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Abstract

We introduce a second-order correction technique for nonlinear fixed-effect mod-

els exposed to the incidental parameter problem. This technique produces a bias-

corrected log-likelihood function that possesses a bias only to the order (in expectation)

of O
(
T−3

)
where T is the number of time periods. As a consequence, the maximizer

of the corrected log-likelihood, the corrected estimator, is also only biased to the order

of O
(
T−3

)
. The technique applies to static nonlinear fixed-effect models in which N ,

the number of individuals, is allowed to grow rapidly and T is assumed to grow at a

rate satisfying N/T 5 converging to 0. The proposed technique is general in the sense

that it does not depend on a specific functional form of the log-likelihood function.

Keywords: Incidental parameter problem, maximum likelihood, asymptotic bias

correction.

1 Introduction

Panel data are becoming ever more important in economic studies. In these studies,

researchers often attempt to capture individual heterogeneity by introducing individual-

specific parameters, or “fixed effects”, in the model. When the number of time periods in

the dataset is small, however, nonlinear models with a large number of fixed-effect parameters

may produce maximum likelihood (ML) estimates that are severely biased. This is known as

the incidental parameter problem (IPP) of Neyman and Scott (1948). To briefly introduce1

the problem, let i = 1, · · · , N index the individuals and t = 1, · · · , T the time periods, and

suppose that N → ∞ while T remains fixed. Denote log f (Yit; θ, ai) to be the log-likelihood

associated with observation Yit (possibly conditional on covariates Xit), where θ is the vector

of parameters of interest that applies to all observations it and ai is the fixed-effect nuisance

parameter. Here α̂i, the ML estimator of ai, only uses the data from the ith individual.

Therefore, when T is fixed, α̂i remains a random variable for every i even as N → ∞. In

many models, this introduces a bias in the log-likelihood function in the sense that the ML

estimator θ̂ of θ converges to a point θT ̸= θ0 where θ0 is the true value of θ. When, however,

N,T → ∞ with T increasing only slowly, the random variation in α̂i vanishes only slowly

such that θ̂ inherits the slow convergence and the limiting distribution of θ̂ is not centered

∗Address: Research Center of Econometrics, Naamsestraat 69 - box 3565, 3000 Leuven, Belgium.
Tel.: +32 16 37 62 75. Email: yutao.sun@kuleuven.be.

1See also Lancaster (2000) for a comprehensive survey.

1

tel:+3216376275
mailto:yutao.sun@kuleuven.be


at θ0. In the course of nearly seven decades since IPP was discovered, numerous researchers

have attempted to obtain solutions, either exact or approximate, as well as either analytical

or numerical, to the IPP. In the early years, solutions are usually model-specific or depending

on conditions that may be considered strict. For example Cox and Reid (1987) propose a

consistent estimator of θ when a certain type of orthogonality between θ and ai can be

found. Here the problem is that the existence of this type of orthogonality is generally not

guaranteed.

On the other hand, many researchers look at general solutions that do not depend on the

specific functional form of the underlying density. Such solutions are often approximate in

the sense that they produce bias-corrected estimates that are unbiased to some specific order

of magnitude. One way to obtain a bias correction is to adopt certain automated approaches

such as the jackknife or the bootstrap. For example Dhaene and Jochmans (2015) propose

the split-panel jackknife for both dynamic and static models. The approach splits the panels

into two non-overlapping subpanels along the time dimension. The bias in θ̂ is then estimated

on each of the two subpanels and subtracted from θ̂. While automated methods are usually

easy to construct, the computational stress of these methods may be large depending on the

structure of the dataset. Another way alternative to the automated approaches is to derive

an analytical formula approximating the bias in θ̂. The formula is estimated using the data

and is subsequently subtracted from θ̂, producing a bias-corrected estimate. This type of

corrections includes, e.g., Hahn and Newey (2004) who develop a correction to estimators

under independent observations, and Hahn and Kuersteiner (2011) who derive a formula for

dynamic nonlinear panel models. These methods are usually less computationally intensive

and possess finite-sample properties that are more desirable.

Alternatively, a correction performed on the objective function, i.e., the log-likelihood

function, may also be of interest. Arellano and Hahn (2006) introduce an approximation to

an infeasible log-likelihood function that is not exposed to the IPP. The proposed approxi-

mation is biased only to the order of magnitude of O
(
T−2

)
in expectation, and therefore,

the maximizer in θ of the approximating function serves as a bias-corrected estimator that

is biased only to the order of magnitude of O
(
T−2

)
in expectation. The proposed approxi-

mation is often called the first-order corrected likelihood and, when T is small, the corrected

estimator obtained from maximizing the corrected log-likelihood may still be significantly

biased, since the term that is of the order of magnitude of O
(
T−2

)
in expectation may still

be large in magnitude. A possible way to overcome this situation is to seek a refined ap-

proximation that is biased to the order of magnitude of O
(
T−3

)
in expectation. The refined

approximation is often called the second-order corrected likelihood. The corrected estima-

tor obtained subsequently from maximizing the second-order corrected log-likelihood is then

also biased to the order of magnitude of O
(
T−3

)
in expectation, which is of a higher order.

The second-order corrected estimator is consistent and asymptotically unbiased under the

asymptotic sequence N/T 5 → 0 as N,T → ∞. As a comparison, the required conditions are

N/T → 0 for the original estimator θ̂ and N/T 3 → 0 for the first-order corrected estimator.

We develop the second-order corrected log-likelihood by extending the approach introduced

by Arellano and Hahn (2006). Our second-order corrected likelihood can be applied to a

general class of models provided that some mild assumptions are satisfied. The proposed

corrected log-likelihood depends only on known quantities such as α̂i and Yit and hence, can
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be constructed in a straightforward way using the given data.

The rest of this paper is organized in the following way. In section 2, we introduce the

settings and assumptions that are required for the derivation of the second-order corrected

likelihood. In section 3, we provide the approach for obtaining the second-order corrected

likelihood. In this section, we first revisit the derivation of Arellano and Hahn (2006) in order

to introduce the differences and difficulties in the derivation of the second-order corrected log-

likelihood. Next, we formally derive the second-order corrected likelihood. In section 4, we

provide suggestive examples and simulations regarding the application of the second-order

corrected likelihood under various models and designs. In section 5, we leave concluding

remarks by briefly introducing possible routes for further studies.

2 Preliminary

Let Yit denote the itth observation where i = 1, · · · , N and t = 1, · · · , T with N/T 5 → 0

as N,T → ∞. We assume that Yit are independent across i and t, i.e., we restrict our

study to the static models. Let f (Yit; θ, ai) be the conditional density of Yit where θ is the

parameter of interest that is the same for every Yit and ai is the fixed-effect parameter which

can only be estimated from the ith individual. Let

αi (θ) ≡ argmax
ai

1

T

∑
t
E log f (Yit; θ, ai) ,

α̂i (θ) ≡ argmax
ai

1

T

∑
t
log f (Yit; θ, ai) .

We make the following assumptions about the density and about αi (θ) and α̂i (θ).

Assumption 1. Suppose (θ, α1 (θ) , · · · , αN (θ) , α̂1 (θ) , · · · , α̂N (θ)) ∈ int
(
Θ×A2N

)
where

Θ×A2N is compact and int (·) denotes the interior of a set.

1. For every θ, αi (θ) and α̂i (θ) are unique.

2. For every θ and every nonnegative integer r ≤ 4, ∇r
ai

log f (Yit; θ, ai) exists and satis-

fies ∣∣∇r
ai

log f (Yit; θ, ai)
∣∣ < ∞

for every αi (θ) and α̂i (θ) where ∇r
ai

denotes the rth derivative w.r.t. ai.

Assumption 2. The second derivative of log f (Yit; θ, ai) w.r.t. ai satisfies

1

T

∑
t

∇2
ai

log f (Yit; θ, ai) < 0

for every

ai ∈ {αi (θ) , α̂i (θ)} .

Whereas assumption 1 is standard, assumption 2 - strict concavity of the likelihood -

may deserve some extra words. In general, this is an acceptable assumption - see, e.g.,

Newey and McFadden (1994, chap. 35). However, there are cases where complications

arise. Consider the probit model with Yit = 1 for all t in some specific i. Under this
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situation, maxai 1/T
∑

t log f (Yit; θ, ai) is achieved at ai → ∞ irrespectively of θ such that

limai→∞ 1/T
∑

t ∇
2
ai

log f (Yit; θ, ai) →p 0. We regard this as somewhat nonstandard and

hence exclude detailed discussions about this situation. We will, however, point out the

exact places where this assumption is inevitable - see remark 1, 2, and 3 below.

Next, for every arbitrarily given i (hence the index i is omitted) and θ, let

l (θ) ≡ 1

T

∑
t
log f (Yit; θ, αi (θ)) ,

l̂ (θ) ≡ 1

T

∑
t
log f (Yit; θ, α̂i (θ)) .

