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Abstract

This paper examines the informativeness of consumer information networks and their e¤ect

on price competition between �rms. Under the proposed information mechanism, consumers

share their initial information with the members of their network and as such become better in-

formed. The main result of this paper shows how informative such networks are by characterizing

how many di¤erent pieces of information a network is likely to contain. This informativeness is

crucial for the degree of competition, as consumers comparing more prices induce �rms to com-

pete more �ercely. We �nd that larger networks imply better information transmission, which

intensi�es competition and decreases all the percentiles of the price distribution. An increase in

the number of �rms makes networks more informative, and decreases all the percentiles as well.

Our results are robust to the introduction of sequential search and network segregation, but an

increase in segregation decreases information transmission and increases all percentiles.
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1 Introduction

Modern society is characterized by an abundance of marketplace information. The extent to which

consumers bene�t from this information availability depends on how well they are able �nd infor-

mation that is valuable to them. They obtain this information through a variety of channels, but in

many types of situations they rely on personal contacts, or their �social network�.1 Such networks

might contain valuable information as individuals tend to di¤er in terms of the initial information

available to them. By creating and accessing an information network, consumers pool their initial

information and as such become better informed.

Often it is of importance how many pieces of information a consumer manages to acquire

through this information network. Consider for instance a consumer looking for the lowest price

for a particular product. The more prices such a consumer knows, the more prices he can compare

and the lower the price he will eventually pay. In such a situation the value of a network is clearly

determined by the number of di¤erent prices contained in the network, but exactly how informative

are they? This paper addresses this question by developing a simple, yet highly tractable, model of

consumer information networks. The informativeness of the network has important consequences

for the degree of competition between �rms, as better informed consumers are more likely to buy

from the lowest-priced �rm. We therefore explore these consequences for �rm price-setting behavior

in the context of an oligopolistic market.

The basic framework considers a setting in which there are N potentially di¤erent �objects�that

consumers can become informed about. Each consumer is initially informed about one randomly

chosen object, but they can become more informed by accessing their information network. In

particular, we follow the model of interpersonal communication found in Ellison and Fudenberg

(1995) and Galeotti (2010), and assume that each consumer has access to the initial information

of k other consumers. By combining this information with the consumers�own initial information

they can therefore become informed about up to k + 1 di¤erent objects.

The main result of this paper is a characterization of the informativeness of consumer networks.

In particular, we derive an explicit formula for the proportion of consumers that will be informed

about m of the N di¤erent objects. This formula turns out to be very straightforward and uses

Stirling numbers of the second kind, a series of numbers that is well-known in the �eld of combi-

natorics. Given this characterization we then show how the informativeness varies in the network
1See Galeotti (2010) for a recent survey of empirical papers documenting this phenomenon.
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size k and the number of objects N . We derive the intuitive comparative static result that as the

network grows larger, or the number of objects increases, consumers will become better informed.

These intermediate results turn out to be crucial for analyzing the impact of an increase in k or N

on �rms�pricing behavior.

To investigate the impact of consumer networks on �rm price setting behavior the model of

information is combined with the canonical oligopoly model of imperfect information introduced in

Armstrong, Vickers and Zhou (2009) and Lach and Moraga-González (2009, 2012). All consumers

are initially informed about the price of 1 of the N �rms, but also have access to the prices known

by their network connections. We show that in the presence of consumer information networks,

prices tend to be dispersed. The reason is that some consumers will not learn any additional prices

through their network, whereas other consumers do. This discrepancy in consumer informedness

creates a tendency for �rms to have periodic �sales�, as one the one hand they want to charge high

prices to extract rent from the uninformed consumers, but they also want to charge low prices to

attract the informed consumers. They balance these two incentives by randomizing over prices,

generating intertemporal price dispersion as an equilibrium phenomenon, as in Varian (1980).

Recent ICT-developments, such as the spectacular growth in mobile internet devices and social

media, tend to have increased consumer connectivity. Our model predicts that such an increase in

the network size improves information transmission among consumers and forces �rms to compete

more �ercely. This in turn reduces prices for all consumers by decreasing all percentiles of the price

distribution. A more connected world will thus tend to be a more competitive world. We also

consider the e¤ect of an increase in the number of �rms on prices. It is well-known that in markets

with imperfect information, an increase in the number of �rms can have surprising e¤ects. One of

the most striking �ndings is that an increase in the number of �rms might actually increase the

average price (see, e.g., Rosenthal, 1980; Varian, 1980), contradicting the predictions of standard

Cournot and Bertrand oligopoly models. We show that in the presence of consumer information

networks an increase in the number of �rms always decreases all percentiles of the price distribution,

so consumers are always better o¤when there are more �rms competing. The reasoning behind this

result is following: As the number of �rms increases, consumers become more informed as their

connections are more likely to know a di¤erent price. This induces consumers to compare more

prices and �rms to compete more �ercely.

In a �rst extension we introduce costly sequential search as in the seminal paper by Stahl (1989).

In particular, consumers can search sequentially for the prices they did not become informed about

2



through their network. We show that costly searchers choose not to search, and are only informed

by information pooling through their network. This generates a price dispersion equilibrium without

imposing ex ante heterogeneity in search cost as in Stahl (1989). Prices are shown to be lower in

the presence of consumer search, as �rms have to charge prices that are su¢ ciently low to prevent

search activities. Unlike in the original model, an increase in the number of �rms unambiguously

decreases prices. This is due to the fact that such an increase improves the informedness of all

consumers, whereas in the original model costly searchers did not become more informed. The

introduction of information networks therefore restores the prediction of standard oligopoly models

that competition tends to decrease prices.

In the benchmark model each of the k consumers can be informed about any of the N objects. In

reality agents have a tendency to associate themselves with others similar to themselves (see, e.g.,

Jackson and López-Pintado, 2013). In a second extension of the model we allow for such network

segregation and show that our main results continue to hold if networks are not too segregated.

In that case an increase in k or N still improves the information transmission, and continues to

decrease all percentiles of the price distribution. We also show that an increase in the degree of

network segregation tends to decrease information transmission and increase all percentiles.

This paper is related to several strands of economic literature. Firstly, it is related to the

literature on social and economic networks (see, e.g., Jackson, 2008) which studies the implications

of network structure on outcomes. Part of this literature studies how network structure matters

for the �di¤usal� of information, and identi�es conditions on the network structure such that

information spreads (see, e.g., Rogers and Rogers, 2003). The models used are typically dynamic to

capture explicitly the di¤usion of information, and the focus is on the convergence properties of the

information di¤usal process. This paper focuses on a more static framework in which information

di¤usal occurs immediately, and in which the network structure is very simple. These simplifying

assumptions allow us to highlight the informativeness of the network by being able to calculate

explicitly how many di¤erent objects the network contains. Another part of this literature focuses

on �social learning�and studies how networks can be used to aggregate information of individual

agents. In these models there is typically uncertainty about players�payo¤s from di¤erent actions

but they can learn about them over time by listening to the experiences of other agents. The

network structure that we use is based on one such paper, Ellison and Fudenberg (1995), in which

agents hear about the experiences regarding two products from a sample of k other agents in the

context of repeated interaction. We consider a more static environment but generalize their setup
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to allow for more than two products.

Secondly, it is related to the literature on oligopoly under imperfect information.2 A large part

of this literature has explored the consequences on price-setting behavior of imposing a particular

information gathering mechanism, such as consumer search (Burdett and Judd, 1983; Stahl, 1989),

advertising (Butters, 1977) and information clearinghouses (Baye and Morgan, 2001). Recently

some papers have also started to explore networks as an information mechanism. For instance,

Lever (2011) and Nermuth, Pasini, Pin and Weidenholzer (2013) consider the implications of a net-

work between �rms and consumers. The current paper considers a network of information between

consumers, as in Galeotti (2010), who studies the impact of such networks on consumer search be-

havior. Galeotti�s setup is however limited to a duopoly, which restricts the informativeness of the

network. The current paper considers an fully oligopolistic setup without consumer search. As such

we are able to highlight the informativeness of the network and its relation to market structure.

