
 
 

 
 

 
 

 
 

DISCUSSION PAPER SERIES 
DPS15.22 
 
OCTOBER 2015 

Heterogeneity in the 
adoption of 
photovoltaic systems in 
Flanders 
 

Olivier DE GROOTE, Guido PEPERMANS 
and Frank VERBOVEN 

Econometrics 

Faculty of Economics 
And Business 



 

Heterogeneity in the Adoption of Photovoltaic Systems 
in Flanders 

 
Olivier De Groote  Guido Pepermans * Frank Verboven* 

 

October 2015 

Abstract 

We study the determinants of PV adoption in the region of Flanders (Belgium), where PV 
adoption reached high levels during 2006-2012, because of active government 
intervention. Based on a unique dataset at a very detailed spatial level, we estimate a 
Poisson model to explain the heterogeneity in adoption rates. We obtain the following 
findings. First, local policies have a robust and significant impact on PV adoption, 
providing indirect evidence that the larger regional incentives formed the basis for the 
strong development of PV adoption in the region. Second, there is a strong unconditional 
income effect, implying a Matthew effect in the subsidization of PVs. Our third finding is 
however that this income effect is largely driven by the fact that wealthier households 
are more likely to adopt because they tend to be larger (and hence higher users), are 
more frequent house owners (who capture more of the benefits), or own houses that are 
better suited for PV. We can thus identify the channels through which wealthier 
households are more likely to benefit from the PV support. Finally, we identify the 
importance of several housing characteristics: PV adoption tends to be more likely in 
larger and in more recently built houses. In several extensions, we consider the 
determinants of the average size of installed PVs, and the differential impact of certain 
variables over time. 
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1. INTRODUCTION 

Worldwide, many countries have rolled out policies to stimulate the use of renewables for the 
production of electricity, the overarching motivations for these policy initiatives being security of 
supply and climate change. Within the group of renewable technologies, solar technologies have 
been among the most stimulated ones, despite their relatively unfavorable cost structure 
compared to other renewable technologies. 

A distinguishing factor of the solar technology is its scalability, i.e. it is a technology that can easily 
be adopted by small (residential) customers. From a political perspective, this is a favorable 
characteristic as renewables policies targeting residential photovoltaic systems (PVs) have an 
immediate visibility impact. Over the past decade, many countries worldwide have thus taken 
policy initiatives to foster the adoption of PVs, for example through tax credits or production 
subsidies. However, few years later, many of these countries also decided to roll back these 
initiatives, as they turned out to be much more expensive than initially anticipated, due to the 
generous subsidy schemes that were put in place. 

Policymakers became increasingly aware of the socioeconomic impacts that are linked to the 
large scale adoption of PV through the net metering principle, which implies that customers are 
only charged for the net amount of electricity they use on an periodical basis (Cai et al. (2013), 
Darghouth et al. (2011)). As infrastructure costs are recovered through a surcharge on the kWh 
price, an unanticipated side effect of the net metering principle is that PV customers end up 
contributing less for these costs than non PV owners do, despite the fact that they also use the 
grid infrastructure intensively. Moreover, it has been widely shown that higher income customers 
typically also consume more electricity, implying that they are faced with larger incentives to 
adopt PV as they then can avoid paying these infrastructure charges. This evolution, the so-called 
‘death spiral’ (Borenstein and Bushnell (2015)), which has been observed in many countries, has 
made that policy makers are considering to roll back policy initiatives in support of PV. 

Generous support policies also made the adoption of residential PV very popular in Flanders, the 
largest region of Belgium. Our main purpose is to explain the spatial adoption pattern of PV that 
emerged, by including a rich set of socioeconomic and housing variables in our empirical model. 
In short, we ask the question why adoption is higher in some areas and lower in others. 

The decision to adopt a PV system has recently been studied from different perspectives. While 
some of these studies use interviews and survey data as their source of information (Jager (2006), 
Schelly (2014), Vasseur and Kemp (2015), Willis et al. (2011), Faiers and Neame (2006)), most 
studies use data on all PV installations as the basis for their analysis, possibly limited to a 
geographical subset of the full database (Bollinger and Gillingham (2012), Crago and 
Chernyakhovskiy (2014), Davidson et al. (2014), Drury et al. (2012), Kwan (2012), Letchford et 
al. (2014), Macal et al. (2014), Richter (2013), Robinson et al. (2013), Rode and Weber (2011)). 
Within this last group of studies, Macal et al. (2014) and Robinson et al. (2013) use agent-based 
modelling to analyze the PV adoption decision, while all other studies follow an empirical 
approach in assessing the factors that determine the decision to adopt PV. 

A first strand in this empirical literature focuses on whether peer effects are observed in the 
diffusion process of PV (Bollinger and Gillingham (2012), Letchford et al. (2014), Macal et al. 
(2014), Richter (2013), Robinson et al. (2013), Rode and Weber (2011)). A second strand of 
literature focuses on understanding other determinants, in particular the role of state policy 
incentives (Crago and Chernyakhovskiy (2014)), third-party PV products (Drury et al. (2012) and 
environmental, economic, social and political factors on PV adoption behavior (Kwan (2012), 
Davidson et al. (2014)). The latter two papers are the most relevant for our study in terms of type 
of data and empirical approach. They study the role of geospatial information (such as 
environmental, social, economic and political factors) on the adoption of residential PV across the 
US and California. 
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This paper contributes to this second strand of literature in various ways. First, we incorporate a 
much richer set of socioeconomic characteristics than in previous work, which gives interesting 
new insights. To illustrate this, we will use the set of covariates used by Kwan (2012) as a 
benchmark for comparison. Furthermore, we include a set of housing characteristics, which has 
not been considered in previous work. As such, we explain the underlying reasons for the 
previously documented fact that PV adoption is more likely when the house value is high. In 
addition, our data set is at a much finer level of aggregation than previous work. Our unit of 
observation is the statistical sector, which on average contains only 280 households, much less 
than the number of households within US zip codes. In contrast with other work, we do not only 
look at the number of PVs, but also at the size of the installed PVs, and we compare differences 
between early and late adopters. 

Finally, this paper is, to our knowledge, the first study focusing on explaining heterogeneity in the 
adoption of PV, using the complete installed base of PV in a region outside the US.1 The case of 
Flanders is rather unique in the sense that the average PV adoption in the region was close to 9%, 
which is high compared to the countries or regions studied before. 

To study the determinants of PV adoption, we use a Poisson model with some adjustments to deal 
with spatial patterns in the data.2 We obtain the following main findings. First, local policies have 
a robust and significant impact on PV adoption, providing indirect evidence that the larger 
regional incentives formed the basis for the strong development of PV adoption in the region. 
Second, there is a strong unconditional income effect, implying a Matthew effect in the 
subsidization of PVs. Our third main finding is, however, that the direct income effect almost 
vanishes if we also control for socioeconomic variables: PV adoption is especially large among the 
larger households (who are high users of electricity), among house owners (who capture more of 
the benefits of their investment) and in houses that are better suited for PV. Hence, wealthier 
households are more likely to adopt and benefit from the PV subsidies, not because of their higher 
income per se, but rather because they are more likely to adopt PV as higher users, as more 
frequent house owners and because they have houses that are better suited for PV. Finally, we 
identify the importance of several housing characteristics: PV adoption tends to be more likely in 
larger and in more recently built houses. In several extensions, we consider the determinants of 
the average size of installed PVs, and the differential impact of certain variables over time. 

These findings shed light on the factors that have influenced past adoption decisions. This can 
help policymakers and other stakeholders in the sector to reassess past policies and, when 
necessary, to revise future policies promoting the adoption of PV. 

Section 2 briefly describes the policy measures in place in Flanders, as they are considered to be 
a major driver in the adoption of PV. Section 3 describes the data. Section 4 introduces and 
motivates our empirical approach. Section 5 discusses the empirical results for the determinants 
of PV adoption, and two extensions (size of installed PVs and the differences between early and 
late adopters). Finally, section 6 concludes. 

2. POLICY MEASURES TO SUPPORT RESIDENTIAL PV IN FLANDERS 

Most used traditional sources of electricity production are linked to high emissions of carbon 
dioxide and the depletion of natural resources. Governments therefore encourage the diffusion of 
new technologies to switch towards a more environmentally friendly way of producing 
electricity. 

In Belgium, the policy towards renewable energy sources (RES) is largely a regional matter, i.e. 
the three regions, Flanders, Wallonia and the Brussels Capital Region, each have developed their 
                                                             
1 Richter (2013) and Rode and Weber (2011) also study a non-US region (England and Wales, and Germany) on the basis of the 

complete installation base, but their focus is on the presence of peer effects. 
2 Our Poisson model differs from Kwan (2012), who estimates a zero-inflated negative binomial model on US data and from 

Davidson et al. (2014), who uses a log-linear specification. We motivate our model in section 4, and report robustness analysis 
with respected to a zero-inflated negative binomial in the Appendix. 
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own RES support policies. Nevertheless, there are also additional support measures by the 
Federal Authority and by many of the 308 local municipalities. We first discuss general support 
measures, applicable to all households and then describe the local support measures, which show 
variation across municipalities, enabling us to quantify their impact in our cross-sectional 
analysis. 

2.1. General support, applicable to all households3 

Households benefit from two types of general support measures: up-front investment support 
and support associated with future green electricity production. 

Investment support: subsidy, tax cut and green loans 

In 2002, the regional government of Flanders introduced its first support scheme for PV. The 
program consisted of subsidies to private investors, amounting to 65% of the total investment 
cost. The program started with a limited budget and was renewed annually. The program was 
phased out in 2006 and 2007 with subsidies of 10% of the investment costs.4 

As of 2004, the Belgian federal government offered a tax credit to individuals undertaking energy 
efficiency and certain renewable energy investments in their homes. A tax credit of 40% is 
granted for investments in a variety of technologies, including PV. The percentage has varied over 
time. Also the maximum allowed tax credit has changed, ranging from €500 in 2004 over €2600 
in 2008 to €3600 in 2011, the last year in which the tax credit applied to PV investments.5 The 
federal government also allows a reduced VAT rate of 6% instead of 21% on investments, 
including PV, if it is used to renovate a house that is older than 5 years (10 years from 2016 on).6 

Finally, an interest-rate subsidy of 1.5% and a tax reduction of 40% on the residual interest on 
loans taken out was granted for such investments (green loans) from 2009-2011. Among other 
conditions, the capital borrowed in the framework of the green loan must amount to at least 
€1250, subject to a ceiling of €15 000.7 

Support associated with future green electricity production: net metering and green certificates 

All PV installations with a maximum capacity of 10 kW are eligible for net-metering, while larger 
installations need to apply for a separate access point or meter. Electricity produced by 
residential installations is automatically deducted from electricity consumed and excess 
production is injected into the grid (the so-called backward running kWh-meter). However, in 
case an installation injects more electricity than it has taken from the grid during a billing period, 
this amount is not financially reimbursed. The distribution system operators (DSOs) initially 
provided this service for free but, after numerous recommendations of government agencies and 
legislative procedures, the DSOs introduced a annual fee of around 100 EUR/kW of the inverter 
of the PV in July 2015.8 

Next to the benefits of net metering, households received public support in the form of Tradable 
Green Certificates (TGC) for their electricity production. These certificates could be sold to the 
DSOs at a guaranteed price for a fixed number of years. The TGC program started under very 

                                                             
3 The website of the International Energy Agency was used to write this overview 

(http://www.iea.org/policiesandmeasures/renewableenergy/?country=Belgium), supplemented with sources that will be cited when used. 
4 Furthermore, the subsidizable investment cost was capped to 7000 €/kWp and a maximum subsidizable capacity of 3kW. See KB 

10 February 1983, changed by Flemish government in 15 July 2005; Government brochure: Subsidieregeling voor elektriciteit uit 
zonlicht (2005). 