When T is fixed, α̂i (θ) remains a random variable for every i even as N → ∞. In this

setting, the random variation in α̂i (θ) does not vanish as N → ∞. In many models, this

induces a bias to the log-likelihood function in the sense that the ML estimator of θ, θ̂ ≡
argmaxθ 1/N

∑
i l̂ (θ), converges to a wrong value, say θT ; i.e., plimN→∞ θ̂ = θT ̸= θ0 where

θT ≡ plimN→∞ argmaxθ 1/N
∑

i l̂ (θ) and θ0 ≡ plimN→∞ argmaxθ 1/N
∑

i l (θ). When,

however, N,T → ∞ with T increasing much slower than N , the random variation in α̂i (θ)

vanishes only slowly. In that case, θ̂ inherits this slow convergence such that the limiting

distribution of θ̂ is not centered at θ0.

In what follows, we assume that the expectation exists and that the stochastic order

operator and the expectation can be interchanged. Here it is obvious that l (θ) is not exposed

to IPP and hence, can be thought of as an infeasible target log-likelihood function to which

an approximation - say l̂(k) (θ) - can be constructed, where l̂(k) (θ) satisfies

El (θ) = El̂(k) (θ) + o
(
T−k

)
in which E (·) denotes the expectation under the true density f (Yit; θ0, αi (θ0)) and l̂(k) (θ)

depends on α̂i (θ) instead of αi (θ). This approximation may then serve as a corrected

log-likelihood function such that a less biased estimator of θ0 may be constructed simply as

θ̂
(k)

≡ argmax
θ

1

N

∑
i

l̂(k) (θ) .

Arellano and Hahn (2006) provide the approximating function for k = 1, the first order,

which takes the form (for a single i)

l̂(1) (θ) ≡ l̂ (θ) +
b̂1
T

in which b̂1 denotes some function evaluated at α̂i (θ). The estimator of θ derived from l̂(1) (θ)

is then biased only to the order of o
(
T−1

)
. When the higher-order bias term o

(
T−1

)
is not

negligible, a refined approximation for, e.g., k = 2 must be constructed. The approximation

should take the form

l̂(2) (θ) ≡ l̂ (θ) +
b̂1
T

+
b̂2
T 2

where b̂2, similar to b̂1, is a function evaluated at α̂i (θ).
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3 Bias Correction

3.1 Review of the First-order Correction

To derive b̂2, it may be useful to study the derivation of b̂1, i.e., to first replicate the

result of Arellano and Hahn (2006). Let

lr ≡ lr (θ) ≡
1

T

∑
t
∇r

a log f (Yit; θ, ai)|ai=αi(θ)
,

l̂r ≡ l̂r (θ) ≡
1

T

∑
t
∇r

a log f (Yit; θ, ai)|ai=α̂i(θ)
;

and, for simplicity, let l ≡ l (θ), l̂ ≡ l̂ (θ), α = αi (θ), and α̂ = α̂i (θ). Observing

α̂− α = Op

(
T− 1

2

)
, l1 = Op

(
T− 1

2

)
, l2 = Op (1) ;

and, for a regular problem, l̂ can be Taylor-expanded around α,

l̂ = l + l1 (α̂− α) +
1

2
l2 (α̂− α)2 +Op

(
T− 3

2

)
l = l̂ − l1 (α̂− α)− 1

2
l2 (α̂− α)2 +Op

(
T− 3

2

)
. (3.1)

Here for the case where k = 2, equation (3.1) needs to be extended to the order of Op

(
T−2

)
.

This is fairly straightforward. Similarly2, l̂1 = 0 can be Taylor-expanded around α,

0 = l1 + l2 (α̂− α) +Op

(
T−1) (3.2)

where, as l2 < 0,

(α̂− α) = − l1
l2

+Op

(
T−1) . (3.3)

Note that assumption 1 itself does not guarantee that l̂ and l̂1 are analytic and hence Taylor-

expandable. That is, there are functions that are infinitely differentiable but are nowhere

analytic. See Hille (2005, chap. 10) for exact conditions of analyticity and, e.g., Darst (1973)

for proof that most infinitely differentiable functions are nowhere analytic. Nevertheless,

in the likelihood context, α̂ − α = Op

(
T−1/2

)
ensures that equation (3.1) and (3.2) are

convergent as T → ∞.

Remark 1. Assumption 2 plays a role here. If l2 were not guaranteed to be nonzero, equation

(3.3) would be undefined. It is possible to replace l2 with El2 to avoid this situation. This,

however, only postpones the problem to a later stage - see remark 2 below.

For the case where k = 2, equation (3.2) must be extended to the order of Op

(
T−3/2

)
such that a higher-order version of equation (3.3) can be constructed. This is only marginally

difficult, since a technique similar to Pace and Salvan (1997, chap. 9.3) could be adopted to

derive the expansion of (α̂− α) in order to produce a higher-order version of equation (3.3).

2See also Cox and Snell (1968).
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The technique will be introduced in section 3.2. Next, combine equation (3.1) and (3.3),

l = l̂ − l1

(
− l1
l2

)
− 1

2
l2

(
− l1
l2

)2

+Op

(
T− 3

2

)
= l̂ +

1

2

l21
l2

+Op

(
T− 3

2

)
.

For k = 2, a combination of the higher-order expansion of (α̂− α) and the extended version

of equation (3.1) must be computed. The requires rising a polynomial to the power of 4.

This is slightly difficult, since the technique proposed by Provost and Ratemi (2011) may be

invoked. Additionally, a simplification to this calculation will be introduced in section 3.3.

Here note that, as l̂1 = 0, if one replaces l21 with l̂21, the ratio l21/l2 disappears completely.

Therefore, a refined version of l21/l2 needs to be constructed. By the definition of l1,

l21 =
1

T 2

∑
t

(∇a log f (Yit; θ, a))
2
∣∣
a=α

+
1

T 2

∑
t1 ̸=t2

∇a log f (Yit1 ; θ, a)∇a log f (Yit2 ; θ, a)|a=α

where, as Yit are independent,

E
∑
t1 ̸=t2

∇a log f (Yit1 ; θ, a)∇a log f (Yit2 ; θ, a)|a=α = 0 (3.4)

such that

El = El̂ + Eb1
T

+O
(
T−2)

with

b1 =
1/T

∑
t (∇a log f (Yit; θ, a))

2
∣∣
a=α

2l2
.

For k = 2, the identification of terms having zero expectation, as similar to equation (3.4),

is necessary. This is mathematically involved. We provide additional notations and proposi-

tions that may ease the difficulty. They are given in section 3.3. Here replacing b1 with b̂1,

b1 evaluated at α̂, will introduce a bias since, typically,

Eb̂1 = Eb1 +O
(
T−1) .

However, for k = 1, this bias can be neglected, as

El = El̂ + Eb1
T

+O
(
T−2)

= El̂ + Eb1
T

+
1

T
O
(
T−1)+O

(
T−2)

= El̂ + Eb̂1
T

+O
(
T−2)

from which the first-order corrected likelihood then follows as

l̂(1) (θ) ≡ l̂ +
b̂1
T
.

6



l̂(1) (θ) can be constructed easily from the sample since l̂ and b̂1 depend only on known

quantities α̂i, θ, and Yit.

Remark 2. Assumption 2 is important for the first-order corrected likelihood to be defined;

i.e., b̂1 contains l̂2 in the denominator such that l̂2 < 0 for every θ must be guaranteed.

As described above, since Eb̂1 = Eb1 +O
(
T−1

)
, replacing Eb1 with Eb̂1 will introduce a

bias to the order of O
(
T−2

)
. This bias was negligible for the case where k = 1. For k = 2,

this must be taken into account. To deal with this situation, a procedure similar to the one

dealing with the pair
(
l, l̂
)

must also be applied on the pair
(
b1, b̂1

)
. This is particularly

involved. However, since the procedure dealing with the pair
(
l, l̂
)

is identical to the one

dealing with
(
b1, b̂1

)
, we omit, to a very large extent, the details in the derivation of the

latter. The result will be given in section 3.4.