The remainder of this paper is structured in the following way. In section 2 we introduce the

benchmark model without search or network segregation. We characterize the informativeness of

the network and derive implications for �rms�pricing behavior. Section 3 covers two extensions of

the model: In a �rst extension we allow consumers to search sequentially for prices they did not

learn through their network. In a second extension we allow the network to be segregated. We

also brie�y discuss two other extensions which are not covered explicitly. In the last section we

summarize our results and discuss directions for further research.

2 The Benchmark Model

2.1 Model Setup

The basic setup of the model is roughly identical to the model presented in Armstrong, Vickers and

Zhou (2009) and Lach and Moraga-González (2009, 2012). They consider a market in which the

supply side consists of N � 2 identical �rms who compete in prices to sell a homogeneous good.

Each �rm faces a constant marginal cost c � 0 and there are no �xed costs.

The demand side is characterized by a unit mass of consumers with inelastic demand: Con-

sumers wish to purchase one unit of the good as long as the price does not exceed their valuation

v > 0. They purchase the good from the �rm with the lowest price to their knowledge, but are

heterogeneous in the number of prices they are informed about: A fraction �m � 0 of consumers
2See Baye et al. (2006) for an excellent survey of this literature.
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is informed about m prices, where m 2 f1; : : : ; Ng. The distribution of price information in the

market is then summarized by the vector � = f�1; : : : ; �Ng. The most important di¤erence between

the model in Lach and Moraga-González (2009, 2012) and the current paper lies in � : The authors

do not explicitly specify � and identify su¢ cient conditions on � under which competition decreases

prices for all consumers. The current model assumes an explicit information mechanism which is

inspired by the literature on word-of-mouth communication and social networks (see, e.g., Ellison

and Fudenberg, 1995; Galeotti, 2010).

The consumer information network mechanism takes on the following form: Consumers are

initially imperfectly informed and know only the price of one randomly chosen �rm. As in Galeotti

(2010), they can become more informed through an information network: Each consumer has a

network of k other consumers, who share their initial price information with the consumer. Some

of these connections know the same price as the consumer, but others might know prices previously

unknown to the consumer, causing the latter to become more informed. Unlike in Galeotti�s paper,

we do not allow for consumers to gain additional information through search activities in the

benchmark model. This is because we want to focus explicitly on the properties of the network

information mechanism. In an extension we explore the consequences of the information network

when consumers search sequentially.

All consumers are assumed to have the same network size k, but some consumers will end up

knowing more prices than others as their network contained a larger variety of prices. In the best

case all of a consumer�s connections will know a di¤erent price, and the consumer will learn a great

deal from his network. In the worst case he might not learn any new prices at all, which happens if

all of his connections tell him the price he already knew. How likely each of these cases is to occur

is one of the main questions that this paper will provide an answer to. The network is also assumed

to be exogenous in size and costless to access. One rationale for these assumptions could be that

the network was formed for a more general purpose (e.g. social network), and not for gathering

price information per se.

Multiple interpretations can be given to the information network. First of all, it could be

thought of as an actual social network. If friends or colleagues are interested in similar products,

they are likely to have additional information relevant for the consumer�s purchase. This could for

instance be the case because the members of the network are geographically dispersed. Secondly,

it could be thought of as a type of �passive search�. For some products consumers do not actively

search, but they observe �rms�prices during their day-to-day movements. A �rm�s price will then
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only be observed by consumers that cross the �rm on their path. The network parameter k can in

this case be seen as an intensity of movement: Consumers who move around a lot are more likely

to observe a �rm�s price. One could also observe the purchases of his friends, who will tell what

they paid for the good.

The timing of the game is the following: First, all �rms simultaneously and independently

set prices. After prices are set, each consumer observes the price of one randomly chosen �rm.

Consumers then consult their network and purchase from the lowest price known to them. We look

for symmetric Nash equilibrium.

2.2 Information

As is well-known, a main determinant of the price distribution in imperfect information models

is the degree and composition of information that is available to consumers. As consumers are

typically considered to sample the �rms in a random order, the consumers�degree of information

is summarized by the number of �rms they sample. In this section we will therefore derive the

fraction of consumers that is informed about the prices of a certain number of �rms.

As is standard in the literature, we assume that consumers are initially informed about the

price of one randomly chosen �rm; the so-called initial price. This assumption guarantees that all

consumers are informed about at least one price and will always buy the product.3 Upon observing

the initial price, consumers access their network, through which they might learn additional prices.

This happens if the initial price of the members of the network is di¤erent from the consumer�s

initial price. Since each consumer�s initial price is random, the number of prices that will be known

by consumers after accessing their network is a random variable. All consumers have the same

network size k, so the probability that any consumer is informed about m di¤erent prices is also

the overall fraction of consumers that is informed about m prices. If we denote this fraction by

�m (k;N), then the total amount of information in a market with N �rms is summarized by the

information vector � (k;N) = f�1 (k;N) ; : : : ; �N (k;N)g. It turns out that the elements of this

information vector have a rather simple expression, which is summarized in Theorem 1.

3Alternatively, one could assume that consumers have no prior information and only acquire information through
the network. This is equivalent to reducing the network size by one, and hence does not change our results in any
signi�cant way.
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Theorem 1 In a market with N �rms, the fraction of consumers with a network of size k that is

informed about the prices of m �rms, denoted by �m (k;N), is given by:

�m (k;N) =

8<: N !
Nk+1(N�m)!S (k + 1;m) > 0 if m �Mk

0 if m > Mk
(1)

where S (:; :) are Stirling numbers of the second kind and Mk = min fk + 1; Ng.4

Proof. By pooling his initial price quote with the price quotes obtained through the network, the

consumer obtains a set of k + 1 random price quotes. To be informed about m prices, this set of

price quotes should contain the prices of exactly m �rms, where the identities of the �rms do not

matter. Stirling numbers of the second kind S(a; b) are useful in this context as they count the

number of ways one can partition a set of a objects into b non-empty subsets. In the case at hand

the set of objects are the price quotes and the subsets are m speci�c �rms. To give an example,

consider the case where the speci�c �rms are �rm 1 and 2 and the number of price quotes is 3.

Denote the i-th price quote by si and denote allocations of these price quotes to the �rms as sets,

where the j-th subset contains the sample allocated to �rm j. We then have that S (3; 2) = 3,

which counts the following allocations:

Firm 1 2

(i) ffs1g ; fs2; s3gg fp1; p2; p2g

(ii) ffs1; s2g ; fs3gg , fp1; p1; p2g

(iii) ffs1; s3g ; fs2gg fp1; p2; p1g

Stirling numbers only consider partitions, so the identities of the subset do not matter. In the

present context these identities do matter (as the j-th subset contains the price quotes of �rm j).

We therefore multiply by N != (N �m)! to take into account all possible ways in which m �rms

could be assigned to the subsets (when the order matters). The �nal step is to recognize that there

4The Stirling numbers of the second kind are given by:

S (a; b) =
1

b!

bX
j=0

(�1)b�j
 
b

j

!
ja

where
�
b
j

�
is the binomial coe¢ cient. These numbers are commonly used in combinatorics and represent the number

of ways to partition a set of a objects into b non-empty subsets. The author would like to thank Tom Potoms for
bringing these numbers to his attention.
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are Nk+1 possible sets of price quotes which the consumer could have obtained.