5 Moreover, since 2009 it was possible to spread the tax credit over four years, such that the maximum allowed credit became less 
binding. 

6 http://www.vlaanderen.be/nl/bouwen-wonen-en-energie/bouwen-en-verbouwen/btw-tarief-van-6-bij-renovatie-van-woningen 
7 http://minfin.fgov.be/portail2/nl/themes/dwelling/energysaving/green.htm 
8 http://www.vlaanderen.be/nl/bouwen-wonen-en-energie/elektriciteit-aardgas-en-verwarming/prosumententarief-voor-eigenaars-van-zonnepanelen-windmolens-en-wkk-installaties-10-kw-en-met 
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generous conditions in 2006, with a guaranteed price of €450 per MWh for 20 years. Since 2010, 
the conditions gradually became less favorable, and since 2014 there is no more public support. 
This was motivated by the fact that the budgetary costs were very high and the prices for PV 
systems had in any case decreased considerably. During the period 2006-2013, the TGC system 
was a major source of support. At the government’s used interest rate of 15%, the present value 
of the subsidy amounted to approximately €10000 for a PV with an average capacity.9 The 
appendix provides a more detailed overview of the TGC policy. 

2.2. Local support by municipalities 

Municipalities have the authority to provide support to the deployment of renewables on their 
territory. Many municipalities have used that power through a variety of mechanisms, such as 
investment subsidies, which also apply to PV installations. These subsidies range from 10% to 
25% of the investment cost, typically capped at a maximum amount of €500 to €1000. Since these 
policies show sufficient variation across municipalities, we will incorporate a measure of these 
subsidies in our empirical analysis. The policies will be discussed in more detail in section 3. 

At the same time, it will be useful to keep in mind that the benefits from local support are 
considerably less important than those from the public support from green certificates. Even the 
maximum support of €1000 in some municipalities is about ten times lower than the subsidies in 
the form of green certificates. We will come back to this when interpreting our empirical results. 

3. THE DATA 

Our empirical analysis is based on three main data sources. The cornerstone of the analysis is a 
database provided by the Flemish energy regulator, VREG. This database contains all PVs installed 
in Flanders between the beginning of 2006 and the end of 201210, and is matched with a dataset 
on the statistical sector where the PV system has been installed. We link the resulting database to 
two other data sets we constructed: a dataset containing information on municipal policy 
measures, and a dataset with socioeconomic and housing information available at the statistical 
sector level. 

3.1. Data on residential PV installations in Flanders 

The database from the Flemish energy regulator contains information on the location, size and 
installation date of all RES systems in Flanders. Since we are interested in PV adoption since 2006, 
we remove all non-PV installations and PV installations installed before 2006 (722), leaving us 
with 226115 units. Furthermore, since we are interested in residential PV installations, we 
remove all installations with a capacity larger than 10kW, resulting in a further decrease to 
220464 installations (so 2.50% of PV installations drop out). 11  Table 1 shows descriptive 
statistics on the installed PV units in Flanders at the end of 2012. With 220464 installed PVs on a 
total of 2.58 million households, the adoption rate amounted to 8.55%. 

 

                                                             
9 Consider an interest rate of 15% and a 5kW system that produces 4.25MWh/year. For the period 2006-2009 the present 

discounted value of a guaranteed certificate price of €450/MWh during 20 years is equal to €13767. For the period 2010-2012, 
the guaranteed price decreased, and similar calculations show the present discounted value of the support decreased to on average 
€8867. Overall, the average support benefit was €10261. 

10 The first registered PV is already in 1997 and we are able to collect real-time data but we use the 2006-2012 adoptions only 
because we can be more confident they are all registered in the database. This is because the VREG also distributed the green 
certificates through this system which were beneficial during this period.  

11 This approach was suggested by the VREG and was also followed by Kwan (2012). Moreover, for some support policies the 10𝑘𝑊 
criterion is also used to qualify for support. 
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VARIABLES sum N mean st. dev. min max 

Capacity of PV in kW* 2 077 070 226 115 9.19 54.1 0.003 6221 
Capacity of PV in kW if <10kW* 1 057 458 220 464 4.80 2.13 0.003 10 
Flemish households in 2007  2 577 058     

*: On 31 December 2012. 

Table 1: Summary statistics on PV in Flanders. 

We match the PV installations to statistical sectors, which are very disaggregate local areas – 
typically a set of streets – grouped by socioeconomic, urban and morphological structural 
features, governed by the Belgian Statistics Office ADSEI. Flanders consists of 9182 statistical 
sectors, so with a total number of households in Flanders of about 2.58 million, the average 
statistical sector contains on average about 280 households. 12  Based on the installation 
addresses of the PVs and a precise description of which streets belong to which statistical sector, 
we can link each PV to a unique statistical sector. This will subsequently enable us to link the data 
to socioeconomic information at the level of the statistical sector, and to data on public support 
measures at the more aggregate municipality level. 

Out of the 220464 residential PV installations, only 3634 (or 1.65%) could not be matched to the 
correct sector due to unidentifiable errors in the address. As the information in the PV database 
was imputed by the owners of the PV, the matching of the two databases was prone to spelling 
mistakes, typos and other kinds of errors. We corrected these as much as possible and consider 
it is reasonable to assume that the remaining errors do not correlate with relevant variables for 
our analysis. These unmatched installations are therefore excluded from the econometric 
analysis. In a limited number of cases, an observation could not be uniquely linked to one 
statistical sector. In those cases, the observation was randomly assigned to one of the remaining 
candidate sectors. Figure 1 provides a first impression on the spatial distribution of PV 
installations in Flanders, showing the adoption rates per statistical sector at the end of 2012. 

 

 

Figure 1: The spatial distribution of PV installations in Flanders 

 

Based on this figure, some first observations can be made. More urban areas (Brussels, Bruges, 
Ghent, Antwerp and Leuven) seem to have a lower density of PV installations, as can be seen from 
the white or light-shaded spots. More rural areas such as the northern part of the province of 
Limburg (east part) and the province of West Flanders (west part) seem to have much higher 
adoption rates. One possible explanation could be that PV installations can potentially capture 
more sunlight in rural areas than in urban areas because in rural areas people are more likely to 

                                                             
12 To put this in perspective, the whole country of Belgium consists of 19,781 sectors. For more information, see: 

http://statbel.fgov.be/nl/statistieken/gegevensinzameling/nomenclaturen/admin-geo/statistische_sector/ 

Brussels 

Bruges 

Leuven 
Antwerp 

Ghent 
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live in (semi-)detached houses, which makes it easier to install a PV. We will consider these and 
other possible explanations in our econometric analysis below. 

3.2. Socioeconomic and housing data 

We match the PV database with socioeconomic census data at the level of the statistical sector, 
available through the SEE2001 census by the Belgian Statistics Office, ADSEI, of which some 
variables were updated with 2007 data. 13  Since participation is obligatory and 95% of the 
households filled out the questionnaire, we expect that the survey is representative. 14  In 
addition, we make use of income statement data of the same source (ADSEI). Finally, we obtain 
additional housing characteristics from the Belgian cadaster and use publically available 
outcomes of municipality elections. 

The selection of the variables used in the empirical analysis below was based on the relevant 
literature. Table 2Error! Reference source not found. summarizes these variables, and we 
briefly describe them in the following paragraphs. 

SEE2001 census15 

A first variable is the number of households. This is important to calculate adoption rates and 
to have a variable of which we expect to have a proportional impact on the number of PVs. A 
second variable is household age, defined by the age of the reference person of the household, 
i.e. the person who is mostly in charge of important decisions. Studies on PV adoption have shown 
that older people are less likely to adopt (Bollinger and Gillingham (2012), Kwan (2012), Willis 
et al. (2011)) and some also show a negative effect for younger people. Some studies also show 
effects related to ethnicity, with whites being more likely to adopt (Bollinger and Gillingham 
(2012), Kwan (2012)). We expect similar results when using nationality as an explanatory 
variable. Furthermore, we use gender as a variable as some studies found that males are more 
likely to adopt new technologies (e.g. Bollinger and Gillingham (2012)). Information costs are also 
considered important in the decision to adopt, especially in case of a new technology. We 
therefore include the level of education. Kwan (2012) found a positive effect for the level of 
education. Note that next to the information benefits, the level of education is also positively 
correlated with environmental preferences (Mills and Schleich (2009), Hersch and Viscusi 
(2006)) or it could be seen as a proxy for lifetime wealth (Hersch and Viscusi (2006)). Another 
variable with similar intuition is the occupational status or sector of employment. Kontogianni 
et al. (2013) found that people working in the public sector are more likely to adopt PV rather 
than other RES technologies. Household size can also play a role, as larger households have a 
higher electricity consumption and can share the fixed investment cost among a larger group of 
beneficiaries (Mills and Schleich (2009)). Population density is included as an explanatory 
factor, as we can expect that the amount of open space raises the possibility to capture sunlight, 
which should have a positive impact on the number of PV installations. Kwan (2012) uses a 
similar measure by taking housing density into account. 

The presence of a principal-agent problem in the renting market prevents a correct allocation of 
the investment cost of a PV installation among tenant and landlord. To investigate this, we include 
house ownership status, defined as the proportion of owner-occupied houses. Crago and 
Chernyakhovskiy (2014) and Mills and Schleich (2009) found evidence for the presence of a 
principal-agent problem. 

What makes our study different from Kwan (2012) is that we also include variables that capture 
housing characteristics. The SEE2001 survey contains some interesting variables to investigate 

                                                             
13 Algemene Sociaal-Economische Enquête 2001 (http://statbel.fgov.be/nl/statistieken/gegevensinzameling/volkstelling/2001/). 
14 For a minority of sectors, information on some variables is not available for privacy reasons, as the number of households living 

in that sector was too small. This is typically the case for sectors with less than 20 registered inhabitants. 
15 For some of the variables we have more recent data than from the 2001 census. We use 2007 data for number of households, 

population density, household age, household size, gender and ethnicity. 
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these effects, like double glazing and roof insulation and quality of the roof. Note that, in the 
latter case, it is not clear what to expect: a bad roof could be negatively or positively correlated 
with investment of PV. It would be negatively correlated if a bad roof condition would result in 
postponing PV adoption because extra investment costs are required to repair the roof. 
Alternatively, a bad roof quality could also be seen as a proxy for procrastination behavior, i.e. for 
delaying major works. On the other hand, economies of scope can be realized by jointly repairing 
the roof and installing PV panels.  

We also try to capture a household’s environmental awareness. For this, we use a proxy based 
on the answer given on the question ‘Does your house have roof insulation?’. The proportion of 
people that were able to answer this question is assumed to reflect how people care about energy 
efficiency. This is similar to the approach taken by Mills and Schleich (2009) in their study on the 
adoption of solar thermal installations, where they include data on people’s awareness of the 
energy class of their washing machine. Mills and Schleich (2009) did not find any significant 
impact. 

Cadaster data 

We obtained additional housing characteristics from the Belgian cadaster in 2011. The added 
variables are the house type, house size (measured by built area), house age and the house 
value (measured by its cadastral income). House age and value are studied by Davidson et al. 
(2014), They find that both variables are important in explaining adoption, as well as number of 
rooms in the houses (which probably correlates a lot with our house size variable). 

Income data 

For income we have annual data at the statistical sector level. However, for privacy reasons these 
data are published only if the number of tax declarations in a statistical sector reaches a threshold 
level. This threshold level has changed over time: before 2007, the threshold was 20 households 
for information on the average and median income per tax declaration, from then onwards, the 
threshold increased to 200 households for the average income, while staying at 20 households 
for information on the median income level. Using ‘average income per tax declaration’ data of 
2007 or later would result in a loss of about 3500 observations. We therefore decided to use the 
2006 data to construct a proxy for the geographical income distribution in Flanders. 