3.2 Stochastic Expansion of Fixed-effect Estimator

For the second-order correction, equation (3.2) must be continued to include the term

with an order of Op

(
T−3/2

)
, i.e.,

0 = l1 + l2 (α̂− α) +
1

2!
l3 (α̂− α)2 +

1

3!
l4 (α̂− α)3 +Op

(
T−2)

(α̂− α) = − l1
l2

− 1

2!

l3
l2

(α̂− α)2 − 1

3!

l4
l2

(α̂− α)3 +Op

(
T−2) . (3.5)

Here, as l2 < 0 is assumed, the ratios in equation (3.5) are well-defined. Next, consider

(α̂− α) = a1/2 + a2/2 + a3/2 +Op

(
T−2) (3.6)

in which aj/2 are unknown random variables satisfying aj/2 = Op

(
T−j/2

)
and aj/2 ̸=

op
(
T−j/2

)
. aj/2 can be solved via a recursive procedure similar to the one described in

Pace and Salvan (1997, chap. 9.3). Combining equation (3.5) and (3.6) leads to

a1/2 + a2/2 + a3/2

= − l1
l2

− 1

2!

l3
l2

(
a1/2 + a2/2 + a3/2

)2 − 1

3!

l4
l2

(
a1/2 + a2/2 + a3/2

)3
+Op

(
T−2)

= − l1
l2

− 1

2!

l3
l2

(
a2
1/2 + 2a1/2a2/2

)
− 1

3!

l4
l2
a3
1/2 +Op

(
T−2) .

Collecting the terms on the left-hand side and the right-hand side by their stochastic order,

a1/2 = − l1
l2
, a2/2 = − l3

2l2
a2
1/2, a3/2 = − l3

l2
a1/2a2/2 −

1

6

l4
l2
a3
1/2

and, after a recursive substitution,

a1/2 = − l1
l2
, a2/2 = − l21l3

2l32
, a3/2 = − l23l

3
1

2l52
+

l31l4
6l42

.
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The order of each term can be identified easily. As l1 = Op

(
T−1/2

)
and lr = Op (1) for 1 <

r ≤ 3, it is apparent that a1/2 = Op

(
T−1/2

)
, a2/2 = Op

(
T−1

)
, and a3/2 = Op

(
T−3/2

)
and,

when l1 ̸= op
(
T−1/2

)
and lr ̸= op (1) for 1 < r ≤ 3, a1/2 ̸= op

(
T−1/2

)
, a2/2 ̸= op

(
T−1

)
,

and a3/2 ̸= op
(
T−3/2

)
. Combining equation (3.6) with a1/2 to a3/2,

(α̂− α) = − l1
l2

− l21l3
2l32

+
l31l4
6l42

− l23l
3
1

2l52
+Op

(
T−2) . (3.7)

A caution that must be observed is that, if α̂ is plugged in, equation (3.7) is not yet

accurate for the calculation of a second-order corrected ML estimate (viewing α̂ and α as

generic ML estimators). This is because of two complications. First, as Eâ1/2 = Ea1/2 +

O
(
T−1

)
, the plug-in version of equation (3.7) possesses a bias to the order, in expectation,

of O
(
T−1

)
, which is larger than the targeted (in expectation) O

(
T−2

)
. Second, in a regular

problem, the term that is to the order of Op

(
T−2

)
must also be included such that the

second-order corrected ML estimate is unbiased, in expectation, to the order of O
(
T−2

)
;

i.e., equation (3.7) must be extended to an additional order such that the remainder term

is of the order of Op

(
T−5/2

)
. For the computation of a bias-corrected ML estimate, see

Ferrari et al. (1996), for instance. Whereas we do not deal with the first problem, the second

point described above can easily be solved. The recursive substitution procedure can be

continued to produce an arbitrary order expansion of (α̂− α). In appendix A, we list the

first 8 terms of the expansion. In addition, the expansion of (α̂− α) is not unique. Other

versions include, e.g., Bartlett (1953a and 1953b), Haldane and Smith (1956), and Rilstone

et al. (1996).

Furthermore, by the definition of aj/2, it is straightforward that Eaj/2 ̸= 0 in general.

This reflects the fact that the ML estimator of a nonlinear model is often biased - see

Box (1971) for details. However, equation (3.7) can be transformed such that the term

that is of the order of Op

(
T−1/2

)
has a zero expected value; i.e., it is possible to replace

a1/2 with −l1/El2 + b for some b = Op

(
T−1

)
. The transformed version is in line with the

asymptotic theory of the ML estimator. That is,
√
T (α̂− α) →d N (0,Σ), where N (·, ·)

is the normal density and Σ is the asymptotic variance. As T → ∞,
√
T (α̂− α) →p

−
√
T l1/El2 where E (l1/El2) = 0 and, by the central limit theorem,

√
T l1 →d N (0,Ω),

where Ω is the asymptotic variance of
√
T l1. This implies

√
T (α̂− α) →d N (0,Σ) with Σ

determined by Ω and El2.

3.3 Stochastic Expansion of Likelihood

In this section, we seek to obtain an expansion of the likelihood,

El = El̂ + Eb1
T

+
Eb′2
T 2

+O
(
T−3)

in which b1 and b′2 are Op (1). To do so, first Taylor-expand l̂ around α,

l̂ = l + l1 (α̂− α) +
1

2!
l2 (α̂− α)2 +

1

3!
l3 (α̂− α)3 +

1

4!
l4 (α̂− α)4 +Op

(
T− 5

2

)
l = l̂ − l1 (α̂− α)− 1

2
l2 (α̂− α)2 − 1

6
l3 (α̂− α)3 − 1

24
l4 (α̂− α)4
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+Op

(
T− 5

2

)
. (3.8)

Here the combination of equation (3.7) and (3.8) can be done in a simplified way. Since

(α̂− α)2 = a2
1/2 + 2a1/2a2/2 + 2a1/2a3/2 + a2

2/2 +Op

(
T− 5

2

)
,

(α̂− α)3 = a3
1/2 + 3a2

1/2a2/2 +Op

(
T− 5

2

)
,

(α̂− α)4 = a4
1/2 +Op

(
T− 5

2

)
;

the number of terms needed to construct (α̂− α)r from equation (3.7) decreases as r in-

creases. With this observation, plug in equation (3.7) into (3.8),

l = l̂ +
l21
2l2︸ ︷︷ ︸
[A]

+
l3l

3
1

6l32︸ ︷︷ ︸
[B]

+
l23l

4
1

8l52︸ ︷︷ ︸
[C]

− l4l
4
1

24l42︸ ︷︷ ︸
[D]

+Op

(
T− 5

2

)
. (3.9)

The next step would be to compute the expectation, term-by-term, of equation (3.9) in

order to drop those terms whose expected value is 0. Note that we only need to discover

those terms whose expected value is 0. Here term [A] to [D] are all ratios, so that the

expectation of a ratio needs to be computed for each of them. We do this in two steps. For

each ratio, we first identify the expectation of the numerator. Here an additional difficulty

is that the numerator in each ratio is a product of several sums. Such a product must be

expanded. This type of expansion is essentially a calculation of a product of sums, e.g.,

(a+ b) (c+ d) = ac+ ad+ bc+ bd where a to d are random variables. The expectation then

follows as E (a+ b) (c+ d) = Eac + Ead + Ebc + Ebd. To ease the representation of this

expansion, let us introduce some additional notation.

Notation 1. For given positive integers J and M , let power pjm ∈ N and order rjm ∈ N
with j = 1, · · · , J and m = 1, · · · ,M . Let

R ≡


r11 · · · r1M
...

. . .
...

rJ1 · · · rJM

 , P ≡


p11 · · · p1M
...

. . .
...

pJ1 · · · pJM

 ,

T ≡
{
(t1, · · · , tJ) |tj = 1, · · · , T ; tj ̸= tj′∀j ̸= j′; j, j′ = 1, · · · , J

}
where rjm = 0 if and only if pjm = 0, if pjm = 0 then pjm′ = 0 for m′ > m, and∑M

m=1 pjm > 0 and
∑M

m=1 rjm > 0. For 1 (·) being the indicator function, let

P (R,P ) ≡ J − 1

2

∑J

j=1
1
(∑M

m=1
rjm = 1 ∧

∑M

m=1
pjm = 1

)
,

L (R,P ) ≡ 1

TP(R,P )

∑
(t1,··· ,tJ )∈T

J∏
j=1

M∏
m=1

(
∇rjm

a log f
(
Yitj ; θ, a

)∣∣
a=α

)pjm .

Let further

LP
(
p11,··· ,p1M ;··· ;pJ1,···pJM
r11,··· ,r1M ;··· ;rJ1,···rJM

)
≡ L (R,P ) .

Note that, for any R and P , P (R,P ) is a half integer or an integer between J/2 and

9



J , and that L (R,P ) is invariant if the rows of R and P are rearranged accordingly. Next,

we introduce the following results to identify the expected value and the stochastic order of

L (R,P ).

Proposition 1. Let

J0 (R,P ) ≡
{
j|1 ≤ j ≤ J ∧

(∑M

m=1
rjm = 1 ∧

∑M

m=1
pjm = 1

)}
,

J1 (R,P ) ≡ {1, · · · , J} \J0 (R,P ) .

Suppose ∏
j∈J1(R,P )

M∏
m=1

(
∇rjm

a log f
(
Yitj ; θ, a

)∣∣
a=α

)pjm (3.10)

is nonconstant (i.e., stochastic) for every rjm ≤ 4 and

E

 ∏
j∈J1(R,P )

M∏
m=1

(
∇rjm

a log f
(
Yitj ; θ, a

)∣∣
a=α

)pjm ̸= 0, (3.11)

then P (R,P ) is the smallest half integer or integer such that L (R,P ) = Op (1).