From these probabilities, two properties of the information vector are immediately clear: First

of all, a consumer with a network of size k can never know more than Mk = min fk + 1; Ng prices:

Clearly a consumer cannot know more prices than the number of potentially di¤erent prices, but

consumers are also bounded by the size of their network, as they cannot learn more new prices as

there are members in the network. This will have important implications for the equilibrium price

distribution, as �rms can never face competition from more than Mk � 1 other �rms. Secondly,

any number of prices equal or below Mk will be known with strictly positive probability. For some

consumers �rms therefore do not compete with other �rms, whereas for others they facem �Mk�1

competitors.

As Theorem 1 shows, calculating these probabilities require the use of Stirling numbers. A

table containing the �rst few rows and columns can be found in the Appendix. For small m these

numbers are very tractable. For instance, we have that S (k + 1; 1) = 1 and S (k + 1; 2) = 2k � 1.

Straightforward calculations now yield the following Corollary:

Corollary 2 The fraction of consumers observing one price is given by

�1 (k;N) =
1

Nk
(2)

which is decreasing in N and k. The fraction of consumers observing two prices is given by

�2 (k;N) =
�
2k � 1

� (N � 1)
Nk

(3)

which is decreasing (increasing) in N if k > 1 (k = 1) and decreasing (increasing) in k if N > 2

(N = 2).

The intuition behind the expression for �1 is clear: The only way a consumer does not learn

any new prices from his network, is if all of his network members know the same price as he did.

Since the initial prices are random, this occurs with probability N�k. Note that when k � 1 we

have that 0 < �1 < 1. In that case some consumers will not be comparing prices, a condition which

is necessary and su¢ cient for a price dispersion equilibrium to exist. If k = 0 then clearly all

consumers will only be informed about their initial price and we have that �1 = 1. The fraction of

consumers observing a single price is also decreasing in both N and k. Consumers with a larger

network, or consumers in markets with more �rms will thus always be more likely to know more
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than one price.

The fraction of consumers observing two prices is also decreasing in the number of �rms if the

network contains at least two members, and decreasing in the network size if there are at least

three �rms in the market. Clearly if there are only two �rms in the market, then a decrease in �1

must increase �2 (as probabilities have to sum up to one). With more than two �rms, consumers

with a larger network are less likely to know only two prices, and more likely to know more than

two prices. This is intuitive since in that case there are more prices to be learnt. Similarly, if the

network contains only one connection, then consumers can never know more than two prices. An

increase in the number of �rms will then only make it more likely that a consumer learns two

di¤erent prices. If the network size is larger than one, an increase in the number of �rms will cause

the consumer to be more likely to learn a number of prices higher than two.

Another consequence of Theorem 1 is that the shape of the information vector can only take

on one of two forms:

Corollary 3 �m (k;N) is single-peaked and is either:

(i) (weakly) increasing in m, (if k � k� (N) or k � k�� (N))

(ii) �rst increasing and then decreasing in m (if k� (N) < k < k�� (N))

where k� (N) < k�� (N) and both of these thresholds are (weakly) increasing in N .

Proof. see Appendix

When information networks are relatively small or relatively large compared to the number

of �rms, then the probability of knowing m prices is (weakly) increasing in m. Only very little

consumers know only one price; most of them will know Mk prices. The logic behind this result is

the following: If the network is very small, the members of the network are very likely to all know

di¤erent prices, which makes it very likely that the consumer will learn k new prices. If on the

other hand the network is very large, it becomes very likely that all �rms�prices are shared on the

network. In that case a consumer is very likely to be informed about all N prices. For information

networks of intermediate size, the probability mass will be centered around some central value of

m: Most consumers know an intermediate number of prices, and the share of consumers that know

either a very small or a very large number of prices is small.

An important �nding is how the information vector changes as either the network or the number

of �rms increases. The e¤ect of an increase in the number of �rms on the information vector will

be important as it will be the driving force of competition. The e¤ect of an increase the network
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size shows how information �ows in more socially connected markets. Both e¤ects are similar and

contained in the following Corollary:

Corollary 4 An increase in the number of �rms N causes an upward shift in the information mass:

there exists an m�
N s.t. �m (k;N) weakly decreases (increases, resp.) for all m smaller (greater,

resp.) than m�
N (k;N). This critical m

�
N (k;N) is furthermore weakly increasing in k and N . As

the number of �rms increases without bound, all consumers eventually become informed about Mk

prices. The e¤ect of an increase in the network size k is similar to that of an increase in N . The

critical m�
k (k;N) is also weakly increasing in k and N .

Proof. see Appendix

As the network becomes larger or the number of �rms increase, consumers will thus be more

(less) likely to be informed about a high (low) number of prices. The intuition for this result is

clear: If there is more to be learnt or there are more opportunities to learn, consumers will be

better informed. The result in Corollary 4 is stronger than �rst-order stochastic dominance, so the

expected number of prices observed by a consumer must increase in k and N as well. The next

Corollary demonstrates this property by showing that this expectation has a convenient expression:

Corollary 5 The expected number of prices observed by a consumer with a network of size k is

given by:

Em (k;N) =
NP
m=1

m � �m (k;N) = N
 
1�

�
1� 1

N

�k+1!
(4)

which is concave and increasing in N and k.

Proof. The expected value can be found rather easily by expressing it as a sum of indicator variables

and exploiting the linearity of the expectation operator. De�ne Ii as the indicator variable which

takes on the value 1 if �rm i�s price is known by a consumer (after consulting the network), and 0

otherwise. The number of di¤erent prices known by the consumer is now given by the sum
PN
i=1 Ii.

By linearity of the expectation operator we have that

Em (k;N; pI) = E
hPN

i=1 Ii

i
=
PN
i=1E [Ii] = NE [Ii] (5)

where the last equality follows from the fact that �rms are symmetric. The expected value E [Ii] is

the probability that �rm i�s price is drawn, and is the inverse of the probability that �rm i�s price
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is not drawn. The probability that i�s price is not drawn is the probability that none of the k + 1

samples contains �rm i�s price, which occurs with probability

p�i =

�
1� 1

N

�k+1
The probability that �rm i�s price is known is thus given by E [Ii] = 1 � p�i. Hence, the overall

expectation is given by N (1� p�i).

Before we proceed to discuss the �rm side, we provide some examples of information probabilities

to illustrate the main results of this section.

Table 1: Information probabilities

(a) For di¤erent values of k
k �1 �2 �3 �4 �5
3 0:008 0:224 0:576 0:192 0:000
6 0:000 0:016 0:231 0:538 0:215
9 0:000 0:001 0:057 0:419 0:522
1 0:000 0:000 0:000 0:000 1:000

(b) For di¤erent values of N
N �1 �2 �3 �4 �5
5 0:008 0:224 0:576 0:192 0:000
10 0:001 0:063 0:432 0:504 0:000
20 0:000 0:017 0:266 0:727 0:000
1 0:000 0:000 0:000 1:000 0:000

k=1 k=3 k=6 k=9

1 2 3 4 5

0 .2

0 .4

0 .6

0 .8

m

m

(a) For di¤erent values of k (N=5)

N=2 N=5 N=10 N=20

1 2 3 4 5

0 .2

0 .4

0 .6

0 .8

m

m

(b) For di¤erent values of N (k=3)

Figure 1: Information probabilities

Table 1 (a) and Figure 1 (a) list the information probabilities for various network sizes when

there are �ve �rms in the market. In such a market, consumers with three network connections will

never know all �ve prices; they will most likely know two to four prices. As the network grows larger,

the probability mass is shifted towards higher numbers: Consumers with nine network connections

will know at least four out of �ve prices with probability 0.95. As the network size becomes
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increasingly large, consumers will eventually know the prices of all �ve �rms with a probability

approaching one. Table 1 (b) and Figure 1 (b) list the information probabilities for various market

structures when consumers have a network with three connections. If there are more than 4 �rms,

consumers will never know all prices as they are limited by the size of their network. When there

are �ve �rms in the market, most consumers will know the prices of three �rms. As the number

of �rms increases, the probability mass is again shifted towards higher numbers: In a market with

twenty �rms, consumers will know at least three prices with probability 0.98, and know exactly

four prices with probability 0.73. As the number of �rms becomes increasingly large, consumers

will eventually know the prices of four �rms with a probability that is approaching one as they are

bounded by the network size.