We use the average income per household rather than the average income per tax declaration. 
We do this because tax declarations need to be filled out by all adults, thus also including for 
example students. On the other hand, some couples fill out one common tax declaration, others 
do not. 

Next to a measure of central tendency, we also have information on the dispersion of income 
per tax declaration in a statistical sector. Unfortunately, the information we have does not allow 
to calculate a measure of dispersion at the household level. We therefore use the dispersion 
measures of the income declarations in our empirical analysis. More specifically, we include the 
interquartile coefficient of income per tax declaration within a statistical sector, calculated as the 
difference between the third and first quartile, divided by the median income per tax declaration. 
This measure of income inequality in a sector allows one to draw conclusions on the effect of high 
incomes that cannot be seen by using average household income.   
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VARIABLES N mean St. dev. 
Total count of PV 9,182 23.66 24.87 
Total capacity of PV in kW 9,182 113.6 119.3 
Average capacity of PV 8,542 4.972 1.268 
Households (log) 8,991 5.035 1.318 
Income: average (log) 8,504 10.51 0.226 
Income: dispersion (log) 8,504 4.657 0.207 
Subsidy (1000EUR) 9,182 0.138 0.209 
House value: <EUR500 8,998 0.222 0.185 
House value: EUR500-EUR744 8,998 0.237 0.141 
House value: EUR745-EUR999 8,998 0.185 0.111 
House value: EUR1000-EUR1499 8,998 0.226 0.151 
House value: EUR1500-EUR2499 8,998 0.100 0.134 
House value: >EUR2500 8,998 0.0293 0.0975 
Population density (log) 8,978 6.300 1.765 
Age: <25 8,647 0.0153 0.0215 
Age: 25-34 8,647 0.117 0.0563 
Age: 34-44 8,647 0.201 0.0561 
Age: 45-65 8,647 0.394 0.0829 
Age: >65 8,647 0.272 0.0793 
Educ: other 8,979 0.0610 0.0665 
Educ: no high school 8,979 0.378 0.113 
Educ: high school 8,979 0.300 0.0752 
Educ: college 8,979 0.261 0.109 
Foreigners 8,991 0.0479 0.0787 
Left votes 9,182 0.155 0.100 
Environmental awareness 8,989 0.871 0.115 
House owner 8,986 0.780 0.171 
Household size: 1 8,647 0.250 0.107 
Household size: 2 8,647 0.347 0.0643 
Household size: 3 or 4 8,647 0.328 0.0878 
Household size: >4 8,647 0.0743 0.0401 
Male 8,991 0.500 0.0462 
Occup: other 8,964 0.0217 0.0277 
Occup: blue coll priv sector 8,964 0.258 0.113 
Occup: white coll priv sector 8,964 0.329 0.108 
Occup: self-employed 8,964 0.164 0.105 
Occup: public sector 8,964 0.227 0.0906 
House age: before 1971 9,021 0.567 0.232 
House age: 1971-1980 9,021 0.145 0.132 
House age: 1981-1990 9,021 0.102 0.100 
House age: 1991-2000 9,021 0.108 0.0941 
House age: after 2000 9,021 0.0779 0.0768 
House size <45m2 8,998 0.0121 0.0420 
House size 45-64m2 8,998 0.0506 0.0906 
House size 65-104m2 8,998 0.227 0.181 
House size 105-184m2 8,998 0.455 0.172 
House size >184m2 8,998 0.256 0.193 
House type: detached 9,014 0.531 0.317 
House type: semi-detached 9,014 0.206 0.149 
House type: terraced 9,014 0.183 0.223 
House type: apartment 9,014 0.0795 0.165 
Double glazing 8,982 0.737 0.118 
Roof insulation 8,977 0.581 0.135 
Roof: good condition 8,986 0.826 0.0793 

Table 2: Summary statistics 
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We expect income to influence the adoption process for at least two reasons. First, investing in a 
lucrative investment can be difficult or impossible due to liquidity constraints (Mills and Schleich 
(2009)). Second, investing in PV can be considered as a revelation of environmental preferences 
and such kinds of goods usually are considered luxury goods (Fransson and Gärling (1999)). 
Thus, demand may increase more than proportionally with income. For PV, Kwan (2012) finds a 
positive income effect for annual incomes between 25,000 and 100,000 dollars. On the other 
hand, based on stated preference data, Willis et al. (2011) find a negative income effect for most 
RES technologies, including PV. 

Election results 

Finally, we also use data on voting behavior, more precisely the average percentage of votes for 
leftwing parties (green and socialist parties) in the municipal elections of 2000 and 2006.16 It 
should be noted, however, that the green party only participated in 110 out of the 308 
municipalities in these elections. When the party did not participate, the number of votes was set 
equal to zero. Similar data are also available for the Federal elections of 2010, but we opted to use 
the 2000 and 2006 results as they concern municipal elections and are therefore available at a 
smaller level of aggregation. 

Controlling for environmental preferences is common in the literature. Typically, authors use 
proxies like the possession of hybrid vehicles (Bollinger and Gillingham (2012), Crago and 
Chernyakhovskiy (2014)), votes for green ballot initiatives (Kahn and Vaughn (2009)), votes for 
left parties or membership of certain green organizations (Kwan (2012), Kahn and Vaughn 
(2009)). Positive effects are found for most of these proxies. A similar conclusion is found by Jager 
(2006), based on survey data. 

3.3. Data on local support policies for residential PV 

Since we essentially provide a cross-sectional analysis, we focus on policy measures with a local 
scope by the 308 municipalities, as these show the required cross-sectional variation. Other 
studies have shown that local support policy can influence adoption behavior (Jager (2006), 
Kwan (2012)). While these local measures were quantitatively less important than the policies 
imposed by the Flemish government, they can still indirectly be informative about the impact of 
these other policies. 

Data on local support schemes were obtained from a website maintained by the VEA.17 We 
recovered information on the availability of support mechanisms at a municipality level at three 
dates: 21 April 2011, 22 June 2011 and 3 July 2012.18 

As shown in Figure 2, 185 or about 60% of the local authorities did not provide any local 
(financial) support for PV adoption in April 2011. About one year later, this number has increased 
to 235 (or about 75% of the municipalities). In this period, it became clear for many stakeholders 
that current (successful) policies to support investment in PV could not be maintained because of 
their budgetary impact. Since our empirical analysis is cross-sectional, we will use the 
information of the support mechanisms in use in April 2011. We consider this to be the most 

                                                             
16 The data was downloaded from http://www.npdata.be/BuG/159-Verkiezingen-2012/Verkiezingen-2012.htm and the source 

mentioned was: vlaanderenkiest.be. 
17 Vlaams Energie Agentschap (= Flemish Energy Agency). 
18 A potential problem with this data is that the municipalities provide the information on a voluntary basis, so that the support 

measures in some municipalities may not have been registered. As a check, we took a sample of ten municipalities that – according 
to the VEA information – do not provide local support to PV installations. Information from these municipalities’ websites 
confirmed that none of these municipalities provide financial support for PV, suggesting that the information in the VEA database 
provides an accurate picture of the actual situation. 
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representative for our analysis (as it falls in the middle of the period over which PV adoption 
occurred in our sample). 

 

 

Figure 2: Local PV support initiatives in Flanders. 

Among the municipalities that provide financial support in April 2011, most used some kind of 
investment support mechanism rather than subsidizing production. A majority of municipalities 
used a capped variable subsidy, expressed as a percentage of the investment cost. About 40 
municipalities gave a lump sum investment subsidy. Two municipalities subsidized PV based on 
the capacity installed and one municipality subsidized electricity generation based on PV. Figure 
3 shows the distribution of the size of the main support mechanisms. In practice, the caps for the 
variable subsidies are quite low in most municipalities. It is therefore a reasonable simplification 
to assume the caps are binding, which allows us to create one local support variable, which is 
either the lump sum subsidy or the cap in case of a variable subsidy.19 

                                                             
19 The two municipalities offering a different kind of support are omitted from the second stage regression where we explain 

municipality fixed effects. 
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Figure 3: Distribution of support policies of municipalities in April 2011. 

4. THE MODEL 

As discussed in the previous section, we combine the VREG database on PV installations with 
demographic data at the quite disaggregate level of the statistical sector. We model the total count 
of PV installations in a statistical sector at a particular date as a function of different groups of 
variables.20 

To motivate our model, Figure 4 shows the distribution of the main dependent variable: the 
number of PV installations per statistical sector. 

 

Figure 4: Distribution of the number of PVs per statistical sector (situation December 
2012). 

                                                             
20 This total count at any particular date in our database can reasonably be assumed to be equal to the sum of all registered 

installations up to that point. This is because after the first PV installation in 1997 only 722 PVs were installed until 2006, and the 
average life expectancy of a PV system lies between 15 and 30 years. 
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To analyze these count data, we focus on a Poisson regression model with robust standard errors. 
This model assumes that the outcome variable, the number of PV installations, follows a Poisson 
distribution. More specifically, the conditional mean function in the Poisson model has the 
exponential form: 

𝐸[𝑃𝑉𝑖|𝐱𝑖] = exp⁡(𝐱′𝑖𝛽 + 𝛾 ln(#households𝑖) + 𝜂𝑚) 

where 𝑃𝑉𝑖  is the total number of PVs in statistical sector i, 𝛽  measures the effect of the 
covariates in vector 𝐱𝑖 , 𝛾 is the elasticity with respect to the number of households and 𝜂𝑚 is 
a municipality fixed effect for statistical sector i belonging to municipality m. Because of the 
exponential form, the parameters can be interpreted as semi-elasticities for linear regressors and 
as elasticities for regressors in log-form. Note that the number of households controls for the fact 
that statistical sectors are not of equal population size. We expect the number of PVs to rise 
proportionally to the number of households, 𝛾 = 1. 

A potential issue with the Poisson distribution is the violation of the equidispersion property, 
according to which the conditional variance of the outcome is equal to the conditional mean. 
However, to obtain consistent parameter estimates, only a correct specification of the conditional 
mean is required. Misspecification of the variance function may still affect the standard errors, 
which we correct using the standard sandwich covariance matrix, as suggested by Santos Silva 
and Tenreyro (2006).21 

Another potential issue is that the model does not separately deal with the occurrence of zeros, 
as is done in zero-inflated count models. Kwan (2012) used a Zero-Inflated Negative Binomial 
(ZINB) model to study PV adoption in the US. A ZINB model consists of a Negative Binomial (NB) 
count regression model for most of the data, and a separate binary choice model to estimate the 
zero values outside the NB model (excess zeros). We prefer the Poisson model in our application 
for several reasons. First, the magnitude and significance of the parameter estimates from this 
model are easier to interpret. Second, the number of statistical sectors with zero values for the 
number of PV installations is relatively low in our sample (6.9%).22 Furthermore, simulation 
evidence suggests that the estimates obtained with a Poisson model remain reliable even with a 
large number of zeros (Santos Silva and Tenreyro (2011)). Finally, the estimates from commonly 
used zero-inflated models such as the Zero-Inflated Poisson or ZINB are not robust to 
distributional misspecification, so that inference on the estimated parameters may be biased.23 
In the appendix we nevertheless show that our results are robust for the alternatives considered 
here. 

We made several adjustments to the model to deal with the spatial patterns in our data. Since the 
9182 statistical sectors are clustered in the 308 municipalities of Flanders, we include fixed 
effects 𝜂𝑚  for every municipality. 24  We thus control for unobserved heterogeneity at the 
municipality level. A further adjustment is made on the covariance matrix of the estimates. Since 
we can assume correlation is present between the residuals of sectors within the same 
municipality, we use cluster robust standard errors. 