Proof. See Appendix B.

Lemma 1. EL (R,P ) = 0 if P (R,P ) < J . Additionally, when condition (3.10) and (3.11)

in proposition 1 are satisfied, EL (R,P ) = 0 if and only if P (R,P ) < J .

Proof. See appendix C.

Note that, when condition (3.10) or (3.11) is not satisfied, L (R,P ) is still Op (1). How-

ever, P (R,P ) is no longer the smallest half integer or integer.

We then give some examples about the use of notation 1.

Example 1. Letting

R =
(
1 2

)
, P =

(
2 1

)
;

L (R,P ) =
1

T

∑
t

(
(∇a log f (Yit; θ, a))

2 ∇2
a log f (Yit; θ, a)

)∣∣
a=α

.

Example 2. Letting

R =

(
1 0

2 3

)
, P =

(
1 0

1 2

)
;

L (R,P )

=
1

TP(R,P )

∑
t1 ̸=t2

(
∇a log f (Yit1 ; θ, a)∇

2
a log f (Yit2 ; θ, a)

(
∇3

a log f (Yit2 ; θ, a)
)2∣∣∣

a=α

)
with ∑J

j=1
1
(∑M

m=1
rjm = 1 ∧

∑M

m=1
pjm = 1

)
= 1

such that

P (R,P ) =
3

2
.

10



Example 3. Letting

R =
(
1
)
, P =

(
2
)
, R′ =

(
2
)
, P ′ =

(
1
)
;

the second Barttlet identity can be expressed as

EL (R,P ) = −EL
(
R′, P ′)

in which, notice that,

L
(
R′, P ′) ≡ l2.

Example 4. It can be computed that

l21 =
1

T 2

∑
t

(∇a log f (Yit; θ, a))
2
∣∣
a=α

+
1

T 2

∑
t1 ̸=t2

∇a log f (Yit1 ; θ, a)∇a log f (Yit2 ; θ, a)|a=α

=
1

T
L1

(
2
1

)
+

1

T
L1

(
1;1
1;1

)
.

In the k = 1 case, the first step stops after the calculation in example 4, since the

structure of the expansion of the log-likelihood is rather simple. However in the k = 2 case,

the products of sums involved have a more complicated structure. For instance,

l3l
3
1 =

(
1

T

∑
t

∇3
a log f (Yit; θ, a)

∣∣
a=α

)(
1

T

∑
t

∇a log f (Yit; θ, a)|a=α

)3

,

which is a product of four sums. For this reason, we perform the above-mentioned expansion

iteratively. For [A] to [D], we begin by expanding l21 on the numerator. For instance in [B],

l21 will be expanded while l1l3 left intact. After this calculation, we substitute the expanded

term 1/TL1

(
2
1

)
+ 1/TL1

(
1;1
1;1

)
back into the numerator and rewrite the ratio into a sum of

several ratios. Each of the rewritten ratios only contains products in the numerator.

Example 5. After the first iteration, [B] will become

[B] =
l3l1L1

(
2
1

)
6T l32

+
l3l1L1

(
1;1
1;1

)
6T l32

.

When this is finished for all [A] to [D], we will obtain a new version of equation (3.9)

containing, say, K ratios. In the next iteration, for each of the K ratios, we perform a similar

calculation. We expand the product of two L (R,P ), each satisfying EL (R,P ) = 0. If the

numerator has only one such L (R,P ), we expand the product of this particular L (R,P )

and any other L (R,P ). Here note that any lr can be expressed as an L (R,P ) and that the

condition EL (R,P ) = 0 can be verified by lemma 1. We stop the iterative procedure if each

of the harvested ratios satisfies exactly one of the following conditions.

1. The numerator is a product of a constant, one or several lr, or one or several L (R,P )

if none of them have a zero expectation.

2. The numerator is a product of a constant and an L (R,P ) satisfying EL (R,P ) = 0.

11



Example 6. Continuing with the above example, we compute

l1L1

(
2
1

)
=

1

T
L1

(
3
1

)
+

1

T 1/2
L1.5

(
2;1
1;1

)
,

l1L1

(
1;1
1;1

)
=

1

T 1/2
L1.5

(
1;1;1
1;1;1

)
+

2

T 1/2
L1.5

(
1;2
1;1

)
such that

[B] =
l3L1

(
3
1

)
6T 2l32

+
l3L1.5

(
2;1
1;1

)
2T 1.5l32

+
l3L1.5

(
1;1;1
1;1;1

)
6T 1.5l32

in which the first ratio satisfies the first condition and hence needs not be further processed,

whereas the others need to be expanded further.

After this procedure, the identification of the stochastic order and the expectation of

a ratio would become easier. When a ratio satisfies condition 1, it can be stochastically

expanded into a term with a nonzero expectation plus a higher-order term. Such a ratio

must be kept in the derivation. When, however, a ratio satisfies condition 2, a stochastic

expansion of the ratio will contain a term with a zero expectation plus a higher-order term.

In this case, the leading term can be dropped whereas the higher-order term may need to

be investigated further (see below).

Example 7. Continuing with the above example, it is clear that

l3L1

(
3
1

)
6T 2l32

= Op

(
T−2) ,

E
l3L1

(
3
1

)
6T 2l32

=
E
(
l3L1

(
3
1

))
6T 2E (l32)

+
o (1)

T 2
=

El3EL1

(
3
1

)
6T 2E (l32)

+ o
(
T−2)

in which
El3EL1

(
3
1

)
6T 2E (l32)

̸= 0.

Also note that the harvested ratios depend on the calculation above; i.e., the expression

obtained from the procedure would be different if, e.g., l41 from [D] were expanded at once.

This implies that the expansion of the likelihood does not have a unique representation.

However, all variants should be identical in the sense that they evaluate to the same value3.

It is also equivalent if one expands each numerator into a sum of several L (R,P ) regardless

of condition 1 and 2. This technique can be favorable when T is small; however, when T is

large, this will deliver too many terms, complicating the derivation. We present the exact

approach of calculating the product of two L (R,P ) in appendix D. In what follows, we use

this procedure when computing the product in the numerator of any ratio.

Formally,

[A] =
L1

(
2
1

)
2T l2

+
L1

(
1;1
1;1

)
2T l2︸ ︷︷ ︸
[E]

,

3We implemented the above procedure as a computer symbolic algorithm and numerically ver-
ified that equation (3.9) delivers the same value, up to some numerical roundoff error of a typical
magnitude of 10−16, as the expression derived from the above procedure.
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[B] =
L2.5

(
1;2;1
1;1;3

)
2T 1.5l32︸ ︷︷ ︸

[F ]

+
L2.5

(
1;1;1;1
1;1;1;3

)
6T 1.5l32︸ ︷︷ ︸
[G]

+
L2

(
2;1,1
1;1,3

)
2T 2l32

+
L2

(
1;1;1,1
1;1;1,3

)
2T 2l32︸ ︷︷ ︸
[H]

+
l3L1

(
3
1

)
6T 2l32

+Op

(
T− 5

2

)
,

[C] =
3L4

(
1;1;2;1;1
1;1;1;3;3

)
4T 2l52︸ ︷︷ ︸

[I]

+
L4

(
1;1;1;1;1;1
1;1;1;1;3;3

)
8T 2l52︸ ︷︷ ︸
[J]

+
l23L1

(
2
1

)2
8T 2l52

+
l23L2

(
2;2
1;1

)
4T 2l52

+Op

(
T− 5

2

)
,

[D] = −
L3

(
1;1;2;1
1;1;1;4

)
4T 2l42︸ ︷︷ ︸
[K]

−
L3

(
1;1;1;1;1
1;1;1;1;4

)
24T 2l42︸ ︷︷ ︸
[L]

−
l4L2

(
2;2
1;1

)
12T 2l42

−
l4L1

(
2
1

)2
24T 2l42

+Op

(
T− 5

2

)
.

It can be verified that terms [H] to [L] have a zero expectation to the order of O
(
T−2

)
. For

example,

E
L2

(
1;1;1,1
1;1;1,3

)
2T 2l32

=
1

T 2

EL2

(
1;1;1,1
1;1;1,3

)
2E (l32)

+ o
(
T−2)

= o
(
T−2) .

Terms [E], [F ], and [G] need to be investigated further, due to the following reasoning.