2.3 Equilibrium Price Distribution and Comparative Statics

We now turn to �rms�price setting behavior, taken as given the level of consumer informedness

which we derived in the previous section. Throughout this section we will assume that the network

size is strictly positive (i.e. k � 1), in which case we have by Corollary 2 that �1 2 (0; 1).

As is well-known, a pure-strategy price equilibrium does not exist if �1 2 (0; 1).5 In that case

�rms both have an incentive to charge low prices to attract all price-comparing consumers (i.e. the

business stealing e¤ect) and an incentive to charge high prices to extract surplus from consumers

that do not compare prices (i.e. the surplus extraction e¤ect). Since �rms cannot price discrimi-

nate, they balance these di¤erent incentives by randomizing over prices according to a cumulative

price distribution F (p). This distribution should be atomless since otherwise �rms would have an

incentive to undercut each other at the atom. When all other �rms randomize according to F (p),

�rm i�s expected pro�ts are given by

�i (pi; F (p)) = (pi � c)

24MkX
m=1

�m

�m
N

�
(1� F (pi))m�1

35 (6)

where the arguments for �m have been dropped for notational simplicity. When charging a price

pi, �rm i�s expected demand of consumers who are informed about m prices, is given by the joint

probability that (a) such a consumer is informed about �rm i�s price, �m � (m=N), and (b) �rm i is

the lowest price among all other prices known to this consumer, (1� F (pi))m�1. For the consumers
5 It is well-known that if �1 = 1 the Diamond paradox (Diamond, 1971) of monopoly pricing occurs (p = v),

whereas if �1 = 0 the Bertrand paradox of marginal cost pricing occurs (p = c).
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who only know one price (i.e. �1) the �rm does not face any competition, and it will attract an

equal share of 1=N of these uninformed consumers regardless of its price.

In the case of unit demand, the upper bound of the price distribution F (p) should equal the

consumer�s reservation price v. No �rm should ever charge a price above v, as no consumer would

be willing to buy at such a price. If the upper bound is below v, all �rms�expected pro�ts could be

increased by raising the upper bound, which contradicts it being part of a Nash equilibrium. We

therefore have that

p = v (7)

This yields an expected pro�t of � (v; F (p)) = (v � c) (�1=N), which is also the pro�t level every

other price of the mixed strategy should yield (as to make the �rm indi¤erent). The equilibrium

price distribution can then be found by equating (6) to this common pro�t level:

F (p) solves �i (pi; F (p)) = � (v; F (p)) (8)

As the pro�t function is a polynomial of order Mk � 1, for which there is no general algebraic

solution (i.e. a solution in radicals), it is not possible to solve explicitly for the price distribution

F (p). By Descartes�rules of sign, a unique positive solution F (p0) exists for each p0 and can be

calculated using numerical methods. Even though we cannot solve for F (p), we can easily �nd the

inverse price distribution by solving for p:

p (x) = c+
v � c

MkP
m=1

m
�
�m
�1

�
xm�1

(9)

where x = 1� F (p). The lower bound is then found by setting x = 1, which yields

p = c+
v � c

MkP
m=1

m
�
�m
�1

� (10)

We are now ready to characterize the welfare consequences of an increase in k and N . We start

by showing how such an increase a¤ects the percentiles of the price distribution, as is summarized

in Proposition 6.
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Proposition 6 All percentiles of F (p) are decreasing in the number of �rms N and the network

size k. As the number of �rms or the network size grows larger pricing eventually becomes perfectly

competitive.

Proof. see Appendix
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Figure 2: Equilibrium price distribution (v=1, c=0.1)

By Corollary 2 and 4 we know that there will be an upward shift in the information mass, and

that the share of consumer not comparing prices strictly decreases. All �rms therefore face a smaller

share of uninformed consumers, which is the source of their market power. One might be tempted

to think that such a decrease must induce �rms to reduce all prices in the distribution, but this is

not necessarily the case. For instance, in a market with only three �rms, a sharp decrease in �2

accompanying the decrease in �1 (so that �3 increases) can actually increase the upper percentiles

of the price distribution.6 Lach and Moraga-González (2009, 2012) point out that a su¢ cient

condition for all percentiles to decrease is that the ratio (�m=�1) should (weakly) increase. In that

case each share of consumers comparing at least two prices becomes relatively more important

compared to the non-comparing consumers. In the Appendix we show that an increase in k or N

raises this ratio. Both an increase in the number of �rms and the network size thus decreases all

percentiles of the price distribution, including the lower bound (which is the lowest percentile).

Figure 2 (a) and (b) demonstrate this result by plotting F (p) for a number of values of k and

N . Higher values of k and N are associated with a cumulative price distribution that is shifted

6Consider for instance the following change: f�1; �2; �3g : f0:3; 0:45; 0:25g ! f0:225; 0:225; 0:55g. In that case it is
easy to see from equation (9) that all percentiles above 0:793 actually increase.
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upwards (so the percentiles decrease). As k or N increases without bound, the price distribution

becomes degenerate and all mass will be centered around the marginal cost (i.e. a pure strategy

equilibrium).

Consumer welfare depends negatively on the expected price paid by a consumer. The next

Corollary shows how an increase in N or k a¤ects these expected prices.

Corollary 7 The expected price paid by consumers is decreasing in the number of �rms N and the

network size k.

Proof. The expected price a consumer pays depends on the number of prices he is informed

about: A consumer who is informed about m �rms�prices will pay the minimum of the m prices

he is informed about. The expected price paid by such a consumer is E(m)min [p] =
R 1
0 pdF

(m)
min , where

F
(m)
min = 1 � (1� F (p))m is the distribution of the minimum price of m draws from F (p). Since

all percentiles are decreasing, E(m)min [p] is also decreasing in k and N . The expected price paid by a

consumer with a network of size k is a weighted average of the expected minimum prices E(m)min [p],

where the weights are determined by the probabilities of observing m prices. More speci�cally, the

expected price paid by a consumer with a network of size k is Ek [p] =
PMk

m=1 �m (k;N) � E
(m)
min [p].

Since E(m)min [p] is decreasing in N and k, and since an increase in N or k causes an upward shift in

the information mass (cf. Corollary 4), such an increase will also decrease Ek [p].

In line with the predictions of perfect information oligopoly models, we therefore have that

competition unambiguously decreases (increases, resp.) all consumers� expected prices (utility,

resp.). With unit demand, prices are just transfers from consumers to �rms. If all prices in the

distribution are decreasing then individual and aggregate �rm pro�ts must also be decreasing in k

and N .

3 Extensions

3.1 Sequential Search

In this section we apply our model of information networks to the sequential search oligopoly model

by Stahl (1989). In the original model consumers varied in terms of their initial information and

search costs, and could only become more informed by engaging in costly sequential search. We

incorporate information spillovers by allowing consumers to pool their initial information with the

members of their network before deciding whether they want to engage in costly search. The
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introduction of consumer information networks generates price dispersion as an equilibrium and

restores the standard prediction that an increase in the number of �rms unambiguously decreases

prices.

In Stahl�s seminar paper on sequential search oligopoly, price dispersion was obtained as an equi-

librium phenomenon in a model in which both �rms and sequentially searching consumers behaved

optimally. Firms �nd it optimal to randomize over prices as there is heterogeneity in consumer

informedness. In that case randomization balances the business stealing and surplus extraction

e¤ects discussed earlier on. The heterogeneity in informedness is rationalized by introducing het-

erogeneity in search costs: A share of �shoppers�has a zero search cost and always �nds it optimal

to compare all prices; the remaining share of �non-shoppers�has a positive search cost s and does

not �nd it optimal to search as the expected price decrease from searching is too low compared to

the search cost.