                                                             
21 Because the Poisson model does not require a correct specification of the variance function, we do not extend the model to a 

negative binomial specification, which relaxes the equidispersion property by allowing for a more flexible variance function. For a 
more elaborate discussion on count data models, see Cameron and Trivedi (2013). They also explain that a negative binomial 
regression can be consistent if only the conditional mean is correctly specified, provided that the NB2 type is chosen. 

22 It is even lower in the final specification, which excludes the very small statistical sectors because, due to privacy concerns, these 
sectors do not have information on tax records. 

23 A solution would be to use a Zero-inflated Poisson Quasi-likelihood model. But with a low number of zeros, as in our sample, this 
would be more sensitive to finite sample bias (Staub and Winkelmann (2013)). 

24 Although it is estimated using maximum likelihood, a Poisson regression model doesn't suffer from the incidental parameter bias 
(Cameron and Trivedi (2013)). 
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Figure 5: Distribution of the average capacity of PVs per statistical sector (situation 
December 2012) 

Because the Poisson model already includes a full set of municipality fixed effects 𝜂𝑚, we cannot 
separately identify the effect of variables observed at the municipality level (subsidy and left 
votes). A standard solution is to estimate the Poisson model with municipality fixed effects 𝜂𝑚 
in a first stage, and perform an OLS regression of the estimated fixed effects on the municipality-
level variables and a constant in a second stage. To obtain consistent standard errors, we estimate 
both stages simultaneously in a Generalized Method of Moments framework, by converting both 
the Poisson maximum likelihood estimator and the OLS regression to moment conditions (Newey 
(1984)).25 

In addition to explaining the number of PV installations per statistical sector, we will also look at 
decision about the size of a PV, by looking at the average installed capacity. Figure 5 shows the 
distribution of the average size of PV installations per statistical sector. It is worth nothing that 
the Poisson model can still be used to estimate the effects of the various determinants. In fact, 
Santos Silva and Tenreyro (2006) show that because consistent estimation only requires the 
correct specification of the conditional mean, it is also preferred to analyze continuous dependent 
variables if researchers are interested in estimating (semi-)elasticities. We therefore continue to 
use the Poisson model to explain the average installed capacity (as well as total installed 
capacity), but our results are robust for alternative estimators such as OLS. 

5. RESULTS 

This section discusses the empirical results. In section 5.1 we discuss the main model, which aims 
to explain the total number of PV installations per statistical sector. Section 5.2 discusses the 
results for a model that focuses on two alternative dependent variables: the average size of the PV 
installations and the total installed capacity. Both models focus on the situation as registered at 
the end of 2012. In section 5.3 we distinguish between two periods, identified on the basis of 
structural changes in the Flemish and local support mechanisms that were put in place. 

Note that the categorical covariates are relative proportions of a particular characteristic in the 
statistical sector, expressed as a fraction of the total number of inhabitants, households or houses. 
Since the various sets of categorical covariates add up to one, we exclude one covariate per set, 

                                                             
25 Two municipalities supported PV adoption using a policy instrument that did not fit our analyses. These two municipalities are 

ignored in the second stage. 
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and interpret these as the reference groups. The tables below explicitly show these reference 
groups with a coefficient set to zero. As discussed above, the parameters of these categorical 
variables (and the other linear variables) have the interpretation of semi-elasticities, indicating 
the percentage change in the dependent variable resulting from a unit change in the covariate. 
The parameters of covariates that were transformed in logarithms can be interpreted as 
elasticities. 

5.1. Main model: explaining the adoption of PV 

Table 3Error! Reference source not found. summarizes the results for various Poisson 
regressions to explain the number of PV installations. Model 1 includes a set of economic and 
social variables similar to Kwan (2012). Model 2 includes additional social variables for which we 
have information. Finally, Model 3 is the richest specification as it also includes a new set of 
housing characteristics. 

For all models, the municipality fixed effects were jointly significant. Furthermore, for all models 
𝜸 is very close to 1, and for the second and third model the null hypothesis of 𝜸 = 𝟏 cannot be 
rejected. This shows that the total number of PV installations increases proportionally with the 
number of households.26 

Model 1: basic socioeconomic variables 

Model 1 includes a set of variables as close as possible to the ones considered by Kwan (2012), 
with two exceptions. First, in the set of economic variables we do not consider the cost of 
electricity, since this information is not available at the level of the statistical sector or 
municipality in Flanders, and electricity prices likely do not show sufficient regional variation to 
identify the effects. Second, as an environmental variable we do not include solar radiation 
because this variable also shows only limited variation within the region of Flanders. Generally 
speaking, unless we indicate otherwise below, the results of Model 1 confirm the findings 
obtained earlier by Kwan (2012). 

First consider the economic variables. We find a statistically significant and economically 
important effect of average income on the number of PV installations, with an estimated income 
elasticity of 1.032. Note that this elasticity is conditional on the other variables included in the 
model. The unconditional income elasticity (without controlling for other variables) is even 
higher and is equal to 1.635. This reflects the fact that high income households tend to have other 
characteristics that make them more likely to adopt or that they live in houses or neighborhoods 
that are more suitable for PVs. 27  The large unconditional effect of income indicates that a 
Matthew effect exists, i.e. wealthier households benefit proportionally more from the government 
support policies for PV as they have higher adoption rates. 

The dispersion of income within a statistical sector plays a significant role. An increase in 
income dispersion, as measured by the interquartile coefficient, raises PV adoption. Hence, 
income distribution matters, presumably because adoption mainly takes place by the upper tail 
of the distribution. Note that this is different from Kwan’s finding where the highest income 
category adopts less than middle income households. 

The value of a house, measured by cadastral income, has a significant effect on the number of PV 
installations, in line with the findings of Kwan (2012).28 Generally speaking, the number of PV 

                                                             
26 In simpler specifications where we only include income or a limited set of variables, we found that 𝛾 < 1, suggesting that the 

number of households then captures the effect of other variables omitted from the specification. 
27 This unconditional elasticity of 1.635, with a standard error of 0.247, was obtained from a model without any other control 

variables and restricting 𝛾 = 1. Since this model has no other parameters, we do not show it separately. 
28 Cadastral income is a hypothetical rent based on the property description and valuation listed in the property register, also called 

the land registry income. 
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installations first increases in the house value, but at a certain point it becomes decreasing until 
the impact becomes insignificant (relative to the reference group for the lowest house value). 

Local subsidies for PV installations (which vary across municipalities) have a positive and 
statistically significant effect, with an estimated semi-elasticity of 0.221. The elasticity decreases 
only marginally to 0.176 when adding additional control variables, suggesting it is not largely 
driven by the effect of correlated unobservables. This estimate implies that a doubling of the local 
subsidy rate (say from the €138 to €276 in an average municipality) would increase adoption by 
2.46%.29 As we discussed in section 2, the local subsidies were only a small part of the subsidies 
given in Flanders. This suggest that subsidization can be very effective in promoting PV. In fact, 
the main subsidy benefits came from the green certificates, which were granted at the regional 
level and were about €10,000 for an average system (5kW) during the considered period. Our 
estimate of the local subsidy effect then suggests that without the Green Certificates the total 
number of adoptions in the average municipality would have been 82.8% lower.30. 

  

                                                             
29 To compute the exact effect of a policy change, write the expected number of adopters in municipality i as 𝐸(𝑃𝑉𝑖) = exp⁡(𝛽𝑠𝑖 +

𝐴𝑖), where 𝑠𝑖  is the subsidy (in €1000) with the estimated parameter 𝛽 = 0.176 and 𝐴𝑖  captures all other local determinants 
of adoption. Then the percentage change in the number of PVs after a change in subsidies Δ𝑠𝑖 is exp(0.176⁡Δ𝑠𝑖) − 1. Hence, with 
Δ𝑠𝑖 = 0.138 the percentage change is exp(0.176 × 0.138) − 1 =0.0246. 

30 Similar to the previous footnote, with Δ𝑠𝑖 = −10 the percentage change is exp(−0.176 × 10) − 1 = −0.8280. 
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  Model 1 Model 2 Model 3 
VARIABLES   1+extra hh char 2+extra house 

char Households (log) 0.960* (0.009) 0.997* (0.007
) 

1.011* (0.007) 
Income: average (log) 1.032* (0.096) 0.000 (0.065

) 
0.094 (0.061) 

Income: dispersion (log) 0.547* (0.044) 0.301* (0.035
) 

0.152* (0.034) 
Subsidy (1000EUR) 0.221* (0.101) 0.190* (0.075

) 
0.176* (0.058) 

House value: <EUR500 0  0  0  
House value: EUR500-EUR744 0.407* (0.067) 0.485* (0.065

) 
0.027 (0.070) 

House value: EUR745-EUR999 0.682* (0.077) 0.602* (0.066
) 

0.001 (0.063) 
House value: EUR1000-EUR1499 0.771* (0.103) 0.791* (0.076

) 
0.127 (0.076) 

House value: EUR1500-EUR2499 0.369* (0.138) 0.582* (0.098
) 

-0.269* (0.091) 
House value: >EUR2500 0.044 (0.206) 0.275* (0.130

) 
-0.732* (0.136) 

Population density (log) -
0.089* 

(0.006) -0.063* (0.005
) 

-0.048* (0.007) 
Age: <25 0  0  0  
Age: 25-34 7.945* (0.927) 1.457* (0.576

) 
0.226 (0.435) 

Age: 34-44 9.099* (0.824) 1.475* (0.526
) 

0.318 (0.404) 
Age: 45-65 7.049* (0.833) 0.568 (0.529

) 
-0.454 (0.402) 

Age: >65 6.112* (0.850) 0.310 (0.544
) 

-0.735 (0.403) 
Educ: no high school or other 0  0  0  
Educ: High school -0.149 (0.150) -0.132 (0.125

) 
0.133 (0.118) 

Educ: College -
1.164* 

(0.135) -0.330* (0.116
) 

0.011 (0.106) 
Foreigners -

3.758* 
(0.364) -2.766* (0.269

) 
-2.118* (0.230) 

Left votes 0.097 (0.232) 0.128 (0.184
) 

0.203 (0.140) 
Environmental awareness   2.330* (0.176

) 
1.172* (0.161) 

House owner   0.323* (0.084
) 

0.383* (0.068) 
Household size: 1   0  0  
Household size: 2   0.948* (0.130

) 
0.345* (0.117) 

Household size: 3 or 4   2.158* (0.138
) 

1.056* (0.122) 
Household size: >4   1.563* (0.237

) 
0.860* (0.219) 

Male   0.274 (0.198
) 

0.285 (0.186) 
Occup: blue coll priv sector and 
other 

  0  0  
Occup: white coll priv sector   0.078 (0.119

) 
0.284* (0.117) 

Occup: self-employed   -0.204 (0.111
) 

0.116 (0.123) 
Occup: public sector   0.114 (0.131

) 
0.365* (0.124) 

House age: before 1971     0  
House age: 1971-1980     0.320* (0.057) 
House age: 1981-1990     0.484* (0.061) 
House age: 1991-2000     0.566* (0.068) 
House age: after 2000     1.055* (0.077) 
House size <45m2     0  
House size 45-64m2     1.340* (0.377) 
House size 65-104m2     1.675* (0.362) 
House size 105-184m2     2.281* (0.357) 
House size >184m2     2.456* (0.364) 
House type: detached     0  
House type: semi-detached     0.283* (0.058) 
House type: terraced     0.078 (0.057) 
House type: apartment     -0.542* (0.066) 
Double glazing     0.344* (0.075) 
Roof insulation     -0.441* (0.070) 
Roof: good condition     0.443* (0.115) 
Constant -

22.106
* 

(1.161) -5.660* (0.834
) 

-7.308* (0.788) 
       
Observations 8472  8471  8471  
Loglikelihood 1st stage -

32193 
 -28660  -27419  

R² 2nd stage 0.0153   0.0199   0.0360   
Notes: Results from GMM estimation of Poisson model as discussed in the text. Robust standard errors in parentheses, clustered by 
municipality. * indicates p<0.05. Dependent variable is total number of PV installations at the end of 2012. Unless otherwise indicated, the 
explanatory variables are expressed as percentages. 0-values indicate the variable is reference category. 