Ratio [E], [F ], and [G] satisfy condition 2 such that the leading terms in their stochastic

expansions have a zero expectation; that is,

[E] = E′ +Op

(
T−3/2

)
, [F ] = F ′ +Op(T

−2), [G] = G′ +Op(T
−2)

where EE′ = EF ′ = EG′ = 0. However, Op

(
T−3/2

)
andOp(T

−2) are lower thanOp

(
T−5/2

)
such that they also need to be calculated. To deal with these terms, first observe that, as

l2 = El2 +Op

(
T−1/2

)
, 1/l2 can be expanded, i.e.,

1

l2
=

1

El2
− 1

(El2)2
(l2 − El2) +

1

(El2)3
(l2 − El2)2 +Op

(
T− 3

2

)
. (3.12)

Properties of equation (3.12) are studied by, e.g., Rice (2008). It is also known that the

Taylor series of a reciprocal function is only convergent in a specific region, which, in our

setting, is 2El2 < l2 < 0. This, however, does not contradict the use of the above-mentioned

Taylor series in our setting, since l2 →p El2 when T → ∞. The second step4 is to replace

1/l2 in [E], [F ], and [G] by equation (3.12).

Formally,

[E] =
L1

(
1;1
1;1

)
2T

(
1

El2
− 1

(El2)2
(l2 − El2) +

1

(El2)3
(l2 − El2)2 +Op

(
T− 3

2

))
=

3L1

(
1;1
1;1

)
2TEl2

−
3L2

(
1;1;1
1;1;2

)
2T (El2)2

+
L3

(
1;1;1;1
1;1;2;2

)
2T (El2)3

−
3L1.5

(
1;1,1
1;1,2

)
T 1.5 (El2)2

+
2L2.5

(
1;1;1,1
1;2;1,2

)
T 1.5 (El2)3

+
L2

(
1,1;1,1
1,2;1,2

)
T 2 (El2)3︸ ︷︷ ︸

[E.1]

+
L2

(
1;1;2
1;1;2

)
2T 2 (El2)3

+Op

(
T− 5

2

)

4Recall that the first step was to expand the numerator.
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in which only [E.1] has a nonzero expectation. Similarly,

[F ] =
L2.5

(
1;2;1
1;1;3

)
2T 1.5

(
1

El2
− 1

(El2)2
(l2 − El2) +

1

(El2)3
(l2 − El2)2 +Op

(
T− 3

2

))3

=
2L2.5

(
1;2;1
1;1;3

)
T 1.5 (El2)3

−
3L3.5

(
1;2;1;1
1;1;3;2

)
2T 1.5 (El2)4

−
3L3

(
2;1;1,1
1;3;1,2

)
2T 2 (El2)4︸ ︷︷ ︸

[F.1]

+Op

(
T− 5

2

)

in which only [F.1] has a nonzero expectation and

[G] =
L2.5

(
1;1;1;1
1;1;1;3

)
6T 1.5

(
1

El2
− 1

(El2)2
(l2 − El2) +

1

(El2)3
(l2 − El2)2 +Op

(
T− 3

2

))3

=
2L2.5

(
1;1;1;1
1;1;1;3

)
3T 1.5 (El2)3

−
L3.5

(
1;1;1;1;1
1;1;1;3;2

)
2T 1.5 (El2)4

−
3L3

(
1;1;1;1,1
1;1;3;1,2

)
2T 2 (El2)4

+Op

(
T− 5

2

)
in which all ratios have a zero expectation.

Now, drop terms [G] to [L], and replace term [E] and [F ] with [E.1] and [F.1] respectively

to construct

El = El̂ + Eb1
T

+
Eb′2
T 2

+O
(
T−3) (3.13)

where

b1 ≡
L1

(
2
1

)
2l2

b′2 ≡
L2

(
1,1;1,1
1,2;1,2

)
(El2)3

−
3L3

(
2;1;1,1
1;3;1,2

)
2 (El2)4

+
L2

(
2;1,1
1;1,3

)
2l32

+
l3L1

(
3
1

)
6l32

−
l4L2

(
2;2
1;1

)
12l42

−
l4L1

(
2
1

)2
24l42

+
l23L1

(
2
1

)2
8l52

+
l23L2

(
2;2
1;1

)
4l52

.

Here it can be verified that each ratio in b1 and b′2 is Op (1) such that, in general, b1 = Op (1)

and b′2 = Op (1).

3.4 Corrected Likelihood

If α were available, equation (3.13) could be directly constructed to approximate El to
the order of O

(
T−2

)
. When, however, only α̂ is available, Eb̂1, the plug-in estimate, is not

sufficiently accurate for Eb1. To deal with this problem, we apply the same procedure on

b1/T . Taylor-expanding b̂1/T around α,

b̂1
T

=
b1
T

+
1

T
∇b1 (α̂− α) +

1

2

1

T
∇2b1 (α̂− α)2 +Op

(
T− 5

2

)
b1
T

=
b̂1
T

− 1

T
∇b1 (α̂− α)− 1

2

1

T
∇2b1 (α̂− α)2 +Op

(
T− 5

2

)
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where ∇r denotes the r-th derivative w.r.t. a. Plug in equation (3.7) for (α̂− α) and

rearrange to obtain

b1
T

=
b̂1
T

+
l1L1

(
1,1
1,2

)
T l22

−
l21L1

(
2
2

)
2T l32

−
l21L1

(
1,1
1,3

)
2T l32

+
l21l4L1

(
2
1

)
4T l42

+
3l21l3L1

(
1,1
1,2

)
2T l42

−
3l21l

2
3L1

(
2
1

)
4T l52

−
l1l3L1

(
2
1

)
2T l32

+Op

(
T− 5

2

)
.

Apply the same procedure in section 3.3,

Eb1
T

=
Eb̂1
T

+
Eb1,1
T 2

+O
(
T−3) (3.14)

where

b1,1 ≡
3L3

(
2;1;1,1
1;3;1,2

)
2 (El2)4

−
2L2

(
1,1;1,1
1,2;1,2

)
(El2)3

+
L1

(
2,1
1,2

)
l22

−
L2

(
2;1,1
1;1,3

)
2l32

−
3l23L1

(
2
1

)2
4l52

−
L1

(
2
1

)
L1

(
2
2

)
2l32

−
L1

(
2
1

)
L1

(
1,1
1,3

)
2l32

−
l3L1

(
3
1

)
2l32

+
l4L1

(
2
1

)2
4l42

+
3l3L1

(
2
1

)
L1

(
1,1
1,2

)
2l42

.

Combining equation (3.13) and (3.14),

El = El̂ + Eb̂1
T

+
Eb2
T 2

+O
(
T−3) (3.15)

with

b1 ≡
L1

(
2
1

)
2l2

,

b2 ≡ b′2 + b1,1

= −
L2

(
1,1;1,1
1,2;1,2

)
(El2)3

−
l3L1

(
3
1

)
3l32

−
l4L2

(
2;2
1;1

)
12l42

+
5l4L1

(
2
1

)2
24l42

−
5l23L1

(
2
1

)2
8l52

+
l23L2

(
2;2
1;1

)
4l52

+
L1

(
2,1
1,2

)
l22

−
L1

(
2
1

)
L1

(
2
2

)
2l32

−
L1

(
2
1

)
L1

(
1,1
1,3

)
2l32

+
3l3L1

(
2
1

)
L1

(
1,1
1,2

)
2l42

.

Here b2 can be replaced with b̂2 - b2 evaluated at α̂. This induces a bias, in expectation,

to the order of O
(
T−3

)
which can be neglected. El2 in b2 can be replaced l2, which also

induces a negligible bias. The second-order corrected likelihood (for a single i) can then be

constructed as

l̂(2) ≡ l̂ +
b̂1
T

+
b̂2
T 2

where the right-hand side depends only on known quantities Yit, α̂, and θ and hence, can be

constructed in a straightforward way.

Remark 3. Assumption 2 is also significant here, i.e., equation (3.15) would be undefined

if l̂2 = 0. Here it is also possible to derive an alternative version of equation (3.15) where

15



the denominators contain only El2. This would avoid the problem. However, as

E

(
L̂1

(
2
1

)
El̂2

)
̸= E

(
L̂1

(
2
1

)
l̂2

)

in general, such an alternative formula would contain a bias to the order of O
(
T−2

)
in

expectation if no treatment were employed to deal with the inequality of the expectations

above. Possible solutions, e.g., Hartley and Ross (1954), de Paschal (1961), and Ogliore et al.

(2011), can be adopted for this. However, these solutions all depend on l̂2 < 0, rendering the

inevitability of assumption 2.

Under the asymptotic sequence N/T 5 → 0 as N,T → ∞, Op

(
T−5/2

)
= op

(
N−1/2

)
such that 1/N

∑
i l̂

(2) (θ) is consistent, i.e.,

1

N

∑
i

l̂(2) (θ) =
1

N

∑
i

l (θ) +Op

(
N− 1

2

)
= plim

N→∞

1

N

∑
i

l (θ) +Op

(
N− 1

2

)
implying that, under certain regularity conditions,

√
NT

(
θ̂
(2)

− θ
)
→d N (0,Σ)

where N (·, ·) is the normal density with mean zero and covariance matrix

Σ ≡ H−1E
(
sits

′
it

)
H−1,

sit ≡ ∇θ log f (Yit; θ, α (θ)) , H ≡ − 1

N

∑
i

E∇θθ′ l (θ) .