An undesirable property of the Stahl model is the lack of information spillovers between con-

sumers and the associated informational unresponsiveness of non-shoppers to the number of �rms

in the market. In equilibrium, non-shoppers are only informed about the price of a single �rm and

shoppers are always fully informed, irrespective of the number of �rms. This asymmetric infor-

mational e¤ect of competition has surprising e¤ects on prices: Stahl noted that for any downward

sloping demand curve an increase in the number of �rms would eventually lead to monopolistic pric-

ing. Janssen, Pichler, and Weidenholzer (2009) show that for the case of unit demand the expected

price is strictly increasing in the number of �rms. The driving force behind these strange results

is exactly the asymmetric informational e¤ect. As the number of �rms increases, �rms �nd it more

di¢ cult to compete for the informed consumers as they are less likely to be the lowest-priced �rm.

This induces them to shift their focus towards the non-comparing consumers and increase their

prices. By introducing information spillovers non-shoppers become more informed which prevents

�rms from raising prices.

We incorporate information spillovers in the Stahl model by combining it with information

networks. In particular, we assume that prior to engaging in costly sequential search activities con-

sumers pool their initial information with the members of their network. If consumers are not fully

informed after accessing their network then they can still decide to search. Contrary to the original

model we do not introduce any heterogeneity in search costs among consumers. All consumers are

assumed to be of the non-shopper type and face a positive search cost s. In the original model this

heterogeneity was necessary in order for there to be heterogeneity in consumer informedness such

16



that price dispersion could arise. In our model this heterogeneity will also manifest due to the fact

that some consumers will have more informative networks than others. As such we do not explicitly

need the somewhat arti�cial construct of �shoppers�to generate price dispersion.

After accessing the network, the share of consumers that is informed about m prices is given

by the expression in Theorem 1. Consumers that do not become fully informed can now become

more informed by engaging in costly sequential search activities. It is well-known that for such a

consumer the optimal sequential search strategy is characterized by a price threshold �, which is

given by:

� = min fr; vg (11)

If the lowest price quote known is below �, the consumer will stop searching and buy from the �rm

o¤ering that price quote. Clearly � should be weakly smaller than the willingness to pay v, since he

must obtain a positive utility in order to be willing to buy. The price should also be smaller than the

reservation price r. The latter is such that if it is the lowest price known by a particular consumer,

the expected price decrease from searching for another price, which we denote by 4, would exactly

be o¤set by the search cost s. For any price above (below, resp.) r consumers will thus (not) �nd

it worthwhile to continue searching. Hence the consumer�s reservation price r satis�es:

4 (r) �
Z r

p
(r � p) f (p) dp = s (12)

where f (p) is the density function of the price distribution F (p).

In equilibrium all �rms again randomize according to a nondegenerate price distribution F (p)

with an upper bound now equal to p = �. Why �rms should not price above v is obvious, but

�rms will also not charge a price above r, since this will cause consumers to continue to search

and buy from another �rm. Since p = �, the lowest price known to each consumer after accessing

the network will be su¢ ciently low such that no consumer �nds it worthwhile to engage in costly

search. Consumers thus choose not to become more informed and the information probabilities are

therefore unchanged and given by Theorem 1:

The �rm�s pro�t function is unchanged compared to the case without sequential search. Using

similar arguments as before we can therefore derive the inverse price distribution, which is now

given by

p (x) = c+
�� c

MkP
m=1

m
�
�m
�1

�
xm�1

(13)
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where � is given by equation (11) and x = 1� F (p).

The equilibrium of the sequential search model is now implicitly de�ned by equation (11),

(12) and (13). Due to the assumption of unit demand we can solve explicitly for the equilibrium

reservation price r�. To see this, note that since p = �, we have that whenever r < v, equation (12)

can be rewritten as:

r = E [p] + s (14)

where E [p] =
R p
p pf (p) dp. The reservation price equals the expected overall price E [p], which is

what the consumer would pay on average if he would search again, augmented by the search cost s.

The expected price decrease from searching once more, r�E [p], is then exactly o¤set by the search

cost s. Using the expression for the inverse price distribution p (x) we can rewrite the expected

price more conveniently as

E [p] =

Z p

p
pdf (p) dp =

Z 1

0
p (x) dx

= c+ � (k;N) � (r � c) (15)

where

� (k;N) =

Z 1

0

24MkX
m=1

m

�
�m
�1

�
xm�1

35�1 dx
with � decreasing in k and N , 0 � � � 1, and limN!1 � = limk!1 � = 0.

The overall expected price charged by �rms is thus equal to the �rms marginal cost plus a

markup which is proportional to the di¤erence in the reservation price and the marginal cost. For

a given r and c this markup is decreasing in the network size k and the number of �rms N . The

equilibrium value for the reservation price can now be found by plugging in the expression for E [p]

into equation (14) and solving for r, which yields:

r� = c+
s

1� � (16)

which is decreasing (increasing, resp.) in k and N (c and s, resp.), and limN!1 r� = limk!1 r� =

c+ s. The mechanics behind these results are discussed below.

Given our characterization of the equilibrium we now proceed to discuss the main results of

the model with sequential search. We start by comparing the model with sequential search to our

benchmark model without search.
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Proposition 8 All percentiles of the distribution are weakly lower when consumers have the op-

portunity to search sequentially.

Both in the model with and without search consumers are equally informed, as consumers

choose not to search. When consumers are able to search, �rms might however not be able to

charge the same maximum price as before. Firms never charge a price higher than the consumer

valuation v, since otherwise no consumer would ever buy. In the model with search, �rms must also

take into account that charging a price above the reservation price r� induces consumers to start

searching. Firms refrain from doing so as this would lead them to lose all their customers to rivals.

Whenever the equilibrium reservation price r� is below v, the upper bound of the price distribution

is therefore strictly lower when consumers have to opportunity to search. By equation (13) a lower

value for the upper bound � decreases all percentiles of the price distribution.

Next, we consider the comparative statics of an increase in N and k. The comparative statics

of an increase in c and s are not discussed explicitly as they do not change compared to the original

Stahl model. In particular, both increases cause prices to increases unambiguously.

Proposition 9 The reservation price r� and all percentiles of F (p) are decreasing in the number

of �rms N and the network size k. As the number of �rms or the network size grows larger pricing

eventually becomes perfectly competitive.

An increase in the number of �rms N or the network size k decreases the equilibrium reservation

price and all percentiles of the distribution. This is because such an increase improves information

transmission among consumers and causes them to become more informed, just like in the model

without search. This in turn induces �rms to compete more �ercely and decreases prices. Now there

is also be a secondary e¤ect, as consumers reoptimize their reservation price. By equation (14) a

decrease in the expected price of the distribution causes consumers to decrease their reservation

price with the same amount. Whenever r� < v such a decrease reduces the upper bound of the

price distribution and further reduces prices. An increase in N or k can therefore have a larger

impact on prices when consumers have the opportunity to search. As the number of �rms or the

network grows larger, consumers become fully informed and �rms have to compete �ercely. For a

given upper bound this again decrease all percentiles of the price distribution. All mass of the price

distribution is concentrated at the marginal cost level c, and the expected price of this degenerate

distribution equals E [p] = c. By equation (14) the reservation price converges to c+ s, and not to

c, as consumers are willing to stop searching at a higher-than-average price due to search frictions.
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Figure 3 demonstrates the e¤ect of an increase in N or k on r� by plotting it for various values of

k and N .

k=1

k=2

k=3

2 4 6 8 10
N

1

2

r

Figure 3: Equilibrium reservation price (c=0; s=1)