Table 3: Estimation results for main model: total number of PV installations at the end 
of 2012  
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Now consider the social variables. Population density has a significant negative impact on PV 
adoption, with an elasticity of about -0.1. This can be expected since in urbanized areas there is 
less space to install PVs on top of roofs. The household age also plays a significant role in the 
adoption of PV. Compared with the reference group with age below 25, all other age groups have 
a much higher propensity to adopt. This propensity is highest for the age group 34-44, followed 
by the age group 25-34. These are typically the age groups that build or renovate new houses in 
Flanders. Note however that the household age becomes unimportant once we control for more 
variables in Model 2 and 3, discussed below. Perhaps surprisingly, and also in contrast with Kwan 
(2012), education does not have a positive impact on PV adoption: a high school degree has an 
insignificant effect and college degree even seems to reduce the adoption rate. This may reflect a 
higher opportunity cost of time, or it may be due to omitted variables that are correlated with 
college education that make people less likely to adopt. The latter explanation appears to be more 
likely because in our richer specifications below education has no significant effect or only a 
significant effect in the early years. 

As predicted by the literature, ethnicity plays a significant and important role in PV adoption: an 
increase in the number of foreigners by 1% point reduces the number of PV installations by 
0.38%. Even after adding control variables, the effect remains large at 0.21%. This may reflect 
disparities in the support for environmentalism and environmentally responsible practices 
across different ethnical groups (e.g. Johnson et al. (2004) as discussed in Kwan (2012)). 

Finally, the percentage of left votes has an insignificant effect on PV adoption. This differs from 
Kwan (2012), who found a significant positive effect. 

Model 2: additional household characteristics 

Model 2 extends the basic specification to include additional social variables, that were not 
included in previous studies. 

In the 2001 census, households were asked about the presence of roof insulation in their house. 
We consider the fraction of households that was able to answer this question as a measure of 
environmental awareness and expect this fraction to have a positive impact on the number of 
PV systems adopted in a sector, which is confirmed by the results of Model 2. 

House ownership status turns out to have a strong positive and statistically significant impact 
on PV adoption. Hence, PV adoption is more likely on the roofs of owned than on the roofs of 
rented houses. This is consistent with previous work, which has established that house renting 
forms a barrier to the adoption of new technologies within the house, as it is often difficult to 
allocate the benefits and the cost between tenants and landlords (Jaffe and Stavins (1994), 
Sutherland (1996)). 

We also consider household size as a driver of PV adoption. We expect larger households to 
invest more in PV, because they are larger consumers of electricity and because they can spread 
the fixed costs of adoption over more household members; see also Mills and Schleich (2009) for 
a discussion on the relation between household size and technology. This is confirmed by the 
estimates presented. Compared with the reference group of singles, households with 2 and 
especially with 3-4 members are much more likely to adopt a PV. Households with more than 4 
members also invest significantly more in PV, but less so than households of 3 or 4 persons. 

Previous studies have suggested that gender influences technology adoption, e.g. Venkatesh et 
al. (2000). The share of male residents was included to test the hypothesis that male residents 
would have higher adoption rates. We only find weak support for this, as the effect is positive but 
estimated fairly imprecisely.31 

Model 2 also includes occupational status as a social covariate, where occupation is defined as 
having a job in the public or private sector, being self-employed or being in another category. For 

                                                             
31 As a further test, we included a variable to distinguish between the share of single male and single female households. According 

to this specification, single male households are significantly more likely to adopt than single female households. 



 19 

private sector occupations we also distinguish between white collar and blue collar workers. Our 
results suggest that public sector employees are more likely to adopt, especially when compared 
with self-employed. This may be due to better information on subsidies within this group or 
greater environmental awareness. Note that this is only estimated sufficiently precisely after 
including the housing characteristics of model 3. 

Including the above variables has a considerable impact on several of the variables included in 
the previous model, which was close the set-up of Kwan (2012). Most interestingly, the impact of 
average income becomes small and statistically insignificant. Hence, while income dispersion has 
a significant effect, average income has no direct effect on PV adoption. It only plays an indirect 
role as it is correlated with several of the new variables included in Model 2, most notably with 
house ownership status and household size.32 The impact of house value essentially remains 
unchanged and significant. Finally, the age variables have a much smaller impact, conditional on 
the new included variables. This can be explained by the significant role of house ownership, 
which typically starts at a higher age than 25. 

Model 3: adding housing characteristics 

Model 3 considers the role of a detailed set of housing characteristics on PV adoption: house age, 
house size and various measures of house conditions. We find that the parameters of most of 
these variables are statistically significant with the expected sign. Furthermore, the inclusion of 
these housing characteristics makes some of the social variables less important. 

Everything else constant, one may expect to see more PVs on the roofs of recently built houses. 
We indeed find that house age has a negative effect on PV adoption. With houses built before 
1971 as the benchmark, we find that the rate of adoption decreases with the age of the houses. A 
hypothesis test on the equality of the estimated effects was rejected for all consecutive periods, 
except for houses built between 1981 and 2000. By far the biggest adoption rate occurs in houses 
built after 2000. Note that after including house age there is no longer a significant impact of the 
owner’s age on PV adoption. Hence, we may conclude that it is not the owner’s age per se but 
rather the age of the house where the owner lives that influences PV adoption. The negative effect 
for the retired age group, marginally insignificant, could reflect the fact that older generations 
have less concern for global warming and environmental issues than younger generations or have 
a lower knowledge of the technology (Kwan (2012), Torgler et al. (2008), Carlsson-Kanyama et 
al. (2005)). 

One may also expect the size of the house, measured as the size of the built-up area, to have a 
positive impact on PV adoption (Walsh (1989), Mills and Schleich (2010)). We find that this is 
indeed the case. A larger size raises the probability of adoption relative to the reference case of a 
built-up area of less than 45𝑚2. Houses in the reference category are probably too small to have 
sufficient roof surface to easily install a PV, let alone with the desired capacity. Larger sizes 
typically imply a larger roof surface, resulting in more flexibility to avoid disturbances on the roof 
(shadow from trees or chimneys, window vents…) and thus an increased probability of adoption. 
With an average electricity consumption of about 4000𝑘𝑊ℎ, most households would require an 
installation of about 5𝑘𝑊𝑝 which, under ideal conditions, requires a roof surface of about 40𝑚2. 
Ceteris paribus, we therefore expect to see decreasing returns on increased size. 

Note that including house size reduces the previously estimated effect of household size, but it is 
interesting to note that the effect of household size remains highly significant. Hence, size matters 
for both a technological reason (larger roofs) and a demand reason (more return on investment 
when electricity consumption is higher). 

Regarding the house type, we distinguish between apartments, (semi-)detached and terraced 
houses, with detached houses as the reference category. As expected, areas with a relatively 
larger share of apartments have lower adoption rates. Also terraced houses have difficulties in 

                                                             
32 This conclusion is based on the results of several regressions where we extend Model 1 with different combinations of the variables 

we added in Model 2. The regression tables are not shown in this paper but are available upon request. 
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installing PVs. Perhaps somewhat surprisingly, we find a stronger effect for semi-detached 
houses. 

We include two proxies for the energy efficiency status of the house: double glazing and roof 
insulation. Both measures point in different directions however. In line with our intuition, a one 
percentage point increase in the share of houses with double glazing will result in a statistically 
significant increase in the number of PVs adopted of 0.34%. However, a one percentage point 
increase in the share of houses with roof insulation decreases the number of PVs adopted with 
a significant 0.44%. One explanation for the latter result is that the data on roof insulation date 
from 2001, whereas the data on PV adoption date from 2006 or later. Over the last decade, the 
Flemish government has also made efforts to stimulate households to invest in energy efficiency 
in general and roof insulation in particular (both through financial incentives and through 
information provision). The Flemish Energy Agency reports that, over the period 2006-2012, 
more than 285,000 dwellings applied for and received a subsidy for roof insulation (Vlaams 
Energieagenschap (2013)). We conjecture that this additional financial incentive for roof 
insulation also triggered landlords or tenants to also invest in PVs while improving the roof 
insulation. 

From the discussion in section 3 it was not clear what to expect from the quality of the roof. This 
variable could have a positive effect if it served as a proxy for procrastination behavior or because 
a damaged roof requires an extra investment that makes investing in PV more difficult. A negative 
effect is also possible because of economies of scope in repairing the roof and installing a PV. From 
our results we can conclude that the latter explanation is less likely as we find a positive effect.33 

As a final observation, we note that once we include the housing characteristics, the previously 
estimated positive effects for the value of a house drop considerably: they either become 
insignificant and, for the highest house values, even show a negative impact. This suggests that 
the included housing characteristics are important to explain adoption behavior, and the value of 
the house served as a proxy for these in Model 1 and 2. The fact that the impact of the highest 
house values, conditional on other housing characteristics, is negative, may indicate that these 
houses, or their inhabitants, have certain unobserved characteristics that make PV adoption less 
likely. One of these unobserved characteristics is the esthetics of a house. This usually becomes 
more important for expensive houses, and PVs generally tend to degrade the looks of the house. 

5.2. Explaining the size of the adopted PV installations 

The previous analysis considered the determinants of the total number of PV installations. We 
now consider the determinants of the total installed capacity and the average size of these 
installations. Table 4 shows the results of the Poisson models, where we include the same set of 
explanatory variables as in Model 3. For ease of comparison, the left column again shows the 
results for the total number of PV installations (Model 3). The middle two column shows the 
results for the total capacity of PV (Model 4) and the right two column show the results for the 
average size (Model 5). 

In general, the determinants of adoption (Model 3) and of total capacity (Model 4) are very 
similar. This can be explained by looking at the effects on the average size of an installation (Model 
5), as most variables turn out to be insignificant. 

There are, however, some interesting cases where a variable affects both the number of 
installations and the average size of an installation in the same direction. First, foreigners not only 
tend to adopt less, but they also invest in smaller PV systems. Second, in areas with a high 
population density both the number of installations and the average size tend to be lower. Finally, 
in houses with double glazing both the adoption rate and the average size of adoption are larger. 

                                                             
33 Note that roof quality is correlated with, but not the same as, having roof insulation. To assess whether roof quality (partly) picks 

up the impact of roof insulation, we estimated a model without the variable roof quality. This gave almost the same estimate for 
the impact of roof insulation. 
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As a result, for these variables the count effect and the size effect reinforce each other, so these 
variables have an even stronger impact on total installed capacity. 

There are also some cases where a variable affects the number of installations and the average 
size of an installation in the opposite direction. Most interestingly, house owners (as opposed to 
renters) and white collar employees have a higher adoption rate, but they invest in smaller 
average sizes. The same is true for houses built after 2000: these have a higher adoption rate but 
a smaller average size. This may be because more recently built houses tend to be smaller than 
older houses. For these variables the count effect is counteracted by the size effect, but in all cases 
it appears that the count effect dominates, so that the variables have qualitatively the same impact 
on the number of installations as on the total installed capacity. 

Finally, there are some variables that affect the average size but not the number of PV 
installations. Most notably, males and self-employed people are not more likely to adopt, but 
when they adopt they tend to invest in larger PVs. As a result, these variables have a positive 
impact on total capacity, despite having an insignificant impact on the number of PV installations. 
The same holds for left votes and for young households (25-34). 