4 Example and Simulation

4.1 Analytical Correction of Many-normal-mean Model

Our first example is the many-normal-mean model introduced by Neyman and Scott

(1948). Consider Yit ∼ N (αi, θ0) where αi, the mean, is different across i, and θ0, the

variance, is the same for all it. In this setting, the variance is the parameter of interest

whereas the means are nuisance. It can be shown5 that, under fixed T , θ̂ →p θT ̸= θ0, while

under increasing T , θ̂ − θ0 = Op

(
T−1

)
. To see this, observe that

log f (Yit; θ, ai) ≡ −1

2
log (2π)− 1

2
log θ − (Yit − ai)

2

2θ

such that the log-likelihood writes

1

NT

∑
it

log f (Yit; θ, ai) = −1

2
log (2π)− 1

2
log θ − 1

NT

∑
it

(Yit − ai)
2

2θ
.

5See, e.g., Neyman and Scott (1948) or Lancaster (2000).
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Under this setting, αi = EiYit and α̂i = 1/N
∑

t Yit for every θ where Ei (·) denotes the

expectation computed on a specific i.

There would be no IPP if αi were plugged in for ai, i.e.,

θ =
1

NT

∑
it

(Yit − αi)
2

is fully unbiased and consistent under N → ∞ even when T is fixed. However, as αi is not

always feasible, α̂i must be plugged in, under which case

θ̂ =
1

NT

∑
it

(Yit − α̂i)
2 →p θ0 −

θ0
T

as N → ∞. When T increases, θ̂ − θ0 = Op

(
T−1

)
. Next, we apply equation (3.15) to the

model. Because of the fact that, for every given θ, ∇2
a log f (Yit; θ, a) is a constant, we can

anticipate

∇r
a log f (Yit; θ, a) = lr = 0 for r > 2, l2 = −1/θ, EL2

(
1,1;1,1
1,2;1,2

)
= 0,

L1

(
2,1
1,2

)
/l22 = L1

(
2
1

)
/l2, L1

(
2
1

)
L1

(
2
2

)
/2l32 = L1

(
2
1

)
/2l2

such that

l̂(2) = l̂ +
1

T

L̂1

(
2
1

)
2l̂2

+
1

T 2

L̂1

(
2
1

)
2l̂2

where L̂1

(
2
1

)
is understood as evaluating L1

(
2
1

)
at α̂i. It follows then that, as

L̂1

(
2
1

)
l̂2

= − 1

T

∑
t

(Yit − α̂i)
2

2θ
,

the log-likelihood (with α̂i plugged in) becomes

−1

2
log (2π)− 1

2
log θ −

(
1

NT
+

1

NT 2
+

1

NT 3

)∑
it

(Yit − α̂i)
2

2θ
.

Equating the first derivative (w.r.t. θ) to 0,

−1

2

1

θ
+

(
1

NT
+

1

NT 2
+

1

NT 3

)∑
it

(Yit − α̂i)
2

2θ
= 0

in which, as θ ̸= 0,

θ̂
(2)

=

(
1

T
+

1

T
+

1

T 3

)
1

N

∑
it

(Yit − α̂i)
2

=

(
1− 1

T 3

)
1

N (T − 1)

∑
it

(Yit − α̂i)
2 .

Under N → ∞ and fixed T ,

1

N (T − 1)

∑
it

(Yit − α̂i)
2 →p θ0

17



such that

θ̂
(2)

− θ0 →p
θ0
T 3

.

4.2 Correction of Logit Model

In this section we present a simulation study of the logit model. Note that, the static logit

model has an alternative analytical correction approach, the conditional logit - see Andersen

(1970), Heckman (1981), or Chamberlain (1985). Let 1 (·) be the indicator function and

consider the model

Yit = 1 (Xitθ0 + αi + εit ≥ 0)

where εit is standard-logistically distributed and Xit is a scalar covariate. For the logit

model, the individual log-likelihood is

log f (Yit; θ, ai) ≡ (1− Yit) (−Xitθ − ai)− log (1 + exp (−Xitθ − ai)) .

Tables 1, 2, and 3 show the simulation of the logit model under three different designs.

1. Xit ∼ N (0, 1) and αi = 0. This represents the case where the model could be

consistently estimated by the pooled logit.

2. Xit ∼ N (0, 1) and αi ∼ N (0, 1/16). This represents the case where the model could

be consistently estimated by the random-effect logit.

3. Xit ∼ N (αi, 1) with αi ∼ N (0, 1/16). In this design, Xit and αi are correlated such

that the model must be estimated by the fixed-effect logit.

The number of replications of the Monte Carlo study is 1, 000 with N set to be 10, 000

in each. θ0 and T are varied according to the description in the tables. A comparison across

the three designs may conclude that the estimates θ̂, θ̂
(1)

, and θ̂
(2)

are, respectively, very

similar across designs. This reflects the fact that the IPP enters when one allows αi to

be estimated, instead of when the fixed-effect model is the true underlying model. That

is, estimating the fixed-effect logit on a dataset where pooled logit or random-effect logit

could be estimated consistently induces an IPP bias. Second, the proposed second-order

bias correction is effective in the sense that the bias is reduced sufficiently even when T is

only 5. When T is 20, the estimate θ̂
(2)

is almost unbiased. As a comparison, under the

same design and the same T , the bias in the original estimate θ̂ is roughly 5% to 6% relative

to θ0. Furthermore, the bias is roughly symmetric around 0, since it can be seen that the

magnitude of the relative bias are similar when θ0 is flipped around 0. This phenomenon

may indicate that the bias is 0 when θ0 = 0.

Another point that may be of interest is that the bias is roughly Op

(
T−3

)
. To see this,

first note that, under the condition

E
(
θ̂
(2)

− θ0
)
= O

(
T−3) ,

the bias in θ̂
(2)

should be reduced by a factor of roughly 1/8 when T is doubled. This is the

case in the results. Focus on table 1 and let BT (θ0) denote the absolute value of the relative

18



bias in θ̂
(2)

under some θ0 and T . It can be calculated, e.g., as

B10 (0.5)

B20 (0.5)
=

0.0015

0.0002
= 7.5,

B5 (−0.5)

B10 (−0.5)
=

0.0179

0.0021
≈ 8.5238,

B10 (1)

B20 (1)
=

0.0035

0.0005
= 7,

B5 (−1)

B10 (−1)
=

0.0283

0.0035
≈ 8.0857.

Figure 1 presents plots of the profiled log-likelihoods, for T = 5 and T = 10, of the logit

model Yit = 1 (Xitθ0 + αi + εit ≥ 0) where εit is standard-logistically distributed, Xit ∼
N (0, 4), αi = 0, and θ0 = 0.5. N = 10, 000. Here Xit ∼ N (0, 4) to introduce a sufficient

variation such that the curves are steeper and visually distinguishable. The plotted quantities

are
∑

i l̂ (θ) (circle),
∑

i l̂
(1) (θ) (triangle),

∑
i l̂

(2) (θ) (square), and
∑

i El (θ) (asterisk). The
profile log-likelihoods are computed for θ = 0.3, · · · , 0.7 with a step of 0.01, and the vertical

lines indicate the maximizers. A comparison of the two graphs shows that when T increases

from 5 to 10, l̂(2) (θ) converges faster to El (θ) than l̂(1) (θ), which itself converges to the

expected likelihood faster than l̂ (θ). Here a distinct feature is that, when T is as small as 5,

l̂(2) (θ) is already very accurate, compared to l̂(1) (θ) and l̂ (θ), as an approximation of El (θ).
Under the above setting, the maximizer of l̂(2) (θ) is already very close6 to the maximizer of

El (θ), which is θ0.

6Because θ is chosen discretely, we would rather not use the phrase “exactly the same”.
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Figure 1: Second Order - Plot of Profiled Log-likelihood for Logit
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Notes: Computed on a single simulated dataset. N = 10, 000. Model:
Yit = 1 (Xitθ0 + αi + εit ≥ 0) where εit is standard-logistically distributed, Xit ∼ N (0, 4), αi = 0,

and θ0 = 0.5. θ chosen from 0.3 to 0.7 with a step of 0.01. Circle:
∑

i l̂ (θ); triangle:
∑

i l̂
(1) (θ);

square:
∑

i l̂
(2) (θ); asterisk:

∑
i El (θ). All curves are vertically shifted such that they coincide at

θ0. Vertical lines at maximizers.
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4.3 Correction of Probit Model

The next example is the probit model. Researchers such as Greene et al. (2002) and

Fernández-Val (2009) have also studied the probit model in detail. While the IPP in the

logit model may be solved via the conditional logit, there seems to be little literature on the

analytical solution of a probit model beyond the first order. Consider the model

Yit = 1 (Xitθ0 + αi + εit ≥ 0)

where εit ∼ N (0, 1), and the individual log-likelihood function

ln f (Yit; θ, ai) ≡ lnΦ [(2Yit − 1) (Xitθ + ai)] .

where Φ (·) is the standard normal distribution function.