3.2 Network Segregation

In the benchmark model each individual on a consumer�s network is assumed to have information

on one randomly chosen �rm. The information between the di¤erent members of a network and

the consumer using the network is therefore independent. In that case an increase in the number

of �rms or the network size increases the likelihood that the consumers on the network have price

information about a di¤erent �rm than the one already known by the consumer, thus enhancing

information transmission. The literature on networks with heterogeneous agents has shown however

that agents have a tendency to associate with others similar to themselves (see, e.g., Jackson and

López-Pintado, 2013). In that case the information between the network members is no longer inde-

pendent. A larger network might therefore no longer contribute to the information di¤usal process,

as the extra network members have information that is similar to the members already on the net-

work. We explore the e¤ects of network segregation on information transmission in two di¤erent

ways and show that our main results are robust if networks are not too segregated/integrated. In

that case an increase in N or k continues to improve the information transmission and decreases

all percentiles of the price distribution. We also show that an increase in the degree of network

segregation tends to decrease information transmission and increase all percentiles.
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3.2.1 Segregation I: Information Clustering Around a Subset of Firm Prices

A �rst but quite extreme way to include network segregation would be to assume that all network

connections of a particular consumer only know the prices of a random subset of n � N �rms, which

is common across the network and includes the �rm whose price the consumer already knows. For

example, when n = 2 all connections of a consumer initially knowing the price of �rm 1 might only

know the prices of �rms 1 and 2, but never know the prices of the other �rms. This might be the

case because the consumer and its network connections are geographically concentrated around a

particular set of �rms. The value of n relative to N can be thought of as an inverse measure of

network segregation, in the sense that a lower value of n induces information to become clustered

around a smaller set of �rms. In the extreme case that n = 1 the network is fully segregated, and

becomes uninformative to the consumer as all connections only know the same �rm�s price.

In this �rst setting of segregation all connections now randomly receive price information from

one of the n �rms, so we can reinterpret Theorem 1 in terms of n: The consumer�s probability of

learningm di¤erent prices is now given by �m (k; n) instead of �m (k;N). Using this reinterpretation

it is easy to see that an increase in the network size k only has an impact on �m if the network is

not fully segregated (i.e. n � 2). In that case the e¤ect of an increase in k is qualitatively the same

as in the benchmark model: A larger network implies a higher probability of learning a new price,

thus increasing information transmission and decreasing all percentiles of the price distribution.

With fully segregated networks (i.e. n = 1) all connections know the same price as the consumer,

so the latter does not learn any new prices from his network, making the network completely

uninformative. An increase in the actual number of �rms N on the other hand will only have an

impact on �m to the extent that n changes. As long as n increases in N , networks become more

informative as N increases, and the results of the benchmark model continue to hold: More �rms

imply more informative networks inducing more competition and decreasing all percentiles. If on

the other hand n is invariant to N , �m will not change and more �rms do not increase competition.

It is however more likely that n is increasing in N as the newly entering �rm will have to locate

somewhere and as such be close to at least some of the consumers. A last comparative static of

interest is that of a decrease in n. For a given number of �rms N , such a decrease can be interpreted

as an increase in the degree of network segregation. By the reinterpretation of Theorem 1 such a

decrease is equivalent to a decrease of N in the benchmark model, thus decreasing information

transmission and increasing all percentiles of the price distribution.
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3.2.2 Segregation II: Information Clustering Around the Own Price

A second, less extreme, way of including network segregation is to maintain the assumption that

the connections can be informed about all N prices, but to vary the likelihood that any of these

connections knows the same price as the consumer. In particular, denote the probability that a

consumer�s network connection knows the same price as he does by pI . If the network connection

knows a di¤erent price, which occurs with probability 1� pI , we assume that he is equally likely to

be informed about any of N�1 remaining �rms�prices. In the benchmark model all prices known by

the network were completely random, so the probability that any connection knew the same price

as the consumer was 1=N . The benchmark model is therefore the special case in which pI = 1=N ,

and a higher (lower, resp.) value of pI increases (decreases, resp.) the degree of segregation and

makes it less (more, resp.) likely that a new price is learnt through the network. If pI = 0, the

network is fully integrated and all connections will know a di¤erent price than the consumer�s, so the

consumer will always learn at least one additional price. If on the other hand pI = 1, the network

is fully segregated and all connections know the same price as the consumer�s, so the consumer will

not learn any new prices.

Generalizing Theorem 1 to allow for the second type of network segregation yields the following

Proposition:

Proposition 10 In a market with N �rms and a network segregation level of pI , the fraction

of consumers with a network of size k that is informed about the prices of m �rms, denoted byf�m (k;N; pI), is given by:
f�m (k;N; pI) =

8><>:
kP
l=1

�
k
l

�
(pI)

k�l (1� pI)l �m�1 (l � 1; N � 1) if m �Mk

0 if m > Mk

(17)

where �m�1 (l � 1; N � 1) is given by (1) and Mk = min fk + 1; Ng.

Proof. A consumer with a network of size k will only learn additional prices if some of these k

connections are not informed about the same price. The probability that l out of k consumers

know a di¤erent price is given by
�
k
l

�
(pI)

k�l (1� pI)l. Since these l connections know one or

more prices of the remaining N � 1 prices, the consumer learns m� 1 new prices with probability

�m�1 (l � 1; N � 1). The reason that we write l� 1 instead of l is that we have to exclude the price

known by the consumer as we are conditioning on the fact that the connections know a di¤erent
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price than the consumer�s. To conclude we sum over all possible realizations of l, ranging from 1

to k.

Note that whenever pI = 1=N , the benchmark case is obtained and we have that f�m (k;N; 1=N) =
�m (k;N). If networks are fully integrated (pI = 0), we have that f�m (k;N; 0) = �m�1 (k � 1; N � 1)

where e�1 (k;N; 0) = 0. In that cases a consumer would learn new prices as if he had a smaller net-
work (k � 1), but whose connections knew only prices he did not already know (N � 1). If on the

other hand networks are fully segregated (pI = 1) consumers do not learn any new prices from their

network and we have that e�1 (k;N; 1) = 1.
Intuitively we would expect that as long as networks are not fully integrated or segregated,

an increase in the number of �rms N or the network size k should have a similar e¤ect on the

information probabilities as in the benchmark model. Moreover, an increase in the degree of network

segregation pI should have a similar e¤ect as a decrease in the network size in the benchmark model.

The reason is that the degree of network segregation can be seen as adding noise to the information

di¤usal process. In a sense, a more segregated network can therefore be seen as a decrease of

the �e¤ective� network size in the baseline case. This is because in a more segregated network

more connections know the same price as the consumer�s initial price, making these connections

uninformative. Unfortunately we have not been able to provide a generalization of Corollary 4 for

this second type of network segregation. We do have an expression for the expected number of

prices, which provide evidence for our claim that the result of Corollary 4 should continue to hold

if 0 < pI < 1.

Corollary 11 The expected number of prices observed by a consumer with a network of size k and

network segregation parameter pI is given by:

gEm (k;N; pI) = NP
m=1

mf�m (k;N; pI) = N  1� �1� 1

N

��
1� 1� pI

N � 1

�k!
(18)

which is concave and increasing in N and k, and convex and decreasing in pI

Proof. see Appendix

Note that whenever pI = 1=N this reduces to Em (k;N). For the two other special cases we have

that when pI = 1 it reduces togEm (k;N; 1) = 1, whereas if pI = 0 we have thatgEm (k;N; 0) = 1+
Em (k � 1; N � 1). These results are again intuitive since with fully segregated networks consumers

do not learn any additional prices and are thus always informed about a single price. When networks
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are fully integrated consumers always learn additional prices, as if they were sampling k prices from

the N � 1 remaining �rms.

To conclude we note that the welfare consequences of an increase in k and N also continue to

hold if 0 < pI < 1, as summarized in the Proposition presented below. Moreover, an increase in

the degree of network segregation increases all percentiles.

Proposition 12 When networks are fully integrated or segregated, an increase in N or k does not

a¤ect F (p). If networks are not fully integrated or segregated, an increase in N or k decreases all

percentiles of F (p). An increase in the degree of network segregation pI increases all percentiles of

F (p).