In sum, the effects on average capacity of foreigners (-), males (+), the 25-34 years age group (+) 
and left votes (+) suggests environmental and technological preferences should not be neglected 
when discussing PV size choices. In contrast, more natural determinants like house size or 
household size seem to be less important. Note however from the small differences between 
Model 3 and Model 4 that all variables, including the preference-related ones, seem to play a much 
more important role in deciding to adopt, rather than in deciding on the size. 
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  Model 3 Model 4 Model 5 
VARIABLES (total number) (total capacity) (average size) 
Households (log) 1.011* (0.007) 1.000* (0.007) -0.013* (0.003) 
Income: average (log) 0.094 (0.061) 0.061 (0.067) 0.014 (0.025) 
Income: dispersion (log) 0.152* (0.034) 0.114* (0.035) -0.027 (0.016) 
Subsidy (1000EUR) 0.176* (0.058) 0.186* (0.063) 0.007 (0.023) 
House value: <EUR500 0  0  0  
House value: EUR500-
EUR744 

0.027 (0.070) -0.025 (0.073) -0.052 (0.035) 
House value: EUR745-
EUR999 

0.001 (0.063) -0.048 (0.072) -0.027 (0.037) 
House value: EUR1000-
EUR1499 

0.127 (0.076) 0.102 (0.078) -0.011 (0.032) 
House value: EUR1500-
EUR2499 

-0.269* (0.091) -0.252* (0.100) 0.076* (0.038) 
House value: >EUR2500 -0.732* (0.136) -0.823* (0.140) 0.051 (0.065) 
Population density (log) -0.048* (0.007) -0.065* (0.007) -0.024* (0.003) 
Age: <25 0  0  0  
Age: 25-34 0.226 (0.435) 0.308 (0.473) 0.428* (0.209) 
Age: 34-44 0.318 (0.404) 0.367 (0.430) 0.245 (0.195) 
Age: 45-65 -0.454 (0.402) -0.450 (0.431) 0.233 (0.191) 
Age: >65 -0.735 (0.403) -0.747 (0.435) 0.163 (0.185) 
Educ: no high school or other 0  0  0  
Educ: High school 0.133 (0.118) 0.232 (0.128) 0.085 (0.064) 
Educ: College 0.011 (0.106) -0.192 (0.109) -0.209* (0.057) 
Foreigners -2.118* (0.230) -2.154* (0.229) -0.170* (0.060) 
Left votes 0.203 (0.140) 0.367* (0.143) 0.127* (0.046) 
Environmental awareness 1.172* (0.161) 1.207* (0.173) 0.116 (0.064) 
House owner 0.383* (0.068) 0.214* (0.072) -0.206* (0.036) 
Household size: 1 0  0  0  
Household size: 2 0.345* (0.117) 0.373* (0.124) 0.002 (0.058) 
Household size: 3 or 4 1.056* (0.122) 1.212* (0.130) 0.107 (0.066) 
Household size: >4 0.860* (0.219) 1.115* (0.243) 0.100 (0.080) 
Male 0.285 (0.186) 0.399* (0.192) 0.250* (0.109) 
Occup: blue coll priv sector 
and other 

0  0  0  
Occup: white coll priv sector 0.284* (0.117) 0.141 (0.119) -0.189* (0.063) 
Occup: self-employed 0.116 (0.123) 0.937* (0.131) 0.652* (0.056) 
Occup: public sector 0.365* (0.124) 0.224 (0.135) -0.205* (0.066) 
House age: before 1971 0  0  0  
House age: 1971-1980 0.320* (0.057) 0.359* (0.060) 0.011 (0.026) 
House age: 1981-1990 0.484* (0.061) 0.516* (0.062) -0.031 (0.033) 
House age: 1991-2000 0.566* (0.068) 0.565* (0.075) -0.014 (0.040) 
House age: after 2000 1.055* (0.077) 0.945* (0.083) -0.138* (0.038) 
House size <45m2 0  0  0  
House size 45-64m2 1.340* (0.377) 1.326* (0.400) -0.052 (0.141) 
House size 65-104m2 1.675* (0.362) 1.690* (0.375) -0.043 (0.111) 
House size 105-184m2 2.281* (0.357) 2.379* (0.371) 0.049 (0.111) 
House size >184m2 2.456* (0.364) 2.738* (0.379) 0.187 (0.115) 
House type: detached 0  0  0  
House type: semi-detached 0.283* (0.058) 0.262* (0.058) -0.002 (0.025) 
House type: terraced 0.078 (0.057) -0.031 (0.059) -0.080* (0.029) 
House type: apartment -0.542* (0.066) -0.563* (0.070) 0.034 (0.035) 
Double glazing 0.344* (0.075) 0.424* (0.079) 0.090* (0.039) 
Roof insulation -0.441* (0.070) -0.424* (0.080) 0.011 (0.035) 
Roof: good condition 0.443* (0.115) 0.339* (0.123) -0.063 (0.058) 
Constant -7.308* (0.788) -5.140* (0.873) 1.540* (0.376) 
       
Observations 8471  8471  8311  
Loglikelihood 1st stage -27419  -70883  -14881  
R² 2nd stage 0.0360   0.0531   0.0346   

Notes: Results from GMM estimation of Poisson model as discussed in the text. Robust standard errors in parentheses, clustered by 
municipality. * indicates p<0.05. Dependent variable is resp. total number of PV installations, total installed capacity and average size at the 
end of 2012. Unless otherwise indicated, the explanatory variables are expressed as percentages. 0-values indicate the variable is reference 
category. 

Table 4: Estimation results for effect on capacity  
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5.3. Understanding variation over time 

As discussed in section 2, the mass adoption of PV installations started in 2006 after the 
introduction of the green certificates subsidy program of the Flemish government. In this section 
we divide the sample in two periods to ask whether the influence of certain covariates changed 
over time as the subsidy program became less generous. The first period runs from January 1st, 
2006 to December 31st, 2009. This corresponds to the period in which the initially announced 
path of minimum prices per green certificate was not questioned, and was at its highest value (€ 
450). The second period covers January 1st 2010 up to December 31st, 2012. In 2010, the value 
of a green certificate decreased for the first time and at that point the public debate on the 
appropriateness of the level of the minimum prices started. This regularly led to new 
announcements of reduced subsidy amounts for the green certificates. It is therefore interesting 
to compare both periods, to assess whether different determinants mattered after the policy 
change. Although the first period was longer, we find that only 62,905 residential PVs were 
installed during this period while 157,559 were installed in the second period. Table 5 shows the 
results, comparing the results for both periods with the model we had for total adoptions. The 
last column shows the p-values of a Wald test that tests if the estimated parameters differ 
between both periods. 

Many of the parameters do not change significantly over the two periods. We concentrate our 
discussion on those parameters that significantly changed over time. The first group consists of 
parameters that mainly played a role in the first period. We indicate this by shading the relevant 
parameters in grey shading during the first (middle columns). The second group consists of 
parameters that mainly played a role in the second period. We indicate this by shading these 
parameters in grey during the second period (right columns). 

First consider the group of variables that mainly played a role in the first period. Average income 
per household, which had a small and insignificant effect during the whole period, in fact had a 
positive impact during the first period (with an elasticity of 0.204), while it had essentially no 
impact during the second period. Recall that these elasticities are conditional on the other 
variables included in the model. The unconditional income elasticity also drops significantly from 
1.9 to 1.5 (not reported in the tables).34 Hence, a Matthew effect is present throughout the full 
period, but it has declined during the second half. Note that this declined effect is precisely when 
the subsidy program became less generous. Similarly, we find that the impact of income 
dispersion became smaller during the second period. 

Among the household characteristics, a college or university degree had no significant effect over 
the entire period, but it does have a significant positive effect at the 10% level during the first 
period. This suggests that educated people become more quickly aware of subsidy programs, 
though less educated people eventually catch up. We also did not find a significantly higher 
adoption rate for males over the whole period, but they do show a higher adoption rate during 
the first period. Large households (over 4 members) especially adopted during the first period, 
though even in the second period these households had a higher adoption rate. Next, the role of 
occupational status seems to have diminished over time: white collar and public sectors workers 
only show a larger adoption rate during the first period. Finally, terraced houses showed higher 
adoptions during the first period but not over the entire period.   

                                                             
34 The income elasticity during the first period was 1.941 with a standard error of 0.214, and the income elasticity during the second 

period was 1.509 with a standard error of 0.261. The chi²-statistic of the Wald test of equality was 49.37 which corresponds to a 
p-value of 0.000. 
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  Model 3 Model 6 Model 7 6 = 7 
VARIABLES   3 in 2006-2009 3 in 2010-2012 p-value 

Households (log) 1.011* (0.007) 1.018* (0.010) 1.009* (0.007) 0.383 
Income: average (log) 0.094 (0.061) 0.204* (0.072) 0.048 (0.069) 0.041* 
Income: dispersion (log) 0.152* (0.034) 0.260* (0.051) 0.107* (0.040) 0.010* 
Subsidy (1000EUR) 0.176* (0.058) 0.187* (0.080) 0.158* (0.066) 0.743 

 House value: <EUR500 0  0     
   EUR500-EUR744 0.027 (0.070) 0.067 (0.099) 0.010 (0.077) 0.589 
   EUR745-EUR999 0.001 (0.063) 0.052 (0.083) -0.014 (0.078) 0.532 
   EUR1000-EUR1499 0.127 (0.076) 0.266* (0.097) 0.071 (0.081) 0.037* 
   EUR1500-EUR2499 -0.269* (0.091) -0.284* (0.118) -0.273* (0.104) 0.931 
   >EUR2500 -0.732* (0.136) -0.883* (0.172) -0.652* (0.149) 0.162 
Population dens (log) -0.048* (0.007) -0.051* (0.009) -0.047* (0.007) 0.583 
Age: <25 0  0  0   
Age: 25-34 0.226 (0.435) 0.201 (0.735) 0.229 (0.466) 0.971 
Age: 34-44 0.318 (0.404) 0.641 (0.716) 0.199 (0.417) 0.535 
Age: 45-65 -0.454 (0.402) -0.099 (0.672) -0.613 (0.420) 0.436 
Age: >65 -0.735 (0.403) -0.405 (0.669) -0.870* (0.425) 0.482 
Educ: no /other 0  0  0   
Educ: High school 0.133 (0.118) -0.101 (0.199) 0.237 (0.129) 0.110 
Educ: College 0.011 (0.106) 0.311 (0.168) -0.137 (0.117) 0.013* 
Foreigners -2.118* (0.230) -2.520* (0.304) -1.989* (0.231) 0.031* 

 Left votes 0.203 (0.140) -0.023 (0.196) 0.284 (0.148) 0.096 
 Environmental aware. 1.172* (0.161) 0.795* (0.230) 1.336* (0.160) 0.004* 
 House owner 0.383* (0.068) 0.413* (0.102) 0.367* (0.073) 0.655 
 Household size: 1 0  0  0   

Household size: 2 0.345* (0.117) 0.269 (0.174) 0.373* (0.131) 0.582 
Household size: 3 or 4 1.056* (0.122) 1.007* (0.187) 1.075* (0.138) 0.741 
Household size: >4 0.860* (0.219) 1.565* (0.329) 0.548* (0.219) 0.000* 
Male 0.285 (0.186) 0.756* (0.324) 0.098 (0.209) 0.071 