Tables 4, 5, and 6 present the simulation results of the probit model under similar

designs as explained in section 4.2. Compared to the logit model, we observe similar features

in the probit model. The second-order correction is effective in reducing the bias. When

T = 5 and θ0 = 0.5, θ̂ is biased roughly 25% to 26% whereas θ̂
(2)

is biased only 4% to 5%

approximately. When T = 20, θ̂
(2)

is almost unbiased under all designs. However, when

comparing the RMSEs to the logit model, it seems that the variations in θ̂, θ̂
(1)

, and θ̂
(2)

are

larger. For example in design 1, when θ0 = 1 and T = 5, the RMSEs of θ̂ are larger than

that of θ̂ in the logit case and the RMSEs of θ̂
(2)

are roughly 2 times that of θ̂
(2)

in the logit

case.

Another difference is that, in most presented cases, the bias in θ̂
(2)

reduces by a factor

smaller than 1/8 when T is doubled. For instance, in design 1, B5 (−0.5) /B10 (−0.5) =

0.0356/0.0016 = 22.25, which is higher than 8. This, however, does not contradict the

assumption that E
(
θ̂
(2)

− θ0
)

= O
(
T−3

)
, since every quantity approaching 0 faster than

T−3 as T → ∞ is also O
(
T−3

)
.

Figure 2 presents plots of the profiled log-likelihoods, for T = 5 and T = 10, of the probit

model under the same setting as described in section 4.2 except that the model is replaced

with Yit = 1 (Xitθ0 + αi + εit ≥ 0) where εit ∼ N (0, 1). Here the same pattern in the logit

case follows. l̂(2) (θ) serves as a better approximation than l̂(1) (θ). The difference in the

probit case is that, when T is 5, the maximizer of
∑

i l̂
(2) (θ) does not coincide with that of∑

i El (θ). This is, in fact, in line with the simulation.
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Figure 2: Second Order - Plot of Profiled Log-likelihood for Probit

Theta
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Pr
of

ile
d 

L
og

-L
ik

el
ih

oo
d

-5400

-5350

-5300

-5250

-5200

-5150

-5100

-5050

-5000

-4950

-4900
T=5

Expected
Original
First-order
Second-order

Theta
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Pr
of

ile
d 

L
og

-L
ik

el
ih

oo
d

-5350

-5300

-5250

-5200

-5150

-5100

-5050

-5000

-4950
T=10

Expected
Original
First-order
Second-order

Notes: Computed on a single simulated dataset. N = 10, 000. Model:
Yit = 1 (Xitθ0 + αi + εit ≥ 0) where εit ∼ N (0, 1), Xit ∼ N (0, 4), αi = 0, and θ0 = 0.5. θ chosen
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4.4 Application to Poisson

The last example we present is the static Poisson model, which is not exposed to IPP.

This is noted by, e.g., Lancaster (2002). Therefore, we briefly investigate the consequence of

an application of the correction technique to a model that is not exposed to IPP. Consider7

Yit being Poisson-distributed with mean exp (Xitθ0 + αi) where Xit ∼ U (0, 1), αi = 0, and

θ0 = 0.5. Table 7 presents the simulation result for the Poisson model. It can be found that,

when applied to the Poisson model, the correction technique would generate a bias that is

relatively insignificant in percentage. Such bias increases with the order of correction, which

may be a consequence of introducing extra variation into the model; i.e., the variation of b̂1

and b̂2 may affect θ̂ in an undesired way. However, this bias approaches 0 fairly fast when T

increases.
Table 7: Second Order - Simulation Results for Poisson Model

Mean Bias RMSE Mean Bias RMSE

T = 10 T = 20

θ̂ 0.4997 −0.0005 0.0099 0.5002 0.0004 0.0069

θ̂
(1)

0.4984 −0.0033 0.0100 0.4998 −0.0004 0.0069

θ̂
(2)

0.4969 −0.0061 0.0103 0.4996 −0.0009 0.0069

Notes: Bias is presented relative to θ0. The number of replications is
1, 000, N = 10, 000. Model: Yit Poisson-distributed with mean

exp (Xitθ0 + αi) with Xit ∼ U (0, 1), αi = 0, and θ0 = 0.5. θ̂ is the

original estimate, θ̂
(1)

is the first-order corrected, and θ̂
(2)

is the
second-order corrected.

5 Concluding Remarks

We propose a second-order corrected log-likelihood function such that, when this log-

likelihood function is maximized, the resulting estimator of θ possesses a bias that is less than

the original estimator θ̂. The corrected log-likelihood function serves as an approximation, to

the order of Op

(
T−5/2

)
, to the infeasible log-likelihood l and, under the asymptotic sequence

of N/T 5 → 0 as N,T → ∞ and certain regularity conditions, the proposed approximation is

consistent for l (and hence El). The proposed technique applies, up to certain assumptions,

to any density or mass functions that are smooth in the sense that the fourth derivative

exists. In addition, our approach naturally extends to unbalanced panels, since the corrected

log-likelihood function is derived for a single i independently of T .

Our research casts some light on several subjects that are worth studying. First, we have

not studied the correction of the variance estimator. As noted by, e.g., Dhaene and Jochmans

(2015), the ML asymptotic variance is too small that inferences based on such variance

may produce, e.g., confidence intervals that are too narrow when T is small. Therefore, a

correction of the variance may be beneficial for small-T samples. An alternative research

direction concerning the variance may be to study how various variance estimators such

as the “sandwich” variance estimator - see, e.g., Freedman (2012) - can incorporate the

corrected log-likelihood.

Second, we have not looked at higher-order corrections under the presence of IPP. When

T is small, a higher-order correction may produce more advantageous bias-corrected esti-

7See, e.g., Cameron and Trivedi (2013) for details about a fixed-effect Poisson model.
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mates as compared to the one produced by the second-order correction and, therefore, seems

to be worth pursuing.

Third, as the second-order correction introduces an approximation to the infeasible log-

likelihood, it would be of interest to study how the approximation may benefit statistical

tests and other inferences based on the likelihood. Examples of these inferences include the

likelihood ratio test or the AIC. Alternatively, it would be useful to study how the proposed

approach extends to other functions such as the average effects or the pseudo-likelihood.

Last but not least, as the IPP under dynamic models is usually much more severe than

under static models, it would be of particular interest to investigate how our approach

extends to dynamic models. For the linear autoregressive model, Nickell (1981) develops

an analytical formula for the bias of the estimator of the autoregressive parameter. For

nonlinear autoregressive models, there seems to be little higher-order development on this

subject. Specifically to our approach, a modified version of the weights described in Arellano

and Hahn (2006) may apply.

6 Appendix

A Higher-order Expansion of ML Estimator

(α̂− α) =
∑8

j=1
aj/2 +Op

(
T− 9

2

)
where

a1/2 = − l1
l2
, a2/2 = − l21l3

2l32
, a3/2 =

l31l4
6l42

− l31l
2
3

2l52
,

a4/2 =
5l41l3l4
12l62

− 5l41l
3
3

8l72
− l41l5

24l52
,

a5/2 =
l51l6
120l62

− l51l
2
4

12l72
− 7l51l

4
3

8l92
− l51l3l5

8l72
+

7l51l
2
3l4

8l82
,

a6/2 =
7l61l3l6
240l82

− 21l61l
5
3

16l112
− l61l7

720l72
+

7l61l4l5
144l82

− 7l61l3l
2
4

18l92
− 7l61l

2
3l5

24l92
+

7l61l
3
3l4

4l102
,

a7/2 =
l71l8

5040l82
− l71l

2
5

144l92
+

l71l
3
4

18l102
− 33l71l

6
3

16l132
− 5l71l

2
3l

2
4

4l112
− l71l3l7

180l92
− l71l4l6

90l92
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3l71l
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3l6
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− 5l71l

3
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8l112
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55l71l
4
3l4

16l122
+

l71l3l4l5
4l102

,

a8/2 =
l81l3l8
1120l102

− 429l81l
7
3

128l152
− 55l81l

3
3l

2
4

16l132
− l81l9

40320l92
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+
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+

55l81l
2
3l4l5

64l122
− l81l3l4l6

16l112
.