Proof. see Appendix

The intuition behind the e¤ect of an increase in N and k is unchanged compared to the bench-

mark model The reason that an increase in the degree of network segregation pI increases all

percentiles is exactly because it tends to clutter the information transmission. It should therefore

have a similar e¤ect as an decrease in the network size.

3.3 Other Extensions

In this section we brie�y discuss two other ways in which the model may be further extended:

Product di¤erentiation and network heterogeneity.

So far we have assumed that the product being sold by �rms is homogeneous. In that case the

only source of price dispersion is imperfect information. In general �rms sell di¤erentiated products,

adding a second dimension of pricing di¤erences. For the case of vertically di¤erentiated products,

the model could easily be extended by using the approach laid down in Wildenbeest (2011). That

approach allows the consumer�s valuation v to vary across �rms, but �rms o¤ering a higher quality

face a higher marginal cost c such that the value-to-cost margin vi � ci is constant across �rms.

In equilibrium all �rms still randomize over prices, but �rms o¤ering a higher quality charge a

higher expected price that exactly o¤sets the quality di¤erence. The comparative statics discussed

earlier would then apply to each �rm�s price distribution: An increase in the number of �rms or the

network size would decrease all percentiles of each �rm�s price distribution, but price di¤erences

between �rms due to quality di¤erences would persist.

In the benchmark model we have also assumed that consumers are homogeneous ex ante, in

the sense that they all have an equally large network size. Ex post, consumers are heterogeneous
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in terms of the number of prices they have learnt through this network, as the network of some

consumers will contain more new prices than others. In reality, consumers are also heterogeneous

in terms of their network size. The model could therefore be adjusted by considering a distribution

of network sizes. As long as consumers�network sizes are su¢ ciently similar in size, the benchmark

model should however provide a good approximation and all results should carry over. When there

is extreme heterogeneity things will be di¤erent however. Consider for instance the case when

there are only two types of consumers: A type without a network, who does not compare prices;

and another type with an extremely large network, who always compares all N prices. In such a

con�guration of �shoppers� and �non-shoppers� it is well-known that an increase in the number

of �rms might actually increase prices (see Rosenthal, 1980). Lach and Moraga-González (2012)

however provide a set of general conditions which ensure that all percentiles are decreasing in N ,

which can be checked for each network distribution at hand.

4 Conclusion

This paper introduces consumer information networks as an alternative information mechanism

which is able to capture information spillovers between consumers in a tractable way. It is shown

how larger networks and the entry of new �rms increase information transmission, which results

in �rms competing more �ercely and as a result charge lower prices. These results are robust

to the introduction of costly sequential search as in Stahl (1989). Network segregation tends to

reduce information transmission, but unless networks are fully segregated, a signi�cant amount of

information can still be transmitted and prices will be decreasing in the network size and the number

of �rms. An increase in the degree of network segregation tends to increase prices by clogging the

information transmission.

Future research might focus on the empirical implications of the model. For instance, over the

last decade, an increasing number of papers has been dedicated to uncovering information mech-

anisms using structural methods (e.g. Hong and Shum, 2006; Moraga-González and Wildenbeest,

2008). Uncovering these mechanisms is essential for understanding how markets of imperfect in-

formation work and how policy changes will a¤ect market outcomes. The literature so far has only

focused on estimating search cost, by assuming that consumer information is obtained only by

consumers� costly search e¤ort. One direction for future research might therefore to be to focus

on uncovering information networks instead of search costs, and try to estimate how large such
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networks might be. Alternatively, one might consider combining both information channels in a

single empirical model. Galeotti (2010) already pointed out that in reality consumers are likely to

obtain information through their networks as well, and that neglecting this additional channel of

information would lead to a serious bias in search cost estimates. The setup in Galeotti (2010) is

however restricted to a duopoly and thus neglects the fact networks become more informative when

there are more �rms. Our model provides a tool to explicitly model information networks in setting

with more than two �rms. Future research e¤orts might therefore go into creating an empirical

model in which both consumer search as well as information networks occur simultaneously in a

fully oligopolistic setting.
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5 Appendix

Stirling numbers of the second kind

Table 2: Stirling numbers of the second kind S(a,b)

anb 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 3 1 0 0 0 0 0 0 0
4 1 7 6 1 0 0 0 0 0 0
5 1 15 25 10 1 0 0 0 0 0
6 1 31 90 65 15 1 0 0 0 0
7 1 63 301 350 140 21 1 0 0 0
8 1 127 966 1701 1050 266 28 1 0 0
9 1 255 3023 7770 6951 2646 462 36 1 0
10 1 511 9330 34105 42525 22827 5880 750 45 1

Proofs

Throughout these proofs we assume that N � 2 and k � 1.

Proof of Corollary 3

First note that S (k + 1;m) and N !=
�
Nk+1 (N �m)!

�
are both log concave in m. The product of

two log concave functions is also log concave. Strong unimodality or single-peakedness is implied

by log concavity, and allows for three possible cases: (i) �m is (weakly) increasing in m, (ii) �m is

�rst (weakly) increasing and then (weakly) decreasing in m, (iii) �m is (weakly) decreasing in m.

We now show that the beginning of the sequence �1; �2; : : : ; �Mk�1; �Mk is never decreasing, which

excludes case (iii). From Theorem 1 we have that �2 < �1 if (N � 1)
�
2k � 1

�
� 1 < 0, which is

never satis�ed if N � 2 and k � 1. We therefore have that �m can never be decreasing in m, which

yields case (i) and (ii) of the Corollary.

By unimodality we now only need to check the end of the sequence: If the end is decreasing, we

have case (ii), whereas otherwise we have case (i). We therefore need to verify when �Mk�1 > �Mk .

There are two situations we need to consider: (a) N � k+ 1 (s.t. Mk = k+ 1), and (b) N < k+ 1

(s.t. Mk = N).
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Starting with (a), we have that �k (k;N) > �k+1 (k;N) if and only if

N !

Nk+1 (N � k)!S (k + 1; k) >
N !

Nk+1 (N � (k + 1))!S (k + 1; k + 1) , or (19)

S (k + 1; k)

(N � k) > S (k + 1; k + 1)

Since S (k + 1; k + 1) = 1 and S (k + 1; k) =
�
k+1
2

�
= (k + 1) k=2 this reduces to

(k + 1) k

2
> (N � k) , or (20)

k > k� (N)

where

k� (N) =

�p
9 + 8N � 3

�
2

, with 1 � k� (N) � N � 1 (21)

which is strictly increasing in N . This inequality is satis�ed if k is su¢ ciently large. For any given

N and k (where N � k + 1) we therefore have that if k �(>, resp.)k� (N), then �m is weakly

increasing in m (�rst increasing and then decreasing in m, resp.).

Now consider (b): We have that �N�1 (k;N) > �N (k;N) if and only if

N !

Nk+1 (N � (N � 1))!S (k + 1; N � 1) >
N !

Nk+1 (N �N)!S (k + 1; N) , or (22)

S (k + 1; N � 1) > S (k + 1; N) , or

G (k + 1; N) � S (k + 1; N � 1)
S (k + 1; N)

> 1

The ratio G (k + 1; N) is strictly decreasing in k + 1 and strictly increasing in N .7 Now de�ne for

each N the largest k that satis�es the above inequality (if such a k exists) as

k�� (N) = max fk 2 N : G (k + 1; N) > 1g (23)

such that �N�1 > �N if N � 1 < k � k�� (N) and �N�1 � �N if k > k�� (N). If this critical

k�� (N) exists, then it is unique and (weakly) increasing in N , as G (k + 1; N) is strictly decreasing

(increasing, resp.) in k+1 (N , resp.). We now only need to verify that the interval fN; : : : ; k�� (N)g
7See Theorem 3.2 in Sibuya (1987) for a proof of this result.
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is non-empty. To do this we consider the smallest value of k in this interval, i.e. k = N , and check

whether N � k�� (N). If this holds, then there is at least one k in the interval so it is non-empty.