 Occup: blue coll/other 0  0  0   
Occup: white coll 0.284* (0.117) 0.781* (0.175) 0.090 (0.129) 0.000* 
Occup: self-employed 0.116 (0.123) -0.003 (0.163) 0.170 (0.142) 0.355 
Occup: public sector 0.365* (0.124) 0.676* (0.172) 0.262 (0.142) 0.031* 
House age: before 1971 0  0  0   
House age: 1971-1980 0.320* (0.057) 0.155* (0.076) 0.390* (0.063) 0.002* 
House age: 1981-1990 0.484* (0.061) 0.474* (0.099) 0.483* (0.069) 0.928 
House age: 1991-2000 0.566* (0.068) 0.576* (0.106) 0.545* (0.075) 0.793 
House age: after 2000 1.055* (0.077) 0.668* (0.103) 1.210* (0.092) 0.000* 
House size <45m2 0  0  0   
House size 45-64m2 1.340* (0.377) 1.128* (0.393) 1.389* (0.419) 0.478 
House size 65-104m2 1.675* (0.362) 1.415* (0.358) 1.753* (0.401) 0.287 
House size 105-184m2 2.281* (0.357) 2.182* (0.364) 2.292* (0.394) 0.730 
House size >184m2 2.456* (0.364) 2.306* (0.369) 2.501* (0.398) 0.532 
House type: detached 0  0  0   
House type: semi-det. 0.283* (0.058) 0.292* (0.074) 0.277* (0.065) 0.854 
House type: terraced 0.078 (0.057) 0.240* (0.075) 0.018 (0.060) 0.002* 
House type: apartment -0.542* (0.066) -0.502* (0.087) -0.552* (0.073) 0.580 
Double glazing 0.344* (0.075) 0.445* (0.123) 0.309* (0.086) 0.333 
Roof insulation -0.441* (0.070) -0.422* (0.107) -0.452* (0.082) 0.808 
Roof: good condition 0.443* (0.115) 0.503* (0.159) 0.434* (0.129) 0.683 
Constant -7.308* (0.788) -

11.050* 
(0.959) -6.612* (0.891)  

        
Observations 8471  8471  8471   
Loglikelihood 1st stage -27419  -19675  -25286   
R² 2nd stage 0.0360   0.0172   0.0341    

Notes: Results from GMM estimation of Poisson model as discussed in the text. Robust standard errors in parentheses, clustered by 
municipality. * indicates p<0.05. Dependent variable is total number of PV installations in each period. Unless otherwise indicated, the 
explanatory variables are expressed as percentages. 0-values indicate the variable is reference category. Equality of estimates tested using 
Wald test (last column). Shaded cells denote where a variable mainly had an effect in only one of the two periods. 

 

Table 5: Estimation results over time 
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Now consider the group of variables that mainly played a role in the second period, and less so in 
the first period. This is true for environmental awareness as it became more pronounced in the 
second period. We also see an interesting result for house age, where houses of the 70s catch up 
with houses of the 80s and 90s, and the youngest group shows a significantly higher adoption 
rate in the second period. This might result from the fact that households are credit constrained 
and therefore unable to buy a PV right after a large investment in building a house. An alternative 
explanation is that it follows from the VAT rate policy in Flanders that allows a 6% VAT-rate 
instead of 21% to renovate houses, which includes installing a PV, that are at least 5 years old. 
Therefore households living in new houses have an incentive to postpone their investment. 

We conclude that our results are relatively robust for adopters that are differentiated by the 
timing of their investment. There are however some differences as college degrees and high 
incomes were only important in the beginning, perhaps because of higher information costs. We 
also find a stronger unconditional income elasticity during the first period, implying an even more 
important Matthew effect when subsidies were higher. Finally, new adopters often live in newer 
houses and are more aware of environmental issues. 

6. SUMMARY AND CONCLUSION 

This paper has extended previous work on explaining the heterogeneity in the adoption of PV, by 
considering a much richer set of household characteristics and including a new set of housing 
characteristics in a single framework. Furthermore, this is one of the first studies that analyzes 
the complete installed base of PV in a region outside the US. More specifically, we combined 
various data sources to generate a comprehensive dataset for the entire region of Flanders, where 
PV adoption has reached high levels because of active government policies during 2006-2012. We 
used a Poisson model to quantify the relative importance of socioeconomic variables at a very 
small level of aggregation (on average 280 households). 

We can summarize our findings of the main model as follows. First, the local subsidies have a 
robust and significant impact on PV adoption in all specifications. While the local subsidies were 
quantitatively relatively modest, this finding is indirect evidence that the larger incentives at the 
regional level (mainly through green certificates and net metering) have formed the basis for the 
strong development of PV adoption in Flanders (and presumably in many other regions or 
countries). 

Second, the unconditional income elasticity (without controlling for other covariates) is as high 
as 1.6, and even 1.9 in the first period when subsidies were at its highest level. This suggests a 
strong Matthew effect in the sense that richer households disproportionately benefited from the 
subsidies. The income elasticity is still a sizeable 1.032 if we control for a similar set of covariates 
as in Kwan. 

Our third main finding is, however, that the direct income effect almost vanishes if we also control 
for household size and house ownership. Larger households are more likely to adopt because they 
tend to consume more electricity and can spread the fixed investment costs over larger absolute 
savings in energy costs. House owners can reap a larger part of the benefits from their 
investments. We can thus explain the channel through which wealthier households are more 
likely to benefit from the PV subsidies: this is not because of their higher income per se, but rather 
because they are more likely to adopt PV as high users and as more frequent house owners and 
because they live in houses that are better suited for PVs. 

Our final main finding concerns the role of the housing characteristics, which has not been 
considered in previous work. We find that both house size and house age play an important role: 
PV adoption is more likely in larger and in more recently built houses. Interestingly, accounting 
for this information reduces the significance of house value, suggesting our included set of 
housing characteristics captures the most relevant aspects of housing in the adoption of PVs. 
Furthermore, accounting for house age also makes the impact of household age insignificant, 
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indicating that younger households do not have stronger incentives per se to adopt PVs, but 
rather do this because they live in more recently built houses. 

In a first extension we show that most of the considered covariates have a smaller impact on the 
size, measured by its capacity, of the installed PVs. This implies that most covariates have a similar 
impact on the total number of installations as on the total installed capacity. A surprising result 
is that we do not find very strong results for natural explanations for larger PVs like household 
size or house size. Instead, we find that variables we link more to environmental and 
technological preferences are important for the chosen size. 

In a second extension we show that the impact of most covariates is stable over time, with some 
interesting exceptions. For example, education did not seem to play a significant role over the 
entire period 2006-2012. But college degrees have been faster adopters during 2006-2009. We 
also see that new adopters often live in newer houses, and environmental awareness became 
more important once subsidies started to decline.   

More generally speaking, our analysis shows that the inclusion of covariates that – probably due 
to a lack of availability – are not typically included in other studies, has an impact on the effects 
found for the covariates that were included in these studies. As a result, some of the conclusions 
in earlier work may need qualification. In particular, it turns out that the direct impact of income, 
house value and household age is less important than previously found, while there is an 
important role for housing characteristics and household size. Finally, we show that 
heterogeneity not only plays a role in the decision to adopt, but also for the desired size and that 
there are some differences between early and late adopters. 

This paper provides an elaborate overview of how heterogeneity plays a role in the diffusion of 
PV. Furthermore, it provides a first step towards a more elaborate analysis of the adoption of PV. 
Various other questions may be considered in future research. A first extension would be to 
further explore the role of peer effects, along the lines of Bollinger and Gillingham (2012), 
Letchford et al. (2014), Richter (2013) and Rode and Weber (2011), but after controlling for a 
richer set of covariates that may explain the heterogeneity in PV adoption across areas. A second 
line of future research will be to also look into the dynamics of PV adoption, where questions such 
as ‘What determines the rate of diffusion?’, and ‘What factors determine the timing of adoption?’ 
are addressed. 
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7. APPENDIX 

7.1. Tradable Green Certificates 

This appendix provides further details on the tradable green certificates which were the main type 
of public support during the rapid adoption in the period 2006-2012. 

Tradable Green Certificates: the starting years (2002-2009) 

The backbone of renewables support in Flanders originates from the Electricity Decree in 2000. This 
decree provides the legal framework for the Tradable Green Certificates (TGC) mechanism that 
started off on January 1, 2002.35 As in many other countries, under the TGC mechanism electricity 
suppliers and large end-users connected to the transmission grid receive a quota obligation to cover 
a minimum target percentage of their electricity sales by green electricity. As shown in Table 6 the 
minimum target was below 1% at the start in 2002, but it was scheduled to gradually increase to 
13% in 2021. 

Delivery date 
Initial target 

(RES as a % of electricity 
sales) 

Revised target 
(2010) 

Fine 
(per missing 
certificate) 

March 31, 2003 0,80%  €75,00 
March 31, 2004 1,20%  €100,00 
March 31, 2005 2,00%  €125,00 
March 31, 2006 2,50%  “ 
March 31, 2007 3,00%  “ 
March 31, 2008 3,75%  “ 
March 31, 2009 4,50%  “ 
March 31, 2010 5,25%  “ 
March 31, 2011 6,00%  “ 
March 31, 2012 7,00%  “ 
March 31, 2013 8,00% 14,00% €118,00 
March 31, 2014 9,00% 15,50% €100,00 
March 31, 2015 10,00% 16,80% “ 
March 31, 2016 10,50% 18,00% “ 
March 31, 2017 11,00% 19,00% “ 
March 31, 2018 11,50% 19,50% “ 
March 31, 2019 12,00% 20,00% “ 
March 31, 2020 12,50% 20,50% “ 
March 31, 2021 13,00% 20,50% “ 

Notes: Before 2013 TGCs were given for each produced MWh. From 2013 the amount of MWh that was necessary for one certificate was 

variable over time and revised each six months. New PV systems with a capacity <10kW are excluded from TGCs since 14 June 2015. 

Table 6: Targets and fines in the Flemish TGC system. 

 

                                                             
35 For a more extensive description of the (evolution of the) Flemish TGC, we refer to Verbruggen (2004), Verbruggen (2009) and 

Verhaegen et al. (2009). 
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In 2004, the TGC mechanism was adapted to include a system of minimum TGC prices per technology 
for a guaranteed number of years. For most technologies, the minimum prices have ranged between 
€60 and €90 per MWh for a period of 10 years, and these minimum prices have so far not been 
binding yet. The only exception is PV, where the minimum price was much higher and the guaranteed 
period much longer. As shown in Table 7 the minimum TGC prices for PV were as large as €450 per 
MWh in the early years (2006-2009), and the guaranteed period for this minimum price was 20 years. 
Installations put into operation in 2010 or later have gradually received lower support, for a shorter 
period of time. 

Tradable green certificates: recent revisions (2009-2014) 

In 2009 the Flemish TGC support mechanism was revised on a number of elements, to be 
implemented between 2009 and 2014. The revisions related to three features. First, the renewables 
targets for the period 2010-2020 were adapted (see column 2 in Table 6) and would be evaluated on 
a triennial basis (under the constraint that the targets can never be reduced). Second, starting from 
2010 onwards, certificates issued for PV installations on dwellings with badly insulated roofs were 
not to be accepted any more to satisfy quota obligations.36  A third major element in the 2009 
revision was the reduction in the fine per missing certificate from €125 to €100, starting from March 
31, 2015. This change was motivated by the expectation that, in the years to come, there would be a 
shortage of certificates, with the risk that TGC prices would soar. 

In the fall of 2010, a second round of major revisions was announced by the Flemish Minister of 
Energy. These revisions were triggered by two observations. First, it was observed that the very 
generous financial support for PV, as implemented with the first wave of major revisions, resulted in 
an enormous increase of the installed capacity of PV and thus also in a major increase of the financial 
burden put on distribution companies. Second, the incumbent electricity generator in Belgium 
(Electrabel) announced the reconversion of a large coal plant to a biomass installation. This single 
project would increase the installed renewables generation capacity in Flanders with about 180 MW. 
To put this into perspective: in 2010, the available capacity of onshore wind generation in Flanders 
was equal to 240 MW. It was estimated that this new power plant would generate more than 1 million 
certificates per year, which is about 30% of the total number of certificates issued in 2010. The 
proposed revisions contained one element with relevance for this paper. The minimum prices for PV 
certificates were changed once again and were now also differentiated according to the size of the 
installation (with lower minimum prices for larger installations). 