30



B Proof of Proposition 1

We use the following extra notation in appendix B, C, and D. Let Rj and Pj be the j-th

row of, respectively, R and P ; and let

sit (Rj , Pj) ≡
∏M

m=1

(
∇rjm

a ln f (Yit; θ, a)
∣∣
a=α

)pjm ,

S (R,P ) ≡
∑

(t1,··· ,tJ )∈T

J∏
j=1

sitj (Rj , Pj) .

Note also that

J = |J0 (R,P )|+ |J1 (R,P )| ,

|J0 (R,P )| =
∑J

j=1
1
(∑M

m=1
rjm = 1 ∧

∑M

m=1
pjm = 1

)
.

As T → ∞, the stochastic variable sit (Rj , Pj) satisfied

1

T

∑
t
sit (Rj , Pj)

p→ Esit (Rj , Pj) ,

1

T

∑
t
sit (Rj , Pj) = Esit (Rj , Pj) +Op

(
T− 1

2

)
.

It follows that, when j ∈ J1 (R,P ) such that Esit (Rj , Pj) ̸= 0,∑
t
sit (Rj , Pj) = Op (T ) ;

whereas, when j ∈ J0 (R,P ) such that Esit (Rj , Pj) = 0,∑
t
sit (Rj , Pj) = Op

(
T

1
2

)
.

Now

S (R,P ) =
∑

(t1,··· ,tJ )∈T

 ∏
j∈J0(R,P )

sitj (Rj , Pj)

 ∏
j∈J1(R,P )

sitj (Rj , Pj)


is a J-fold summation with each fold being

∑
t sit (Rj , Pj). Therefore,

S (R,P ) =

 ∏
j∈J0(R,P )

Op

(
T

1
2

) ∏
j∈J1(R,P )

Op (T )


= Op

(
T

|J0(R,P )|
2

)
Op

(
T |J1(R,P )|

)
= Op

(
T |J1(R,P )|+ 1

2
|J0(R,P )|

)
.

Since P (R,P ) = J − 1
2
|J0 (R,P )| = |J1 (R,P )|+ 1

2
|J0 (R,P )|, it is obvious that

L (R,P ) =
1

T J− 1
2
|J0(R,P )|

S (R,P ) = Op (1) .
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C Proof of Lemma 1

P (R,P ) < J is equivalent to |J0 (R,P )| > 0, and hence, it follows that

S (R,P ) =
∑

(t1,··· ,tJ )∈T

 ∏
j∈J1(R,P )

sitj (Rj , Pj)

 ∏
j∈J0(R,P )

sitj (Rj , Pj)

 .

Now by independence,

ES (R,P ) =
∑

(t1,··· ,tJ )∈T

 ∏
j∈J1(R,P )

Esitj (Rj , Pj)

 ∏
j∈J0(R,P )

Esitj (Rj , Pj)


in which, since Esit (Rj , Pj) = 0 for j ∈ J0 (R,P ), ES (R,P ) = 0 such that EL (R,P ) = 0.

D Product of L (R,P ) and L (R′, P ′)

The product of several L (R,P ) and/or several lr can be computed iteratively by rewrit-

ing lr into L (R,P ). To calculate L (R,P )L (R′, P ′), we shall focus on the calculation of

S (R,P )S (R′, P ′). Let

R ≡


r11 · · · r1M
...

. . .
...

rJ1 · · · rJM

 , P ≡


p11 · · · p1M
...

. . .
...

pJ1 · · · pJM

 ,

R′ ≡


r′11 · · · r′1M′

...
. . .

...

r′J′1 · · · r′J′M′

 , P ′ ≡


p′11 · · · p′1M′

...
. . .

...

p′J′1 · · · p′J′M′


where we suppose w.l.o.g. that J ′ ≤ J ; let

cj ≡
(
Pj
Rj

)
, c′j′ ≡

(P ′
j′

R′
j′

)
;

and let ⟨
cj , c

′
j′
⟩
≡
(Pj ,P

′
j′

Rj ,R
′
j′

)
in which Pj , P

′
j′ and Rj , R

′
j′ are simply row-joined respectively. Now let

S (c1, · · · , cJ) ≡ S (R,P ) , S
(
c′1, · · · , c′J′

)
≡ S

(
R′, P ′)

in which pairs pjm, rjm and/or p′j′m′ , r′j′m′ are removed if, respectively, pjm = rjm = 0

and/or p′j′m′ = r′j′m′ = 0. For z = 0, · · · , J ′ and for given j1, · · · , jz, j′1, · · · , j′z, let

Cj ̸=j1,··· ,jz ≡ {cj |j = 1, · · · , J ; j ̸= j1, · · · , jz} ,

C′
j ̸=j′1,··· ,j′z

≡
{
c′j |j = 1, · · · , J ′; j ̸= j′1, · · · , j′z

}
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such that, e.g.,

S (c1, · · · , cJ) ≡ S (c1, · · · , cn, Cj ̸=1,··· ,n) ,

S
(
c′1, · · · , c′J′

)
≡ S

(
c′1, · · · , c′n, C′

j ̸=1,··· ,n
)

for every nonnegative integer n ≤ J ′. Here Cj ̸=j1,··· ,jz (or C′
j ̸=j′1,··· ,j′z

) serves as a collection

of cj (or c′j′) for j ̸= j1, · · · , jz (or j′ ̸= j′1, · · · , j′z). It needs to be noted that j1, · · · , jz
may not necessarily be identical to j′1, · · · , j′z, and that, even when they are indeed identical,

Cj ̸=j1,··· ,jz and C′
j ̸=j′1,··· ,j′z

may still be different.

Suppose, for every positive integer u, v ≤ J ′, ju ̸= jv∀u ̸= v and j′u ̸= j′v∀u ̸= v. It then

can be calculated that

S (c1, · · · , cJ)S
(
c′1, · · · , c′J′

)
= S

(
c1, · · · , cJ , c′1, · · · , c′J′

)
+S

(⟨
c1, c

′
1

⟩
, · · · , cJ , c′2, · · · , c′J′

)
+ · · ·+ S

(
c1, · · · ,

⟨
cJ , c

′
1

⟩
, c′2, · · · , c′J′

)
+ · · ·

+S
(⟨
c1, c

′
J′
⟩
, · · · , cJ , c′1, · · · , c′J′−1

)
+ · · ·+ S

(
c1, · · · ,

⟨
cJ , c

′
J′
⟩
, c′1, · · · , c′J′−1

)
+

∑
j1<j2∈(1,··· ,J)

j′1,j
′
2∈(1,··· ,J

′)

S
(
c1, · · · ,

⟨
cj1 , c

′
j′1

⟩
, · · · ,

⟨
cj2 , c

′
j′2

⟩
, · · · , cJ , C′

j ̸=j′1,j
′
2

)

+
∑

j1<j2<j3∈(1,··· ,J)

j′1,j
′
2,j

′
3∈(1,··· ,J

′)

S
(
c1, · · · ,

⟨
cj1 , c

′
j′1

⟩
, · · · ,

⟨
cj3 , c

′
j′3

⟩
, · · · , cJ , C′

j ̸=j′1,j
′
2,j

′
3

)

+
∑

z∈(4,··· ,J′)

∑
j1<···<jz∈(1,··· ,J)

j′1,··· ,j
′
z∈(1,··· ,J

′)

S
(⟨

cj1 , c
′
j′1

⟩
, · · · ,

⟨
cjz , c

′
j′z

⟩
, Cj ̸=j1,··· ,jz , C

′
j ̸=j′1,··· ,j′z

)

or, in a more compact form,

S (c1, · · · , cJ)S
(
c′1, · · · , c′J′

)
=

∑
z∈(0,··· ,J′)

∑
j1<···<jz∈(1,··· ,J)

j′1,··· ,j
′
z∈(1,··· ,J

′)

S
(⟨

cj1 , c
′
j′1

⟩
, · · · ,

⟨
cjz , c

′
j′z

⟩
, Cj ̸=j1,··· ,jz , C

′
j ̸=j′1,··· ,j′z

)

in which

S
(⟨

cj1 , c
′
j′1

⟩
, · · · ,

⟨
cjz , c

′
j′z

⟩
, Cj ̸=j1,··· ,jz , C

′
j ̸=j′1,··· ,j′z

)
≡ 0

if

T < z + |Cj ̸=j1,··· ,jz |+
∣∣∣C′

j ̸=j′1,··· ,j′z

∣∣∣ = J + J ′ − z

z < J + J ′ − T .

Furthermore, when T is fixed, it can be simplified that

S (c1, · · · , cJ)S
(
c′1, · · · , c′J′

)
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=
∑

max(J+J′−T,0)≤z≤J′

∑
j1<···<jz∈(1,··· ,J)

j′1,··· ,j
′
z∈(1,··· ,J

′)

S

 ⟨
cj1 , c

′
j′1

⟩
, · · · ,

⟨
cjz , c

′
j′z

⟩
,

Cj ̸=j1,··· ,jz , C′
j ̸=j′1,··· ,j′z

 .
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