Plugging in k = N , we obtain

G (N + 1; N) =
S (N + 1; N � 1)
S (N + 1; N)

(24)

If we now use that8

S (N + 1; N) =

�
N + 1

2

�
=
(N + 1)N

2
(25)

S (N + 1; N � 1) =
1

24
(N + 1)N (N � 1) (1 + 3 (N � 1))

we can rewrite G (N + 1; N) as

G (N + 1; N) =
1

12
(N � 1) (3N � 2) (26)

which is strictly increasing in N if N � 2. If we �nd that G (N + 1; N) > 1 for a particular value

of N , we have that N � k�� (N) for that particular value of N , but also for all N exceeding that

value. If N = 2 then G (3; 2) = 1=3 < 1, so the interval is empty. In that case we never have

that �1 > �2. If N = 3 then G (4; 3) = 7=6 > 1, and the interval is non-empty. For all N � 3 we

therefore have that if N < k+1 and k >(�, resp.)k�� (N), then �m is weakly increasing in m (�rst

increasing and then decreasing in m, resp.).

Combining the results from (a) and (b) we have that: If N = 2, then �1 � �2. If N � 3, then �m
is increasing in m if k � k� (N) or k � k�� (N), and �rst increasing and then decreasing in m if

k� (N) < k < k�� (N).

Proof of Corollary 4

From Theorem 1, we have that �m (k;N + 1)� �m (k;N) � 0 if and only if

(N + 1)!

(N + 1)k+1 (N + 1�m)!
� N !

Nk+1 (N �m)! (27)

8See Abramowitz and Stegun (1972).
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Solving for m yields

m � m�
N (k;N) = (N + 1)

 
1�

�
N

N + 1

�k!
; where 1 < m�

N (k) < N + 1 (28)

This critical m�
N (k;N) is concave and increasing in both k and N .

From Theorem 1, we also have that �m (k + 1; N)� �m (k;N) if and only if

1

Nk+1
S (k + 2;m) � 1

Nk
S (k + 1;m) ; or (29)

1

N
� R (k + 1;m) � S (k + 1;m)

S (k + 2;m)

Now note that the LHS of the inequality is positive, weakly smaller than 1=2, and independent of

m. The RHS is strictly decreasing in m.9 It also holds that R (k + 1; 1) = 1 and R (k + 1; k + 2) =

0. Consequently there exists a unique 1 � m�
k (k;N) � k + 2 such that 1

N � R (k + 1;m) if

m � m�
k (k;N). As the RHS is independent of N and the LHS is decreasing in N , we have that

m�
k (k;N) is (weakly) increasing in N . Since the LHS is independent of k, and the RHS is increasing

in k we also have that m�
k (k;N) is increasing in k.

9

Proof of Proposition 6

Restating equation (9), we have that

p (x) = c+
v � c

MkP
m=1

m
�
�m
�1

�
xm�1

A su¢ cient condition for all percentiles to be increasing is if (�m=�1) is strictly increasing. We now

show that this su¢ cient condition is indeed satis�ed. From Theorem 1, we have that

�m
�1
=
(N � 1)!
(N �m)!S (k + 1;m) � 1 (30)

Showing that this fraction is increasing in N is now straightforward. The result that the fraction

is increasing in k follows from the fact that S (k + 1;m) is increasing in k + 1.10

9See Theorem 3.2 and 3.3 in Sibuya (1987) for a proof of these results.
10This follows immedeatly from the fact that Stirling numbers of the second kind satisfy the recurrence relation

S (k + 1;m) = mS (k;m) + S (k;m� 1).
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Proof of Corollary 11

Even though the probability distribution function of the number of di¤erent prices is fairly com-

plicated (cf. Theorem 1), the expected value of this distribution,

Em (k;N; pI) =
PN
m=1m � �m (k;N; pI) , (31)

can be found rather easily by expressing it as a sum of indicator variables and exploiting the linearity

of the expectation operator. To see this, de�ne Ii as the indicator variable which takes on the value

1 if �rm i�s price is known by a consumer (after consulting the network), and 0 otherwise. The

number of di¤erent prices known by the consumer is then given by the sum
PN
i=1 Ii. By linearity

of the expectation operator we have that

Em (k;N; pI) = E
hPN

i=1 Ii

i
=
PN
i=1E [Ii] = NE [Ii] (32)

where the last equality follows from the fact that �rms are symmetric. The expected value of E [Ii]

is the probability that �rm i�s price is drawn, and is the inverse of the probability that �rm i�s

price is not drawn. The probability that i�s price is not drawn is the probability that �rm i is not

the consumer�s initial sample, which happens with probability 1� (1=N), and the probability that

none of the k network connections contains �rm i�s price. If l out of k network connections are in a

di¤erent group (so they do not know the same price as the consumer�s initial price), which occurs

with probability
�
k
l

�
(pI)

k�l (1� pI)l, the conditional probability that price i is not known by the

l connections is (1� 1= (N � 1))l. The probability that none of the k connections knows price i is

then given by the following sum:

Pk
l=1

�
k

l

�
(pI)

k�l (1� pI)l
�
1� 1

N � 1

�l
=

�
1� 1� pI

N � 1

�k
(33)

where the equality follows from the Binomial theorem. The probability that �rm i�s price is known

is thus given by

E [Ii] = 1�
�
1� 1

N

��
1� 1� pI

N � 1

�k
(34)

The overall expectation is thus given by

Em (k;N; pI) = N

 
1�

�
1� 1

N

��
1� 1� pI

N � 1

�k!
(35)
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When pI = 1=N this reduces to

Em (k;N; 1=N) = N

 
1�

�
1� 1

N

�k+1!
(36)

Proof of Corollary 12

Since e�1 (k;N; pI) = (pI)k, we have that
f�me�1 =

kP
l=1

�
k

l

��
1� pI
pI

�l
�m�1 (l � 1; N � 1) (37)

We now rewrite pI as a function of the benchmark value 1=N . More in particular, let

pI (a) =
1

(1� a) + aN , where a 2 [0;1) (38)

which is strictly decreasing in a and where pI (0) = 1, pI (1) = 1=N and lima!1 pI (a) = 0. The

ratio (1� pI) =pI is then given by a (N � 1), so we can rewrite equation (37) as

f�me�1 =
kP
l=1

�
k

l

�
al (N � 1)l �m�1 (l � 1; N � 1) (39)

=
kP
l=1

�
k

l

�
al (N � 1)l (N � 1)!

(N � 1)l (N �m)!
S (l;m� 1)

=
kP
l=1

�
k

l

�
al
(N � 1)!
(N �m)!S (l;m� 1)

where the second equality follows from Theorem 1. When pI ! 0 we have that f�m= e�1 ! 1 for

m � 2, whereas if pI = 1 we have that f�m= e�1 = 0 for m � 2. In both cases the ratio is independent

of N or k. Whenever 0 < pI < 1 the ratio is again increasing in N and k. This is because each

of the components of the sum are increasing. Similarly, the ratio is decreasing in pI as each of the

components of the sum is increasing in a.

Note that when pI = 1=N we have that a = 1 and ratio reduces to

f�m (pI = 1=N)e�1 (pI = 1=N) =
(N � 1)!
(N �m)!

kP
l=1

�
k

l

�
S (l;m� 1) (40)

=
(N � 1)!
(N �m)!

kP
l=m�1

�
k

l

�
S (l;m� 1)

=
(N � 1)!
(N �m)!S (k + 1;m)
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where the second equality follow the fact that S (a; b) = 0 if a < b, and the third equality follows

from a well-known recurrence relation that the Stirling numbers satisfy.
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