In 2012, a third round of downward revisions of the guaranteed minimum support levels for 
residential PV systems was decided upon, together with a reduction of the duration of the support to 
10 years for installations built between August 1st 2012 and December 31st 2012.37 As of 2013, the 
minimum support is set equal to €93 per certificate for a period of 15 years. Also, banding is used to 
determine the number of certificates per 1000kWh of electricity generation. The banding factors are 
revised every 6 months and depend on the date of installation of the PV system. Since June 14th 2015, 
new PV systems with a capacity smaller than 10kW are excluded from TGC support.38  

Figure 6 shows how the TGC mechanism and its various revisions resulted in a large increase in the 
number of certificates for the various technologies since 2007. In 2007 most of the certificates were 
for biomass and there were almost no certificates for PV. In 2009 and 2010 the number of PV 

                                                             
36 Note that this limitation only accounts for dwellings. Currently, PV installations on commercial buildings, garages and garden houses 

can still be used to satisfy the quota obligation. 
37 http://www.vlaanderen.be/nl/bouwen-wonen-en-energie/elektriciteit-aardgas-en-verwarming/groenestroomcertificaten-voor-zonnepanelen. 
38 http://www.vreg.be/nl/bedrag-minimumsteun-vanaf-2013 
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certificates started to increased drastically, and by 2013 they made up about one third of all 
certificates. 

 

Figure 6: Number certificates issued per type of technology per year (VREG (2015)). 
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 Date of change of the Energy decree 
Put into operation in 08-05-2009 07-08-2010 10-06-2011 30-07-2012 28-06-2013 

 Support 
Duratio

n 
Support 

Duratio
n 

Support 
Duratio

n 
Suppor

t 
Duratio

n 
Suppor

t 
Duratio

n 
2006 - 
2009 

 €450 20    
 

    

2010  €350 20 €350 20       
2011 Jan. – June €330 20 €330 20       

 July – Sept. €330 20 €330 20 €300 20     
 Oct. – Dec. €330 20 €330 20 €270 20     

2012 Jan. – Mar. €310 20 €310 20 €250 20     
 Apr. – June €310 20 €310 20 €230 20     
 July – July €310 20 €310 20 €210 20     
 Aug.– Dec. €310 20 €310 20 €210 20  €90 10   

2013  €290 20 €290 15 €190 15  €93 10  €93 15 
2014  €250 20 €250 15 €150 15  €93 10  €93 15 
2015  €210 20 €210 15 €110 15  €93 10  €93 15 
2016  €170 20 €170 15  €90 15  €93 10  €93 15 
2017  €130 20 €130 15  €90 15  €93 10  €93 15 
2018   €90 20  €90 15  €90 15  €93 10  €93 15 
2019   €50 20  €50 15  €90 15  €93 10  €93 15 
2020   €10 20  €10 15  €90 15  €93 10  €93 15 

Notes: Before 2013 TGCs were given for each produced MWh. From 2013 the amount of MWh that was necessary for one certificate was variable over time and revised each six months. 

New PV systems with a capacity <10kW were excluded from TGCs since 14 June 2015. 

Table 7: Minimum price support in € per TGC for PV installations (< 𝟐𝟓𝟎⁡𝐤𝐖𝐩). 
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7.2. Alternative models 

In this section we compare popular alternative models for our preferred specification (Model 3). 
We compare the Poisson model with a Negative Binomial (NB2) and their zero-inflated 
counterparts ZIP and ZINB. While the Poisson and NB2 model only require the conditional mean 
to be correctly specified, the ZIP and ZINB are not robust to misspecification of higher moments. 
We therefore also compare with the Staub and Winkelmann (2013) zero-inflated Poisson quasi-
likelihood approach (ZIPQL). Although this model provides consistent estimates without correct 
specification of higher moments, the low number of zero observations in our dataset can result 
in important small sample bias. 

We use the same variables in both the count-part of the model and the binary part that explains 
the zeros, except for the municipality dummy variables. We exclude these dummy variables from 
the binary part of the model to avoid convergence problems, as this adds a lot of variables and we 
only have a limited number of zeros. For simplicity, we do not calculate the GMM covariance 
matrix but simply focus on the first stage of the model (so we do not perform a second stage 
regression of the municipality fixed effects on the municipality-level variables, left votes and local 
subsidy). We do not show the results of the binary part of the model but focus on the count part 
of the models as this is our main interest. 

Table 8 shows that our estimates are robust. Not only is the qualitative interpretation the same 
but also the estimated coefficients are almost identical. This was expected for the Poisson and 
NB2 model, as consistent estimation only requires the correct specification of the conditional 
mean function, which is identical for both models. But also the zero-inflated models confirm the 
robustness of our results. Furthermore, note that the standard errors are similar because all 
estimators use the cluster-robust covariance matrix. 
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  Poisson NB2 ZIP ZINB ZIPQL 
VARIABLES (first stage of model 3)             

Households (log) 1.011* (0.007) 1.009* (0.007) 1.008* (0.007) 1.005* (0.007) 0.979* (0.011) 
Income: average (log) 0.094 (0.061) 0.088 (0.064) 0.076 (0.060) 0.062 (0.061) -0.044 (0.067) 
Income: dispersion (log) 0.152* (0.034) 0.148* (0.037) 0.154* (0.034) 0.151* (0.037) 0.061 (0.048) 
House value: <EUR500 0  0        
House value: EUR500-EUR744 0.027 (0.070) -0.008 (0.072) 0.026 (0.071) -0.012 (0.073) 0.080 (0.097) 
House value: EUR745-EUR999 0.001 (0.063) 0.012 (0.065) 0.006 (0.062) 0.018 (0.062) 0.017 (0.105) 
House value: EUR1000-EUR1499 0.127 (0.076) 0.109 (0.075) 0.134 (0.075) 0.121 (0.072) 0.133 (0.111) 
House value: EUR1500-EUR2499 -0.269* (0.092) -0.267* (0.089) -0.253* (0.090) -0.245* (0.088) -0.045 (0.140) 
House value: >EUR2500 -0.732* (0.136) -0.782* (0.138) -0.730* (0.136) -0.779* (0.135) -0.644* (0.252) 
Population density (log) -0.048* (0.007) -0.049* (0.007) -0.047* (0.006) -0.048* (0.007) -0.014 (0.010) 
Age: <25 0          
Age: 25-34 0.226 (0.436) 0.022 (0.451) 0.284 (0.438) 0.091 (0.448) 1.018* (0.510) 
Age: 34-44 0.318 (0.404) 0.125 (0.421) 0.412 (0.412) 0.224 (0.427) 1.065* (0.497) 
Age: 45-65 -0.454 (0.403) -0.684 (0.425) -0.337 (0.409) -0.548 (0.430) 0.669 (0.475) 
Age: >65 -0.735 (0.404) -0.977* (0.419) -0.628 (0.413) -0.855* (0.427) 0.208 (0.475) 
Educ: no high school or other 0          
Educ: High school 0.133 (0.118) 0.165 (0.125) 0.112 (0.117) 0.132 (0.122) 0.044 (0.146) 
Educ: College 0.011 (0.106) 0.040 (0.104) 0.014 (0.105) 0.044 (0.103) -0.227 (0.182) 
Foreigners -2.118* (0.230) -2.058* (0.227) -2.100* (0.227) -2.031* (0.223) -1.619* (0.167) 
Environmental awareness 1.172* (0.161) 1.243* (0.162) 1.096* (0.156) 1.151* (0.164) -0.022 (0.262) 
House owner 0.383* (0.068) 0.390* (0.071) 0.392* (0.068) 0.395* (0.072) 0.435* (0.105) 
Household size: 1 0          
Household size: 2 0.345* (0.117) 0.338* (0.117) 0.338* (0.118) 0.334* (0.118) 0.435* (0.159) 
Household size: 3 or 4 1.056* (0.122) 1.063* (0.132) 1.068* (0.123) 1.087* (0.129) 1.196* (0.170) 
Household size: >4 0.860* (0.219) 0.930* (0.217) 0.864* (0.224) 0.952* (0.222) 2.072* (0.311) 
Male 0.285 (0.186) 0.248 (0.198) 0.271 (0.182) 0.221 (0.192) 0.141 (0.308) 
Occup: blue coll priv sector and other 0          
Occup: white coll priv sector 0.284* (0.117) 0.330* (0.125) 0.255* (0.114) 0.286* (0.120) 0.031 (0.152) 
Occup: self-employed 0.116 (0.123) 0.202 (0.130) 0.101 (0.123) 0.173 (0.127) -0.074 (0.147) 
Occup: public sector 0.365* (0.125) 0.388* (0.130) 0.337* (0.124) 0.350* (0.128) 0.241 (0.171) 
House age: before 1971 0          
House age: 1971-1980 0.320* (0.057) 0.311* (0.057) 0.311* (0.056) 0.300* (0.056) 0.156 (0.103) 
House age: 1981-1990 0.484* (0.061) 0.513* (0.065) 0.477* (0.060) 0.502* (0.062) 0.265* (0.111) 
House age: 1991-2000 0.566* (0.068) 0.530* (0.072) 0.571* (0.068) 0.535* (0.073) 0.552* (0.124) 
House age: after 2000 1.055* (0.077) 1.026* (0.087) 1.066* (0.081) 1.037* (0.093) 0.751* (0.191) 
House size <45m2 0          
House size 45-64m2 1.340* (0.377) 1.199* (0.360) 1.389* (0.368) 1.292* (0.347) -0.255 (0.502) 
House size 65-104m2 1.675* (0.362) 1.593* (0.348) 1.700* (0.359) 1.651* (0.346) -0.277 (0.450) 
House size 105-184m2 2.281* (0.358) 2.155* (0.343) 2.309* (0.356) 2.218* (0.342) 0.237 (0.456) 
House size >184m2 2.456* (0.364) 2.356* (0.347) 2.479* (0.364) 2.415* (0.348) 0.375 (0.461) 
House type: detached 0          
House type: semi-detached 0.283* (0.058) 0.313* (0.065) 0.283* (0.058) 0.314* (0.065) 0.166* (0.064) 
House type: terraced 0.078 (0.057) 0.067 (0.062) 0.064 (0.058) 0.049 (0.063) 0.066 (0.103) 
House type: apartment -0.542* (0.066) -0.576* (0.070) -0.526* (0.061) -0.549* (0.062) -0.072 (0.124) 
Double glazing 0.344* (0.075) 0.352* (0.081) 0.356* (0.075) 0.375* (0.082) 0.326* (0.102) 
Roof insulation -0.441* (0.070) -0.384* (0.079) -0.449* (0.068) -0.398* (0.077) -0.374* (0.126) 
Roof: good condition 0.443* (0.115) 0.437* (0.118) 0.435* (0.116) 0.425* (0.119) -0.067 (0.170) 
           
Alpha   0.0310* (0.002)   0.0301* (0.002)   
Observations 8471  8471  8,471  8,471  8,471  
Loglikelihood -27419  -26632  -27283   -26519   -26746   

Notes: Results from maximum likelihood estimation with municipality fixed effects. Robust standard errors in parentheses, clustered by municipality. * indicates p<0.05. Dependent variable is total number of PV installations 
at the end of 2012. Unless otherwise indicated, the explanatory variables are expressed as percentages. 0-values indicate the variable is reference category. 

Table 8: comparing different count models 
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