- positive and the welfare function is 

quasi-concave as required. QED 
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APPENDIX B     SUMMARY RESULTS FOR PERFECT SUBSTITUTION WITH CONGESTION AND 

FOR IMPERFECT SUBSITITUTION WITH AND WITHOUT CONGESTION FOR A PARALLEL 

NETWORK 

 

Table A1 Results for perfect substitution (µ=0) with congestion (α>0) 

scenario Demand n1 Price p1 Price p2 

PUB-

PUB  
2

1

1 2

2

2

FBN a c
n



 

 



 

1 1 1 1p c n   2 2 2 2p c n   

FREE-

FREE 

 
1 1

1 22

FF FB a c
n n

 

 
 


 

1 1p c
 2 2p c  

FREE-

PUB 
1

FBn  1 1p c
 2 2 2 2 1 1p c n n     

PRIV-

FREE 

 
2

1 1

1 22

PF FB N
n n



 
 


  1 1 1 2 1p c n     2 2p c  

PRIV-

PRIV  

 
1 2

1 1

1 2

2

6

PP FB
a c N

n n
 

 

   
 



 

 1 1 1 2 1p c n      2 2 1 2 2p c n     

PRIV-

PUB 

1

FBn   1 1 1 2 1p c n     2 2 2p c N   
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Table A2 Results for scenarios with imperfect substitution and congestion

scenario Ψ Ψ as a function of 1n  p1 p2 Δp 

 PUB-

PUB 

(FB) 

  1

1 1 2 22 2FB c a n N           

 

  1

1 2 1 12( ) FB FBn n    
 

 

1 1 1 1p c N  
 2 2 2 2p c N  

  1 2 1 2FBp c N N          

 FREE-

FREE 

  1

1 1 2 2c a n N             1

1 2 1 1( ) FF FFn n    
 

 1 1p c
 2 2p c

 FFp c    

FREE-

PUB 

FB  FB  1 1p c
 2 2 2 2

1 1

p c N

N





  

 
 

FBp
 

 PRIV-

FREE 

  1

1 1 2 2

1

2 ( )

1

1

c a n N        




 

  1

1 2 1 1

1

2( )

1

1

PF PF

PF

n n     
 




 

 

 

1 1

1

1 2 1

1
p c

N



 

 

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2 2p c
 

 

 

1

1 2 1

1
PFp c

N



 

   
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  
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 

1

1 1 2 1 2

1

1 1

3 2

2 1

1

c a n N            

 

 

 

 

 

1

1 2 1 1

1

1 1

3( )

2 1

1

PP PP

PP

PP PP

n n     
 

 

 

 

1 1

1

1 1 2

1

( )

p c

N



 

 


  

 

2 2

1

2 1 2( )

p c

N



 

 


  

 

 
 

 1 1 2

1 1

2 1
1

PPp c

N


 

  

 
     

  

 

PRIV-

PUB 

FB  FB

 
1 1

1

1 1 2

1

( )

p c

N



 

 

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2 2

1

2

1
p c
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

 
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
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